Search Results

Search found 16807 results on 673 pages for 'david given'.

Page 188/673 | < Previous Page | 184 185 186 187 188 189 190 191 192 193 194 195  | Next Page >

  • SQL Saturday #162 Cambridge

    - by Most Valuable Yak (Rob Volk)
    Despite the efforts of American Airlines, this past weekend I attended the first SQL Saturday in the UK!  Hosted by the SQLCambs Chapter of PASS and organized by Mark (b|t) & Lorraine Broadbent, ably assisted by John Martin (b|t), Mark Pryce-Maher (b|t) and other folks whose names I've unfortunately forgotten, it was held at the Crowne Plaza Hotel, which is completely surrounded by Cambridge University. On Friday, they presented 3 pre-conference sessions given by the brilliant American Cloud & DBA Guru, Buck Woody (b|t), the brilliant Danish SQL Server Internals Guru, Mark Rasmussen (b|t), and the brilliant Scottish Business Intelligence Guru and recent Outstanding Pass Volunteer, Jen Stirrup (b|t).  While I would have loved to attend any of their pre-cons (having seen them present several times already), finances and American Airlines ultimately made that impossible.  But not to worry, I caught up with them during the regular sessions and at the speaker dinner.  And I got back the money they all owed me.  (Actually I owed Mark some money) The schedule was jam-packed even with only 4 tracks, there were 8 regular slots, a lunch session for sponsor presentations, and a 15 minute keynote given by Buck Woody, who besides giving an excellent history of SQL Server at Microsoft (and before), also explained the source of the "unknown contact" image that appears in Outlook.  Hint: it's not Buck himself. Amazingly, and against all better judgment, I even got to present at SQL Saturday 162!  I did a 5 minute Lightning Talk on Regular Expressions in SSMS.  I then did a regular 50 minute session on Constraints.  You can download the content for the regular session at that link, and for the regular expression presentation here. I had a great time and had a great audience for both of my sessions.  You would never have guessed this was the first event for the organizers, everything went very smoothly, especially for the number of attendees and the relative smallness of the space.  The event sponsors also deserve a lot of credit for making themselves fit in a small area and for staying through the entire event until the giveaways at the very end. Overall this was one of the best SQL Saturdays I've ever attended and I have to congratulate Mark B, Lorraine, John, Mark P-M, and all the volunteers and speakers for making this an astoundingly hard act to follow!  Well done!

    Read the article

  • What defines code readability?

    - by zxcdw
    It is often said that readability is perhaps the most important quality-defining measure of a given piece of code for reasons concerning maintainability, ease of understanding and use. What defines the word readable in context of program source code? What kind of definitive aspects are there to code readability? I would be grateful with code examples of readable code, along with reasoning why it is readable.

    Read the article

  • How can I avoid team burnout?

    - by Shawn Dalma
    I work for a small web company that deals with a lot of projects, a few at any given time are development heavy for us (400-1500 hours or more) and I've been noticing developers get extremely burnt out on a project after 150 hours or so. I've been toying around with the idea of working some form of rotation/rest so when someone reaches the threshold, they at least get some time off of working on that project. Is there an industry standard approach?

    Read the article

  • GNU/Linux: Don't Call Them PC Viruses

    <b>The ERACC Web Log:</b> "The fact that malware are written primarily for PC systems is a given and is well reported in the news. The fact that malware are written primarily for Microsoft Windows based PC systems is often not reported."

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Clone an Azure VM using Powershell

    - by jamiet
    In a few months time I will, in association with Technitrain, be running a training course entitled Introduction to SQL Server Data Tools. I am currently working on putting together some hands-on lab material for the course delegates and have decided that in order to save time in asking people to install software during the course I am simply going to prepare a virtual machine (VM) containing all the software and lab material for each delegate to use. Given that I am an MSDN subscriber it makes sense to use Windows Azure to host those VMs given that it will be close to, if not completely, free to do so. What I don’t want to do however is separately build a VM for each delegate, I would much rather build one VM and clone it for each delegate. I’ve spent a bit of time figuring out how to do this using Powershell and in this blog post I am sharing a script that will: Prompt for some information (Azure credentials, Azure subscription name, VM name, username & password, etc…) Create a VM on Azure using that information Prompt you to sysprep the VM and image it (this part can’t be done with Powershell so has to be done manually, a link to instructions is provided in the script output) Create three new VMs based on the image Remove those three VMs Simply download the script and execute it within Powershell, assuming you have an Azure account it should take about 20minutes to execute (spinning up VMs and shutting the down isn’t instantaneous). If you experience any issues please do let me know. There are additional notes below. Hope this is useful! @Jamiet  Notes: Obviously there isn’t a lot of point in creating some new VMs and then instantly deleting them. However, this demo script does provide everything you need should you want to do any of these operations in isolation. The names of the three VMs that get created will be suffixed with 001, 002, 003 but you can edit the script to call them whatever you like. The script doesn’t totally clean up after itself. If you specify a service name & storage account name that don’t already exist then it will create them however it won’t remove them when everything is complete. The created image file will also not be deleted. Removing these items can be done by visiting http://manage.windowsazure.com. When creating the image, ensure you use the correct name (the script output tells you what name to use): Here are some screenshots taken from running the script: When the third and final VM gets removed you are asked to confirm via this dialog: Select ‘Yes’

    Read the article

  • Tips on ensuring Model Quality

    - by [email protected]
    Given enough data that represents well the domain and models that reflect exactly the decision being optimized, models usually provide good predictions that ensure lift. Nevertheless, sometimes the modeling situation is less than ideal. In this blog entry we explore the problems found in a few such situations and how to avoid them.1 - The Model does not reflect the problem you are trying to solveFor example, you may be trying to solve the problem: "What product should I recommend to this customer" but your model learns on the problem: "Given that a customer has acquired our products, what is the likelihood for each product". In this case the model you built may be too far of a proxy for the problem you are really trying to solve. What you could do in this case is try to build a model based on the result from recommendations of products to customers. If there is not enough data from actual recommendations, you could use a hybrid approach in which you would use the [bad] proxy model until the recommendation model converges.2 - Data is not predictive enoughIf the inputs are not correlated with the output then the models may be unable to provide good predictions. For example, if the input is the phase of the moon and the weather and the output is what car did the customer buy, there may be no correlations found. In this case you should see a low quality model.The solution in this case is to include more relevant inputs.3 - Not enough cases seenIf the data learned does not include enough cases, at least 200 positive examples for each output, then the quality of recommendations may be low. The obvious solution is to include more data records. If this is not possible, then it may be possible to build a model based on the characteristics of the output choices rather than the choices themselves. For example, instead of using products as output, use the product category, price and brand name, and then combine these models.4 - Output leaking into input giving the false impression of good quality modelsIf the input data in the training includes values that have changed or are available only because the output happened, then you will find some strong correlations between the input and the output, but these strong correlations do not reflect the data that you will have available at decision (prediction) time. For example, if you are building a model to predict whether a web site visitor will succeed in registering, and the input includes the variable DaysSinceRegistration, and you learn when this variable has already been set, you will probably see a big correlation between having a Zero (or one) in this variable and the fact that registration was successful.The solution is to remove these variables from the input or make sure they reflect the value as of the time of decision and not after the result is known. 

    Read the article

  • Is there any way to lock down Photoshop to prevent designers from creating styles that cannot be rendered in CSS?

    - by Hugo Rodger-Brown
    Photoshop is a much more powerful design tool than CSS, and given free reign to design at will, designers will often tweak things like font settings to a degree that cannot be recreated on the web. Is there any way to lock down Photoshop, or perhaps run an equivalent of the Office 2010 "Compatability report" that shows the designer where they have designed something that cannot be rendered on a web page. Something like the old-school "web-safe" colour palette, but for an overall design.

    Read the article

  • Warp GameObject Size When Entering/Leaving Area

    - by Julian
    Below I have an image describing the desired functionality I am going for. Let's say you control a square and when you move this square into a given area, any part of your rigidbody/model inside of the area will be magnified upon entering and shrunk upon leaving. So now you more or less are made up of two rectangles, one small and one large. What would be an elegant approach towards achieving this effect?

    Read the article

  • Set Up A Wii Internet Connection

    If you have a Nintendo Wii Internet connection, it will allow you to play games with friends across the world, download games, update your system, send email to friends, and more. With these given st... [Author: Susan Brown - Computers and Internet - May 08, 2010]

    Read the article

  • Payment Gateway options other than Paypal, for sending out mass payments

    - by Rishav Rastogi
    We were using Paypal Payment pro earlier for the same thing, but for some reason Paypal has been given some new guideline which kinda hinder with the way we need to send out payments at the moment. We receive payments from clients and then send out payments back to vendors on a weekly basis ( deducting our cut ). Can you let me know what options are available to for such transactions other than paypal ? which is the best in terms cost of setup etc. Thanks

    Read the article

  • New Information Center - Reviewing Security For FMW 11g

    - by Daniel Mortimer
    Announcing ... Information Center: Reviewing Security For Oracle Fusion Middleware 11g [ID 1458051.2] has been published.  Screenshot of ID 1458051.2 What is an Information Center? Information Centers use widgets to aggregate knowledge content, such as support documents, product documentation, support community threads, which is pertinent to a given task or intent. Widgets either contain static lists or better still some widgets are dynamic. A dynamic widget uses a query criteria to present a list of support documents relevant to the title / subject matter of the widget. The content of a dynamic widget is refreshed automatically every 24 hours. Once you are in an Information Center, you can use the left hand menu to navigate to other Tasks / Intent Information Centers (e.g "Install and Configure", "Patch", "Troubleshoot", "Upgrade" which are available for the chosen product. Are Information Centers easy to find? You can go straight to the new "Reviewing Security" Information Center by using the hyperlink given above. There are, however, two other methods which make Information Centers easier to find. Browse Knowledge Refine Your Search Browse Knowledge The "Browse Knowledge" is currently found in the "Knowledge" Tab Page in My Oracle Support. As illustrated by the screenshots below, you can find Information Centers by choosing a product (e.g "Oracle Fusion Middleware"), a version and an action / intent. If an Information Center exists for your selection the "Advisor Found" button is enabled. Clicking on this button will take you straight to the desired Information Center.Screenshot - Browse Knowledge 1 Screenshot - Browse Knowledge 2 Screenshot - Browse Knowledge 3 Refine Your Search Refine your search is a dialogue which is triggered by certain keywords that you may enter into the Global Search field in the top right hand corner of My Oracle Support. The "Refine Your Search" works in a similar manner to "Browse Knowledge". Choose your product and version. The appropriate Task / Intent should already be selected for you. Thereafter, click the Go button. Screenshot - Refine Your Search 1 Screenshot - Refine Your Search 2 Screenshot - Refine Your Search 3

    Read the article

  • How are bullets simulated in video games?

    - by mahen23
    I have been playing games like MW2 recently and, as a programmer, I tend to ask myself how do they make the game so immersive. For example, how to they simulate bullet speed. When an NPC fires a bullet from his gun, does the bullet really travel from his gun to the given target or do they they completely ignore this part and just put a bullet hole on the target? If the bullet is really travelling from the gun to the target, at what speed is it actually travelling?

    Read the article

  • When you should and should not use the 'new' keyword?

    - by skizeey
    I watched a Google Tech Talk presentation on Unit Testing, given by Misko Hevery, and he said to avoid using the new keyword in business logic code. I wrote a program, and I did end up using the new keyword here and there, but they were mostly for instantiating objects that hold data (ie, they didn't have any functions or methods). I'm wondering, did I do something wrong when I used the new keyword for my program. And where can we break that 'rule'?

    Read the article

  • Automaticaly add virtual hosts in ubuntu

    - by user208202
    I want to create a simple web interface with username, password and domain. Once the users gives the information, a script will be executed creating the host with the name that the user has given and give permissions to access phpmyadmin, upload a file with filezilla. I use ubuntu, with apache and mysql installed. I found many web based interfaces and tutorials how to manually create virtual hosts but I want an automated self made solution. Can anyone help me? Thanks in advance

    Read the article

  • USTR's Bully Report Unfairly Blames Canada Again

    <b>Michael Geist:</b> "The U.S. government has released its annual Special 301 report in which it purports to identify those countries with inadequate intellectual property laws. Given the recent history and the way in which the list is developed, it will come as no surprise that the U.S. is again implausibly claiming that Canada is among the worst of the worst"

    Read the article

  • Congratulations to the 2012 Oracle Spatial Award Winners!

    - by Mandy Ho
    I just returned from the 2012 Location Intelligence and Oracle Spatial User conference in Washington, DC, held by Directions Magazine. It was a great conference with presentations from across the country and globe, networking with Oracle Spatial users and meeting new customers and partners. As part of the yearly event, Oracle recognizes special customers and partners for their contributions to advancing mainstream solutions using geospatial technology. This was the 8th year that Oracle has recognized innovative, industry leaders.   The awards were given in three categories: Education/Research, Innovator and Partnership. Here's a little on each of the award winners. Education and Research Award Winner: Technical University of Berlin The Institute for Geodesy and Geoinformation Science of the Technical University of Berlin (TU Berlin) was selected for its leading research work in mapping of urban and regional space onto virtual 3D-city and landscape models, and use of Oracle Spatial, including 3D Vector and Georaster type support, as the data management platform. Innovator Award Winner:  Istanbul Metropolitan Municipality Istanbul is the 3rd largest metropolitan area in Europe. One of their greatest challenges is organizing efficient public transportation for citizens and visitors. There are 15 types of transportations organized by 8 different agencies. To solve this problem, the Directorate of GIS of Istanbul Metropolitan Municipality has created a multi-model itinerary system to help citizens in their decision process for using public transport or their private cars. They choose to use Oracle Spatial Network Model as the solution in our system together with Java and SOAP web services.  Partnership Award Winners: CSoft Group and OSCARS. The Partnership award is given to the ISV or integrator who have demonstrated outstanding achievements in partnering with Oracle on the development side, in taking solutions to market.  CSoft Group- the largest Russion integrator and consultancy provider in CAD and GIS. CSoft was selected by the Oracle Spatial product development organization for the key role in delivering geospatial solutions based on Oracle Database and Fusion Middleware to the Russian market. OSCARS - Provides consulting/training in France, Belgium and Luxembourg. With only 3 full time staff, they have achieved significant success with leading edge customer implementations leveraging the latest Oracle Spatial/MapViewer technologies, and delivering training throughout Europe.  Finally, we also awarded two Special Recognition awards for two partners that helped contribute to the Oracle Partner Network Spatial Specialization. These two partners provided insight and technical expertise from a partner perspective to help launch the new certification program for Oracle Spatial Technologies. Award Winners: ThinkHuddle and OSCARS  For more pictures on the conference and the awards, visit our facebook page: http://www.facebook.com/OracleDatabase

    Read the article

  • Problem by installing Java

    - by Shagun
    Yesterday night I was trying to download Java as per instructions given on http://developer.android.com/ .But I messed up somewhere and had to give up the thing. But since morning when ever I try to install or remove some thing I get the following response http://paste.ubuntu.com/1198084/ Please help fast. I am a newbie in android development and have to submit an app within 5 days from now for a project. And I need my linux machine working fine for that.

    Read the article

  • How is precedence determined in C pointers?

    - by ankur.trapasiya
    I've come across two pointer declarations that I'm having trouble understanding. My understanding of precedence rules goes something like this: Operator Precedence Associativity (), [ ] 1 Left to Right *, identifier 2 Right to Left Data type 3 But even given this, I can't seem to figure out how to evaluate the following examples correctly: First example float * (* (*ptr)(int))(double **,char c) My evaluation: *(ptr) (int) *(*ptr)(int) *(*(*ptr)(int)) Then, double ** char c Second example unsigned **( * (*ptr) [5] ) (char const *,int *) *(ptr) [5] *(*ptr)[5] *(*(*ptr)[5]) **(*(*ptr)[5]) How should I read them?

    Read the article

  • Is it important for reflection-based serialization maintain consistent field ordering?

    - by Matchlighter
    I just finished writing a packet builder that dynamically loads data into a data stream for eventual network transmission. Each builder operates by finding fields in a given class (and its superclasses) that are marked with a @data annotation. When I finishing my implementation, I remembered that getFields() does not return results in any specific order. Should reflection-based methods for serializing arbitrary data (like my packets) attempt to preserve a specific field ordering (such as alphabetical), and if so, how?

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • ASP.NET 3.5 Loop Control Structures Using Visual Basic

    Loop statements are one of the most important control structures in any programming language. Control structures are used to control or alter the flow of the program depending on a given situation. This article acquaints you with the most important loop statements and how to use them when developing ASP.NET web applications.... Microsoft Exchange Server 2010 Simplify Administration and Deployment of Messaging - Free Download.

    Read the article

  • Java Dynamic Binding

    - by Chris Okyen
    I am having trouble understanding the OOP Polymorphic principl of Dynamic Binding ( Late Binding ) in Java. I looked for question pertaining to java, and wasn't sure if a overall answer to how dynamic binding works would pertain to Java Dynamic Binding, I wrote this question. Given: class Person { private String name; Person(intitialName) { name = initialName; } // irrelevant methods is here. // Overides Objects method public void writeOutput() { println(name); } } class Student extends Person { private int studentNumber; Student(String intitialName, int initialStudentNumber) { super(intitialName); studentNumber = initialStudentNumber; } // irrellevant methods here... // overides Person, Student and Objects method public void writeOutput() { super.writeOutput(); println(studentNumber); } } class Undergaraduate extends Student { private int level; Undergraduate(String intitialName, int initialStudentNumber,int initialLevel) { super(intitialName,initialStudentNumber); level = initialLevel; } // irrelevant methods is here. // overides Person, Student and Objects method public void writeOutput() { super.writeOutput(); println(level); } } I am wondering. if I had an array called person declared to contain objects of type Person: Person[] people = new Person[2]; person[0] = new Undergraduate("Cotty, Manny",4910,1); person[1] = new Student("DeBanque, Robin", 8812); Given that person[] is declared to be of type Person, you would expect, for example, in the third line where person[0] is initialized to a new Undergraduate object,to only gain the instance variable from Person and Persons Methods since doesn't the assignment to a new Undergraduate to it's ancestor denote the Undergraduate object to access Person - it's Ancestors, methods and isntance variables... Thus ...with the following code I would expect person[0].writeOutput(); // calls Undergraduate::writeOutput() person[1].writeOutput(); // calls Student::writeOutput() person[0] to not have Undergraduate's writeOutput() overidden method, nor have person[1] to have Student's overidden method - writeOutput(). If I had Person mikeJones = new Student("Who?,MikeJones",44,4); mikeJones.writeOutput(); The Person::writeOutput() method would be called. Why is this not so? Does it have to do with something I don't understand about relating to arrays? Does the declaration Person[] people = new Person[2] not bind the method like the previous code would?

    Read the article

  • GUI keyword confusion

    - by richzilla
    Ive been using linux for some time, and ive never quite got my head around the various keywords attached to the GUI. I think i understand the difference between the likes of KDE and Gnome - They are collections of applications and other software that make up a given gui environment. However a quick read through any vaguely technical linux websites will reveal terms like: Murrine Clearlooks GTK Beryl Metacity Window manager Which if im honest, i have no real idea what they mean and how they all relate to each other. Can anybody clarify?

    Read the article

< Previous Page | 184 185 186 187 188 189 190 191 192 193 194 195  | Next Page >