Search Results

Search found 124582 results on 4984 pages for 'net code'.

Page 194/4984 | < Previous Page | 190 191 192 193 194 195 196 197 198 199 200 201  | Next Page >

  • Is possible to set generic type by another class?

    - by Soul_Master
    I use ASP.NET MVC for serving web application and I want to create something like the following code. <% using(HTML.Form(Model)) { %> <% HTML.CreateTextBox('txt1', x => x.Property1); <% } From the above code, Form extension method will receive object that represent type of current Model object in current View page. Next, CreateTextBox method will receive type from Form method and I can bind textbox to some property of this model. Update 1 The following code is code of CreateTextBox method that will create instance of TextBox class. public static CreateTextBox(string value, Expression<Func<object>> bindedProperty) { // T should be receive from HTML.Form method or class return new TextBox<T>(value); } Is it possible to creating some code that doing something like the above code? Thanks,

    Read the article

  • Code Highligh with javascript ?

    - by BrunoLM
    Is there any API or a jQuery plugin that allow me to highlight a code on my website? For example <pre code="c#"> var x = new StringBuilder(); var complex = new Complex(); </pre> <script type="text/javascript"> $("pre[code]").codehighlight({ language: "c#" }); </script> Something like that?

    Read the article

  • Code Highlight with javascript ?

    - by BrunoLM
    Is there any API or a jQuery plugin that allow me to highlight a code on my website? For example <pre code="c#"> var x = new StringBuilder(); var complex = new Complex(); </pre> <script type="text/javascript"> $("pre[code]").codehighlight({ language: "c#" }); </script> Something like that?

    Read the article

  • User Control access from code behind problem.

    - by BillTetrault
    I have a user control called adminMenu and I use it in my index.aspx and all is fine, but I need to access a MenuItem in adminMenu and need to change NavigateUrl on the MenuItem. Tried this code with no luck: MenuItem MaintenanceReports = this.adminMenu.FindItem("MaintenanceReports"); Not sure if I should be accessing adminMenu properties from controls code behind, but when I try from controls code behind was not able to access it either, any ideas would be appreciated.

    Read the article

  • Using the ASPxGridView DevExpress control

    - by nikolaosk
    Recently I had to implement a web application for a client of mine using ASP.Net.I used the DevExpress ASP.Net controls and I would like to present you with some hands-on examples on how to use these ASP.Net controls. In this very first post I will explore the most used ASP.Net DevExpress control, the ASPxGridView control . This is going to be a post that targets a beginner audience. ASPxGridView has great features built-in that include sorting,grouping,filtering,summaries.It uses very clever ways...(read more)

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • C# Domain-Driven Design Sample Released

    - by Artur Trosin
    In the post I want to declare that NDDD Sample application(s) is released and share the work with you. You can access it here: http://code.google.com/p/ndddsample. NDDDSample from functionality perspective matches DDDSample 1.1.0 which is based Java and on joint effort by Eric Evans' company Domain Language and the Swedish software consulting company Citerus. But because NDDDSample is based on .NET technologies those two implementations could not be matched directly. However concepts, practices, values, patterns, especially DDD, are cross-language and cross-platform :). Implementation of .NET version of the application was an interesting journey because now as .NET developer I better understand the differences positive and negative between these two platforms. Even there are those differences they can be overtaken, in many cases it was not so hard to match a java libs\framework with .NET during the implementation. Here is a list of technology stack: 1. .net 3.5 - framework 2. VS.NET 2008 - IDE 3. ASP.NET MVC2.0 - for administration and tracking UI 4. WCF - communication mechanism 5. NHibernate - ORM 6. Rhino Commons - Nhibernate session management, base classes for in memory unit tests 7. SqlLite - database 8. Windsor - inversion of control container 9. Windsor WCF facility - for better integration with NHibernate 10. MvcContrib - and in particular its Castle WindsorControllerFactory in order to enable IoC for controllers 11. WPF - for incident logging application 12. Moq - mocking lib used for unit tests 13. NUnit - unit testing framework 14. Log4net - logging framework 15. Cloud based on Azure SDK These are not the latest technologies, tools and libs for the moment but if there are someone thinks that it would be useful to migrate the sample to latest current technologies and versions please comment. Cloud version of the application is based on Azure emulated environment provided by the SDK, so it hasn't been tested on ‘real' Azure scenario (we just do not have access to it). Thanks to participants, Eugen Gorgan who was involved directly in development, Ruslan Rusu and Victor Lungu spend their free time to discuss .NET specific decisions, Eugen Navitaniuc helped with Java related questions. Also, big thank to Cornel Cretu, he designed a nice logo and helped with some browser incompatibility issues. Any review and feedback are welcome! Thank you, Artur Trosin

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Two book reviews

    - by bipinjoshi
    I recently reviewed two books -  Programming Microsoft ASP.NET MVC, 2nd Edition and Programming Entity Framework - Code First. Here are the links to the complete reviews:Programming Microsoft ASP.NET MVC, 2nd Edition http://www.bipinjoshi.net/articles/43fcbd2d-2d44-4df7-9cf1-492eb63bc31a.aspx Programming Entity Framework - Code Firsthttp://www.bipinjoshi.net/articles/5e5ea033-a57e-436b-9b4c-e3638e8260b6.aspx  

    Read the article

  • How to check if the tab page is dirty and prompt the user to save before navigating away using ajaxtoolkit tab control in ASP.NET

    Step 1: Put a hidden variable in Update panel <asp:HiddenField ID="hfIsDirty" runat="server" Value="0" /> Step 2: Put the following code in ajaxcontrol tool kit tabcontainer OnClientActiveTabChanged="ActiveTabChanged" Copy the following script in the aspx page. <script type="text/javascript">       //Trigger Server side post back for the Tab container       function ActiveTabChanged(sender, e) {           __doPostBack('<%= tcBaseline.ClientID %>', '');       }       //Sets the dirty flag if the page is dirty       function setDirty() {           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           if (hf != null)               hf.value = 1;       }       //Resets the dirty flag after save       function clearDirty() {           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           hf.value = 0;       }       function showMessage() { return "page is dirty" }       function setControlChange() {           if (typeof (event.srcElement) != 'undefined')           { event.srcElement.onchange = setDirty; }       }       function checkDirty() {           var tc = document.getElementById("<%=tcBaseline.ClientID%>");           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           if (hf.value == "1") {               var conf = confirm("Do you want o loose unsaved changes? Please Cancel to stay on page or OK to continue ");               if (conf) {                   clearDirty();                   return true;               }               else {                   var e = window.event;                   e.cancelBubble = true;                   if (e.stopPropagation) e.stopPropagation();                   return false;               }           }           else               return true;       }       document.body.onclick = setControlChange;       document.body.onkeyup = setControlChange;       var onBeforeUnloadFired = false;       // Function to reset the above flag.       function resetOnBeforeUnloadFired() {           onBeforeUnloadFired = false;       }       function doBeforeUnload() {           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           // If this function has not been run before...           if (!onBeforeUnloadFired) {               // Prevent this function from being run twice in succession.               onBeforeUnloadFired = true;               // If the form is dirty...               if (hf.value == "1") {                   event.returnValue = "If you continue you will lose any changes that you have made to this record.";               }           }           window.setTimeout("resetOnBeforeUnloadFired()", 1000);       }       if (window.body) {           window.body.onbeforeunload = doBeforeUnload;       }       else           window.onbeforeunload = doBeforeUnload;   </script> Step 3: Here is how the tabcontrol should look like <asp:UpdatePanel ID="upTab" runat="server" UpdateMode="conditional">                     <ContentTemplate>                         <ajaxtoolkit:TabContainer ID="tcBaseline" runat="server" Height="400px" OnClientActiveTabChanged="ActiveTabChanged">                             <ajaxtoolkit:TabPanel ID="tpPersonalInformation" runat="server">                                 <HeaderTemplate>                                     <asp:Label ID="lblPITab" runat="server" Text="<%$ Resources:Resources, Baseline_Tab_PersonalInformation %>"                                         onclick="checkDirty();"></asp:Label>                                 </HeaderTemplate>                                 <ContentTemplate>                                     <asp:PlaceHolder ID="PlaceHolder1" runat="server"></asp:PlaceHolder> </ContentTemplate>                             </ajaxtoolkit:TabPanel> span.fullpost {display:none;}

    Read the article

  • Gallio and VS2010 code coverage

    - by andrewstopford
    Scott mentioned on twitter a great post on using VS2010 code coverage with ASP.NET unit tests with the following comment. So I figured I would work up a quick post on using Gallio with the code coverage features (and thus MbUnit, NUnit etc).  Using Gallio with the VS2010 code coverage features is exactly the same as you would use MSTest. Just enable the code coverage collector.   Select the assembly you want to profile (double click the collector to do this) Run your test   Right Click and select code coverage.  

    Read the article

  • How to check if the tab page is dirty and prompt the user to save before navigating away using ajaxtoolkit tab control in ASP.NET

    Step 1: Put a hidden variable in Update panel <asp:HiddenField ID="hfIsDirty" runat="server" Value="0" /> Step 2: Put the following code in ajaxcontrol tool kit tabcontainer OnClientActiveTabChanged="ActiveTabChanged" Copy the following script in the aspx page. <script type="text/javascript">       //Trigger Server side post back for the Tab container       function ActiveTabChanged(sender, e) {           __doPostBack('<%= tcBaseline.ClientID %>', '');       }       //Sets the dirty flag if the page is dirty       function setDirty() {           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           if (hf != null)               hf.value = 1;       }       //Resets the dirty flag after save       function clearDirty() {           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           hf.value = 0;       }       function showMessage() { return "page is dirty" }       function setControlChange() {           if (typeof (event.srcElement) != 'undefined')           { event.srcElement.onchange = setDirty; }       }       function checkDirty() {           var tc = document.getElementById("<%=tcBaseline.ClientID%>");           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           if (hf.value == "1") {               var conf = confirm("Do you want o loose unsaved changes? Please Cancel to stay on page or OK to continue ");               if (conf) {                   clearDirty();                   return true;               }               else {                   var e = window.event;                   e.cancelBubble = true;                   if (e.stopPropagation) e.stopPropagation();                   return false;               }           }           else               return true;       }       document.body.onclick = setControlChange;       document.body.onkeyup = setControlChange;       var onBeforeUnloadFired = false;       // Function to reset the above flag.       function resetOnBeforeUnloadFired() {           onBeforeUnloadFired = false;       }       function doBeforeUnload() {           var hf = document.getElementById("<%=hfIsDirty.ClientID%>");           // If this function has not been run before...           if (!onBeforeUnloadFired) {               // Prevent this function from being run twice in succession.               onBeforeUnloadFired = true;               // If the form is dirty...               if (hf.value == "1") {                   event.returnValue = "If you continue you will lose any changes that you have made to this record.";               }           }           window.setTimeout("resetOnBeforeUnloadFired()", 1000);       }       if (window.body) {           window.body.onbeforeunload = doBeforeUnload;       }       else           window.onbeforeunload = doBeforeUnload;   </script> Step 3: Here is how the tabcontrol should look like <asp:UpdatePanel ID="upTab" runat="server" UpdateMode="conditional">                     <ContentTemplate>                         <ajaxtoolkit:TabContainer ID="tcBaseline" runat="server" Height="400px" OnClientActiveTabChanged="ActiveTabChanged">                             <ajaxtoolkit:TabPanel ID="tpPersonalInformation" runat="server">                                 <HeaderTemplate>                                     <asp:Label ID="lblPITab" runat="server" Text="<%$ Resources:Resources, Baseline_Tab_PersonalInformation %>"                                         onclick="checkDirty();"></asp:Label>                                 </HeaderTemplate>                                 <ContentTemplate>                                     <asp:PlaceHolder ID="PlaceHolder1" runat="server"></asp:PlaceHolder> </ContentTemplate>                             </ajaxtoolkit:TabPanel> span.fullpost {display:none;}

    Read the article

  • Error during GENERAL_REQUEST_ENTITY for POST results in ASP .NET session state never getting unlocked

    - by Jesse
    I have been trying to chase down the root cause of a condition where ASP .NET session state remains locked after a web request has been terminated due to an unexpected error. We use the SQL Server session state provider for session because we have several servers in a web farm. This issue first presented itself in the form of many requests getting stuck on the 'AcquireRequestState' event of their lifecycle for no apparent reason. I was able to finding corresponding entries for these requests in the session state database in SQL server that were all locked (column Locked = 1). I was also able to correlate these requests to entries in the IIS log with HTTP status codes of 500 (with a sub status of 0). These findings lead me to believe that, in some cases, a request was erroring out but was NOT releasing its lock on session state like it should. I enabled Failed Request Tracing in IIS for the website in question for status code 500 with all available providers selected each with the 'Verbose' setting for verbosity. I've since gathered several failed traces that have caused permanently locked ASP .NET sessions. They all share the same characteristics: They are all 'POST' requests where the browser is posting data to be processed/saved. They all have events indicating that the 'Session' module was invoked during the REQUEST_ACQUIRE_STATE event. At this point the request would have marked the row in the session state database as being "locked". This is normal and expected. They all have GENERAL_READ_ENTITY_START, GENERAL_READ_ENTITY_END, and GENERAL_REQUEST_ENTITY entries that appear to be reading in the data that was posted to the server as part of the request. This appears to be a buffered operation as these events get repeated over and over with each one reading in some subset of the posted data. At some point during the 'read entity' related events and error occurs. Some have the error code "Incorrect function. (0x80070001)" and others have "The I/O operation has been aborted because of either a thread exit or an application request. (0x800703e3)". Once the error has been encountered, they all jump directly to the END_REQUEST events. The issue here is that, under normal circumstances, there should be a RELEASE_REQUEST_STATE event that will allow the Session module to release the lock it has on the session. This event is being skipped in this scenario. Just to be sure, I enabled failed request tracing for the '200' status code as well and generated several traces of successful requests that do have the RELEASE_REQUEST_STATE event being handled by the Session module. My theory at this point is that some kind of network issue is causing the 'Incorrect function' and 'I/O operation has been aborted because of either a thread exit or an application request' errors, but I don't understand why this seems to be causing the request handling to skip over the RELEASE_REQUEST_STATE event. If the request went through REQUEST_ACQUIRE_STATE it seems like it should also hit RELEASE_REQUEST_STATE as well. I'm loathe to say that this is a bug in IIS or ASP .NET, but it certainly appears that way to me at this point. Are there any configuration changes I could make to help ensure that 'RELEASE_REQUEST_STATE' is fired under all error conditions?

    Read the article

  • .NET Code Evolution

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/07/24/153504.aspxAt my day job I do look at a lot of code written by other people. Most of the code is quite good and some is even a masterpiece. And there is also code which makes you think WTF… oh it was written by me. Hm not so bad after all. There are many excuses reasons for bad code. Most often it is time pressure followed by not enough ambition (who cares) or insufficient training. Normally I do care about code quality quite a lot which makes me a (perceived) slow worker who does write many tests and refines the code quite a lot because of the design deficiencies. Most of the deficiencies I do find by putting my design under stress while checking for invariants. It does also help a lot to step into the code with a debugger (sometimes also Windbg). I do this much more often when my tests are red. That way I do get a much better understanding what my code really does and not what I think it should be doing. This time I do want to show you how code can evolve over the years with different .NET Framework versions. Once there was  time where .NET 1.1 was new and many C++ programmers did switch over to get rid of not initialized pointers and memory leaks. There were also nice new data structures available such as the Hashtable which is fast lookup table with O(1) time complexity. All was good and much code was written since then. At 2005 a new version of the .NET Framework did arrive which did bring many new things like generics and new data structures. The “old” fashioned way of Hashtable were coming to an end and everyone used the new Dictionary<xx,xx> type instead which was type safe and faster because the object to type conversion (aka boxing) was no longer necessary. I think 95% of all Hashtables and dictionaries use string as key. Often it is convenient to ignore casing to make it easy to look up values which the user did enter. An often followed route is to convert the string to upper case before putting it into the Hashtable. Hashtable Table = new Hashtable(); void Add(string key, string value) { Table.Add(key.ToUpper(), value); } This is valid and working code but it has problems. First we can pass to the Hashtable a custom IEqualityComparer to do the string matching case insensitive. Second we can switch over to the now also old Dictionary type to become a little faster and we can keep the the original keys (not upper cased) in the dictionary. Dictionary<string, string> DictTable = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase); void AddDict(string key, string value) { DictTable.Add(key, value); } Many people do not user the other ctors of Dictionary because they do shy away from the overhead of writing their own comparer. They do not know that .NET has for strings already predefined comparers at hand which you can directly use. Today in the many core area we do use threads all over the place. Sometimes things break in subtle ways but most of the time it is sufficient to place a lock around the offender. Threading has become so mainstream that it may sound weird that in the year 2000 some guy got a huge incentive for the idea to reduce the time to process calibration data from 12 hours to 6 hours by using two threads on a dual core machine. Threading does make it easy to become faster at the expense of correctness. Correct and scalable multithreading can be arbitrarily hard to achieve depending on the problem you are trying to solve. Lets suppose we want to process millions of items with two threads and count the processed items processed by all threads. A typical beginners code might look like this: int Counter; void IJustLearnedToUseThreads() { var t1 = new Thread(ThreadWorkMethod); t1.Start(); var t2 = new Thread(ThreadWorkMethod); t2.Start(); t1.Join(); t2.Join(); if (Counter != 2 * Increments) throw new Exception("Hmm " + Counter + " != " + 2 * Increments); } const int Increments = 10 * 1000 * 1000; void ThreadWorkMethod() { for (int i = 0; i < Increments; i++) { Counter++; } } It does throw an exception with the message e.g. “Hmm 10.222.287 != 20.000.000” and does never finish. The code does fail because the assumption that Counter++ is an atomic operation is wrong. The ++ operator is just a shortcut for Counter = Counter + 1 This does involve reading the counter from a memory location into the CPU, incrementing value on the CPU and writing the new value back to the memory location. When we do look at the generated assembly code we will see only inc dword ptr [ecx+10h] which is only one instruction. Yes it is one instruction but it is not atomic. All modern CPUs have several layers of caches (L1,L2,L3) which try to hide the fact how slow actual main memory accesses are. Since cache is just another word for redundant copy it can happen that one CPU does read a value from main memory into the cache, modifies it and write it back to the main memory. The problem is that at least the L1 cache is not shared between CPUs so it can happen that one CPU does make changes to values which did change in meantime in the main memory. From the exception you can see we did increment the value 20 million times but half of the changes were lost because we did overwrite the already changed value from the other thread. This is a very common case and people do learn to protect their  data with proper locking.   void Intermediate() { var time = Stopwatch.StartNew(); Action acc = ThreadWorkMethod_Intermediate; var ar1 = acc.BeginInvoke(null, null); var ar2 = acc.BeginInvoke(null, null); ar1.AsyncWaitHandle.WaitOne(); ar2.AsyncWaitHandle.WaitOne(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Intermediate did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Intermediate() { for (int i = 0; i < Increments; i++) { lock (this) { Counter++; } } } This is better and does use the .NET Threadpool to get rid of manual thread management. It does give the expected result but it can result in deadlocks because you do lock on this. This is in general a bad idea since it can lead to deadlocks when other threads use your class instance as lock object. It is therefore recommended to create a private object as lock object to ensure that nobody else can lock your lock object. When you read more about threading you will read about lock free algorithms. They are nice and can improve performance quite a lot but you need to pay close attention to the CLR memory model. It does make quite weak guarantees in general but it can still work because your CPU architecture does give you more invariants than the CLR memory model. For a simple counter there is an easy lock free alternative present with the Interlocked class in .NET. As a general rule you should not try to write lock free algos since most likely you will fail to get it right on all CPU architectures. void Experienced() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); t1.Wait(); t2.Wait(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Experienced did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Experienced() { for (int i = 0; i < Increments; i++) { Interlocked.Increment(ref Counter); } } Since time does move forward we do not use threads explicitly anymore but the much nicer Task abstraction which was introduced with .NET 4 at 2010. It is educational to look at the generated assembly code. The Interlocked.Increment method must be called which does wondrous things right? Lets see: lock inc dword ptr [eax] The first thing to note that there is no method call at all. Why? Because the JIT compiler does know very well about CPU intrinsic functions. Atomic operations which do lock the memory bus to prevent other processors to read stale values are such things. Second: This is the same increment call prefixed with a lock instruction. The only reason for the existence of the Interlocked class is that the JIT compiler can compile it to the matching CPU intrinsic functions which can not only increment by one but can also do an add, exchange and a combined compare and exchange operation. But be warned that the correct usage of its methods can be tricky. If you try to be clever and look a the generated IL code and try to reason about its efficiency you will fail. Only the generated machine code counts. Is this the best code we can write? Perhaps. It is nice and clean. But can we make it any faster? Lets see how good we are doing currently. Level Time in s IJustLearnedToUseThreads Flawed Code Intermediate 1,5 (lock) Experienced 0,3 (Interlocked.Increment) Master 0,1 (1,0 for int[2]) That lock free thing is really a nice thing. But if you read more about CPU cache, cache coherency, false sharing you can do even better. int[] Counters = new int[12]; // Cache line size is 64 bytes on my machine with an 8 way associative cache try for yourself e.g. 64 on more modern CPUs void Master() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Master, 0); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Master, Counters.Length - 1); t1.Wait(); t2.Wait(); Counter = Counters[0] + Counters[Counters.Length - 1]; if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Master did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Master(object number) { int index = (int) number; for (int i = 0; i < Increments; i++) { Counters[index]++; } } The key insight here is to use for each core its own value. But if you simply use simply an integer array of two items, one for each core and add the items at the end you will be much slower than the lock free version (factor 3). Each CPU core has its own cache line size which is something in the range of 16-256 bytes. When you do access a value from one location the CPU does not only fetch one value from main memory but a complete cache line (e.g. 16 bytes). This means that you do not pay for the next 15 bytes when you access them. This can lead to dramatic performance improvements and non obvious code which is faster although it does have many more memory reads than another algorithm. So what have we done here? We have started with correct code but it was lacking knowledge how to use the .NET Base Class Libraries optimally. Then we did try to get fancy and used threads for the first time and failed. Our next try was better but it still had non obvious issues (lock object exposed to the outside). Knowledge has increased further and we have found a lock free version of our counter which is a nice and clean way which is a perfectly valid solution. The last example is only here to show you how you can get most out of threading by paying close attention to your used data structures and CPU cache coherency. Although we are working in a virtual execution environment in a high level language with automatic memory management it does pay off to know the details down to the assembly level. Only if you continue to learn and to dig deeper you can come up with solutions no one else was even considering. I have studied particle physics which does help at the digging deeper part. Have you ever tried to solve Quantum Chromodynamics equations? Compared to that the rest must be easy ;-). Although I am no longer working in the Science field I take pride in discovering non obvious things. This can be a very hard to find bug or a new way to restructure data to make something 10 times faster. Now I need to get some sleep ….

    Read the article

  • .NET "must-have" development tools

    - by nzpcmad
    James Avery wrote a classic article a while back entitled Ten Must-Have Tools Every Developer Should Download Now which is a companion to Visual Studio Add-Ins Every Developer Should Download Now and Scott Hanselman has an excellent list on his blog but if you were on a desert island and were only allowed three .NET development tools which ones would you pick? Update: Assuming you already have an IDE like Visual Studio ... Update (5) : Up to 08/01 : The current state of play: Reflector 13 Resharper 9 NUnit + TestDriven.Net 7 Refactor Pro 4 Process Explorer (other Sysinternals) 3 SnippetCompiler 3 CodeRush 3 MSDN Library 2 LinqPad 2 Cruisecontrol.net 2 VMWare 2 RhinoMocks 2 Fiddler 2 PowerShell 2 PowerCommands for VS 2008 1 Sandcastle 1 SQL Profiler 1 Redgate ANTS profiler 11 NCover 1 VisualSVN 1 Rubber Ducky 1 WinMerge 1 NAnt 1 ViEmu 1 AnkhSVN 1 dotTrace Profiler 1 BeyondCompare 1 DPack VS Plugin 1 WCF Trace Viewer (SDK) 1 xUnit.net 1 SourceGear DiffMerge 1 Ghostdoc 1 Expression Studio 1 XAML Pad 1 KaXaml 1 Blender for 3D modeling 1 Snoop a WPF tool 1 DiffMerge 1 DPack 1 NDepend 1 Kodos 1 WatiN 1 HTTPWatch Basic Edition 1 Paint.Net 1 Mole For VS 1 What I find particularly interesting about this is that "NUnit + TestDriven.Net " is right up there in third place which shows the growing emphasis on testing as an integral part of the development process rather than as an adjunct which is simply bolted on. And I'm somewhat perplexed that Codesmith didn't receive a single vote?

    Read the article

  • How can I return json from my WCF rest service (.NET 4), using Json.Net, without it being a string,

    - by Samuel Meacham
    The DataContractJsonSerializer is unable to handle many scenarios that Json.Net handles just fine when properly configured (specifically, cycles). A service method can either return a specific object type (in this case a DTO), in which case the DataContractJsonSerializer will be used, or I can have the method return a string, and do the serialization myself with Json.Net. The problem is that when I return a json string as opposed to an object, the json that is sent to the client is wrapped in quotes. Using DataContractJsonSerializer, returning a specific object type, the response is: {"Message":"Hello World"} Using Json.Net to return a json string, the response is: "{\"Message\":\"Hello World\"}" I do not want to have to eval() or JSON.parse() the result on the client, which is what I would have to do if the json comes back as a string, wrapped in quotes. I realize that the behavior is correct; it's just not what I want/need. I need the raw json; the behavior when the service method's return type is an object, not a string. So, how can I have my method return an object type, but not use the DataContractJsonSerializer? How can I tell it to use the Json.Net serializer instead? Or, is there someway to directly write to the response stream? So I can just return the raw json myself? Without the wrapping quotes? Here is my contrived example, for reference: [DataContract] public class SimpleMessage { [DataMember] public string Message { get; set; } } [ServiceContract] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)] public class PersonService { // uses DataContractJsonSerializer // returns {"Message":"Hello World"} [WebGet(UriTemplate = "helloObject")] public SimpleMessage SayHelloObject() { return new SimpleMessage("Hello World"); } // uses Json.Net serialization, to return a json string // returns "{\"Message\":\"Hello World\"}" [WebGet(UriTemplate = "helloString")] public string SayHelloString() { SimpleMessage message = new SimpleMessage() { Message = "Hello World" }; string json = JsonConvert.Serialize(message); return json; } // I need a mix of the two. Return an object type, but use the Json.Net serializer. }

    Read the article

  • Jquery validation does not stop execution of "code behind" code of asp.net button

    - by shahk26
    Hi, I have a asp.net button which has click event which basically adds data into datbase. I also have a radiobuttonlist(i.e Approve / Decline) and a textbox. If user selects decline, the textbox becomes visible. I want to run validation that when user clicks on submit button, if the decline is selected then the textbox can not blank. I have used jquery validation for that. when I click button, the message apppears next to textbox that the field is required but it does not stop the execution of code behind. i.e.It adds data into database. Here is my code. <script type="text/javascript" language="javascript"> $(function() { $('#declinediv').hide(); //////// var $radBtn = $("table.rblist input:radio"); $radBtn.click(function() { var $radChecked = $(':radio:checked'); var value = $radChecked.val(); if (value == 'Decline' || value == 'Approve') { if (value == 'Decline') $('#declinediv').show(); else $('#declinediv').hide(); } else { $('#declinediv').hide(); } }); ////////////////////////// $("#aspnetForm").validate({ rules: { <%=txtdeclinereason.UniqueID %>: { minlength: 2, required: true } }, messages: { <%=txtdeclinereason.UniqueID %>:{ required: "* Required Field *", minlength: "* Please enter atleast 2 characters *" } }, onsubmit: true }); ////////////////////////////////// $('#btnsubmit').click(function(evt){ var isValid = $("#aspnetForm").valid(); if (!isValid) { evt.preventDefault(); } }); }); function myredirect(v, m, f) { window.location.href = v; } </script> <table style="border: 1px black solid; text-align: center; vertical-align: middle" width="100%"> <tr> <td> <asp:RadioButtonList ID="rbtnlstapprover" runat="server" RepeatDirection="Horizontal" CssClass="rblist" DataTextField="username" DataValueField="emailaddress"> <asp:ListItem Text="Approve" Value="Approve" /> <asp:ListItem Text="Decline" Value="Decline" /> </asp:RadioButtonList> <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server" ControlToValidate="rbtnlstapprover" Text="*" ErrorMessage="Please select atleast one Approver" ValidationGroup="approvalgroup" Display="Dynamic" /> </td> </tr> <tr> <td> <div id="declinediv"> <asp:TextBox ID="txtdeclinereason" runat="server" TextMode="MultiLine" Columns="80" Rows="5" /> </div> </td> </tr> <tr> <td> <asp:Button ID="btnsubmit" runat="server" Text="Submit" CssClass="RegularButton" CausesValidation="true" ValidationGroup="approvalgroup" OnClick="btnsubmit_Click" /> </td> </tr> </table> How do I stop the execution of code behind? Thanks for your help.

    Read the article

  • .NET proxy detection

    - by Ziplin
    I am having an issue with .NET detecting the proxy settings configured through internet explorer. I'm writing a client application that supports proxies, and to test I set up an array of 9 squid servers to support various authentication methods for HTTP and HTTPs. I have a script that updates IE to whichever configuration I choose (which proxy, detection via "Auto", PAC, or hardcode). I have tried the 3 methods below to detect the IE configuration through .NET. On occassion I notice that .NET picks up the wrong set of proxy servers. IE has the correct settings, and if I browse the web with IE, I can see I am hitting the correct servers via wireshark. WebRequest.GetSystemWebProxy().GetProxy(destination); GlobalProxySelection.Select.GetProxy(destination); WebRequest.DefaultWebProxy Here are the following tips I have: My script sets a PAC file on a webserver, and updates the configuration in IE, then clears IE's cache .NET seems to get "stuck" on a certain proxy configuration, and I have to set another configuration for .NET to realize there was a change. Occasionally it seems to pick some random set of servers (I'm sure they're not random, just a set of servers I used once and are in some cached PAC file or something). As in, I will check the proxy for the destination "https://www.secure.com" and I may have IE configured for and thus expect to get "http://squidserver:18" and instead it will return "http://squidserver:28" (port 18 runs NTLM, 28 runs without authentication). All the squid servers work. This does not appear to be an issue on XP, only Vista, 2003, and windows 7. Hardcoding the proxy servers in IE ALWAYS works Time always solves the issue - if I leave the computer for about 20 or 30 minutes and come back, .NET picks up the correct proxy settings, as if a cached PAC script expired.

    Read the article

  • Decoupling the view, presentation and ASP.NET Web Forms

    - by John Leidegren
    I have an ASP.NET Web Forms page which the presenter needs to populate with controls. This interaction is somewhat sensitive to the page-life cycle and I was wondering if there's a trick to it, that I don't know about. I wanna be practical about the whole thing but not compromise testability. Currently I have this: public interface ISomeContract { void InstantiateIn(System.Web.UI.Control container); } This contract has a dependency on System.Web.UI.Control and I need that to be able to do things with the ASP.NET Web Forms programming model. But neither the view nor the presenter may have knowledge about ASP.NET server controls. How do I get around this? How can I work with the ASP.NET Web Forms programming model in my concrete views without taking a System.Web.UI.Control dependency in my contract assemblies? To clarify things a bit, this type of interface is all about UI composition (using MEF). It's known through-out the framework but it's really only called from within the concrete view. The concrete view is still the only thing that knows about ASP.NET Web Forms. However those public methods that say InstantiateIn(System.Web.UI.Control) exists in my contract assemblies and that implies a dependency on ASP.NET Web Forms. I've been thinking about some double dispatch mechanism or even visitor pattern to try and work around this.

    Read the article

  • IIS 6+ASP.NET - many temp files generated

    - by moshe_ravid
    I have a ASP.NET + some .NET web-services running on IIS 6 (win 2003 server). The issue is that IIS is generating a lot (!) of files in "c:\WINDOWS\Temp" directory. a lot of files means thousands of files, which get to more than 3G of size so far. The files are generated by this command: C:\WINDOWS\SysWOW64\inetsrv "C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\csc.exe" /t:library /utf8output /R:"C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\vfagt\113819dd\db0d5802\assembly\dl3\fedc6ef1\006e24d8_3bc9ca01\VfAgentWService.DLL" /R:"C:\WINDOWS\assembly\GAC_MSIL\System.Web.Services\2.0.0.0__b03f5f7f11d50a3a\System.Web.Services.dll" /R:"C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll" /R:"C:\WINDOWS\assembly\GAC_MSIL\System.Xml\2.0.0.0__b77a5c561934e089\System.Xml.dll" /R:"C:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__b77a5c561934e089\System.dll" /out:"C:\WINDOWS\TEMP\9i_i2bmg.dll" /debug- /optimize+ /nostdlib /D:_DYNAMIC_XMLSERIALIZER_COMPILATION "C:\WINDOWS\TEMP\9i_i2bmg.0.cs" The files in the temp directory are pairs of *.out & *.err, where the *.err file is zero size, and the *.out file contains the compilation output messages. What is causing IIS to generate so many files? How can I prevent it? UPDATE: The problem is that the command i described above (csc.exe) is being executed many (many) times, causing the .out & .err to be generated so many times, until it consumes the disk space. So - my question is: what is causing this command to run so many times? (i don't have that many .aspx & .asmx files in my web app). Thanks, Moe

    Read the article

  • Visual Studio and .NET programming

    - by Vit
    Hi, I just want to ask wheather I am right or not about .NET. So, .NET is new framework that enables you to easily implement new and old windows functions. It is similiar to java in the way that its also compiled into "bytecode", but its name is Common Language Infrastructure, or CLI. This language is interpreted by .NET Framework, so code generated by programming using .NET cannot be executed directly by CPU. Now, few languages can be compiled to CLI. First, it was Microsoft-developed C#, than J#, C++ others. I suspect that this is in general right, at least I hope I understand it right. But, what I am still missing is, can you write to machine code compiled code in C#? And, if using Visual Studio 2005, when I select Win32 project, it is compiled into machine code, so only thing you need to run this apps are windows dynamic-link libraries, since static libraries code is implemented into app durink linking phase. And those dynamic-link libraries are implemented in every windows installation, or provided by DirectX installations. But when I select CLR in Visual Studio 2005, than app is compiled into CLI code, and it first executes .NET framework, and than .NET framework executes that program, since its not in machine code. So, I am right? I ask becouse you can read these infos on the internet, but I have noone to tell me wheather I understand it right or not. Thanks.

    Read the article

< Previous Page | 190 191 192 193 194 195 196 197 198 199 200 201  | Next Page >