Search Results

Search found 49 results on 2 pages for 'nmarun'.

Page 2/2 | < Previous Page | 1 2 

  • Beware of const members

    - by nmarun
    I happened to learn a new thing about const today and how one needs to be careful with its usage. Let’s say I have a third-party assembly ‘ConstVsReadonlyLib’ with a class named ConstSideEffect.cs: 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 10; 4: public const int EndValue = 20; 5: } In my project, I reference the above assembly as follows: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < ConstSideEffect.EndValue; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } You’ll see values 10 through 19 as expected. Now, let’s say I receive a new version of the ConstVsReadonlyLib. 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 5; 4: public const int EndValue = 30; 5: } If I just drop this new assembly in the bin folder and run the application, without rebuilding my console application, my thinking was that the output would be from 5 to 29. Of course I was wrong… if not you’d not be reading this blog. The actual output is from 5 through 19. The reason is due to the behavior of const and readonly members. To begin with, const is the compile-time constant and readonly is a runtime constant. Next, when you compile the code, a compile-time constant member is replaced with the value of the constant in the code. But, the IL generated when you reference a read-only constant, references the readonly variable, not its value. So, the IL version of the Main method, after compilation actually looks something like: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < 20; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } I’m no expert with this IL thingi, but when I look at the disassembled code of the exe file (using IL Disassembler), I see the following: I see our readonly member still being referenced by the variable name (ConstVsReadonlyLib.ConstSideEffect::StartValue) in line 0001. Then there’s the Console.WriteLine in line 000b and finally, see the value of 20 in line 0017. This, I’m pretty sure is our const member being replaced by its value which marks the upper bound of the ‘for’ loop. Now you know why the output was from 5 through 19. This definitely is a side-effect of having const members and one needs to be aware of it. While we’re here, I’d like to add a few other points about const and readonly members: const is slightly faster, but is less flexible readonly cannot be declared within a method scope const can be used only on primitive types (numbers and strings) Just wanted to share this before going to bed!

    Read the article

  • Sort method versus OrderBy LINQ extension method

    - by nmarun
    I have a class Product with an Id and a Name as properties. There are multiple ways of getting a list of products to display in sorted/ordered fashion, say, by the Name of the product. The two I’m concerned about here are the Sort and the OrderBy extension method through LINQ and the difference between them. 1: public class Product 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: } Below is the list of products that I’ll be using and is defined somewhere in the Program.cs...(read more)

    Read the article

  • Portable Class Library even better in .NET 4.5

    - by nmarun
    Visual Studio 2012 makes Cross-Platform development even easier. It comes with a feature called Portable Class Library (PCL). This feature was available in Visual Studio 2010 as well, but it required an additional install as against being out-of-the-box for 2012. It’s also worth noting that PCL is available only for Pro and above versions of 2012. So it’s not available with the Express edition of Visual Studio 2012. Let’s get started. In Visual Studio 2012 you can see a template called Portable Class...(read more)

    Read the article

  • Drawing on a webpage – HTML5 - IE9

    - by nmarun
    So I upgraded to IE9 and continued exploring HTML5. Now there’s this ‘thing’ called Canvas in HTML5 with which you can do some cool stuff. Alright what IS this Canvas thing anyways? The Web Hypertext Application Technology Working Group says this: “The canvas element provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering graphs, game graphics, or other visual images on the fly.” The Canvas element has two only attributes – width and height and when not specified they take up the default values of 300 and 150 respectively. Below is what my HTML file looks like: 1: <!DOCTYPE html> 2: <html lang="en-US"> 3: <head> 4: <script type="text/javascript" src="CustomScript.js"></script> 5: <script src="jquery-1.4.4.js" type="text/javascript"></script 6:  7: <title>Draw on a webpage</title> 8: </head> 9: <body> 10: <canvas id="canvas" width="500" height="500"></canvas> 11: <br /> 12: <input type="submit" id="submit" value="Clear" /> 13: <h4 id="currentPosition"> 14: 0, 0 15: </h4> 16: <div id="mousedownCoords"></div> 17: </body> 18: </html> In case you’re wondering, this is not a MVC or any kind of web application. This is plain ol’ HTML even though I’m writing all this in VS 2010. You see this is a very simple, ‘gimmicks-free’ html page. I have declared a Canvas element on line 10 and a button on line 11 to clear the drawing board. I’m using jQuery / JavaScript show the current position of the mouse on the screen. This will get updated in the ‘currentPosition’ <h4> tag and I’m using the ‘mousedownCoords’ to write all the places where the mouse was clicked. This is what my page renders as: The rectangle with a background is our canvas. The coloring is due to some javascript (which we’ll see in a moment). Now let’s get to our CustomScript.js file. 1: jQuery(document).ready(function () { 2: var isFirstClick = true; 3: var canvas = document.getElementById("canvas"); 4: // getContext: Returns an object that exposes an API for drawing on the canvas 5: var canvasContext = canvas.getContext("2d"); 6: fillBackground(); 7:  8: $("#submit").click(function () { 9: clearCanvas(); 10: fillBackground(); 11: }); 12:  13: $(document).mousemove(function (e) { 14: $('#currentPosition').html(e.pageX + ', ' + e.pageY); 15: }); 16: $(document).mouseup(function (e) { 17: // on the first click 18: // set the moveTo 19: if (isFirstClick == true) { 20: canvasContext.beginPath(); 21: canvasContext.moveTo(e.pageX - 7, e.pageY - 7); 22: isFirstClick = false; 23: } 24: else { 25: // on subsequent clicks, draw a line 26: canvasContext.lineTo(e.pageX - 7, e.pageY - 7); 27: canvasContext.stroke(); 28: } 29:  30: $('#mousedownCoords').text($('#mousedownCoords').text() + '(' + e.pageX + ',' + e.pageY + ')'); 31: }); 32:  33: function fillBackground() { 34: canvasContext.fillStyle = '#a1b1c3'; 35: canvasContext.fillRect(0, 0, 500, 500); 36: canvasContext.fill(); 37: } 38:  39: function clearCanvas() { 40: // wipe-out the canvas 41: canvas.width = canvas.width; 42: // set the isFirstClick to true 43: // so the next shape can begin 44: isFirstClick = true; 45: // clear the text 46: $('#mousedownCoords').text(''); 47: } 48: })   The script only looks long and complicated, but is not. I’ll go over the main steps. Get a ‘hold’ of your canvas object and retrieve the ‘2d’ context out of it. On mousemove event, write the current x and y coordinates to the ‘currentPosition’ element. On mouseup event, check if this is the first time the user has clicked on the canvas. The coloring of the canvas is done in the fillBackground() function. We first need to start a new path. This is done by calling the beginPath() function on our context. The moveTo() function sets the starting point of our path. The lineTo() function sets the end point of the line to be drawn. The stroke() function is the one that actually draws the line on our canvas. So if you want to play with the demo, here’s how you do it. First click on the canvas (nothing visible happens on the canvas). The second click draws a line from the first click to the current coordinates and so on and so forth. Click on the ‘Clear’ button, to reset the canvas and to give your creativity a clean slate. Here’s a sample output: Happy drawing! Verdict: HTML5 and IE9 – I think we’re on to something big and great here!

    Read the article

  • Saving user details on OnSuspending event for Metro Style Apps

    - by nmarun
    I recently started getting to know about Metro Style Apps on Windows 8. It looks pretty interesting so far and VS2011 definitely helps making it easier to learn and create Metro Style Apps. One of the features available for developers is the ability to save user data so it can be retrieved the next time the app is run after being closed by the user or even launched from back suspended state. Here’s a little history on this whole ‘suspended’ state of a Metro Style app: Once the user say, ‘alt+tab...(read more)

    Read the article

  • Tuple - .NET 4.0 new feature

    - by nmarun
    Something I hit while playing with .net 4.0 – Tuple. MSDN says ‘Provides static methods for creating tuple objects.’ and the example below is: 1: var primes = Tuple.Create(2, 3, 5, 7, 11, 13, 17, 19); Honestly, I’m still not sure with what intention MS provided us with this feature, but the moment I saw this, I said to myself – I could use it instead of anonymous types. In order to put this to test, I created an XML file: 1: <Activities> 2: <Activity id="1" name="Learn Tuples" eventDate="4/1/2010" /> 3: <Activity id="2" name="Finish Project" eventDate="4/29/2010" /> 4: <Activity id="3" name="Attend Birthday" eventDate="4/17/2010" /> 5: <Activity id="4" name="Pay bills" eventDate="4/12/2010" /> 6: </Activities> In my console application, I read this file and let’s say I want to pull all the attributes of the node with id value of 1. Now, I have two ways – either define a class/struct that has these three properties and use in the LINQ query or create an anonymous type on the fly. But if we go the .NET 4.0 way, we can do this using Tuples as well. Let’s see the code I’ve written below: 1: var myActivity = (from activity in loaded.Descendants("Activity") 2:       where (int)activity.Attribute("id") == 1 3:       select Tuple.Create( 4: int.Parse(activity.Attribute("id").Value), 5: activity.Attribute("name").Value, 6: DateTime.Parse(activity.Attribute("eventDate").Value))).FirstOrDefault(); Line 3 is where I’m using a Tuple.Create to define my return type. There are three ‘items’ (that’s what the elements are called) in ‘myActivity’ type.. aptly declared as Item1, Item2, Item3. So there you go, you have another way of creating anonymous types. Just out of curiosity, wanted to see what the type actually looked like. So I did a: 1: Console.WriteLine(myActivity.GetType().FullName); and the return was (formatted for better readability): "System.Tuple`3[                            [System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],                            [System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],                            [System.DateTime, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]                           ]" The `3 specifies the number of items in the tuple. The other interesting thing about the tuple is that it knows the data type of the elements it’s holding. This is shown in the above snippet and also when you hover over myActivity.Item1, it shows the type as an int, Item2 as string and Item3 as DateTime. So you can safely do: 1: int id = myActivity.Item1; 2: string name = myActivity.Item2; 3: DateTime eventDate = myActivity.Item3; Wow.. all I can say is: HAIL 4.0.. HAIL 4.0.. HAIL 4.0

    Read the article

  • Passing a parameter so that it cannot be changed – C#

    - by nmarun
    I read this requirement of not allowing a user to change the value of a property passed as a parameter to a method. In C++, as far as I could recall (it’s been over 10 yrs, so I had to refresh memory), you can pass ‘const’ to a function parameter and this ensures that the parameter cannot be changed inside the scope of the function. There’s no such direct way of doing this in C#, but that does not mean it cannot be done!! Ok, so this ‘not-so-direct’ technique depends on the type of the parameter – a simple property or a collection. Parameter as a simple property: This is quite easy (and you might have guessed it already). Bulent Ozkir clearly explains how this can be done here. Parameter as a collection property: Obviously the above does not work if the parameter is a collection of some type. Let’s dig-in. Suppose I need to create a collection of type KeyTitle as defined below. 1: public class KeyTitle 2: { 3: public int Key { get; set; } 4: public string Title { get; set; } 5: } My class is declared as below: 1: public class Class1 2: { 3: public Class1() 4: { 5: MyKeyTitleList = new List<KeyTitle>(); 6: } 7: 8: public List<KeyTitle> MyKeyTitleList { get; set; } 9: public ReadOnlyCollection<KeyTitle> ReadonlyKeyTitleCollection 10: { 11: // .AsReadOnly creates a ReadOnlyCollection<> type 12: get { return MyKeyTitleList.AsReadOnly(); } 13: } 14: } See the .AsReadOnly() method used in the second property? As MSDN says it: “Returns a read-only IList<T> wrapper for the current collection.” Knowing this, I can implement my code as: 1: public static void Main() 2: { 3: Class1 class1 = new Class1(); 4: class1.MyKeyTitleList.Add(new KeyTitle { Key = 1, Title = "abc" }); 5: class1.MyKeyTitleList.Add(new KeyTitle { Key = 2, Title = "def" }); 6: class1.MyKeyTitleList.Add(new KeyTitle { Key = 3, Title = "ghi" }); 7: class1.MyKeyTitleList.Add(new KeyTitle { Key = 4, Title = "jkl" }); 8:  9: TryToModifyCollection(class1.MyKeyTitleList.AsReadOnly()); 10:  11: Console.ReadLine(); 12: } 13:  14: private static void TryToModifyCollection(ReadOnlyCollection<KeyTitle> readOnlyCollection) 15: { 16: // can only read 17: for (int i = 0; i < readOnlyCollection.Count; i++) 18: { 19: Console.WriteLine("{0} - {1}", readOnlyCollection[i].Key, readOnlyCollection[i].Title); 20: } 21: // Add() - not allowed 22: // even the indexer does not have a setter 23: } The output is as expected: The below image shows two things. In the first line, I’ve tried to access an element in my read-only collection through an indexer. It shows that the ReadOnlyCollection<> does not have a setter on the indexer. The second line tells that there’s no ‘Add()’ method for this type of collection. The capture below shows there’s no ‘Remove()’ method either, there-by eliminating all ways of modifying a collection. Mission accomplished… right? Now, even if you have a collection of different type, all you need to do is to somehow cast (used loosely) it to a List<> and then do a .AsReadOnly() to get a ReadOnlyCollection of your custom collection type. As an example, if you have an IDictionary<int, string>, you can create a List<T> of this type with a wrapper class (KeyTitle in our case). 1: public IDictionary<int, string> MyDictionary { get; set; } 2:  3: public ReadOnlyCollection<KeyTitle> ReadonlyDictionary 4: { 5: get 6: { 7: return (from item in MyDictionary 8: select new KeyTitle 9: { 10: Key = item.Key, 11: Title = item.Value, 12: }).ToList().AsReadOnly(); 13: } 14: } Cool huh? Just one thing you need to know about the .AsReadOnly() method is that the only way to modify your ReadOnlyCollection<> is to modify the original collection. So doing: 1: public static void Main() 2: { 3: Class1 class1 = new Class1(); 4: class1.MyKeyTitleList.Add(new KeyTitle { Key = 1, Title = "abc" }); 5: class1.MyKeyTitleList.Add(new KeyTitle { Key = 2, Title = "def" }); 6: class1.MyKeyTitleList.Add(new KeyTitle { Key = 3, Title = "ghi" }); 7: class1.MyKeyTitleList.Add(new KeyTitle { Key = 4, Title = "jkl" }); 8: TryToModifyCollection(class1.MyKeyTitleList.AsReadOnly()); 9:  10: Console.WriteLine(); 11:  12: class1.MyKeyTitleList.Add(new KeyTitle { Key = 5, Title = "mno" }); 13: class1.MyKeyTitleList[2] = new KeyTitle{Key = 3, Title = "GHI"}; 14: TryToModifyCollection(class1.MyKeyTitleList.AsReadOnly()); 15:  16: Console.ReadLine(); 17: } Gives me the output of: See that the second element’s Title is changed to upper-case and the fifth element also gets displayed even though we’re still looping through the same ReadOnlyCollection<KeyTitle>. Verdict: Now you know of a way to implement ‘Method(const param1)’ in your code!

    Read the article

  • Using Unity – Part 4

    - by nmarun
    In this part, I’ll be discussing about constructor and property or setter injection. I’ve created a new class – Product3: 1: public class Product3 : IProduct 2: { 3: public string Name { get; set; } 4: [Dependency] 5: public IDistributor Distributor { get; set; } 6: public ILogger Logger { get; set; } 7:  8: public Product3(ILogger logger) 9: { 10: Logger = logger; 11: Name = "Product 1"; 12: } 13:  14: public string WriteProductDetails() 15: { 16: StringBuilder productDetails = new StringBuilder(); 17: productDetails.AppendFormat("{0}<br/>", Name); 18: productDetails.AppendFormat("{0}<br/>", Logger.WriteLog()); 19: productDetails.AppendFormat("{0}<br/>", Distributor.WriteDistributorDetails()); 20: return productDetails.ToString(); 21: } 22: } This version has a property of type IDistributor and takes a constructor parameter of type ILogger. The IDistributor property has a Dependency attribute (Microsoft.Practices.Unity namespace) applied to it. IDistributor and its implementation are shown below: 1: public interface IDistributor 2: { 3: string WriteDistributorDetails(); 4: } 5:  6: public class Distributor : IDistributor 7: { 8: public List<string> DistributorNames = new List<string>(); 9:  10: public Distributor() 11: { 12: DistributorNames.Add("Distributor1"); 13: DistributorNames.Add("Distributor2"); 14: DistributorNames.Add("Distributor3"); 15: DistributorNames.Add("Distributor4"); 16: } 17: public string WriteDistributorDetails() 18: { 19: StringBuilder distributors = new StringBuilder(); 20: for (int i = 0; i < DistributorNames.Count; i++) 21: { 22: distributors.AppendFormat("{0}<br/>", DistributorNames[i]); 23: } 24: return distributors.ToString(); 25: } 26: } ILogger and the FileLogger have the following definition: 1: public interface ILogger 2: { 3: string WriteLog(); 4: } 5:  6: public class FileLogger : ILogger 7: { 8: public string WriteLog() 9: { 10: return string.Format("Type: {0}", GetType()); 11: } 12: } The Unity container creates an instance of the dependent class (the Distributor class) within the scope of the target object (an instance of Product3 class that will be called by doing a Resolve<IProduct>() in the calling code) and assign this dependent object to the attributed property of the target object. To add to it, property injection is a form of optional injection of dependent objects.The dependent object instance is generated before the container returns the target object. Unlike constructor injection, you must apply the appropriate attribute in the target class to initiate property injection. Let’s see how to change the config file to make this work. The first step is to add all the type aliases: 1: <typeAlias alias="Product3" type="ProductModel.Product3, ProductModel"/> 2: <typeAlias alias="ILogger" type="ProductModel.ILogger, ProductModel"/> 3: <typeAlias alias="FileLogger" type="ProductModel.FileLogger, ProductModel"/> 4: <typeAlias alias="IDistributor" type="ProductModel.IDistributor, ProductModel"/> 5: <typeAlias alias="Distributor" type="ProductModel.Distributor, ProductModel"/> Now define mappings for these aliases: 1: <type type="ILogger" mapTo="FileLogger" /> 2: <type type="IDistributor" mapTo="Distributor" /> Next step is to define the constructor and property injection in the config file: 1: <type type="IProduct" mapTo="Product3" name="ComplexProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement, Microsoft.Practices.Unity.Configuration"> 3: <constructor> 4: <param name="logger" parameterType="ILogger" /> 5: </constructor> 6: <property name="Distributor" propertyType="IDistributor"> 7: <dependency /> 8: </property> 9: </typeConfig> 10: </type> There you see a constructor element that tells there’s a property named ‘logger’ that is of type ILogger. By default, the type of ILogger gets resolved to type FileLogger. There’s also a property named ‘Distributor’ which is of type IDistributor and which will get resolved to type Distributor. On the calling side, I’ve added a new button, whose click event does the following: 1: protected void InjectionButton_Click(object sender, EventArgs e) 2: { 3: unityContainer.RegisterType<IProduct, Product3>(); 4: IProduct product3 = unityContainer.Resolve<IProduct>(); 5: productDetailsLabel.Text = product3.WriteProductDetails(); 6: } This renders the following output: This completes the part for constructor and property injection. In the next blog, I’ll talk about Arrays and Generics. Please see the code used here.

    Read the article

  • Team Foundation Service–now for everyone

    - by nmarun
    I heard an announcement regarding TFS being opened for all. I’ve been wanting to have a source control for my personal projects. The set up was an unbelievably simple 3 step process. Signup at http://tfs.visualstudio.com/en-us/ using an account name of your preference Your source control server is something like https://[account name].visualstudio.com. Create your team project choosing a process template of your preference You now have a source control for all your projects. You can connect to this...(read more)

    Read the article

  • My apps in the Windows 8 Store

    - by nmarun
    I have four apps in the Windows 8 store now. Logo Name Available since Description Knight’s Tour Nov 7 2012 Game – How many moves you can make with your Knight on a board alternatives To Oct 9 2012 App – Alternatives to a specified software on various platforms with different licenses Cows N Bulls Sept 7 2012 Game – Guess the four-letter word chosen by the computer Howzzat Book Aug 27 2012 App – Get ratings for a book from various sites all in one place...(read more)

    Read the article

  • IEnumerator.Current property and IEnumerator.MoveNext method

    - by nmarun
    Here’s a question: What happens to the Current property of an IEnumerator before and after the MoveNext() call? When I say ‘after the MoveNext() call’, I mean after MoveNext() returns a false indicating an end of the collection. I was going through the MSDN for IEnumerator.Current and the first paragraph basically boils down to: If MoveNext() method has never been called on an IEnumerator, the Current property is undefined. I wanted to know what ‘undefined’ means – is it null? If so, what if the...(read more)

    Read the article

  • Implementing Ads on any page in your Windows 8 XAML app–part 2

    - by nmarun
    In my previous article , you saw how you can start implementing ads on some of the page templates. In this one, we’ll see how we can add something called ‘interstitial ads’ – ads that appear as part of the content in your app. I have added a Grouped Items page to my project. My data model is set to show a few appliances. I have a BaseModel class and the ApplianceModel that inherits the BaseModel class has two properties to represent an appliance. The ProductHolder acts as a container for a list of...(read more)

    Read the article

  • Implementing Ads on any page in your Windows 8 XAML app–part 1

    - by nmarun
    Let’s look at how you can implements ads on any page in your win 8 app. Before you get to your application, you need to create Ad Units in the MS Pubcenter site. Once you have set up your account with payout and tax details, go to the Setup tab and you’ll see something like below. There are a few options for the sizes of the ad units as shown on the Pubcenter site. Remember that these screenshots are just to give you some reference. The actual positioning of the ads in your apps is decided by you...(read more)

    Read the article

  • Extension methods on a null object instance – something you did not know

    - by nmarun
    Extension methods gave developers with a lot of bandwidth to do interesting (read ‘cool’) things. But there are a couple of things that we need to be aware of while using these extension methods. I have a StringUtil class that defines two extension methods: 1: public static class StringUtils 2: { 3: public static string Left( this string arg, int leftCharCount) 4: { 5: if (arg == null ) 6: { 7: throw new ArgumentNullException( "arg" ); 8: } 9: return arg.Substring(0, leftCharCount); 10...(read more)

    Read the article

  • LINQ – SequenceEqual() method

    - by nmarun
    I have been looking at LINQ extension methods and have blogged about what I learned from them in my blog space. Next in line is the SequenceEqual() method. Here’s the description about this method: “Determines whether two sequences are equal by comparing the elements by using the default equality comparer for their type.” Let’s play with some code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: // int[] numbersCopy = numbers; 3: int[] numbersCopy = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 4:  5: Console.WriteLine(numbers.SequenceEqual(numbersCopy)); This gives an output of ‘True’ – basically compares each of the elements in the two arrays and returns true in this case. The result is same even if you uncomment line 2 and comment line 3 (I didn’t need to say that now did I?). So then what happens for custom types? For this, I created a Product class with the following definition: 1: class Product 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8: } 9:  10: public enum Status 11: { 12: Active = 1, 13: InActive = 2, 14: OffShelf = 3, 15: } In my calling code, I’m just adding a few product items: 1: private static List<Product> GetProducts() 2: { 3: return new List<Product> 4: { 5: new Product 6: { 7: ProductId = 1, 8: Name = "Laptop", 9: Category = "Computer", 10: MfgDate = new DateTime(2003, 4, 3), 11: Status = Status.Active, 12: }, 13: new Product 14: { 15: ProductId = 2, 16: Name = "Compact Disc", 17: Category = "Water Sport", 18: MfgDate = new DateTime(2009, 12, 3), 19: Status = Status.InActive, 20: }, 21: new Product 22: { 23: ProductId = 3, 24: Name = "Floppy", 25: Category = "Computer", 26: MfgDate = new DateTime(1993, 3, 7), 27: Status = Status.OffShelf, 28: }, 29: }; 30: } Now for the actual check: 1: List<Product> products1 = GetProducts(); 2: List<Product> products2 = GetProducts(); 3:  4: Console.WriteLine(products1.SequenceEqual(products2)); This one returns ‘False’ and the reason is simple – this one checks for reference equality and the products in the both the lists get different ‘memory addresses’ (sounds like I’m talking in ‘C’). In order to modify this behavior and return a ‘True’ result, we need to modify the Product class as follows: 1: class Product : IEquatable<Product> 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8:  9: public override bool Equals(object obj) 10: { 11: return Equals(obj as Product); 12: } 13:  14: public bool Equals(Product other) 15: { 16: //Check whether the compared object is null. 17: if (ReferenceEquals(other, null)) return false; 18:  19: //Check whether the compared object references the same data. 20: if (ReferenceEquals(this, other)) return true; 21:  22: //Check whether the products' properties are equal. 23: return ProductId.Equals(other.ProductId) 24: && Name.Equals(other.Name) 25: && Category.Equals(other.Category) 26: && MfgDate.Equals(other.MfgDate) 27: && Status.Equals(other.Status); 28: } 29:  30: // If Equals() returns true for a pair of objects 31: // then GetHashCode() must return the same value for these objects. 32: // read why in the following articles: 33: // http://geekswithblogs.net/akraus1/archive/2010/02/28/138234.aspx 34: // http://stackoverflow.com/questions/371328/why-is-it-important-to-override-gethashcode-when-equals-method-is-overriden-in-c 35: public override int GetHashCode() 36: { 37: //Get hash code for the ProductId field. 38: int hashProductId = ProductId.GetHashCode(); 39:  40: //Get hash code for the Name field if it is not null. 41: int hashName = Name == null ? 0 : Name.GetHashCode(); 42:  43: //Get hash code for the ProductId field. 44: int hashCategory = Category.GetHashCode(); 45:  46: //Get hash code for the ProductId field. 47: int hashMfgDate = MfgDate.GetHashCode(); 48:  49: //Get hash code for the ProductId field. 50: int hashStatus = Status.GetHashCode(); 51: //Calculate the hash code for the product. 52: return hashProductId ^ hashName ^ hashCategory & hashMfgDate & hashStatus; 53: } 54:  55: public static bool operator ==(Product a, Product b) 56: { 57: // Enable a == b for null references to return the right value 58: if (ReferenceEquals(a, b)) 59: { 60: return true; 61: } 62: // If one is null and the other not. Remember a==null will lead to Stackoverflow! 63: if (ReferenceEquals(a, null)) 64: { 65: return false; 66: } 67: return a.Equals((object)b); 68: } 69:  70: public static bool operator !=(Product a, Product b) 71: { 72: return !(a == b); 73: } 74: } Now THAT kinda looks overwhelming. But lets take one simple step at a time. Ok first thing you’ve noticed is that the class implements IEquatable<Product> interface – the key step towards achieving our goal. This interface provides us with an ‘Equals’ method to perform the test for equality with another Product object, in this case. This method is called in the following situations: when you do a ProductInstance.Equals(AnotherProductInstance) and when you perform actions like Contains<T>, IndexOf() or Remove() on your collection Coming to the Equals method defined line 14 onwards. The two ‘if’ blocks check for null and referential equality using the ReferenceEquals() method defined in the Object class. Line 23 is where I’m doing the actual check on the properties of the Product instances. This is what returns the ‘True’ for us when we run the application. I have also overridden the Object.Equals() method which calls the Equals() method of the interface. One thing to remember is that anytime you override the Equals() method, its’ a good practice to override the GetHashCode() method and overload the ‘==’ and the ‘!=’ operators. For detailed information on this, please read this and this. Since we’ve overloaded the operators as well, we get ‘True’ when we do actions like: 1: Console.WriteLine(products1.Contains(products2[0])); 2: Console.WriteLine(products1[0] == products2[0]); This completes the full circle on the SequenceEqual() method. See the code used in the article here.

    Read the article

  • Analytics for Windows 8 apps using Markedup

    - by nmarun
    The Windows 8 store does provide some analytics information to you in terms of downloads by market or by age group, ratings, in-app purchases. I find that a little too limiting. What if I want to know what page my users are spending most of their time or what events are being raised more frequently or are my users calling my app through the search contract I implemented or how many times was the share contract called. To answer questions like this, you need a more mature analytics framework. Markedup...(read more)

    Read the article

  • Reusing elements in StandardStyles.xaml

    - by nmarun
    In one of my previous blogs (second point) , I mentioned not to modify the StandardStyles.xaml, but instead to create your own resource dictionary. I also mentioned how to declare your custom styles dictionary in the App.xaml file. If you want to reference or build upon from an existing style in the StandardStyles.xaml file, do the following: 1. Remove the entry for StandardStyles.xaml in the App.xaml file 2. Add your custom resource dictionary in the App.xaml file 1: <!-- App.xaml --> 2: <...(read more)

    Read the article

  • LINQ – Skip() and Take() methods

    - by nmarun
    I had this issue recently where I have an array of integers and I’m doing some Skip(n) and then a Take(m) on the collection. Here’s an abstraction of the code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: var taken = numbers.Skip(3).Take(3); 3: foreach (var i in taken) 4: { 5: Console.WriteLine(i); 6: } The output is as expected: 3, 9, 8 – skip the first three and then take the next three items. But, what happens if I do something like: 1: var taken = numbers.Skip(7).Take(5); In English – skip the first seven and the take the next 5 items from an array that contains only 10 elements. Think it’ll throw the IndexOutOfRangeException exception? Nope. These extension methods are a little smarter than that. Even though the user has requested more elements than what exists in the collection, the Take method only returns the first three thereby making the output of the program as: 7, 2, 0. The scenario is handled similarly when you do: 1: var taken = numbers.Take(5).Skip(7); This one takes the first 5 elements from the numbers array and then skips 7 of them. This is what is looks like in the debug mode: Just wanted to share this behavior.

    Read the article

  • Implementing Search Contract in Windows 8 application

    - by nmarun
    The Search Contract feature helps improve the accessibility of your application. When a user is trying to search for something through the charms, you see a bunch of apps that get listed below. You see that Store, Howzzat Book and Live Reader apps have implemented this feature. So a user types in some text and clicks on one of these apps and this text is passed to the app where you can show the results of this search directly. Let’s see how to get this implemented. I have created a Blank App named...(read more)

    Read the article

  • Editing assemblies using ReflexIL

    - by nmarun
    I have known ReflexIL for quite some time, so I thought I’ll write a line or two about this simple and yet power tool. This tool runs as a plug-in for Red Gate’s Reflector . I’m not sure if I can cover all the features of this tool, but there are a couple that I really liked that we’ll just see those. In order to get it working, you unzip the contents of the file to some folder. In Reflector, under Tools->Add-Ins add the path to the Reflexil.Reflector.dll. And, you’re set. To bring up the add...(read more)

    Read the article

  • Using Unity – Part 5

    - by nmarun
    In the previous article of the series, I talked about constructor and property (setter) injection. I wanted to write about how to work with arrays and generics in Unity in this blog, after seeing how lengthy this one got, I’ve decided to write about generics in the next one. This one will only concentrate on arrays. My Product4 class has the following definition: 1: public interface IProduct 2: { 3: string WriteProductDetails(); 4: } 5:  6: public class Product4 : IProduct 7: { 8: public string Name { get; set; } 9: public ILogger[] Loggers { get; set; } 10:  11: public Product4(string productName, ILogger[] loggers) 12: { 13: Name = productName; 14: Loggers = loggers; 15: } 16:  17: public string WriteProductDetails() 18: { 19: StringBuilder productDetails = new StringBuilder(); 20: productDetails.AppendFormat("{0}<br/>", Name); 21: for (int i = 0; i < Loggers.Count(); i++) 22: { 23: productDetails.AppendFormat("{0}<br/>", Loggers[i].WriteLog()); 24: } 25: 26: return productDetails.ToString(); 27: } 28: } The key parts are line 4 where we declare an array of ILogger and line 5 where-in the constructor passes an instance of an array of ILogger objects. I’ve created another class – FakeLogger: 1: public class FakeLogger : ILogger 2: { 3: public string WriteLog() 4: { 5: return string.Format("Type: {0}", GetType()); 6: } 7: } It’s implementation is the same as what we had for the FileLogger class. Coming to the web.config file, first add the following aliases. The alias for FakeLogger should make sense right away. ILoggerArray defines an array of ILogger objects. I’ll tell why we need an alias for System.String data type. 1: <typeAlias alias="string" type="System.String, mscorlib" /> 2: <typeAlias alias="ILoggerArray" type="ProductModel.ILogger[], ProductModel" /> 3: <typeAlias alias="FakeLogger" type="ProductModel.FakeLogger, ProductModel"/> Next is to create mappings for the FileLogger and FakeLogger classes: 1: <type type="ILogger" mapTo="FileLogger" name="logger1"> 2: <lifetime type="singleton" /> 3: </type> 4: <type type="ILogger" mapTo="FakeLogger" name="logger2"> 5: <lifetime type="singleton" /> 6: </type> Finally, for the real deal: 1: <type type="IProduct" mapTo="Product4" name="ArrayProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement,Microsoft.Practices.Unity.Configuration, Version=1.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> 3: <constructor> 4: <param name="productName" parameterType="string" > 5: <value value="Product name from config file" type="string"/> 6: </param> 7: <param name="loggers" parameterType="ILoggerArray"> 8: <array> 9: <dependency name="logger2" /> 10: <dependency name="logger1" /> 11: </array> 12: </param> 13: </constructor> 14: </typeConfig> 15: </type> Here’s where I’m saying, that if a type of IProduct is requested to be resolved, map it to type Product4. Furthermore, the Product4 has two constructor parameters – a string and an array of type ILogger. You might have observed the first parameter of the constructor is named ‘productName’ and that matches the value in the name attribute of the param element. The parameterType of ‘string’ maps to ‘System.String, mscorlib’ and is defined in the type alias above. The set up is similar for the second constructor parameter. The name matches the name of the parameter (loggers) and is of type ILoggerArray, which maps to an array of ILogger objects. We’ve also decided to add two elements to this array when unity resolves it – an instance of FileLogger and one of FakeLogger. The click event of the button does the following: 1: //unityContainer.RegisterType<IProduct, Product4>(); 2: //IProduct product4 = unityContainer.Resolve<IProduct>(); 3: IProduct product4 = unityContainer.Resolve<IProduct>("ArrayConstructor"); 4: productDetailsLabel.Text = product4.WriteProductDetails(); It’s worth mentioning here about the change in the format of resolving the IProduct to create an instance of Product4. You cannot use the regular way (the commented lines) to get an instance of Product4. The reason is due to the behavior of Unity which Alex Ermakov has brilliantly explained here. The corresponding output of the action is: You have a couple of options when it comes to adding dependency elements in the array node. You can: - leave it empty (no dependency elements declared): This will only create an empty array of loggers. This way you can check for non-null condition, in your mock classes. - add multiple dependency elements with the same name 1: <param name="loggers" parameterType="ILoggerArray"> 2: <array> 3: <dependency name="logger2" /> 4: <dependency name="logger2" /> 5: </array> 6: </param> With this you’ll see two instances of FakeLogger in the output. This article shows how Unity allows you to instantiate objects with arrays. Find the code here.

    Read the article

  • Grouping GridView on Windows 8

    - by nmarun
    It took me a few minutes to get the grouping working on the GridView on my Windows 8 app. I’m sharing what I did just so others can get it working sooner and go by the rest of their work. In VS 2012, I added a Grouped Items Page to my Windows 8 application project. By default, the template will add some sample data, so you can just run it to see how things look. Let’s see what it takes to show our custom data on the page. I’ll stat with the data source. 1: public class Team 2: { 3: public Team( string...(read more)

    Read the article

  • named type not used for constructor injection

    - by nmarun
    Hi, I have a simple console application where I have the following setup: public interface ILogger { void Log(string message); } class NullLogger : ILogger { private readonly string version; public NullLogger() { version = "1.0"; } public NullLogger(string v) { version = v; } public void Log(string message) { Console.WriteLine("NULL " + version + " : " + message); } } The configuration details are below: <type type="UnityConsole.ILogger, UnityConsole" mapTo="UnityConsole.NullLogger, UnityConsole"> My calling code looks as below: IUnityContainer container = new UnityContainer(); UnityConfigurationSection section = (UnityConfigurationSection)ConfigurationManager.GetSection("unity"); section.Containers.Default.Configure(container); ILogger nullLogger = container.Resolve(); nullLogger.Log("hello"); This works fine, but once I give a name to this type something like: <type type="UnityConsole.ILogger, UnityConsole" mapTo="UnityConsole.NullLogger, UnityConsole" name="NullLogger"> The above calling code does not work even if I explicitly register the type using container.RegisterType<ILogger, NullLogger>(); I get the error: {"Resolution of the dependency failed, type = \"UnityConsole.ILogger\", name = \"\". Exception message is: The current build operation (build key Build Key[UnityConsole.NullLogger, null]) failed: The parameter v could not be resolved when attempting to call constructor UnityConsole.NullLogger(System.String v). (Strategy type BuildPlanStrategy, index 3)"} Why doesn't unity look into named instances? To get it to work, I'll have to do: ILogger nullLogger = container.Resolve("NullLogger"); Where is this behavior documented? Arun

    Read the article

  • What are the requirements of a collection type when model binding?

    - by Richard Ev
    I have been reviewing model binding with collections, specifically going through this article http://weblogs.asp.net/nmarun/archive/2010/03/13/asp-net-mvc-2-model-binding-for-a-collection.aspx However, the model I would like to use in my code does not implement collections using generic lists. Instead it uses its own collection classes, which inherit from a custom generic collection base class, the declaration of which is public abstract class CollectionBase<T> : IEnumerable<T> The collections in my POSTed action method are all non-null, but contain no elements. Can anyone advise?

    Read the article

< Previous Page | 1 2