Search Results

Search found 262 results on 11 pages for 'peek'.

Page 2/11 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >

  • Powershell / .Net: Get a reference to an object returned by a method

    - by Dan Menes
    I am teaching myself PowerShell by writing a simple parser. I use the .Net framework class Collections.Stack. I want to modify the object at the top of the stack in place. I know I can pop() the object off, modify it, and then push() it back on, but that strikes me as inelegant. First, I tried this: $stk = new-object Collections.Stack $stk.push( (,'My first value') ) ( $stk.peek() ) += ,'| My second value' Which threw an error: Assignment failed because [System.Collections.Stack] doesn't contain a settable property 'peek()'. At C:\Development\StackOverflow\PowerShell-Stacks\test.ps1:3 char:12 + ( $stk.peek <<<< () ) += ,'| My second value' + CategoryInfo : InvalidOperation: (peek:String) [], RuntimeException + FullyQualifiedErrorId : ParameterizedPropertyAssignmentFailed Next I tried this: $ary = $stk.peek() $ary += ,'| My second value' write-host "Array is: $ary" write-host "Stack top is: $($stk.peek())" Which prevented the error but still didn't do the right thing: Array is: My first value | My second value Stack top is: My first value Clearly, what is getting assigned to $ary is a copy of the object at the top of the stack, so when I the object in $ary, the object at the top of the stack remains unchanged. Finally, I read up on teh [ref] type, and tried this: $ary_ref = [ref]$stk.peek() $ary_ref.value += ,'| My second value' write-host "Referenced array is: $($ary_ref.value)" write-host "Stack top is still: $($stk.peek())" But still no dice: Referenced array is: My first value | My second value Stack top is still: My first value I assume the peek() method returns a reference to the actual object, not the clone. If so, then the reference appears to be being replaced by a clone by PowerShell's expression processing logic. Can somebody tell me if there is a way to do what I want to do? Or do I have to revert to pop() / modify / push()?

    Read the article

  • In Lua, how to pass vararg to another function while also taking a peek at them?

    - by romkyns
    It seems that in Lua, I can either pass vararg on to another function, or take a peek at them through arg, but not both. Here's an example: function a(marker, ...) print(marker) print(#arg, arg[1],arg[2]) end function b(marker, ...) print(marker) destination("--2--", ...) end function c(marker, ...) print(marker) print(#arg, arg[1],arg[2]) destination("--3--", ...) end function destination(marker, ...) print(marker) print(#arg, arg[1],arg[2]) end Observe that a only looks at the varargs, b only passes them on, while c does both. Here are the results: >> a("--1--", "abc", "def") --1-- 2 abc def >> b("--1--", "abc", "def") --1-- --2-- 2 abc def >> c("--1--", "abc", "def") --1-- test.lua:13: attempt to get length of local 'arg' (a nil value) stack traceback: ...test.lua:13: in function 'c' ...test.lua:22: in main chunk [C]: ? What am I doing wrong? Am I not supposed to combine the two? Why not?

    Read the article

  • How can I reverse a stack?

    - by come pollinate me
    I need to write a VB.NET code to reverse the given characters using a stack. Input: 'S','T','A','C','K' So far I have input the letters, but I don't know how to get the console to reverse it. I'm a beginner to programming so please excuse my ignorance. An explanation as to how it's done would also be greatly appreciated. What I got so far. Module Module1 Sub Main() Dim StackObject As New Stack StackObject.Push("S") Console.WriteLine(StackObject.Peek) StackObject.Push("T") Console.WriteLine(StackObject.Peek) StackObject.Push("A") Console.WriteLine(StackObject.Peek) StackObject.Push("C") Console.WriteLine(StackObject.Peek) StackObject.Push("K") Console.WriteLine(StackObject.Peek) End Sub End Module I just need it to be reversed. I got it!! Module Module1 Sub Main() Dim StackObject As New Stack StackObject.Push("S") StackObject.Push("T") StackObject.Push("A") StackObject.Push("C") StackObject.Push("K") For Each cur As String In StackObject Console.WriteLine(cur) Next End Sub End Module That's how it's done.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • How do I change apache2 DocumentRoot (default snow leopard install) and not get "You don't have perm

    - by David Peek
    I'm trying to point DocumentRoot at a directory in my user folder. While I can happily point DocumentRoot at /Library/WebServer/Documents and ~/Sites I keep getting "You don't have permission to access / on this server." when I point it anywhere else. OK, I just found a solution mid-question (stack overflow is just that good) by changing the user/group apache runs under to myuser/admin. I'm sure there must be a better way though. Surely some kind of permissions magic on the directory I'm pointing at?

    Read the article

  • use custom control directly in Visual Studio project

    - by PEEK
    i want to use the listview flicker"less" control found here http://geekswithblogs.net/CPound/archive/2006/02/27/70834.aspx directly in my c# Project. i dont want to make a custom user control project, build it to dll and then import it in my project. i just want this all in my c# Programm i am making. i think i have to add in my project a class, and add the code, but how can i use the control now directly in my project?

    Read the article

  • c# use custom control directly in c# project

    - by PEEK
    hi ...hope someone can help me now: i want to use the listview flicker"less" control found here :http://geekswithblogs.net/CPound/archive/2006/02/27/70834.aspx directly in my c# Project.. i dont want to make a custom user control project, build it to dll and then import it in my project ..i just want this all in my c# Programm iam making.. i think i have to add in my project a class, and add the code, but how can i use the control now directly in my project? hope my problem is clear .. thanks for help

    Read the article

  • how to run line by line in text file - on windows mobile ?

    - by Gold
    hi in WinForm on PC i use to run like this: FileStream FS = null; StreamWriter SW = null; FS = new FileStream(@"\Items.txt", FileMode.Create, FileAccess.ReadWrite, FileShare.ReadWrite); SW = new StreamWriter(FS, Encoding.Default); while (SW.Peek() != -1) { TEMP = (SW.ReadLine()); } but when i try this on Windows-mobile i get error: Error 1 'System.IO.StreamWriter' does not contain a definition for 'Peek' and no extension method 'Peek' accepting a first argument of type 'System.IO.StreamWriter' could be found (are you missing a using directive or an assembly reference?) Error 2 'System.IO.StreamWriter' does not contain a definition for 'ReadLine' and no extension method 'ReadLine' accepting a first argument of type 'System.IO.StreamWriter' could be found (are you missing a using directive or an assembly reference?) how to do it ? thanks

    Read the article

  • How to Create a Task From an Email Message in Outlook 2013

    - by Lori Kaufman
    If you need to do something related to an email message you received, you can easily create a task from the message in Outlook. A task can be created that contains all the content of the message without requiring you to re-enter the information. Creating a task in Outlook from an email message is different from flagging the message. As it says on Microsoft’s site: “When you flag an email message, the message appears in the To-Do List in Tasks and on the Tasks peek. However, if you delete the message, it also disappears from the To-Do List in Tasks and on the Tasks peek. Flagging a message doesn’t create a separate task.” Using the method described below to create a task from an email message, the task is separate from the message. The original message can be deleted or changed and the related task will not be affected. In Outlook, make sure the Mail section is active. If not, click Mail on the Navigation Bar at the bottom of the Outlook window. Then, click on the message you want to add to a task and drag it to Tasks on the Navigation Bar. A new Task window displays containing the email message and allowing you to enter the subject of the task, the Start and Due dates, Status, Priority, among other settings. When you have specified the settings for the task, click Save & Close in the Actions section of the Task tab. When the Task window closes, the Mail section is still active. If you move your mouse over Tasks on the Navigation Bar, a snippet from the new task displays in a popup window (the Task peek). Click Tasks to go to the Tasks section of Outlook. The To-Do List displays with your newly-added task listed in the middle pane. The right pane displays the details of the task and the contents of the message included in the task (as pictured at the beginning of this article). Click on Tasks to see a complete listing of all your tasks, including the one you just added from your email message. Note that attachments in an email message added to a new task are not copied to the task. You can also create new tasks by dragging contacts, calendar items, and notes to Tasks on the Navigation Bar.     

    Read the article

  • Converting "A* Search" code from C++ to Java [on hold]

    - by mr5
    Updated! I get this code from this site It's A* Search Algorithm(finding shortest path with heuristics) I modify most of variable names and some if conditions from the original version to satisfy my syntactic taste. It works in C++ (as I can't see any trouble with it) but fails in Java version. Java Code: String findPath(int startX, int startY, int finishX, int finishY) { @SuppressWarnings("unchecked") LinkedList<Node>[] nodeList = (LinkedList<Node>[]) new LinkedList<?>[2]; nodeList[0] = new LinkedList<Node>(); nodeList[1] = new LinkedList<Node>(); Node n0; Node m0; int nlIndex = 0; // queueList index // reset the node maps for(int y = 0;y < ROW_COUNT; ++y) { for(int x = 0;x < COL_COUNT; ++x) { close_nodes_map[y][x] = 0; open_nodes_map[y][x] = 0; } } // create the start node and push into list of open nodes n0 = new Node( startX, startY, 0, 0 ); n0.updatePriority( finishX, finishY ); nodeList[nlIndex].push( n0 ); open_nodes_map[startY][startX] = n0.getPriority(); // mark it on the open nodes map // A* search while( !nodeList[nlIndex].isEmpty() ) { LinkedList<Node> pq = nodeList[nlIndex]; // get the current node w/ the highest priority // from the list of open nodes n0 = new Node( pq.peek().getX(), pq.peek().getY(), pq.peek().getIterCount(), pq.peek().getPriority()); int x = n0.getX(); int y = n0.getY(); nodeList[nlIndex].pop(); // remove the node from the open list open_nodes_map[y][x] = 0; // mark it on the closed nodes map close_nodes_map[y][x] = 1; // quit searching when the goal state is reached //if((*n0).estimate(finishX, finishY) == 0) if( x == finishX && y == finishY ) { // generate the path from finish to start // by following the directions String path = ""; while( !( x == startX && y == startY) ) { int j = dir_map[y][x]; int c = '0' + ( j + Node.DIRECTION_COUNT / 2 ) % Node.DIRECTION_COUNT; path = (char)c + path; x += DIR_X[j]; y += DIR_Y[j]; } return path; } // generate moves (child nodes) in all possible directions for(int i = 0; i < Node.DIRECTION_COUNT; ++i) { int xdx = x + DIR_X[i]; int ydy = y + DIR_Y[i]; // boundary check if (!(xdx >= 0 && xdx < COL_COUNT && ydy >= 0 && ydy < ROW_COUNT)) continue; if ( ( gridMap.getData( ydy, xdx ) == GridMap.WALKABLE || gridMap.getData( ydy, xdx ) == GridMap.FINISH) && close_nodes_map[ydy][xdx] != 1 ) { // generate a child node m0 = new Node( xdx, ydy, n0.getIterCount(), n0.getPriority() ); m0.nextLevel( i ); m0.updatePriority( finishX, finishY ); // if it is not in the open list then add into that if( open_nodes_map[ydy][xdx] == 0 ) { open_nodes_map[ydy][xdx] = m0.getPriority(); nodeList[nlIndex].push( m0 ); // mark its parent node direction dir_map[ydy][xdx] = ( i + Node.DIRECTION_COUNT / 2 ) % Node.DIRECTION_COUNT; } else if( open_nodes_map[ydy][xdx] > m0.getPriority() ) { // update the priority info open_nodes_map[ydy][xdx] = m0.getPriority(); // update the parent direction info dir_map[ydy][xdx] = ( i + Node.DIRECTION_COUNT / 2 ) % Node.DIRECTION_COUNT; // replace the node // by emptying one queueList to the other one // except the node to be replaced will be ignored // and the new node will be pushed in instead while( !(nodeList[nlIndex].peek().getX() == xdx && nodeList[nlIndex].peek().getY() == ydy ) ) { nodeList[1 - nlIndex].push( nodeList[nlIndex].pop() ); } nodeList[nlIndex].pop(); // remove the wanted node // empty the larger size queueList to the smaller one if( nodeList[nlIndex].size() > nodeList[ 1 - nlIndex ].size() ) nlIndex = 1 - nlIndex; while( !nodeList[nlIndex].isEmpty() ) { nodeList[1 - nlIndex].push( nodeList[nlIndex].pop() ); } nlIndex = 1 - nlIndex; nodeList[nlIndex].push( m0 ); // add the better node instead } } } } return ""; // no route found } Output1: Legends . = PATH ? = START X = FINISH 3,2,1 = OBSTACLES (Misleading path) Output2: Changing these lines: n0 = new Node( a, b, c, d ); m0 = new Node( e, f, g, h ); to n0.set( a, b, c, d ); m0.set( e, f, g, h ); I get (I'm really confused) C++ Code: std::string A_Star::findPath(int startX, int startY, int finishX, int finishY) { typedef std::queue<Node> List_Container; List_Container nodeList[2]; // list of open (not-yet-tried) nodes Node n0; Node m0; int pqIndex = 0; // nodeList index // reset the node maps for(int y = 0;y < ROW_COUNT; ++y) { for(int x = 0;x < COL_COUNT; ++x) { close_nodes_map[y][x] = 0; open_nodes_map[y][x] = 0; } } // create the start node and push into list of open nodes n0 = Node( startX, startY, 0, 0 ); n0.updatePriority( finishX, finishY ); nodeList[pqIndex].push( n0 ); open_nodes_map[startY][startX] = n0.getPriority(); // mark it on the open nodes map // A* search while( !nodeList[pqIndex].empty() ) { List_Container &pq = nodeList[pqIndex]; // get the current node w/ the highest priority // from the list of open nodes n0 = Node( pq.front().getX(), pq.front().getY(), pq.front().getIterCount(), pq.front().getPriority()); int x = n0.getX(); int y = n0.getY(); nodeList[pqIndex].pop(); // remove the node from the open list open_nodes_map[y][x] = 0; // mark it on the closed nodes map close_nodes_map[y][x] = 1; // quit searching when the goal state is reached //if((*n0).estimate(finishX, finishY) == 0) if( x == finishX && y == finishY ) { // generate the path from finish to start // by following the directions std::string path = ""; while( !( x == startX && y == startY) ) { int j = dir_map[y][x]; char c = '0' + ( j + DIRECTION_COUNT / 2 ) % DIRECTION_COUNT; path = c + path; x += DIR_X[j]; y += DIR_Y[j]; } return path; } // generate moves (child nodes) in all possible directions for(int i = 0; i < DIRECTION_COUNT; ++i) { int xdx = x + DIR_X[i]; int ydy = y + DIR_Y[i]; // boundary check if (!( xdx >= 0 && xdx < COL_COUNT && ydy >= 0 && ydy < ROW_COUNT)) continue; if ( ( pGrid->getData(ydy,xdx) == WALKABLE || pGrid->getData(ydy, xdx) == FINISH) && close_nodes_map[ydy][xdx] != 1 ) { // generate a child node m0 = Node( xdx, ydy, n0.getIterCount(), n0.getPriority() ); m0.nextLevel( i ); m0.updatePriority( finishX, finishY ); // if it is not in the open list then add into that if( open_nodes_map[ydy][xdx] == 0 ) { open_nodes_map[ydy][xdx] = m0.getPriority(); nodeList[pqIndex].push( m0 ); // mark its parent node direction dir_map[ydy][xdx] = ( i + DIRECTION_COUNT / 2 ) % DIRECTION_COUNT; } else if( open_nodes_map[ydy][xdx] > m0.getPriority() ) { // update the priority info open_nodes_map[ydy][xdx] = m0.getPriority(); // update the parent direction info dir_map[ydy][xdx] = ( i + DIRECTION_COUNT / 2 ) % DIRECTION_COUNT; // replace the node // by emptying one nodeList to the other one // except the node to be replaced will be ignored // and the new node will be pushed in instead while ( !( nodeList[pqIndex].front().getX() == xdx && nodeList[pqIndex].front().getY() == ydy ) ) { nodeList[1 - pqIndex].push( nodeList[pqIndex].front() ); nodeList[pqIndex].pop(); } nodeList[pqIndex].pop(); // remove the wanted node // empty the larger size nodeList to the smaller one if( nodeList[pqIndex].size() > nodeList[ 1 - pqIndex ].size() ) pqIndex = 1 - pqIndex; while( !nodeList[pqIndex].empty() ) { nodeList[1-pqIndex].push(nodeList[pqIndex].front()); nodeList[pqIndex].pop(); } pqIndex = 1 - pqIndex; nodeList[pqIndex].push( m0 ); // add the better node instead } } } } return ""; // no route found } Output: Legends . = PATH ? = START X = FINISH 3,2,1 = OBSTACLES (Just right) From what I read about Java's documentation, I came up with the conclusion: C++'s std::queue<T>::front() == Java's LinkedList<T>.peek() Java's LinkedList<T>.pop() == C++'s std::queue<T>::front() + std::queue<T>::pop() What might I be missing in my Java version? In what way does it became different algorithmically from the C++ version?

    Read the article

  • Database time data retrieval, time based queries

    - by Raphael Pineda
    I am new to time manipulation or time arithmetic operations and am currently developing a navigation system with Web server based information and currently I have this Database that contains a table peek hours whose columns are id, start_time, end_time , edge_id, day_of_the_week, edge_weight ------------------------------------------------------------------------ | Peek Hours | ------------------------------------------------------------------------ | | | | | | | | id | start_time | end_time | edge_id | day_of_the_week | edge_weight | | | | | | | | ------------------------------------------------------------------------ I am using PHP as a webservice and so based on the current time i want to get all the records that would fit this equation start_time< current_time < end_time

    Read the article

  • Why am I not getting an sRGB default framebuffer?

    - by Aaron Rotenberg
    I'm trying to make my OpenGL Haskell program gamma correct by making appropriate use of sRGB framebuffers and textures, but I'm running into issues making the default framebuffer sRGB. Consider the following Haskell program, compiled for 32-bit Windows using GHC and linked against 32-bit freeglut: import Foreign.Marshal.Alloc(alloca) import Foreign.Ptr(Ptr) import Foreign.Storable(Storable, peek) import Graphics.Rendering.OpenGL.Raw import qualified Graphics.UI.GLUT as GLUT import Graphics.UI.GLUT(($=)) main :: IO () main = do (_progName, _args) <- GLUT.getArgsAndInitialize GLUT.initialDisplayMode $= [GLUT.SRGBMode] _window <- GLUT.createWindow "sRGB Test" -- To prove that I actually have freeglut working correctly. -- This will fail at runtime under classic GLUT. GLUT.closeCallback $= Just (return ()) glEnable gl_FRAMEBUFFER_SRGB colorEncoding <- allocaOut $ glGetFramebufferAttachmentParameteriv gl_FRAMEBUFFER gl_FRONT_LEFT gl_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING print colorEncoding allocaOut :: Storable a => (Ptr a -> IO b) -> IO a allocaOut f = alloca $ \ptr -> do f ptr peek ptr On my desktop (Windows 8 64-bit with a GeForce GTX 760 graphics card) this program outputs 9729, a.k.a. gl_LINEAR, indicating that the default framebuffer is using linear color space, even though I explicitly requested an sRGB window. This is reflected in the rendering results of the actual program I'm trying to write - everything looks washed out because my linear color values aren't being converted to sRGB before being written to the framebuffer. On the other hand, on my laptop (Windows 7 64-bit with an Intel graphics chip), the program prints 0 (huh?) and I get an sRGB default framebuffer by default whether I request one or not! And on both machines, if I manually create a non-default framebuffer bound to an sRGB texture, the program correctly prints 35904, a.k.a. gl_SRGB. Why am I getting different results on different hardware? Am I doing something wrong? How can I get an sRGB framebuffer consistently on all hardware and target OSes?

    Read the article

  • How can I make this function act like an l-value?

    - by BeeBand
    Why can't I use the function ColPeekHeight() as an l-value? class View { public: int ColPeekHeight(){ return _colPeekFaceUpHeight; } void ColPeekHeight( int i ) { _colPeekFaceUpHeight = i; } private: int _colPeekFaceUpHeight; }; ... { if( v.ColPeekHeight() > 0.04*_heightTable ) v.ColPeekHeight()-=peek; } The compiler complains at v.ColPeekHeight()-=peek. How can I make ColPeekHeight() an l-value?

    Read the article

  • The time-to-reach-queue has elapsed

    - by nieve
    I'm attempting to send a message to a remote private queue from an error queue with powershell. The code I use looks like this: $msg = $src_q.Peek() $msg.Label = GetLabelWithoutFailedQueue($msg) $msg.UseDeadLetterQueue = $true $msg.UseTracing = $true $msg.AcknowledgeType = [System.Messaging.AcknowledgeTypes]::NegativeReceive $msg.TimeToBeReceived = [System.TimeSpan]::FromSeconds(10) $msg.TimeToReachQueue = [System.TimeSpan]::FromSeconds(10) $tx = new-object System.Messaging.MessageQueueTransaction $tx.Begin() $dest_q.Send($msg, $tx) $tx.Commit() The message keeps on appearing on the transactional dead letter queue with the class: "The time-to-reach-queue has elapsed." Anyone's got any idea what could trigger such an error? The queue definitely exists- I do manage to peek it. Also, the reason I get the message from the error queue by peeking is just for testing purposes; I have tried doing the same thing with Receive and the result is the same.

    Read the article

  • Non-Blocking I/O Made Possible in Java

    Java SE7 "Dolphin" release is nearing and we're chomping at the bit. So let's dig in and review non-blocking IO, a feature of java.nio (New I/O) package that is a part of Java v1.4, v1.5 and v1.6 and we'll also take a peek at the java.nio.file (NIO.2) package.

    Read the article

  • Non-Blocking I/O Made Possible in Java

    Java SE7 "Dolphin" release is nearing and we're chomping at the bit. So let's dig in and review non-blocking IO, a feature of java.nio (New I/O) package that is a part of Java v1.4, v1.5 and v1.6 and we'll also take a peek at the java.nio.file (NIO.2) package.

    Read the article

  • Declaration of Email Signatures [Video]

    - by Jason Fitzpatrick
    In honor of the Fourth of July and as a public service to highlight bad email signature practices, College Humor shares a peek at what the Declaration of Independence would look like if Founding Fathers shared our modern sensibilities about email signatures. Declaration of Email Signatures [College Humor] Download the Official How-To Geek Trivia App for Windows 8 How to Banish Duplicate Photos with VisiPic How to Make Your Laptop Choose a Wired Connection Instead of Wireless

    Read the article

  • The Making of Middle Earth [Video]

    - by Jason Fitzpatrick
    The Lord of the Rings movie franchise was filmed in stunning New Zealand locations. The Hobbit continues that tradition; check out this mini-documentary to see the scouting process and take a sneak peek at the film. The Making of Middle Earth [via Mashable] How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • The Boss: Battle for the Office [Humorous Video]

    - by Asian Angel
    This funny video takes a peek into an office where the boss is constantly monitoring his employees, but one woman has had enough! Will his ‘reign of terror’ come to an end or will he continue to rule with an ‘iron fist’? The Boss [via Neatorama] HTG Explains: Why Linux Doesn’t Need Defragmenting How to Convert News Feeds to Ebooks with Calibre How To Customize Your Wallpaper with Google Image Searches, RSS Feeds, and More

    Read the article

  • Extending Chrome DevTools for fun and profit...

    Extending Chrome DevTools for fun and profit... Your browser is one of the most and best instrumented development platforms -- you may just not realize it yet. In this episode we'll cover the Audit and Panel extension API's, take a deep dive into the Chrome debugging protocol (and what you can do with it), peek inside the Chrome's network stack, and finally go deep into the guts of Chrome with chrome://tracing! From: GoogleDevelopers Views: 333 12 ratings Time: 23:35 More in Science & Technology

    Read the article

  • Creating Plasmoids

    <b>Linux Pro Magazine:</b> "We take a peek at how to create your own plasmoids for the latest KDE desktop, giving you the power to build the perfect active desktop environment."

    Read the article

  • An Overview of the SQL Server xml Data Type

    XML is, it seems, everywhere. SQL Server has ever-improving functionality that helps us peek into, shred, store, manipulate and otherwise utilize XML. This article covers XML variables, XML columns, typed vs. untyped XML, and the xml data type methods.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >