Search Results

Search found 11318 results on 453 pages for 'josh close'.

Page 201/453 | < Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >

  • Is it the most common case?

    - by Knowing me knowing you
    Why when I click on the x button to close the window in a Java application only the window dissapears and the applicaton is still running. I've read so many times that java designers tried to cater Java behaviour for the most common needs of programmers and save they precious time and so on and so on. What's more common case than closing app when I click on a X button?

    Read the article

  • Python development with Emacs?

    - by ipeev
    Anybody knows some actual documentation written? I can't find anything good for any of the 2 competing mods. Looks like Emacs is pretty much abandon when it comes to Python and it is a shame as there is no other programmable programming editor that comes close to Emacs.

    Read the article

  • Invalid attempt to access a field before calling Read() INSERT

    - by Raphael Fernandes
    I'm trying to use this code to check if the system already exists a field with this value Dim adap As New MySqlDataAdapter Dim sqlquery = "SELECT * FROM client WHERE code ='"+ TxtCode.Text +"'" Dim comand As New MySqlCommand() comand.Connection = con comand.CommandText = sqlquery adap.SelectCommand = comand Dim data As MySqlDataReader data = comando2.ExecuteReader() leitor.Read() If (data(3).ToString) = code Then MsgBox("already exists", MsgBoxStyle.Information) TxtCode.ResetText() TxtCode.Focus() Else Console.WriteLine(insert("INSERT INTO client (name, tel, code) VALUES ('" & name & "', '" & tel & "')")) con.Close() End If

    Read the article

  • how to read the contents of a file In Erlang ?

    - by Zubair
    I know you can do something like this: readlines(FileName) -> {ok, Device} = file:open(FileName, [read]), get_all_lines(Device, []). get_all_lines(Device, Accum) -> case io:get_line(Device, "") of eof -> file:close(Device), Accum; Line -> get_all_lines(Device, Accum ++ [Line]) end. : Is there a one liner BIF that can do this too?

    Read the article

  • The big last_insert_id() problem, again.

    - by wretrOvian
    Note - this follows my question here: http://stackoverflow.com/questions/2983685/jdbc-does-the-connection-break-if-i-lose-reference-to-the-connection-object Now i have a created a class so i can deal with JDBC easily for the rest of my code - public class Functions { private String DB_SERVER = ""; private String DB_NAME = "test"; private String DB_USERNAME = "root"; private String DB_PASSWORD = "password"; public Connection con; public PreparedStatement ps; public ResultSet rs; public ResultSetMetaData rsmd; public void connect() throws java.io.FileNotFoundException, java.io.IOException, SQLException, Exception { String[] dbParms = Parameters.load(); DB_SERVER = dbParms[0]; DB_NAME = dbParms[1]; DB_USERNAME = dbParms[2]; DB_PASSWORD = dbParms[3]; // Connect. Class.forName("com.mysql.jdbc.Driver").newInstance(); con = DriverManager.getConnection("jdbc:mysql://" + DB_SERVER + "/" + DB_NAME, DB_USERNAME, DB_PASSWORD); } public void disconnect() throws SQLException { // Close. con.close(); } } As seen Parameters.load() refreshes the connection parameters from a file every-time, so that any changes to the same may be applied on the next immediate connection. An example of this class in action - public static void add(String NAME) throws java.io.FileNotFoundException, java.io.IOException, SQLException, Exception { Functions dbf = new Functions(); dbf.connect(); String query = "INSERT INTO " + TABLE_NAME + "(" + "NAME" + ") VALUES(?)"; PreparedStatement ps = dbf.con.prepareStatement(query); ps.setString(1, NAME); ps.executeUpdate(); dbf.disconnect(); } Now here is the problem - for adding a record to the table above, the add() method will open a connection, add the record - and then call disconnect() . What if i want to get the ID of the inserted record after i call add() -like this : Department.add("new dept"); int ID = getlastID(); Isn't it possible that another add() was called between those two statements?

    Read the article

  • why "$(opener.document).ready()" is not working?

    - by KK
    I tried something like, below in popup-window, but not working... any correction at line 3, please suggest. function closePopup() { window.opener.history.go(0); $(opener.document).ready(function(){ window.opener.some_function(some_variable); self.close(); }); }

    Read the article

  • Can I upload an object in memory to FTP using Python?

    - by fsckin
    Here's what I'm doing now: mysock = urllib.urlopen('http://localhost/image.jpg') fileToSave = mysock.read() oFile = open(r"C:\image.jpg",'wb') oFile.write(fileToSave) oFile.close f=file('image.jpg','rb') ftp.storbinary('STOR '+os.path.basename('image.jpg'),f) os.remove('image.jpg') Writing files to disk and then imediately deleting them seems like extra work on the system that should be avoided. Can I upload an object in memory to FTP using Python?

    Read the article

  • Display BLOB (image) through JSP

    - by jMarcel
    I have a code to show a chart o employees. The data (name, phone, photo etc) are stored in SQLServer and displayed through JSP. Showing the data is ok, except the image .jpg (stored in IMAGE=BLOB column). By the way, I've already got the image displayed (see code below), but I dont't know how to put it in the area defined in a .css (see code below, too), since the image got through the resultSet is loaded in the whole page in the browser. Does anyone knows how can I 'frame' the image ? <% Connection con = FactoryConnection_SQL_SERVER.getConnection("empCHART"); Statement stSuper = con.createStatement(); Statement stSetor = con.createStatement(); Blob image = null; byte[] imgData = null; ResultSet rsSuper = stSuper.executeQuery("SELECT * FROM funChart WHERE dept = 'myDept'"); if (rsSuper.next()) { image = rsSuper.getBlob(12); imgData = image.getBytes(1, (int) image.length()); response.setContentType("image/gif"); OutputStream o = response.getOutputStream(); //o.write(imgData); // even here we got the same as below. //o.flush(); //o.close(); --[...] <table style="margin: 0px; margin-top: 15px;"> <tr> <td id="photo"> <img title="<%=rsSuper.getString("empName").trim()%>" src="<%= o.wite(imageData); o.flush(); o.close(); %>" /> </td> </td> <td id="empData"> <h3><%=rsSuper.getString("empName")%></h3> <p><%=rsSuper.getString("Position")%></p> <p>Id:<br/><%=rsSuper.getString("id")%></p> <p>Phone:<br/><%=rsSuper.getString("Phone")%></p> <p>E-Mail:<br/><%=rsSuper.getString("Email")%></p> </td> </table> And here is the fragment supposed to frame the image: #photo { padding: 0px; vertical-align: middle; text-align: center; width: 170px; height: 220px; } Thanks in advance !

    Read the article

  • Javascript function to add X months to a date

    - by George
    Is there a built in equivalent to the .NET framework's DateAdd or AddMonths functions? I'm looking for the easiest, cleanest way to add X month to a Javascript date. I'd rather not handle the rolloing over of the year as done here. or have to write my own function as done here. Is there something built in that is as nice as the .NET Date.AddMonths function? Or something close?

    Read the article

  • How to detect invalid image URL with JAVA?

    - by Cataclysm
    I have a method to download image from URL. As like below.. public static byte[] downloadImageFromURL(final String strUrl) { InputStream in; ByteArrayOutputStream out = new ByteArrayOutputStream(); try { URL url = new URL(strUrl); in = new BufferedInputStream(url.openStream()); byte[] buf = new byte[2048]; int n = 0; while (-1 != (n = in.read(buf))) { out.write(buf, 0, n); } out.close(); in.close(); } catch (IOException e) { return null; } return out.toByteArray(); } I have an image url and it is valid. for example. https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTxfYM-hnD-Z80tgWdIgQKchKe-MXVUfTpCw1R5KkfJlbRbgr3Zcg My problem is I don't want to download if image is really not exists.Like .... https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTxfYM-hnD-Z80tgWdIgQKchKe-MXVUfTpCw1R5KkfJlbRbgr3Zcgaaaaabbbbdddddddddddddddddddddddddddd This image shouldn't be download by my method. So , how can I know the giving image URL is not really exists. I don't want to validate my URL (I think that may not my solution ). So, I googled for that. From this article ... How to check if a URL exists or returns 404 with Java? and Java check if file exists on remote server using its url But this con.getResponseCode() will always return status code "200". This mean my method will also download invalid image urls. So , I output my bufferStream as like... System.out.println(in.read(buf)); Invalid image URL produces "43". So , I add these lines of codes in my method. if (in.read(buf) == 43) { return null; } It is ok. But I don't think that will always satisfy. Has another way to get it ? am I right? I would really appreciate any suggestions. This problem may struct my head. Thanks for reading my question.

    Read the article

  • how to post a form upon click on checkbox ?

    - by user281180
    I have a form (displayed as a dialog) in which I have various checkboxes. On a click on any of the checkboxes, I want to post the form values to the controller and still doesn`t want my dialog to close. How can I do that? I don`t have a submit button on the form. Ajaxpost closes the dialog after form.submit... What method can I use?

    Read the article

  • Should I implement IDisposable here?

    - by dotnetdev
    My method which calls SQL Server returns a datareader but because of what I need to do (return the datareader to the calling method which is in page code-behind), I can't close the connection in the class of the method which calls sql server, so I have no finally or using blocks. Is the correct way of disposing resources to make the class implement IDisposable? Or from the caller, explicitly dispose the unmanged resource (class-level fields)? Thanks

    Read the article

  • JDBC delete statement with multiple columns

    - by user1643033
    It says I ended this statement wrong when if I input it into sql plus with just the addition of ; it works perfectly. What am I doing wrong? Statement statement = connection.createStatement(); statement.executeUpdate("delete from aplbuk MODEL = '"+ textField_4.getText() + "'AND year = '" + textField_1.getText() + "' AND Litres = '" + textField_2.getText() + "' AND ENGINE_TYPE = '" + textField_3.getText() + "'"); statement.close();

    Read the article

  • Python: Closing a for loop by reading stdout

    - by user1732102
    import os dictionaryfile = "/root/john.txt" pgpencryptedfile = "helloworld.txt.gpg" array = open(dictionaryfile).readlines() for x in array: x = x.rstrip('\n') newstring = "echo " + x + " | gpg --passphrase-fd 0 " + pgpencryptedfile os.popen(newstring) I need to create something inside the for loop that will read gpg's output. When gpg outputs this string gpg: WARNING: message was not integrity protected, I need the loop to close and print Success! How can I do this, and what is the reasoning behind it? Thanks Everyone!

    Read the article

  • code needed in ASP.NET [closed]

    - by user333366
    1) how to write a code to close a conform box by pressing esc key. 2) how to write a code to save a data what ever we entered in the present web form if we press yes in conform box.... if press no need to be in same web form..

    Read the article

  • Using closes sql connection brought over by a function

    - by iefpw
    Would this using close this _connection? using(SqlConnection _connection = Class1.GetSqlConnection()) { //code inside the connection } //connection should be closed/ended? I'm just wondering because GetSqlConnection() is a static function of Class1 and the whole connection might not be closed because it is calling outside class' static function instead of straight? using(SqlConnection _connection = new SqlConnection(_connectionString) { //code inside the connection }

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • iOS Support with Windows Azure Mobile Services – now with Push Notifications

    - by ScottGu
    A few weeks ago I posted about a number of improvements to Windows Azure Mobile Services. One of these was the addition of an Objective-C client SDK that allows iOS developers to easily use Mobile Services for data and authentication.  Today I'm excited to announce a number of improvement to our iOS SDK and, most significantly, our new support for Push Notifications via APNS (Apple Push Notification Services).  This makes it incredibly easy to fire push notifications to your iOS users from Windows Azure Mobile Service scripts. Push Notifications via APNS We've provided two complete tutorials that take you step-by-step through the provisioning and setup process to enable your Windows Azure Mobile Service application with APNS (Apple Push Notification Services), including all of the steps required to configure your application for push in the Apple iOS provisioning portal: Getting started with Push Notifications - iOS Push notifications to users by using Mobile Services - iOS Once you've configured your application in the Apple iOS provisioning portal and uploaded the APNS push certificate to the Apple provisioning portal, it's just a matter of uploading your APNS push certificate to Mobile Services using the Windows Azure admin portal: Clicking the “upload” within the “Push” tab of your Mobile Service allows you to browse your local file-system and locate/upload your exported certificate.  As part of this you can also select whether you want to use the sandbox (dev) or production (prod) Apple service: Now, the code to send a push notification to your clients from within a Windows Azure Mobile Service is as easy as the code below: push.apns.send(deviceToken, {      alert: 'Toast: A new Mobile Services task.',      sound: 'default' }); This will cause Windows Azure Mobile Services to connect to APNS (Apple Push Notification Service) and send a notification to the iOS device you specified via the deviceToken: Check out our reference documentation for full details on how to use the new Windows Azure Mobile Services apns object to send your push notifications. Feedback Scripts An important part of working with any PNS (Push Notification Service) is handling feedback for expired device tokens and channels. This typically happens when your application is uninstalled from a particular device and can no longer receive your notifications. With Windows Notification Services you get an instant response from the HTTP server.  Apple’s Notification Services works in a slightly different way and provides an additional endpoint you can connect to poll for a list of expired tokens. As with all of the capabilities we integrate with Mobile Services, our goal is to allow developers to focus more on building their app and less on building infrastructure to support their ideas. Therefore we knew we had to provide a simple way for developers to integrate feedback from APNS on a regular basis.  This week’s update now includes a new screen in the portal that allows you to optionally provide a script to process your APNS feedback – and it will be executed by Mobile Services on an ongoing basis: This script is invoked periodically while your service is active. To poll the feedback endpoint you can simply call the apns object's getFeedback method from within this script: push.apns.getFeedback({       success: function(results) {           // results is an array of objects with a deviceToken and time properties      } }); This returns you a list of invalid tokens that can now be removed from your database. iOS Client SDK improvements Over the last month we've continued to work with a number of iOS advisors to make improvements to our Objective-C SDK. The SDK is being developed under an open source license (Apache 2.0) and is available on github. Many of the improvements are behind the scenes to improve performance and memory usage. However, one of the biggest improvements to our iOS Client API is the addition of an even easier login method.  Below is the Objective-C code you can now write to invoke it: [client loginWithProvider:@"twitter"                     onController:self                        animated:YES                      completion:^(MSUser *user, NSError *error) {      // if no error, you are now logged in via twitter }]; This code will automatically present and dismiss our login view controller as a modal dialog on the specified controller.  This does all the hard work for you and makes login via Twitter, Google, Facebook and Microsoft Account identities just a single line of code. My colleague Josh just posted a short video demonstrating these new features which I'd recommend checking out: Summary The above features are all now live in production and are available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using Mobile Services today. Visit the Windows Azure Mobile Developer Center to learn more about how to build apps with Mobile Services. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • SSH X11 not working

    - by azat
    I have a home and work computer, the home computer has a static IP address. If I ssh from my work computer to my home computer, the ssh connection works but X11 applications are not displayed. In my /etc/ssh/sshd_config at home: X11Forwarding yes X11DisplayOffset 10 X11UseLocalhost yes At work I have tried the following commands: xhost + home HOME_IP ssh -X home ssh -X HOME_IP ssh -Y home ssh -Y HOME_IP My /etc/ssh/ssh_config at work: Host * ForwardX11 yes ForwardX11Trusted yes My ~/.ssh/config at work: Host home HostName HOME_IP User azat PreferredAuthentications password ForwardX11 yes My ~/.Xauthority at work: -rw------- 1 azat azat 269 Jun 7 11:25 .Xauthority My ~/.Xauthority at home: -rw------- 1 azat azat 246 Jun 7 19:03 .Xauthority But it doesn't work After I make an ssh connection to home: $ echo $DISPLAY localhost:10.0 $ kate X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. kate: cannot connect to X server localhost:10.0 I use iptables at home, but I've allowed port 22. According to what I've read that's all I need. UPD. With -vvv ... debug2: callback start debug2: x11_get_proto: /usr/bin/xauth list :0 2/dev/null debug1: Requesting X11 forwarding with authentication spoofing. debug2: channel 1: request x11-req confirm 1 debug2: client_session2_setup: id 1 debug2: fd 3 setting TCP_NODELAY debug2: channel 1: request pty-req confirm 1 ... When try to launch kate: debug1: client_input_channel_open: ctype x11 rchan 2 win 65536 max 16384 debug1: client_request_x11: request from 127.0.0.1 55486 debug2: fd 8 setting O_NONBLOCK debug3: fd 8 is O_NONBLOCK debug1: channel 2: new [x11] debug1: confirm x11 debug2: X11 connection uses different authentication protocol. X11 connection rejected because of wrong authentication. debug2: X11 rejected 2 i0/o0 debug2: channel 2: read failed debug2: channel 2: close_read debug2: channel 2: input open - drain debug2: channel 2: ibuf empty debug2: channel 2: send eof debug2: channel 2: input drain - closed debug2: channel 2: write failed debug2: channel 2: close_write debug2: channel 2: output open - closed debug2: X11 closed 2 i3/o3 debug2: channel 2: send close debug2: channel 2: rcvd close debug2: channel 2: is dead debug2: channel 2: garbage collecting debug1: channel 2: free: x11, nchannels 3 debug3: channel 2: status: The following connections are open: #1 client-session (t4 r0 i0/0 o0/0 fd 5/6 cc -1) #2 x11 (t7 r2 i3/0 o3/0 fd 8/8 cc -1) # The same as above repeate about 7 times kate: cannot connect to X server localhost:10.0 UPD2 Please provide your Linux distribution & version number. Are you using a default GNOME or KDE environment for X or something else you customized yourself? azat:~$ kded4 -version Qt: 4.7.4 KDE Development Platform: 4.6.5 (4.6.5) KDE Daemon: $Id$ Are you invoking ssh directly on a command line from a terminal window? What terminal are you using? xterm, gnome-terminal, or? How did you start the terminal running in the X environment? From a menu? Hotkey? or ? From terminal emulator `yakuake` Manualy press `Ctrl + N` and write commands Can you run xeyes from the same terminal window where the ssh -X fails? `xeyes` - is not installed But `kate` or another kde app is running Are you invoking the ssh command as the same user that you're logged into the X session as? From the same user UPD3 I also download ssh sources, and using debug2() write why it's report that version is different It see some cookies, and one of them is empty, another is MIT-MAGIC-COOKIE-1

    Read the article

  • Monit won't run

    - by Yaniro
    I have two identical EC2 instances (the second is a replica of the first), running Gentoo. The first instance has monit running which monitors a single process and some system resources and functions great. In the second instance, monit runs but quits right away. The configuration is similar on both instances so are the versions of monit. monit.log shows: [GMT Oct 3 08:36:41] info : monit daemon with PID 5 awakened Final lines on strace monit show: write(2, "monit daemon with PID 5 awakened"..., 33monit daemon with PID 5 awakened ) = 33 time(NULL) = 1349252827 open("/etc/localtime", O_RDONLY) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=118, ...}) = 0 fstat64(4, {st_mode=S_IFREG|0644, st_size=118, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb773a000 read(4, "TZif2\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\0\0\0\1\0\0\0\0"..., 4096) = 118 _llseek(4, -6, [112], SEEK_CUR) = 0 read(4, "\nGMT0\n", 4096) = 6 close(4) = 0 munmap(0xb773a000, 4096) = 0 write(3, "[GMT Oct 3 08:27:07] info :"..., 33) = 33 write(3, "monit daemon with PID 5 awakened"..., 33) = 33 waitpid(-1, NULL, WNOHANG) = -1 ECHILD (No child processes) close(3) = 0 exit_group(0) = ? No core dumps (ulimit -c shows unlimited) monit -v shows: monit: Debug: Adding host allow 'localhost' monit: Debug: Skipping redundant host 'localhost' monit: Debug: Skipping redundant host 'localhost' monit: Debug: Adding credentials for user 'xxxx'. Runtime constants: Control file = /etc/monitrc Log file = /var/log/monit/monit.log Pid file = /var/run/monit.pid Id file = /var/run/monit.pid Debug = True Log = True Use syslog = False Is Daemon = True Use process engine = True Poll time = 30 seconds with start delay 0 seconds Expect buffer = 256 bytes Event queue = base directory /var/monit with 100 slots Mail server(s) = xx.xxx.xx.xxx with timeout 30 seconds Mail from = (not defined) Mail subject = (not defined) Mail message = (not defined) Start monit httpd = True httpd bind address = Any/All httpd portnumber = 2812 httpd signature = True Use ssl encryption = False httpd auth. style = Basic Authentication and Host/Net allow list Alert mail to = [email protected] Alert on = All events The service list contains the following entries: System Name = xxxx Monitoring mode = active CPU wait limit = if greater than 20.0% 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert CPU system limit = if greater than 30.0% 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert CPU user limit = if greater than 70.0% 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert Swap usage limit = if greater than 25.0% 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert Memory usage limit = if greater than 75.0% 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert Load avg. (5min) = if greater than 2.0 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert Load avg. (1min) = if greater than 4.0 1 times within 1 cycle(s) then alert else if succeeded 1 times within 1 cycle(s) then alert Process Name = xxxx Group = server Pid file = /var/run/xxxx.pid Monitoring mode = active Start program = '/etc/init.d/xxxx restart' timeout 20 second(s) Stop program = '/etc/init.d/xxxx stop' timeout 30 second(s) Existence = if does not exist 1 times within 1 cycle(s) then restart else if succeeded 1 times within 1 cycle(s) then alert Pid = if changed 1 times within 1 cycle(s) then alert Ppid = if changed 1 times within 1 cycle(s) then alert Timeout = If restarted 3 times within 5 cycle(s) then unmonitor Alert mail to = [email protected] Alert on = All events Alert mail to = [email protected] Alert on = All events ------------------------------------------------------------------------------- monit daemon with PID 5 awakened Ran emerge --sync before emerge -va monit which installed monit v5.3.2. When that didn't work i've downloaded v5.5 from their website and compiled from source which did not work either.

    Read the article

  • Apache doesn't run multiple requests

    - by Reinderien
    I'm currently running this simple Python CGI script to test rudimentary IPC: #!/usr/bin/python -u import cgi, errno, fcntl, os, os.path, sys, time print("""Content-Type: text/html; charset=utf-8 <!doctype html> <html lang="en"> <head> <meta charset="utf-8" /> <title>IPC test</title> </head> <body> """) ftempname = '/tmp/ipc-messages' master = not os.path.exists(ftempname) if master: fmode = 'w' else: fmode = 'r' print('<p>Opening file</p>') sys.stdout.flush() ftemp = open(ftempname, fmode) print('<p>File opened</p>') if master: print('<p>Operating as master</p>') sys.stdout.flush() for i in range(10): print('<p>' + str(i) + '</p>') sys.stdout.flush() time.sleep(1) ftemp.close() os.remove(ftempname) else: print('<p>Operating as a slave</p>') ftemp.close() print(""" </body> </html>""") The 'server-push' portion works; that is, for the first request, I do see piecewise updates. However, while the first request is being serviced, subsequent requests are not started, only to be started after the first request has finished. Any ideas on why, and how to fix it? Edit: I see the same non-concurrent behaviour with vanilla PHP, running this: <!doctype html> <html lang="en"> <!-- $Id: $--> <head> <meta charset="utf-8" /> <title>IPC test</title> </head> <body> <p> <?php function echofl($str) { echo $str . "</b>\n"; ob_flush(); flush(); } define('tempfn', '/tmp/emailsync'); if (file_exists(tempfn)) $perms = 'r+'; else $perms = 'w'; assert($fsync = fopen(tempfn, $perms)); assert(chmod(tempfn, 0600)); if (!flock($fsync, LOCK_EX | LOCK_NB, $wouldblock)) { assert($wouldblock); $master = false; } else $master = true; if ($master) { echofl('Running as master.'); assert(fwrite($fsync, 'content') != false); assert(sleep(5) == 0); assert(flock($fsync, LOCK_UN)); } else { echofl('Running as slave.'); echofl(fgets($fsync)); } assert(fclose($fsync)); echofl('Done.'); ?> </p> </body> </html>

    Read the article

< Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >