Search Results

Search found 61506 results on 2461 pages for 'return value'.

Page 225/2461 | < Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >

  • E-Business Suite : Role of CHUNK_SIZE in Oracle Payroll

    - by Giri Mandalika
    Different batch processes in Oracle Payroll flow have the ability to spawn multiple child processes (or threads) to complete the work in hand. The number of child processes to fork is controlled by the THREADS parameter in APPS.PAY_ACTION_PARAMETERS view. THREADS parameter The default value for THREADS parameter is 1, which is fine for a single-processor system but not optimal for the modern multi-core multi-processor systems. Setting the THREADS parameter to a value equal to or less than the total number of [virtual] processors available on the system may improve the performance of payroll processing. However on the down side, since multiple child processes operate against the same set of payroll tables in HR schema, database may experience undesired consequences such as buffer busy waits and index contention, which results in giving up some of the gains achieved by using multiple child processes/threads to process the work. Couple of other action parameters, CHUNK_SIZE and CHUNK_SHUFFLE, help alleviate the database contention. eg., Set a value for THREADS parameter as shown below. CONNECT APPS/APPS_PASSWORD UPDATE PAY_ACTION_PARAMETERS SET PARAMETER_VALUE = DESIRED_VALUE WHERE PARAMETER_NAME = 'THREADS'; COMMIT; (I am not aware of any maximum value for THREADS parameter) CHUNK_SIZE parameter The size of each commit unit for the batch process is controlled by the CHUNK_SIZE action parameter. In other words, chunking is the act of splitting the assignment actions into commit groups of desired size represented by the CHUNK_SIZE parameter. The default value is 20, and each thread processes one chunk at a time -- which means each child process inserts or processes 20 assignment actions at any time. When multiple threads are configured, each thread picks up a chunk to process, completes the assignment actions and then picks up another chunk. This is repeated until all the chunks are exhausted. It is possible to use different chunk sizes in different batch processes. During the initial phase of processing, CHUNK_SIZE number of assignment actions are inserted into relevant table(s). When multiple child processes are inserting data at the same time into the same set of tables, as explained earlier, database may experience contention. The default value of 20 is mostly optimal in such a case. Experiment with different values for the initial phase by +/-10 for CHUNK_SIZE parameter and observe the performance impact. A larger value may make sense during the main processing phase. Again experimentation is the key in finding the suitable value for your environment. Start with a large value such as 2000 for the chunk size, then increment or decrement the size by 500 at a time until an optimal value is found. eg., Set a value for CHUNK_SIZE parameter as shown below. CONNECT APPS/APPS_PASSWORD UPDATE PAY_ACTION_PARAMETERS SET PARAMETER_VALUE = DESIRED_VALUE WHERE PARAMETER_NAME = 'CHUNK_SIZE'; COMMIT; CHUNK_SIZE action parameter accepts a value that is as low as 1 or as high as 16000. CHUNK SHUFFLE parameter By default, chunks of assignment actions are processed sequentially by all threads - which may not be a good thing especially given that all child processes/threads performing similar actions against the same set of tables almost at the same time. By saying not a good thing, I mean to say that the default behavior leads to contention in the database (in data blocks, for example). It is possible to relieve some of that database contention by randomizing the processing order of chunks of assignment actions. This behavior is controlled by the CHUNK SHUFFLE action parameter. Chunk processing is not randomized unless explicitly configured. eg., Set chunk shuffling as shown below. CONNECT APPS/APPS_PASSWORD UPDATE PAY_ACTION_PARAMETERS SET PARAMETER_VALUE = 'Y' WHERE PARAMETER_NAME = 'CHUNK SHUFFLE'; COMMIT; Finally I recommend checking the following document out for additional details and additional pay action tunable parameters that may speed up the processing of Oracle Payroll.     My Oracle Support Doc ID: 226987.1 Oracle 11i & R12 Human Resources (HRMS) & Benefits (BEN) Tuning & System Health Checks Also experiment with different combinations of parameters and values until the right set of action parameters and values are found for your deployment.

    Read the article

  • Problem with boundary collision

    - by James Century
    The problem: When the player hits the left boundary he stops (this is exactly what I want), when he hits the right boundary. He continues until his rectangle's left boundary meets with the right boundary. Outcome: https://www.youtube.com/watch?v=yuJfIWZ_LL0&feature=youtu.be My Code public class Player extends GameObject{ BufferedImageLoader loader; Texture tex = Game.getInstance(); BufferedImage image; Animation playerWalkLeft; private HealthBarManager healthBar; private String username; private int width; private ManaBarManager manaBar; public Player(float x, float y, ObjectID ID) { super(x, y, ID, null); loader = new BufferedImageLoader(); playerWalkLeft = new Animation(5,tex.player[10],tex.player[11],tex.player[12],tex.player[13],tex.player[14],tex.player[15],tex.player[17],tex.player[18]); } public void tick(LinkedList<GameObject> object) { setX(getX()+velX); setY(getY()+velY); playerWalkLeft.runAnimation(); } public void render(Graphics g) { g.setColor(Color.BLACK); FontMetrics fm = g.getFontMetrics(g.getFont()); if(username != null) width = fm.stringWidth(username); if(username != null){ g.drawString(username,(int) x-width/2+15,(int) y); } if(velX != 0){ playerWalkLeft.drawAnimation(g, (int)x, (int)y); }else{ g.drawImage(tex.player[16], (int)x, (int)y, null); } g.setColor(Color.PINK); g.drawRect((int)x,(int)y,33,48); g.drawRect(0,0,(int)Game.getWalkableBounds().getWidth(), (int)Game.getWalkableBounds().getHeight()); } @SuppressWarnings("unused") private Image getCurrentImage() { return image; } public float getX() { return x; } public float getY() { return y; } public void setX(float x) { Rectangle gameBoundry = Game.getWalkableBounds(); if(x >= gameBoundry.getMinX() && x <= gameBoundry.getMaxX()){ this.x = x; } } public void setY(float y) { //IGNORE THE SetY please. this.y = y; } public float getVelX() { return velX; } public void setHealthBar(HealthBarManager healthBar){ this.healthBar = healthBar; } public HealthBarManager getHealthBar(){ return healthBar; } public float getVelY() { return velY; } public void setVelX(float velX) { this.velX = velX; } public void setVelY(float velY) { this.velY = velY; } public ObjectID getID() { return ID; } public void setUsername(String playerName) { this.username = playerName; } public String getUsername(){ return this.username; } public void setManaBar(ManaBarManager manaBar) { this.manaBar = manaBar; } public ManaBarManager getManaBar(){ return manaBar; } public int getLevel(){ return 1; } public boolean isPlayerInsideBoundry(float x, float y){ Rectangle boundry = Game.getWalkableBounds(); if(boundry.contains(x,y)){ return true; } return false; } } What I've tried: - Using a method that checks if the game boundary contains player boundary rectangle. This gave me the same result as what the check statement in my setX did.

    Read the article

  • SQL Server: Writing CASE expressions properly when NULLs are involved

    - by Mladen Prajdic
    We’ve all written a CASE expression (yes, it’s an expression and not a statement) or two every now and then. But did you know there are actually 2 formats you can write the CASE expression in? This actually bit me when I was trying to add some new functionality to an old stored procedure. In some rare cases the stored procedure just didn’t work correctly. After a quick look it turned out to be a CASE expression problem when dealing with NULLS. In the first format we make simple “equals to” comparisons to a value: SELECT CASE <value> WHEN <equals this value> THEN <return this> WHEN <equals this value> THEN <return this> -- ... more WHEN's here ELSE <return this> END Second format is much more flexible since it allows for complex conditions. USE THIS ONE! SELECT CASE WHEN <value> <compared to> <value> THEN <return this> WHEN <value> <compared to> <value> THEN <return this> -- ... more WHEN's here ELSE <return this> END Now that we know both formats and you know which to use (the second one if that hasn’t been clear enough) here’s an example how the first format WILL make your evaluation logic WRONG. Run the following code for different values of @i. Just comment out any 2 out of 3 “SELECT @i =” statements. DECLARE @i INTSELECT  @i = -1 -- first resultSELECT  @i = 55 -- second resultSELECT  @i = NULL -- third resultSELECT @i AS OriginalValue, -- first CASE format. DON'T USE THIS! CASE @i WHEN -1 THEN '-1' WHEN NULL THEN 'We have a NULL!' ELSE 'We landed in ELSE' END AS DontUseThisCaseFormatValue, -- second CASE format. USE THIS! CASE WHEN @i = -1 THEN '-1' WHEN @i IS NULL THEN 'We have a NULL!' ELSE 'We landed in ELSE' END AS UseThisCaseFormatValue When the value of @i is –1 everything works as expected, since both formats go into the –1 WHEN branch. When the value of @i is 55 everything again works as expected, since both formats go into the ELSE branch. When the value of @i is NULL the problems become evident. The first format doesn’t go into the WHEN NULL branch because it makes an equality comparison between two NULLs. Because a NULL is an unknown value: NULL = NULL is false. That is why the first format goes into the ELSE Branch but the second format correctly handles the proper IS NULL comparison.   Please use the second more explicit format. Your future self will be very grateful to you when he doesn’t have to discover these kinds of bugs.

    Read the article

  • Struts2 Populating Checkbox from Arraylist of Objects

    - by user2972139
    I'm sure that I'm doing something dumb but I've been going craze over the last couple of days trying to get my checkboxes filled out inside an iterator that goes over an arraylist of object. Here is my object: public class EmailObject { int emailId; String emailAddress; public int getEmailId() { return emailId; } public void setEmailId(int emailId) { this.emailId = emailId; } public String getEmailAddress() { return emailAddress; } public void setEmailAddress(String emailAddress) { this.emailAddress = emailAddress; } } In my action class, I create an arraylist of the above EmailObjects. On my jsp page, I can get checkboxes through a checkboxlist (but this isn't good for me because I want it to be vertical and don't want to mess with the struts styles) <s:checkboxlist name="selectedEmails" list="userEmails" listValue="emailAddress" listKey="emailId" /> I can also iterate over the arraylist userEmails and display the values: <s:iterator value="userEmails" var="thisEmailData"> <s:property value="emailId"/> <s:property value="emailAddress"/> </s:iterator> But I can't get it to display the emailId when iterating over the arraylist userEmails. I tried all of these: <s:iterator value="userEmails" var="thisEmailData"> <tr><td><s:property value="emailId"/></td></tr> <tr><td> <s:checkbox fieldValue="%{#emailId}" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="#emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="thisEmailData.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="userEmails.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="#thisEmailData.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="#userEmails.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="%{#thisEmailData.emailId}" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="%{#userEmails.emailId}" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox fieldValue="emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="%{#emailId}" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="#emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="thisEmailData.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="userEmails.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="#thisEmailData.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="#userEmails.emailId" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="%{#thisEmailData.emailId}" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="%{#userEmails.emailId}" name="emailAddressesCB" theme="simple" ></s:checkbox> <s:checkbox value="emailId" name="emailAddressesCB" theme="simple" > </s:checkbox> <s:property value="emailAddress"/> </td></tr> </s:iterator> </td></tr> </s:iterator> From the above, the value field is never filled with the value of the emailId. I know I'm missing something basic. What is it? THANK YOU.

    Read the article

  • Issue allowing custom Xml Serialization/Deserialization on certain types of field

    - by sw1sh
    I've been working with Xml Serialization/Deserialization in .net and wanted a method where the serialization/deserialization process would only be applied to certain parts of an Xml fragment. This is so I can keep certain parts of the fragment in Xml after the deserialization process. To do this I thought it would be best to create a new class (XmlLiteral) that implemented IXmlSerializable and then wrote specific code for handling the IXmlSerializable.ReadXml and IXmlSerializable.WriteXml methods. In my example below this works for Serializing, however during the Deserialization process it fails to run for multiple uses of my XmlLiteral class. In my example below sTest1 gets populated correctly, but sTest2 and sTest3 are empty. I'm guessing I must be going wrong with the following lines but can't figure out why.. Any ideas at all? Private Sub ReadXml(ByVal reader As System.Xml.XmlReader) Implements IXmlSerializable.ReadXml Dim StringType As String = "" If reader.IsEmptyElement OrElse reader.Read() = False Then Exit Sub End If _src = reader.ReadOuterXml() End Sub Full listing: Imports System Imports System.Xml.Serialization Imports System.Xml Imports System.IO Imports System.Text Public Class XmlLiteralExample Inherits System.Web.UI.Page Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load Dim MyObjectInstance As New MyObject MyObjectInstance.aProperty = "MyValue" MyObjectInstance.XmlLiteral1 = New XmlLiteral("<test1>Some Value</test1>") MyObjectInstance.XmlLiteral2 = New XmlLiteral("<test2>Some Value</test2>") MyObjectInstance.XmlLiteral3 = New XmlLiteral("<test3>Some Value</test3>") ' quickly serialize the object to Xml Dim sw As New StringWriter(New StringBuilder()) Dim s As New XmlSerializer(MyObjectInstance.[GetType]()), xmlnsEmpty As New XmlSerializerNamespaces xmlnsEmpty.Add("", "") s.Serialize(sw, MyObjectInstance, xmlnsEmpty) Dim XElement As XElement = XElement.Parse(sw.ToString()) ' XElement reads as the following, so serialization works OK '<MyObject> ' <aProperty>MyValue</aProperty> ' <XmlLiteral1> ' <test1>Some Value</test1> ' </XmlLiteral1> ' <XmlLiteral2> ' <test2>Some Value</test2> ' </XmlLiteral2> ' <XmlLiteral3> ' <test3>Some Value</test3> ' </XmlLiteral3> '</MyObject> ' quickly deserialize the object back to an instance of MyObjectInstance2 Dim MyObjectInstance2 As New MyObject Dim xmlReader As XmlReader, x As XmlSerializer xmlReader = XElement.CreateReader x = New XmlSerializer(MyObjectInstance2.GetType()) MyObjectInstance2 = x.Deserialize(xmlReader) Dim sProperty As String = MyObjectInstance2.aProperty ' equal to "MyValue" Dim sTest1 As String = MyObjectInstance2.XmlLiteral1.Text ' contains <test1>Some Value</test1> Dim sTest2 As String = MyObjectInstance2.XmlLiteral2.Text ' is empty Dim sTest3 As String = MyObjectInstance2.XmlLiteral3.Text ' is empty ' sTest3 and sTest3 should be populated but are not? xmlReader = Nothing End Sub Public Class MyObject Private _aProperty As String Private _XmlLiteral1 As XmlLiteral Private _XmlLiteral2 As XmlLiteral Private _XmlLiteral3 As XmlLiteral Public Property aProperty As String Get Return _aProperty End Get Set(ByVal value As String) _aProperty = value End Set End Property Public Property XmlLiteral1 As XmlLiteral Get Return _XmlLiteral1 End Get Set(ByVal value As XmlLiteral) _XmlLiteral1 = value End Set End Property Public Property XmlLiteral2 As XmlLiteral Get Return _XmlLiteral2 End Get Set(ByVal value As XmlLiteral) _XmlLiteral2 = value End Set End Property Public Property XmlLiteral3 As XmlLiteral Get Return _XmlLiteral3 End Get Set(ByVal value As XmlLiteral) _XmlLiteral3 = value End Set End Property Public Sub New() _XmlLiteral1 = New XmlLiteral _XmlLiteral2 = New XmlLiteral _XmlLiteral3 = New XmlLiteral End Sub End Class <System.Xml.Serialization.XmlRootAttribute(Namespace:="", IsNullable:=False)> _ Public Class XmlLiteral Implements IXmlSerializable Private _src As String Public Property Text() As String Get Return _src End Get Set(ByVal value As String) _src = value End Set End Property Public Sub New() _src = "" End Sub Public Sub New(ByVal Text As String) _src = Text End Sub #Region "IXmlSerializable Members" Private Function GetSchema() As System.Xml.Schema.XmlSchema Implements IXmlSerializable.GetSchema Return Nothing End Function Private Sub ReadXml(ByVal reader As System.Xml.XmlReader) Implements IXmlSerializable.ReadXml Dim StringType As String = "" If reader.IsEmptyElement OrElse reader.Read() = False Then Exit Sub End If _src = reader.ReadOuterXml() End Sub Private Sub WriteXml(ByVal writer As System.Xml.XmlWriter) Implements IXmlSerializable.WriteXml writer.WriteRaw(_src) End Sub #End Region End Class End Class

    Read the article

  • Multibinding File-Paths into a Button ControlTemplate

    - by Bill
    I am trying to develop an application that uses a number of images that are stored in a seperate remote file location. The file-paths to the UI elements are stored within the Application Settings. Although I understand how to access the images from Applications Settings using a MultiBinding and a value converter, I'm not sure how to integrate the Multibinding into the ImageButton ControlTemplate below. Can anyone steer me in the right direction? <Image.Source> <MultiBinding Converter="{StaticResource MyConverter}"> <Binding Source="{StaticResource Properties.Settings}" Path="Default.pathToInterfaceImages" /> <Binding Source="ScreenSaver.png"></Binding> </MultiBinding> </Image.Source> <Button Click="btn_ScreenSaver_Click" Style="{DynamicResource ThreeImageButton}" local:ThreeImageButton.Image="C:\Skins\ScreenSaver_UP.png" local:ThreeImageButton.MouseOverImage="C:\Skins\ScreenSaver_OVER.png" local:ThreeImageButton.PressedImage="C:\Skins\ScreenSaver_DOWN.png"/> <Style x:Key="ThreeImageButton" TargetType="{x:Type Button}"> <Setter Property="FontSize" Value="10"/> <Setter Property="Height" Value="34"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type Button}"> <StackPanel Orientation="Horizontal" > <Image Name="PART_Image" Source= "{Binding Path=(local:ThreeImageButton.Image), RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Button}}}" /> </StackPanel> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="True"> <Setter Property="Source" Value="{Binding Path=(local:ThreeImageButton.MouseOverImage), RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Button}}}" TargetName="PART_Image"/> </Trigger> <Trigger Property="IsPressed" Value="True"> <Setter Property="Source" Value="{Binding Path=(local:ThreeImageButton.PressedImage), RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Button}}}" TargetName="PART_Image"/> </Trigger> <Trigger Property="IsEnabled" Value="False"> <Setter Property="Source" Value="{Binding Path=(local:ThreeImageButton.Image), RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Button}}}" TargetName="PART_Image"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> public class ThreeImageButton : DependencyObject { // Add three new Dependency Properties to the Button Class to hold the // path to each of the images that are bound to the control, displayed // during normal, mouse-over and pressed states. public static readonly DependencyProperty ImageProperty; public static readonly DependencyProperty MouseOverImageProperty; public static readonly DependencyProperty PressedImageProperty; public static ImageSource GetImage(DependencyObject obj) { return (ImageSource)obj.GetValue(ImageProperty); } public static ImageSource GetMouseOverImage(DependencyObject obj) { return (ImageSource)obj.GetValue(MouseOverImageProperty); } public static ImageSource GetPressedImage(DependencyObject obj) { return (ImageSource)obj.GetValue(PressedImageProperty); } public static void SetImage(DependencyObject obj, ImageSource value) { obj.SetValue(ImageProperty, value); } public static void SetMouseOverImage(DependencyObject obj, ImageSource value) { obj.SetValue(MouseOverImageProperty, value); } public static void SetPressedImage(DependencyObject obj, ImageSource value) { obj.SetValue(PressedImageProperty, value); } // Register each property with the control. static ThreeImageButton() { var metadata = new FrameworkPropertyMetadata((ImageSource)null); ImageProperty = DependencyProperty.RegisterAttached("Image", typeof(ImageSource), typeof(ThreeImageButton), metadata); var metadata1 = new FrameworkPropertyMetadata((ImageSource)null); MouseOverImageProperty = DependencyProperty.RegisterAttached("MouseOverImage", typeof(ImageSource), typeof(ThreeImageButton), metadata1); var metadata2 = new FrameworkPropertyMetadata((ImageSource)null); PressedImageProperty = DependencyProperty.RegisterAttached("PressedImage", typeof(ImageSource), typeof(ThreeImageButton), metadata2); } }

    Read the article

  • How to load models in the extended MY_Router class in codeigniter

    - by askkirati
    I am not able to load models to the extended My_Router class in codeigniter. Below is my code: class MY_Router extends CI_Router { function MY_Router() { parent::CI_Router(); } function _validate_request($segments) { // Does the requested controller exist in the root folder? if (file_exists(APPPATH.'controllers/'.$segments[0].EXT)) { return $segments; } // Is the controller in a sub-folder? if (is_dir(APPPATH.'controllers/'.$segments[0])) { // Set the directory and remove it from the segment array $this->set_directory($segments[0]); $segments = array_slice($segments, 1); if (count($segments) > 0) { // Does the requested controller exist in the sub-folder? if ( ! file_exists(APPPATH.'controllers/'.$this->fetch_directory().$segments[0].EXT)) { show_404($this->fetch_directory().$segments[0]); } } else { $this->set_class($this->default_controller); $this->set_method('index'); // Does the default controller exist in the sub-folder? if ( ! file_exists(APPPATH.'controllers/'.$this->fetch_directory().$this->default_controller.EXT)) { $this->directory = ''; return array(); } } return $segments; } // Let's check if there are category segments $category_routes = $this->category_routing($segments); if($category_routes !== FALSE) { return $category_routes; } $user_routes = $this->user_routing($segments); if($user_routes != FALSE) { return $user_routes; } show_404($segments[0]); } function category_routing($segments) { $this->load->model('category_model'); if($this->category_model->category_exist($segments[0])) { //if only category if(count($segments)==1) { return array('category', 'category_browse', $segments[0]); } //category pagination if(count($segments)==2 and is_numeric($segments[1])) { return array('category','category_browse', $segments[0], $segments[1]); } //category upcoming if(count($segments)==2 and $segments[1] == 'upcoming') { return array('category','upcoming', $segments[0]); } //category upcoming pagination if(count($segments)==3 and $segments[1] == 'upcoming' and is_numeric($segments[3])) { return array('category','upcoming', $segments[0], $segments[3]); } //category top if(count($segments)==3 and $segments[1] == 'top') { return array('category','top', $segments[0], $segments[2]); } //category top pagination if(count($segments)==4 and $segments[1] == 'top' and is_numeric($segments[3])) { return array('category','top', $segments[0], $segments[3]); } } return FALSE; } function user_routing($segments) { $this->load->model('dx_auth/users', 'user_model'); if($this->user_model->check_username($segments[0])) { //only profile if(count($segments)==1) { return array('user','profile',$segments[0]); } //all friends if(count($segments)==2 and $segment[1]=='allfriends') { return array('user','allfriends',$segments[0]); } //all subscribers if(count($segments)==2 and $segment[1]=='allsubscribers') { return array('user','allsubscribers',$segments[0]); } //all subscription if(count($segments)==2 and $segment[1]=='allsubscriptions') { return array('user','allsubscriptions',$segments[0]); } } return FALSE; } } I have tried loading the models by using get_instance function provided by codeigniter but seems like it doesnot work. All i need is load the models in extended system library.

    Read the article

  • DataTrigger inside ControlTemplate doesn't update

    - by kennethkryger
    I have a ListBox that is bound to a list of CustomerViewModel-objects, that each has two dependency properties: - Name (string) - Description (string) - IsVisible (bool) (the IsVisible property is True by default and is reversed via the ToggleVisibility Command on the CustomerViewModel) I would like to display the Name and Description to the right of a Border-control, that is has a Transparent background when the IsVisible property is True and Green when the False. My problem is that the DataTrigger part of the code below doesn't work the way I want, because the Setter-part isn't triggered when the IsVisible is changed. What am I doing wrong? Here's my code: <UserControl.Resources> <Style x:Key="ListBoxStyle" TargetType="{x:Type ListBox}"> <Setter Property="Margin" Value="-1,-1,0,0" /> <Setter Property="BorderThickness" Value="0" /> <Setter Property="Background" Value="Transparent" /> <Setter Property="ItemContainerStyle" Value="{DynamicResource ListboxItemStyle}" /> <Setter Property="ScrollViewer.HorizontalScrollBarVisibility" Value="Disabled" /> </Style> <Style x:Key="ListboxItemStyle" TargetType="{x:Type ListBoxItem}"> <Setter Property="Background" Value="Transparent" /> <Setter Property="FocusVisualStyle" Value="{x:Null}" /> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type ListBoxItem}"> <Grid> <Border x:Name="border" Background="{TemplateBinding Background}" BorderBrush="#FFD4D6D5" BorderThickness="0,0,0,1"> <Grid Height="70" Margin="0,0,10,0"> <Grid.RowDefinitions> <RowDefinition Height="10" /> <RowDefinition Height="Auto" /> <RowDefinition /> <RowDefinition Height="10" /> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition /> </Grid.ColumnDefinitions> <Border x:Name="visibilityColumn" Grid.Row="0" Grid.Column="0" Grid.RowSpan="4" Background="Transparent" Width="4" Margin="0,0,4,0" /> <TextBlock x:Name="customerName" Grid.Row="1" Grid.Column="1" Foreground="#FF191919" FontWeight="Bold" Text="{Binding Name}" VerticalAlignment="Top" /> <TextBlock Grid.Row="2" Grid.Column="1" VerticalAlignment="Stretch" Text="{Binding Description}" TextWrapping="Wrap" Foreground="#FFB4B4B4" TextTrimming="CharacterEllipsis" /> </Grid> <Border.ContextMenu> <ContextMenu> <MenuItem Header="Edit..." /> <MenuItem Header="Visible" IsCheckable="True" IsChecked="{Binding IsVisible}" Command="{Binding ToggleVisibility}"/> </ContextMenu> </Border.ContextMenu> </Border> </Grid> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="True"> <Setter Property="Background" Value="#FFEEEEEE" /> </Trigger> <Trigger Property="IsSelected" Value="True"> <Setter Property="Background" Value="#FFF5F5F5" /> <Setter TargetName="customerName" Property="Foreground" Value="Green" /> </Trigger> <DataTrigger Binding="{Binding IsVisible}" Value="False"> <!--If Value="True" the customerName Border shows up green!--> <Setter Property="Background" Value="Green" /> </DataTrigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> </UserControl.Resources> <ListBox Style="{StaticResource ListBoxStyle}" ItemsSource="{Binding CustomerViewModels}" />

    Read the article

  • Hibernate - strange order of native SQL parameters

    - by Xorty
    Hello, I am trying to use native MySQL's MD5 crypto func, so I defined custom insert in my mapping file. <hibernate-mapping package="tutorial"> <class name="com.xorty.mailclient.client.domain.User" table="user"> <id name="login" type="string" column="login"></id> <property name="password"> <column name="password" /> </property> <sql-insert>INSERT INTO user (login,password) VALUES ( ?, MD5(?) )</sql-insert> </class> </hibernate-mapping> Then I create User (pretty simple POJO with just 2 Strings - login and password) and try to persist it. session.beginTransaction(); // we have no such user in here yet User junitUser = (User) session.load(User.class, "junit_user"); assert (null == junitUser); // insert new user junitUser = new User(); junitUser.setLogin("junit_user"); junitUser.setPassword("junitpass"); session.save(junitUser); session.getTransaction().commit(); What actually happens? User is created, but with reversed parameters order. He has login "junitpass" and "junit_user" is MD5 encrypted and stored as password. What did I wrong? Thanks EDIT: ADDING POJO class package com.xorty.mailclient.client.domain; import java.io.Serializable; /** * POJO class representing user. * @author MisoV * @version 0.1 */ public class User implements Serializable { /** * Generated UID */ private static final long serialVersionUID = -969127095912324468L; private String login; private String password; /** * @return login */ public String getLogin() { return login; } /** * @return password */ public String getPassword() { return password; } /** * @param login the login to set */ public void setLogin(String login) { this.login = login; } /** * @param password the password to set */ public void setPassword(String password) { this.password = password; } /** * @see java.lang.Object#toString() * @return login */ @Override public String toString() { return login; } /** * Creates new User. * @param login User's login. * @param password User's password. */ public User(String login, String password) { setLogin(login); setPassword(password); } /** * Default constructor */ public User() { } /** * @return hashCode * @see java.lang.Object#hashCode() */ @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + ((null == login) ? 0 : login.hashCode()); result = prime * result + ((null == password) ? 0 : password.hashCode()); return result; } /** * @param obj Compared object * @return True, if objects are same. Else false. * @see java.lang.Object#equals(java.lang.Object) */ @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (!(obj instanceof User)) { return false; } User other = (User) obj; if (login == null) { if (other.login != null) { return false; } } else if (!login.equals(other.login)) { return false; } if (password == null) { if (other.password != null) { return false; } } else if (!password.equals(other.password)) { return false; } return true; } }

    Read the article

  • How can I modify my Shunting-Yard Algorithm so it accepts unary operators?

    - by KingNestor
    I've been working on implementing the Shunting-Yard Algorithm in JavaScript for class. Here is my work so far: var userInput = prompt("Enter in a mathematical expression:"); var postFix = InfixToPostfix(userInput); var result = EvaluateExpression(postFix); document.write("Infix: " + userInput + "<br/>"); document.write("Postfix (RPN): " + postFix + "<br/>"); document.write("Result: " + result + "<br/>"); function EvaluateExpression(expression) { var tokens = expression.split(/([0-9]+|[*+-\/()])/); var evalStack = []; while (tokens.length != 0) { var currentToken = tokens.shift(); if (isNumber(currentToken)) { evalStack.push(currentToken); } else if (isOperator(currentToken)) { var operand1 = evalStack.pop(); var operand2 = evalStack.pop(); var result = PerformOperation(parseInt(operand1), parseInt(operand2), currentToken); evalStack.push(result); } } return evalStack.pop(); } function PerformOperation(operand1, operand2, operator) { switch(operator) { case '+': return operand1 + operand2; case '-': return operand1 - operand2; case '*': return operand1 * operand2; case '/': return operand1 / operand2; default: return; } } function InfixToPostfix(expression) { var tokens = expression.split(/([0-9]+|[*+-\/()])/); var outputQueue = []; var operatorStack = []; while (tokens.length != 0) { var currentToken = tokens.shift(); if (isNumber(currentToken)) { outputQueue.push(currentToken); } else if (isOperator(currentToken)) { while ((getAssociativity(currentToken) == 'left' && getPrecedence(currentToken) <= getPrecedence(operatorStack[operatorStack.length-1])) || (getAssociativity(currentToken) == 'right' && getPrecedence(currentToken) < getPrecedence(operatorStack[operatorStack.length-1]))) { outputQueue.push(operatorStack.pop()) } operatorStack.push(currentToken); } else if (currentToken == '(') { operatorStack.push(currentToken); } else if (currentToken == ')') { while (operatorStack[operatorStack.length-1] != '(') { if (operatorStack.length == 0) throw("Parenthesis balancing error! Shame on you!"); outputQueue.push(operatorStack.pop()); } operatorStack.pop(); } } while (operatorStack.length != 0) { if (!operatorStack[operatorStack.length-1].match(/([()])/)) outputQueue.push(operatorStack.pop()); else throw("Parenthesis balancing error! Shame on you!"); } return outputQueue.join(" "); } function isOperator(token) { if (!token.match(/([*+-\/])/)) return false; else return true; } function isNumber(token) { if (!token.match(/([0-9]+)/)) return false; else return true; } function getPrecedence(token) { switch (token) { case '^': return 9; case '*': case '/': case '%': return 8; case '+': case '-': return 6; default: return -1; } } function getAssociativity(token) { switch(token) { case '+': case '-': case '*': case '/': return 'left'; case '^': return 'right'; } } It works fine so far. If I give it: ((5+3) * 8) It will output: Infix: ((5+3) * 8) Postfix (RPN): 5 3 + 8 * Result: 64 However, I'm struggling with implementing the unary operators so I could do something like: ((-5+3) * 8) What would be the best way to implement unary operators (negation, etc)? Also, does anyone have any suggestions for handling floating point numbers as well? One last thing, if anyone sees me doing anything weird in JavaScript let me know. This is my first JavaScript program and I'm not used to it yet.

    Read the article

  • submit a form and get json response

    - by ruhit
    I have made an application to convert text to image formate and its workingout well. Now I want json response when i fill the form of the html page, my html page is given below...Please help me to do this <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"> <html lang="en"> <head> <title>kandarpa</title> </head> <div> <form action="img.php" method="get"><b>enter your text here:</b><br/> <textarea id="text" name="text" style=" background-color:inherit" cols="50" rows="10"></textarea><br/><br/> <input type="submit" value="Text to Image" name="submit"> </div><br/> <div> <tr> <td>Font Size</td> <td><select name="size"> <option value="8">8</option> <option value="12">12</option> <option value="18">18</option> <option value="24">24</option> <option value="32" selected="selected">32</option> <option value="48">48</option> <option value="64">64</option> </select></td> </tr> </div><br/> <div> <td>Font </td> <td><select name="font" id="font"> <option value="Fonts/arial.ttf">Arial</option> <option value="Fonts/times.ttf">Times New Roman</option> <option value="Fonts/tahoma.ttf">Tahoma</option> <option value="Fonts/Grand Stylus.ttf">Grand Stylus</option> <option value="Fonts/GARAIT.ttf">G</option> </select></td> </tr> </div><br/> <div> <td>Choose your Color </td> <td><select name="color" id="color"> <option value="white">white</option> <option value="black">black</option> <option value="grey">grey</option> <option value="red">red</option> </select></td> </tr> </div> <br/> <div> <td>Height </td> <input type="text" id="height" name="height"> </td><br/><br/> <td>Width</td> <input type="text" id="width" name="width"> </div> </form> </body> </html>

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Adventures in MVVM &ndash; My ViewModel Base

    - by Brian Genisio's House Of Bilz
    More Adventures in MVVM First, I’d like to say: THIS IS NOT A NEW MVVM FRAMEWORK. I tend to believe that MVVM support code should be specific to the system you are building and the developers working on it.  I have yet to find an MVVM framework that does everything I want it to without doing too much.  Don’t get me wrong… there are some good frameworks out there.  I just like to pick and choose things that make sense for me.  I’d also like to add that some of these features only work in WPF.  As of Silveright 4, they don’t support binding to dynamic properties, so some of the capabilities are lost. That being said, I want to share my ViewModel base class with the world.  I have had several conversations with people about the problems I have solved using this ViewModel base.  A while back, I posted an article about some experiments with a “Rails Inspired ViewModel”.  What followed from those ideas was a ViewModel base class that I take with me and use in my projects.  It has a lot of features, all designed to reduce the friction in writing view models. I have put the code out on Codeplex under the project: ViewModelSupport. Finally, this article focuses on the ViewModel and only glosses over the View and the Model.  Without all three, you don’t have MVVM.  But this base class is for the ViewModel, so that is what I am focusing on. Features: Automatic Command Plumbing Property Change Notification Strongly Typed Property Getter/Setters Dynamic Properties Default Property values Derived Properties Automatic Method Execution Command CanExecute Change Notification Design-Time Detection What about Silverlight? Automatic Command Plumbing This feature takes the plumbing out of creating commands.  The common pattern for commands in a ViewModel is to have an Execute method as well as an optional CanExecute method.  To plumb that together, you create an ICommand Property, and set it in the constructor like so: Before public class AutomaticCommandViewModel { public AutomaticCommandViewModel() { MyCommand = new DelegateCommand(Execute_MyCommand, CanExecute_MyCommand); } public void Execute_MyCommand() { // Do something } public bool CanExecute_MyCommand() { // Are we in a state to do something? return true; } public DelegateCommand MyCommand { get; private set; } } With the base class, this plumbing is automatic and the property (MyCommand of type ICommand) is created for you.  The base class uses the convention that methods be prefixed with Execute_ and CanExecute_ in order to be plumbed into commands with the property name after the prefix.  You are left to be expressive with your behavior without the plumbing.  If you are wondering how CanExecuteChanged is raised, see the later section “Command CanExecute Change Notification”. After public class AutomaticCommandViewModel : ViewModelBase { public void Execute_MyCommand() { // Do something } public bool CanExecute_MyCommand() { // Are we in a state to do something? return true; } }   Property Change Notification One thing that always kills me when implementing ViewModels is how to make properties that notify when they change (via the INotifyPropertyChanged interface).  There have been many attempts to make this more automatic.  My base class includes one option.  There are others, but I feel like this works best for me. The common pattern (without my base class) is to create a private backing store for the variable and specify a getter that returns the private field.  The setter will set the private field and fire an event that notifies the change, only if the value has changed. Before public class PropertyHelpersViewModel : INotifyPropertyChanged { private string text; public string Text { get { return text; } set { if(text != value) { text = value; RaisePropertyChanged("Text"); } } } protected void RaisePropertyChanged(string propertyName) { var handlers = PropertyChanged; if(handlers != null) handlers(this, new PropertyChangedEventArgs(propertyName)); } public event PropertyChangedEventHandler PropertyChanged; } This way of defining properties is error-prone and tedious.  Too much plumbing.  My base class eliminates much of that plumbing with the same functionality: After public class PropertyHelpersViewModel : ViewModelBase { public string Text { get { return Get<string>("Text"); } set { Set("Text", value);} } }   Strongly Typed Property Getters/Setters It turns out that we can do better than that.  We are using a strongly typed language where the use of “Magic Strings” is often frowned upon.  Lets make the names in the getters and setters strongly typed: A refinement public class PropertyHelpersViewModel : ViewModelBase { public string Text { get { return Get(() => Text); } set { Set(() => Text, value); } } }   Dynamic Properties In C# 4.0, we have the ability to program statically OR dynamically.  This base class lets us leverage the powerful dynamic capabilities in our ecosystem. (This is how the automatic commands are implemented, BTW)  By calling Set(“Foo”, 1), you have now created a dynamic property called Foo.  It can be bound against like any static property.  The opportunities are endless.  One great way to exploit this behavior is if you have a customizable view engine with templates that bind to properties defined by the user.  The base class just needs to create the dynamic properties at runtime from information in the model, and the custom template can bind even though the static properties do not exist. All dynamic properties still benefit from the notifiable capabilities that static properties do. For any nay-sayers out there that don’t like using the dynamic features of C#, just remember this: the act of binding the View to a ViewModel is dynamic already.  Why not exploit it?  Get over it :) Just declare the property dynamically public class DynamicPropertyViewModel : ViewModelBase { public DynamicPropertyViewModel() { Set("Foo", "Bar"); } } Then reference it normally <TextBlock Text="{Binding Foo}" />   Default Property Values The Get() method also allows for default properties to be set.  Don’t set them in the constructor.  Set them in the property and keep the related code together: public string Text { get { return Get(() => Text, "This is the default value"); } set { Set(() => Text, value);} }   Derived Properties This is something I blogged about a while back in more detail.  This feature came from the chaining of property notifications when one property affects the results of another, like this: Before public class DependantPropertiesViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); RaisePropertyChanged("Percentage"); RaisePropertyChanged("Output"); } } public int Percentage { get { return (int)(100 * Score); } } public string Output { get { return "You scored " + Percentage + "%."; } } } The problem is: The setter for Score has to be responsible for notifying the world that Percentage and Output have also changed.  This, to me, is backwards.    It certainly violates the “Single Responsibility Principle.” I have been bitten in the rear more than once by problems created from code like this.  What we really want to do is invert the dependency.  Let the Percentage property declare that it changes when the Score Property changes. After public class DependantPropertiesViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); } } [DependsUpon("Score")] public int Percentage { get { return (int)(100 * Score); } } [DependsUpon("Percentage")] public string Output { get { return "You scored " + Percentage + "%."; } } }   Automatic Method Execution This one is extremely similar to the previous, but it deals with method execution as opposed to property.  When you want to execute a method triggered by property changes, let the method declare the dependency instead of the other way around. Before public class DependantMethodsViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); WhenScoreChanges(); } } public void WhenScoreChanges() { // Handle this case } } After public class DependantMethodsViewModel : ViewModelBase { public double Score { get { return Get(() => Score); } set { Set(() => Score, value); } } [DependsUpon("Score")] public void WhenScoreChanges() { // Handle this case } }   Command CanExecute Change Notification Back to Commands.  One of the responsibilities of commands that implement ICommand – it must fire an event declaring that CanExecute() needs to be re-evaluated.  I wanted to wait until we got past a few concepts before explaining this behavior.  You can use the same mechanism here to fire off the change.  In the CanExecute_ method, declare the property that it depends upon.  When that property changes, the command will fire a CanExecuteChanged event, telling the View to re-evaluate the state of the command.  The View will make appropriate adjustments, like disabling the button. DependsUpon works on CanExecute methods as well public class CanExecuteViewModel : ViewModelBase { public void Execute_MakeLower() { Output = Input.ToLower(); } [DependsUpon("Input")] public bool CanExecute_MakeLower() { return !string.IsNullOrWhiteSpace(Input); } public string Input { get { return Get(() => Input); } set { Set(() => Input, value);} } public string Output { get { return Get(() => Output); } set { Set(() => Output, value); } } }   Design-Time Detection If you want to add design-time data to your ViewModel, the base class has a property that lets you ask if you are in the designer.  You can then set some default values that let your designer see what things might look like in runtime. Use the IsInDesignMode property public DependantPropertiesViewModel() { if(IsInDesignMode) { Score = .5; } }   What About Silverlight? Some of the features in this base class only work in WPF.  As of version 4, Silverlight does not support binding to dynamic properties.  This, in my opinion, is a HUGE limitation.  Not only does it keep you from using many of the features in this ViewModel, it also keeps you from binding to ViewModels designed in IronRuby.  Does this mean that the base class will not work in Silverlight?  No.  Many of the features outlined in this article WILL work.  All of the property abstractions are functional, as long as you refer to them statically in the View.  This, of course, means that the automatic command hook-up doesn’t work in Silverlight.  You need to plumb it to a static property in order for the Silverlight View to bind to it.  Can I has a dynamic property in SL5?     Good to go? So, that concludes the feature explanation of my ViewModel base class.  Feel free to take it, fork it, whatever.  It is hosted on CodePlex.  When I find other useful additions, I will add them to the public repository.  I use this base class every day.  It is mature, and well tested.  If, however, you find any problems with it, please let me know!  Also, feel free to suggest patches to me via the CodePlex site.  :)

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • Varnish default.vcl grace period

    - by Vladimir
    These are my settings for a grace period (/etc/varnish/default.vcl) sub vcl_recv { .... set req.grace = 360000s; ... } sub vcl_fetch { ... set beresp.grace = 360000s; ... } I tested Varnish using localhost and nodejs as a server. I started localhost, the site was up. Then I disconnected server and the site got disconnected in less than 2 min. It says: Error 503 Service Unavailable Service Unavailable Guru Meditation: XID: 1890127100 Varnish cache server Could you tell me what could be the problem? sub vcl_fetch { if (beresp.ttl < 120s) { ##std.log("Adjusting TTL"); set beresp.ttl = 36000s; ##120s; } # Do not cache the object if the backend application does not want us to. if (beresp.http.Cache-Control ~ "(no-cache|no-store|private|must-revalidate)") { return(hit_for_pass); } # Do not cache the object if the status is not in the 200s if (beresp.status >= 300) { # Remove the Set-Cookie header #remove beresp.http.Set-Cookie; return(hit_for_pass); } # # Everything below here should be cached # # Remove the Set-Cookie header ####remove beresp.http.Set-Cookie; # Set the grace time ## set beresp.grace = 1s; //change this to minutes in case of app shutdown set beresp.grace = 360000s; ## 10 hour - reduce if it has negative impact # Static assets - browser caches tpiphem for a long time. if (req.url ~ "\.(css|js|.js|jpg|jpeg|gif|ico|png)\??\d*$") { /* Remove Expires from backend, it's not long enough */ unset beresp.http.expires; /* Set the clients TTL on this object */ set beresp.http.cache-control = "public, max-age=31536000"; /* marker for vcl_deliver to reset Age: */ set beresp.http.magicmarker = "1"; } else { set beresp.http.Cache-Control = "private, max-age=0, must-revalidate"; set beresp.http.Pragma = "no-cache"; } if (req.url ~ "\.(css|js|min|)\??\d*$") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } ##do not duplicate these settings if (req.url ~ ".css") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } if (req.url ~ ".js") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } if (req.url ~ ".min") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } ## If the request to the backend returns a code other than 200, restart the loop ## If the number of restarts reaches the value of the parameter max_restarts, ## the request will be error'ed. max_restarts defaults to 4. This prevents ## an eternal loop in the event that, e.g., the object does not exist at all. if (beresp.status != 200 && beresp.status != 403 && beresp.status != 404) { return(restart); } if (beresp.status == 302) { return(deliver); } # Never cache posts if (req.url ~ "\/post\/" || req.url ~ "\/submit\/" || req.url ~ "\/ask\/" || req.url ~ "\/add\/") { return(hit_for_pass); } ##check this setting to ensure that it does not cause issues for browsers with no gzip if (beresp.http.content-type ~ "text") { set beresp.do_gzip = true; } if (beresp.http.Set-Cookie) { return(deliver); } ##if (req.url == "/index.html") { set beresp.do_esi = true; ##} ## check if this is needed or should be used # return(deliver); the object return(deliver); } sub vcl_recv { ##avoid leeching of images call hot_link; set req.grace = 360000s; ##2m ## if one backend is down - use another if (req.restarts == 0) { set req.backend = cache_director; ##we can specify individual VMs } else if (req.restarts == 1) { set req.backend = cache_director; } ## post calls should not be cached - add cookie for these requests if using micro-caching # Pass requests that are not GET or HEAD if (req.request != "GET" && req.request != "HEAD") { return(pass); ## return(pass) goes to backend - not cache } # Don't cache the result of a redirect if (req.http.Referer ~ "redir" || req.http.Origin ~ "jumpto") { return(pass); } # Don't cache the result of a redirect (asking for logon) if (req.http.Referer ~ "post" || req.http.Referer ~ "submit" || req.http.Referer ~ "add" || req.http.Referer ~ "ask") { return(pass); } # Never cache posts - ensure that we do not use these strings in our URLs' that need to be cached if (req.url ~ "\/post\/" || req.url ~ "\/submit\/" || req.url ~ "\/ask\/" || req.url ~ "\/add\/") { return(pass); } ## if (req.http.Authorization || req.http.Cookie) { if (req.http.Authorization) { /* Not cacheable by default */ return (pass); } # Handle compression correctly. Different browsers send different # "Accept-Encoding" headers, even though they mostly all support the same # compression mechanisms. By consolidating these compression headers into # a consistent format, we can reduce the size of the cache and get more hits. # @see: http:// varnish.projects.linpro.no/wiki/FAQ/Compression if (req.http.Accept-Encoding) { if (req.url ~ "\.(jpg|png|gif|gz|tgz|bz2|tbz|mp3|ogg|ico)$") { # No point in compressing these remove req.http.Accept-Encoding; } else if (req.http.Accept-Encoding ~ "gzip") { # If the browser supports it, we'll use gzip. set req.http.Accept-Encoding = "gzip"; } else if (req.http.Accept-Encoding ~ "deflate") { # Next, try deflate if it is supported. set req.http.Accept-Encoding = "deflate"; } else { # Unknown algorithm. Remove it and send unencoded. unset req.http.Accept-Encoding; } } # lookup graphics, css, js & ico files in the cache if (req.url ~ "\.(png|gif|jpg|jpeg|css|.js|ico)$") { return(lookup); } ##added on 0918 - check if it causes issues with user specific content if (req.request == "GET" && req.http.cookie) { return(lookup); } # Pipe requests that are non-RFC2616 or CONNECT which is weird. if (req.request != "GET" && req.request != "HEAD" && req.request != "PUT" && req.request != "POST" && req.request != "TRACE" && req.request != "OPTIONS" && req.request != "DELETE") { ##closing connection and calling pipe return(pipe); } ##purge content via localhost only if (req.request == "PURGE") { if (!client.ip ~ purge) { error 405 "Not allowed."; } return(lookup); } ## do we need this? ## return(lookup); }

    Read the article

  • How to pass textbox value from one webform to a xtrareport ?

    - by ahmed
    Hello, I have a web form where I have a textbox in which the user will enter the number and pull the information from the table. Now I have developed a xtrareport, where I have to display the data of which the user enters in that textbox which I mentioned earlier. Everything works fine, only I need to just pass the value of the texbox(form1) to the report (form2). Now what I need is how to pass the textbox value as a parameter to the report and display the report data of the selected number.

    Read the article

  • Python: How to display the calculated MD5 value in my browser?

    - by brilliant
    Hello, I was given this Python code that would calculate an MD5 value for any phrase: import md5 md5.new("Nobody inspects the spammish repetition").digest() (The phrase here is: "Nobody inspects the spammish repetition") What I want to do is display this value in my browser. How do I do it in Python? I tried all these variants, none of them worked: import md5 show = md5.new("Nobody inspects the spammish repetition").digest() print show import md5 print md5.new("Nobody inspects the spammish repetition").digest() import md5 md5.new("Nobody inspects the spammish repetition").digest() print md5 import md5 md5.new("Nobody inspects the spammish repetition").digest() print md5.new

    Read the article

  • How to receive modified model value in MVC's Post method?

    - by kapil
    HI, Does anyone know how can I receive the modified model value which I have bound to controls on view page. For instance I have used a text box on view, as follows- <%=Html.TextBoxFor(model => Model.firstName, new { id = "txtFirstName"})%> But in my post method I am not able to receive the modified value from the text box. Any solution? Thanks, Kapil

    Read the article

  • Why does KeyDown event not have access to the current value of bound variable?

    - by Edward Tanguay
    In the example below: I start program, type text, click button, see text above. Press ENTER see text again. BUT: I start program, type text, press ENTER, see no text. It seems that the KeyDown event doesn't get access to the current value of the bound variable, as if it is always "one behind". What do I have to change so that when I press ENTER I have access to the value that is in the textbox so I can add it to the chat window? XAML: <Window x:Class="TestScroll.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="Window1" Height="290" Width="300" Background="#eee"> <StackPanel Margin="10"> <ScrollViewer Height="200" Width="260" Margin="0 0 0 10" VerticalScrollBarVisibility="Auto" HorizontalScrollBarVisibility="Auto"> <TextBlock Text="{Binding TextContent}" Background="#fff"/> </ScrollViewer> <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"> <TextBox x:Name="TheLineTextBox" Text="{Binding TheLine}" Width="205" Margin="0 0 5 0" KeyDown="TheLineTextBox_KeyDown"/> <Button Content="Enter" Click="Button_Click"/> </StackPanel> </StackPanel> </Window> Code-Behind: using System; using System.Windows; using System.Windows.Input; using System.ComponentModel; namespace TestScroll { public partial class Window1 : Window, INotifyPropertyChanged { #region ViewModelProperty: TextContent private string _textContent; public string TextContent { get { return _textContent; } set { _textContent = value; OnPropertyChanged("TextContent"); } } #endregion #region ViewModelProperty: TheLine private string _theLine; public string TheLine { get { return _theLine; } set { _theLine = value; OnPropertyChanged("TheLine"); } } #endregion public Window1() { InitializeComponent(); DataContext = this; TheLineTextBox.Focus(); } private void Button_Click(object sender, RoutedEventArgs e) { AddLine(); } void AddLine() { TextContent += TheLine + Environment.NewLine; } private void TheLineTextBox_KeyDown(object sender, KeyEventArgs e) { if (e.Key == Key.Return) { AddLine(); } } #region INotifiedProperty Block public event PropertyChangedEventHandler PropertyChanged; protected void OnPropertyChanged(string propertyName) { PropertyChangedEventHandler handler = PropertyChanged; if (handler != null) { handler(this, new PropertyChangedEventArgs(propertyName)); } } #endregion } }

    Read the article

  • How can my WiX uninstall restore a registry value change?

    - by Thomas
    The installer I'm writing using WiX 3.0 uses a RegistryValue element to modify an existing registry value (originally written by our main product). I'm trying to figure out a way to restore the registry value when the user uninstalls my utility. I'd like to avoid using a custom action, but that might be the only recourse? TIA.

    Read the article

  • Why can't I assign a scalar value to a class using shorthand, but instead declare it first, then set

    - by ~delan-azabani
    I am writing a UTF-8 library for C++ as an exercise as this is my first real-world C++ code. So far, I've implemented concatenation, character indexing, parsing and encoding UTF-8 in a class called "ustring". It looks like it's working, but two (seemingly equivalent) ways of declaring a new ustring behave differently. The first way: ustring a; a = "test"; works, and the overloaded "=" operator parses the string into the class (which stores the Unicode strings as an dynamically allocated int pointer). However, the following does not work: ustring a = "test"; because I get the following error: test.cpp:4: error: conversion from ‘const char [5]’ to non-scalar type ‘ustring’ requested Is there a way to workaround this error? It probably is a problem with my code, though. The following is what I've written so far for the library: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring * operator=(ustring input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; return this; } ustring * operator=(char input[]) { len = sizeof(input); values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; i < sizeof(input); i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } return this; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

< Previous Page | 221 222 223 224 225 226 227 228 229 230 231 232  | Next Page >