Search Results

Search found 5729 results on 230 pages for 'compiler dependent'.

Page 228/230 | < Previous Page | 224 225 226 227 228 229 230  | Next Page >

  • c++ and c# speed compared

    - by Mack
    I was worried about C#'s speed when it deals with heavy calculations, when you need to use raw CPU power. I always thought that C++ is much faster than C# when it comes to calculations. So I did some quick tests. The first test computes prime numbers < an integer n, the second test computes some pandigital numbers. The idea for second test comes from here: Pandigital Numbers C# prime computation: using System; using System.Diagnostics; class Program { static int primes(int n) { uint i, j; int countprimes = 0; for (i = 1; i <= n; i++) { bool isprime = true; for (j = 2; j <= Math.Sqrt(i); j++) if ((i % j) == 0) { isprime = false; break; } if (isprime) countprimes++; } return countprimes; } static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); Stopwatch sw = new Stopwatch(); sw.Start(); int res = primes(n); sw.Stop(); Console.WriteLine("I found {0} prime numbers between 0 and {1} in {2} msecs.", res, n, sw.ElapsedMilliseconds); Console.ReadKey(); } } C++ variant: #include <iostream> #include <ctime> int primes(unsigned long n) { unsigned long i, j; int countprimes = 0; for(i = 1; i <= n; i++) { int isprime = 1; for(j = 2; j < (i^(1/2)); j++) if(!(i%j)) { isprime = 0; break; } countprimes+= isprime; } return countprimes; } int main() { int n, res; cin>>n; unsigned int start = clock(); res = primes(n); int tprime = clock() - start; cout<<"\nI found "<<res<<" prime numbers between 1 and "<<n<<" in "<<tprime<<" msecs."; return 0; } When I ran the test trying to find primes < than 100,000, C# variant finished in 0.409 seconds and C++ variant in 5.553 seconds. When I ran them for 1,000,000 C# finished in 6.039 seconds and C++ in about 337 seconds. Pandigital test in C#: using System; using System.Diagnostics; class Program { static bool IsPandigital(int n) { int digits = 0; int count = 0; int tmp; for (; n > 0; n /= 10, ++count) { if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1))) return false; } return digits == (1 << count) - 1; } static void Main() { int pans = 0; Stopwatch sw = new Stopwatch(); sw.Start(); for (int i = 1; i <= 123456789; i++) { if (IsPandigital(i)) { pans++; } } sw.Stop(); Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds); Console.ReadKey(); } } Pandigital test in C++: #include <iostream> #include <ctime> using namespace std; int IsPandigital(int n) { int digits = 0; int count = 0; int tmp; for (; n > 0; n /= 10, ++count) { if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1))) return 0; } return digits == (1 << count) - 1; } int main() { int pans = 0; unsigned int start = clock(); for (int i = 1; i <= 123456789; i++) { if (IsPandigital(i)) { pans++; } } int ptime = clock() - start; cout<<"\nPans:"<<pans<<" time:"<<ptime; return 0; } C# variant runs in 29.906 seconds and C++ in about 36.298 seconds. I didn't touch any compiler switches and bot C# and C++ programs were compiled with debug options. Before I attempted to run the test I was worried that C# will lag well behind C++, but now it seems that there is a pretty big speed difference in C# favor. Can anybody explain this? C# is jitted and C++ is compiled native so it's normal that a C++ will be faster than a C# variant. Thanks for the answers!

    Read the article

  • How to make negate_unary work with any type?

    - by Chan
    Hi, Following this question: How to negate a predicate function using operator ! in C++? I want to create an operator ! can work with any functor that inherited from unary_function. I tried: template<typename T> inline std::unary_negate<T> operator !( const T& pred ) { return std::not1( pred ); } The compiler complained: Error 5 error C2955: 'std::unary_function' : use of class template requires template argument list c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 223 1 Graphic Error 7 error C2451: conditional expression of type 'std::unary_negate<_Fn1>' is illegal c:\program files\microsoft visual studio 10.0\vc\include\ostream 529 1 Graphic Error 3 error C2146: syntax error : missing ',' before identifier 'argument_type' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 4 error C2065: 'argument_type' : undeclared identifier c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 2 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 222 1 Graphic Error 6 error C2039: 'argument_type' : is not a member of 'std::basic_ostream<_Elem,_Traits>::sentry' c:\program files\microsoft visual studio 10.0\vc\include\xfunctional 230 1 Graphic Any idea? Update Follow "templatetypedef" solution, I got new error: Error 3 error C2831: 'operator !' cannot have default parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 2 error C2808: unary 'operator !' has too many formal parameters c:\visual studio 2010 projects\graphic\graphic\main.cpp 39 1 Graphic Error 4 error C2675: unary '!' : 'is_prime' does not define this operator or a conversion to a type acceptable to the predefined operator c:\visual studio 2010 projects\graphic\graphic\main.cpp 52 1 Graphic Update 1 Complete code: #include <iostream> #include <functional> #include <utility> #include <cmath> #include <algorithm> #include <iterator> #include <string> #include <boost/assign.hpp> #include <boost/assign/std/vector.hpp> #include <boost/assign/std/map.hpp> #include <boost/assign/std/set.hpp> #include <boost/assign/std/list.hpp> #include <boost/assign/std/stack.hpp> #include <boost/assign/std/deque.hpp> struct is_prime : std::unary_function<int, bool> { bool operator()( int n ) const { if( n < 2 ) return 0; if( n == 2 || n == 3 ) return 1; if( n % 2 == 0 || n % 3 == 0 ) return 0; int upper_bound = std::sqrt( static_cast<double>( n ) ); for( int pf = 5, step = 2; pf <= upper_bound; ) { if( n % pf == 0 ) return 0; pf += step; step = 6 - step; } return 1; } }; /* template<typename T> inline std::unary_negate<T> operator !( const T& pred, typename T::argument_type* dummy = 0 ) { return std::not1<T>( pred ); } */ inline std::unary_negate<is_prime> operator !( const is_prime& pred ) { return std::not1( pred ); } template<typename T> inline void print_con( const T& con, const std::string& ms = "", const std::string& sep = ", " ) { std::cout << ms << '\n'; std::copy( con.begin(), con.end(), std::ostream_iterator<typename T::value_type>( std::cout, sep.c_str() ) ); std::cout << "\n\n"; } int main() { using namespace boost::assign; std::vector<int> nums; nums += 1, 3, 5, 7, 9; nums.erase( remove_if( nums.begin(), nums.end(), !is_prime() ), nums.end() ); print_con( nums, "After remove all primes" ); } Thanks, Chan Nguyen

    Read the article

  • Odd optimization problem under MSVC

    - by Goz
    I've seen this blog: http://igoro.com/archive/gallery-of-processor-cache-effects/ The "weirdness" in part 7 is what caught my interest. My first thought was "Thats just C# being weird". Its not I wrote the following C++ code. volatile int* p = (volatile int*)_aligned_malloc( sizeof( int ) * 8, 64 ); memset( (void*)p, 0, sizeof( int ) * 8 ); double dStart = t.GetTime(); for (int i = 0; i < 200000000; i++) { //p[0]++;p[1]++;p[2]++;p[3]++; // Option 1 //p[0]++;p[2]++;p[4]++;p[6]++; // Option 2 p[0]++;p[2]++; // Option 3 } double dTime = t.GetTime() - dStart; The timing I get on my 2.4 Ghz Core 2 Quad go as follows: Option 1 = ~8 cycles per loop. Option 2 = ~4 cycles per loop. Option 3 = ~6 cycles per loop. Now This is confusing. My reasoning behind the difference comes down to the cache write latency (3 cycles) on my chip and an assumption that the cache has a 128-bit write port (This is pure guess work on my part). On that basis in Option 1: It will increment p[0] (1 cycle) then increment p[2] (1 cycle) then it has to wait 1 cycle (for cache) then p[1] (1 cycle) then wait 1 cycle (for cache) then p[3] (1 cycle). Finally 2 cycles for increment and jump (Though its usually implemented as decrement and jump). This gives a total of 8 cycles. In Option 2: It can increment p[0] and p[4] in one cycle then increment p[2] and p[6] in another cycle. Then 2 cycles for subtract and jump. No waits needed on cache. Total 4 cycles. In option 3: It can increment p[0] then has to wait 2 cycles then increment p[2] then subtract and jump. The problem is if you set case 3 to increment p[0] and p[4] it STILL takes 6 cycles (which kinda blows my 128-bit read/write port out of the water). So ... can anyone tell me what the hell is going on here? Why DOES case 3 take longer? Also I'd love to know what I've got wrong in my thinking above, as i obviously have something wrong! Any ideas would be much appreciated! :) It'd also be interesting to see how GCC or any other compiler copes with it as well! Edit: Jerry Coffin's idea gave me some thoughts. I've done some more tests (on a different machine so forgive the change in timings) with and without nops and with different counts of nops case 2 - 0.46 00401ABD jne (401AB0h) 0 nops - 0.68 00401AB7 jne (401AB0h) 1 nop - 0.61 00401AB8 jne (401AB0h) 2 nops - 0.636 00401AB9 jne (401AB0h) 3 nops - 0.632 00401ABA jne (401AB0h) 4 nops - 0.66 00401ABB jne (401AB0h) 5 nops - 0.52 00401ABC jne (401AB0h) 6 nops - 0.46 00401ABD jne (401AB0h) 7 nops - 0.46 00401ABE jne (401AB0h) 8 nops - 0.46 00401ABF jne (401AB0h) 9 nops - 0.55 00401AC0 jne (401AB0h) I've included the jump statetements so you can see that the source and destination are in one cache line. You can also see that we start to get a difference when we are 13 bytes or more apart. Until we hit 16 ... then it all goes wrong. So Jerry isn't right (though his suggestion DOES help a bit), however something IS going on. I'm more and more intrigued to try and figure out what it is now. It does appear to be more some sort of memory alignment oddity rather than some sort of instruction throughput oddity. Anyone want to explain this for an inquisitive mind? :D Edit 3: Interjay has a point on the unrolling that blows the previous edit out of the water. With an unrolled loop the performance does not improve. You need to add a nop in to make the gap between jump source and destination the same as for my good nop count above. Performance still sucks. Its interesting that I need 6 nops to improve performance though. I wonder how many nops the processor can issue per cycle? If its 3 then that account for the cache write latency ... But, if thats it, why is the latency occurring? Curiouser and curiouser ...

    Read the article

  • what is mistakes/errors in this code c++ tell me the correction ??

    - by jeje
    hello all here in this code the compiler print error : 132 C:.... `createlist' undeclared (first use this function) (Each undeclared identifier is reported only once for each function it appears in.) and repeat it again in all calls in main function :( what's the problem ?? plzzzz help me #include<iostream> #include<string> using namespace std; template <typename T> struct Node { T num; struct Node<T> *next; // to craet list nodes void createlist(Node<T> *p) { T data; for( ; ; ) // its containue until user want to stop { cout<<"enter data number or '#' to stop\n"; cin>>data; if(data == '#') { p->next =NULL; break; } else { p->num= data; p->next = new Node<T>; p=p->next; } } } //count list to use it in sort function int countlist (Node<T> *p) { int count=0; while(p->next != NULL) { count++; p=p->next; } return count; } // sort list void sort( Node<T> *p) { Node<T> *p1, *p2; //element 1 & 2 to compare between them int i, j , n; T temp; n= countlist(p); for( i=1; i<n ; i++) { // here every loop time we put the first element in list in p1 and the second in p2 p1=p; p2=p->next; for(j=1; j<=(n-i) ; j++) { if( p1->num > p2->num) { temp=p2->num; p2->num=p1->num; p1->num=temp; } } p1= p1->next; p2= p2->next; } } //add new number in any location the user choose void insertatloc(Node<T> *p) { T n; //read new num int loc; //read the choosen location Node<T> *locadd, *newnum, *temp; cout <<" enter location you want ..! \n"; cin>>loc; locadd=NULL; //make it null to checked if there is location after read it from user ot not while(p->next !=NULL) { if( p->next==loc) { locadd=p; break; } p=p->next; } if (locadd==NULL) {cout<<" cannot find the location\n";} else //if location is right {cout<<" enter new number\n"; // new number to creat also new location for it cin>>n; newnum= new Node/*<T>*/; newnum->num=n; temp= locadd->next; locadd->next=newnum; newnum->next=temp; } locadd->num=sort(locadd); // call sort function } // display all list nodes void displaylist (Node<T> *p) { while (p->next != NULL) { cout<<" the list contain:\n"; cout<<p->num<<endl; p=p->next; } } };//end streuct int main() { cout<<"*** Welcome in Linked List Sheet 2****\n"; // defined pointer for structer Node // that value is the address of first node struct Node<int>*mynodes= new struct Node<int>; // create nodes in mynodes list cout<<"\nCreate nodes in list"; createlist(mynodes); // insert node in location insertatloc(mynodes); /* count the number of all nodes nodescount = countlist(mynodes); cout<<"\nThe number of nodes in list is: "<<nodescount;*/ // sort nodes in list sort(mynodes); // Display nodes cout<<"\nDisplay all nodes in list:\n"; displaylist(mynodes); system("pause"); return 0; }

    Read the article

  • Designing an API with compile-time option to remove first parameter to most functions and use a glob

    - by tomlogic
    I'm trying to design a portable API in ANSI C89/ISO C90 to access a wireless networking device on a serial interface. The library will have multiple network layers, and various versions need to run on embedded devices as small as an 8-bit micro with 32K of code and 2K of data, on up to embedded devices with a megabyte or more of code and data. In most cases, the target processor will have a single network interface and I'll want to use a single global structure with all state information for that device. I don't want to pass a pointer to that structure through the network layers. In a few cases (e.g., device with more resources that needs to live on two networks) I will interface to multiple devices, each with their own global state, and will need to pass a pointer to that state (or an index to a state array) through the layers. I came up with two possible solutions, but neither one is particularly pretty. Keep in mind that the full driver will potentially be 20,000 lines or more, cover multiple files, and contain hundreds of functions. The first solution requires a macro that discards the first parameter for every function that needs to access the global state: // network.h typedef struct dev_t { int var; long othervar; char name[20]; } dev_t; #ifdef IF_MULTI #define foo_function( x, a, b, c) _foo_function( x, a, b, c) #define bar_function( x) _bar_function( x) #else extern dev_t DEV; #define IFACE (&DEV) #define foo_function( x, a, b, c) _foo_function( a, b, c) #define bar_function( x) _bar_function( ) #endif int bar_function( dev_t *IFACE); int foo_function( dev_t *IFACE, int a, long b, char *c); // network.c #ifndef IF_MULTI dev_t DEV; #endif int bar_function( dev_t *IFACE) { memset( IFACE, 0, sizeof *IFACE); return 0; } int foo_function( dev_t *IFACE, int a, long b, char *c) { bar_function( IFACE); IFACE->var = a; IFACE->othervar = b; strcpy( IFACE->name, c); return 0; } The second solution defines macros to use in the function declarations: // network.h typedef struct dev_t { int var; long othervar; char name[20]; } dev_t; #ifdef IF_MULTI #define DEV_PARAM_ONLY dev_t *IFACE #define DEV_PARAM DEV_PARAM_ONLY, #else extern dev_t DEV; #define IFACE (&DEV) #define DEV_PARAM_ONLY void #define DEV_PARAM #endif int bar_function( DEV_PARAM_ONLY); // I don't like the missing comma between DEV_PARAM and arg2... int foo_function( DEV_PARAM int a, long b, char *c); // network.c #ifndef IF_MULTI dev_t DEV; #endif int bar_function( DEV_PARAM_ONLY) { memset( IFACE, 0, sizeof *IFACE); return 0; } int foo_function( DEV_PARAM int a, long b, char *c) { bar_function( IFACE); IFACE->var = a; IFACE->othervar = b; strcpy( IFACE->name, c); return 0; } The C code to access either method remains the same: // multi.c - example of multiple interfaces #define IF_MULTI #include "network.h" dev_t if0, if1; int main() { foo_function( &if0, -1, 3.1415926, "public"); foo_function( &if1, 42, 3.1415926, "private"); return 0; } // single.c - example of a single interface #include "network.h" int main() { foo_function( 11, 1.0, "network"); return 0; } Is there a cleaner method that I haven't figured out? I lean toward the second since it should be easier to maintain, and it's clearer that there's some macro magic in the parameters to the function. Also, the first method requires prefixing the function names with "_" when I want to use them as function pointers. I really do want to remove the parameter in the "single interface" case to eliminate unnecessary code to push the parameter onto the stack, and to allow the function to access the first "real" parameter in a register instead of loading it from the stack. And, if at all possible, I don't want to have to maintain two separate codebases. Thoughts? Ideas? Examples of something similar in existing code? (Note that using C++ isn't an option, since some of the planned targets don't have a C++ compiler available.)

    Read the article

  • Implicit constructor available for all types derived from Base excepted the current type?

    - by Vincent
    The following code sum up my problem : template<class Parameter> class Base {}; template<class Parameter1, class Parameter2, class Parameter> class Derived1 : public Base<Parameter> { }; template<class Parameter1, class Parameter2, class Parameter> class Derived2 : public Base<Parameter> { public : // Copy constructor Derived2(const Derived2& x); // An EXPLICIT constructor that does a special conversion for a Derived2 // with other template parameters template<class OtherParameter1, class OtherParameter2, class OtherParameter> explicit Derived2( const Derived2<OtherParameter1, OtherParameter2, OtherParameter>& x ); // Now the problem : I want an IMPLICIT constructor that will work for every // type derived from Base EXCEPT // Derived2<OtherParameter1, OtherParameter2, OtherParameter> template<class Type, class = typename std::enable_if</* SOMETHING */>::type> Derived2(const Type& x); }; How to restrict an implicit constructor to all classes derived from the parent class excepted the current class whatever its template parameters, considering that I already have an explicit constructor as in the example code ? EDIT : For the implicit constructor from Base, I can obviously write : template<class OtherParameter> Derived2(const Base<OtherParameter>& x); But in that case, do I have the guaranty that the compiler will not use this constructor as an implicit constructor for Derived2<OtherParameter1, OtherParameter2, OtherParameter> ? EDIT2: Here I have a test : (LWS here : http://liveworkspace.org/code/cd423fb44fb4c97bc3b843732d837abc) #include <iostream> template<typename Type> class Base {}; template<typename Type> class Other : public Base<Type> {}; template<typename Type> class Derived : public Base<Type> { public: Derived() {std::cout<<"empty"<<std::endl;} Derived(const Derived<Type>& x) {std::cout<<"copy"<<std::endl;} template<typename OtherType> explicit Derived(const Derived<OtherType>& x) {std::cout<<"explicit"<<std::endl;} template<typename OtherType> Derived(const Base<OtherType>& x) {std::cout<<"implicit"<<std::endl;} }; int main() { Other<int> other0; Other<double> other1; std::cout<<"1 = "; Derived<int> dint1; // <- empty std::cout<<"2 = "; Derived<int> dint2; // <- empty std::cout<<"3 = "; Derived<double> ddouble; // <- empty std::cout<<"4 = "; Derived<double> ddouble1(ddouble); // <- copy std::cout<<"5 = "; Derived<double> ddouble2(dint1); // <- explicit std::cout<<"6 = "; ddouble = other0; // <- implicit std::cout<<"7 = "; ddouble = other1; // <- implicit std::cout<<"8 = "; ddouble = ddouble2; // <- nothing (normal : default assignment) std::cout<<"\n9 = "; ddouble = Derived<double>(dint1); // <- explicit std::cout<<"10 = "; ddouble = dint2; // <- implicit : WHY ?!?! return 0; } The last line worry me. Is it ok with the C++ standard ? Is it a bug of g++ ?

    Read the article

  • Linked lists in Java - Help with writing methods

    - by user368241
    Representation of a string in linked lists In every intersection in the list there will be 3 fields : The letter itself. The number of times it appears consecutively. A pointer to the next intersection in the list. The following class CharNode represents a intersection in the list : public class CharNode { private char _data; private int _value; private charNode _next; public CharNode (char c, int val, charNode n) { _data = c; _value = val; _next = n; } public charNode getNext() { return _next; } public void setNext (charNode node) { _next = node; } public int getValue() { return _value; } public void setValue (int v) { value = v; } public char getData() { return _data; } public void setData (char c) { _data = c; } } The class StringList represents the whole list : public class StringList { private charNode _head; public StringList() { _head = null; } public StringList (CharNode node) { _head = node; } } Add methods to the class StringList according to the details : (I will add methods gradually according to my specific questions) (Pay attention, these are methods from the class String and we want to fulfill them by the representation of a string by a list as explained above) Pay attention to all the possible error cases. Write what is the time complexity and space complexity of every method that you wrote. Make sure the methods you wrote are effective. It is NOT allowed to use ready classes of Java. It is NOT allowed to move to string and use string operations. 1) public int indexOf (int ch) - returns the index in the string it is operated on of the first appeareance of the char "ch". If the char "ch" doesn't appear in the string, returns -1. If the value of fromIndex isn't in the range, returns -1. Here is my try : public int indexOf (int ch) { int count = 0; charNode pos = _head; if (pos == null ) { return -1; } for (pos = _head; pos!=null && pos.getData()!=ch; pos = pos.getNext()) { count = count + pos.getValue(); } if (pos==null) return -1; return count; } Time complexity = O(N) Space complexity = O(1) EDIT : I have a problem. I tested it in BlueJ and if the char ch doesn't appear it returns -1 but if it does, it always returns 0 and I don't understand why... I am confused. How can the compiler know that the value is the number of times the letter appears consecutively? Can I assume this because its given on the question or what? If it's true and I can assume this, then my code should be correct right? Ok I just spoke with my instructor and she said it isn't required to write it in the exercise but in order for me to test that it indeed works, I need to open a new class and write a code for making a list so that the the value of every node is the number of times the letter appears consecutively. Can someone please assist me? So I will copy+paste to BlueJ and this way I will be able to test all the methods. Meanwhile I am moving on to the next methods. 2) public int indexOf (int ch, int fromIndex) - returns the index in the string it is operated on of the first appeareance of the char "ch", as the search begins in the index "fromIndex". If the char "ch" doesn't appear in the string, returns -1. If the value of fromIndex doesn't appear in the range, returns -1. Here is my try: public int indexOf (int ch, int fromIndex) { int count = 0, len=0, i; charNode pos = _head; CharNode cur = _head; for (pos = _head; pos!=null; pos = pos.getNext()) { len = len+1; } if (fromIndex<0 || fromIndex>=len) return -1; for (i=0; i<fromIndex; i++) { cur = cur.getNext(); } if (cur == null ) { return -1; } for (cur = _head; cur!=null && cur.getData()!=ch; cur = cur.getNext()) { count = count + cur.getValue(); } if (cur==null) return -1; return count; } Time complexity = O(N) ? Space complexity = O(1) 3) public StringList concat (String str) - returns a string that consists of the string that it is operated on and in its end the string "str" is concatenated. Here is my try : public StringList concat (String str) { String str = ""; charNode pos = _head; if (str == null) return -1; for (pos = _head; pos!=null; pos = pos.getNext()) { str = str + pos.getData(); } str = str + "str"; return str; } Time complexity = O(N) Space complexity = O(1)

    Read the article

  • Loop crashing program having to do with 2D arrays

    - by user450062
    I am creating an encoding program and when I instruct the program to create a 5X5 grid based on the alphabet while skipping over letters that match up to certain pre-defined variables(which are given values by user input during runtime). I have a loop that instructs the loop to keep running until the values that access the array are out of bounds, the loop seems to cause the problem. This code is standardized so there shouldn't be much trouble compiling it in another compiler. Also would it be better to seperate my program into functions? here is the code: #include<iostream> #include<fstream> #include<cstdlib> #include<string> #include<limits> using namespace std; int main(){ while (!cin.fail()) { char type[81]; char filename[20]; char key [5]; char f[2] = "q"; char g[2] = "q"; char h[2] = "q"; char i[2] = "q"; char j[2] = "q"; char k[2] = "q"; char l[2] = "q"; int a = 1; int b = 1; int c = 1; int d = 1; int e = 1; string cipherarraytemplate[5][5]= { {"a","b","c","d","e"}, {"f","g","h","i","j"}, {"k","l","m","n","o"}, {"p","r","s","t","u"}, {"v","w","x","y","z"} }; string cipherarray[5][5]= { {"a","b","c","d","e"}, {"f","g","h","i","j"}, {"k","l","m","n","o"}, {"p","r","s","t","u"}, {"v","w","x","y","z"} }; cout<<"Enter the name of a file you want to create.\n"; cin>>filename; ofstream outFile; outFile.open(filename); outFile<<fixed; outFile.precision(2); outFile.setf(ios_base::showpoint); cin.ignore(std::numeric_limits<int>::max(),'\n'); cout<<"enter your codeword(codeword can have no repeating letters)\n"; cin>>key; while (key[a] != '\0' ){ while(b < 6){ cipherarray[b][c] = key[a]; if ( f == "q" ) { cipherarray[b][c] = f; } if ( f != "q" && g == "q" ) { cipherarray[b][c] = g; } if ( g != "q" && h == "q" ) { cipherarray[b][c] = h; } if ( h != "q" && i == "q" ) { cipherarray[b][c] = i; } if ( i != "q" && j == "q" ) { cipherarray[b][c] = j; } if ( j != "q" && k == "q" ) { cipherarray[b][c] = k; } if ( k != "q" && l == "q" ) { cipherarray[b][c] = l; } a++; b++; } c++; b = 1; } while (c < 6 || b < 6){ if (cipherarraytemplate[d][e] == f || cipherarraytemplate[d][e] == g || cipherarraytemplate[d][e] == h || cipherarraytemplate[d][e] == i || cipherarraytemplate[d][e] == j || cipherarraytemplate[d][e] == k || cipherarraytemplate[d][e] == l){ d++; } else { cipherarray[b][c] = cipherarraytemplate[d][e]; d++; b++; } if (d == 6){ d = 1; e++; } if (b == 6){ c++; b = 1; } } cout<<"now enter some text."<<endl<<"To end this program press Crtl-Z\n"; while(!cin.fail()){ cin.getline(type,81); outFile<<type<<endl; } outFile.close(); } } I know there is going to be some mid-forties guy out there who is going to stumble on to this post, he's have been programming for 20-some years and he's going to look at my code and say: "what is this guy doing".

    Read the article

  • Java error starting with "log4j:WARN No appenders could be found for logger" in ZuckerReports SugarC

    - by Tom McDonnell
    Greetings all. I apologise for posting this problem here, but I do so in desperation after receiving no response on the SugarCRM forums. Even if a reader is unfamiliar with ZuckerReports or SugarCRM some general advice on Java may be of use to me. I have installed ZuckerReports v1.12 in SugarCRM 5.5.1. When I attempt to run a report I get the following error message. cmdline: javaw -classpath "custom/ZuckerReports/resources/;custom/ZuckerReports/resources/contact_counts_by_first_name.jasper_files/;modules/ZuckerReports/jasper/ant-1.7.1.jar;modules/ZuckerReports/jasper/antlr-2.7.6.jar;modules/ZuckerReports/jasper/asm-attrs.jar;modules/ZuckerReports/jasper/asm.jar;modules/ZuckerReports/jasper/barbecue-1.5-beta1.jar;modules/ZuckerReports/jasper/barcode4j-2.0.jar;modules/ZuckerReports/jasper/batik-anim.jar;modules/ZuckerReports/jasper/batik-awt-util.jar;modules/ZuckerReports/jasper/batik-bridge.jar;modules/ZuckerReports/jasper/batik-css.jar;modules/ZuckerReports/jasper/batik-dom.jar;modules/ZuckerReports/jasper/batik-ext.jar;modules/ZuckerReports/jasper/batik-gvt.jar;modules/ZuckerReports/jasper/batik-parser.jar;modules/ZuckerReports/jasper/batik-script.jar;modules/ZuckerReports/jasper/batik-svg-dom.jar;modules/ZuckerReports/jasper/batik-svggen.jar;modules/ZuckerReports/jasper/batik-util.jar;modules/ZuckerReports/jasper/batik-xml.jar;modules/ZuckerReports/jasper/bcel-5.2.jar;modules/ZuckerReports/jasper/bsh-2.0b4.jar;modules/ZuckerReports/jasper/castor-1.2.jar;modules/ZuckerReports/jasper/cglib-2.1.jar;modules/ZuckerReports/jasper/cincom-jr-xmla.jar;modules/ZuckerReports/jasper/commons-beanutils-1.8.2.jar;modules/ZuckerReports/jasper/commons-collections-3.2.1.jar;modules/ZuckerReports/jasper/commons-dbcp-1.2.2.jar;modules/ZuckerReports/jasper/commons-digester-1.7.jar;modules/ZuckerReports/jasper/commons-javaflow-20060411.jar;modules/ZuckerReports/jasper/commons-logging-1.1.jar;modules/ZuckerReports/jasper/commons-math-1.0.jar;modules/ZuckerReports/jasper/commons-pool-1.3.jar;modules/ZuckerReports/jasper/commons-vfs-1.0.jar;modules/ZuckerReports/jasper/dom4j-1.6.jar;modules/ZuckerReports/jasper/ehcache-1.1.jar;modules/ZuckerReports/jasper/eigenbase-properties-1.1.0.10924.jar;modules/ZuckerReports/jasper/eigenbase-resgen-1.3.0.11873.jar;modules/ZuckerReports/jasper/eigenbase-xom-1.3.0.11999.jar;modules/ZuckerReports/jasper/ejb3-persistence.jar;modules/ZuckerReports/jasper/groovy-all-1.5.5.jar;modules/ZuckerReports/jasper/hibernate-annotations.jar;modules/ZuckerReports/jasper/hibernate-commons-annotations.jar;modules/ZuckerReports/jasper/hibernate3.jar;modules/ZuckerReports/jasper/hsqldb-1.8.0-10.jar;modules/ZuckerReports/jasper/iText-2.1.0.jar;modules/ZuckerReports/jasper/iTextAsian.jar;modules/ZuckerReports/jasper/jakarta-bcel-20050813.jar;modules/ZuckerReports/jasper/jasperreports-3.7.1.jar;modules/ZuckerReports/jasper/jasperreports-chart-themes-3.6.2.jar;modules/ZuckerReports/jasper/jasperreports-extensions-3.5.3.jar;modules/ZuckerReports/jasper/jasperreports-fonts-3.6.1.jar;modules/ZuckerReports/jasper/javacup.jar;modules/ZuckerReports/jasper/javassist-3.4.GA.jar;modules/ZuckerReports/jasper/jaxen-1.1.1.jar;modules/ZuckerReports/jasper/jcommon-1.0.15.jar;modules/ZuckerReports/jasper/jdt-compiler-3.1.1.jar;modules/ZuckerReports/jasper/jfreechart-1.0.12.jar;modules/ZuckerReports/jasper/jpa.jar;modules/ZuckerReports/jasper/js_activation-1.1.jar;modules/ZuckerReports/jasper/js_axis-1.4patched.jar;modules/ZuckerReports/jasper/js_commons-codec-1.3.jar;modules/ZuckerReports/jasper/js_commons-discovery-0.2.jar;modules/ZuckerReports/jasper/js_commons-httpclient-3.1.jar;modules/ZuckerReports/jasper/js_jasperserver-common-ws-3.5.0.jar;modules/ZuckerReports/jasper/js_jaxrpc.jar;modules/ZuckerReports/jasper/js_mail-1.4.jar;modules/ZuckerReports/jasper/js_saaj-api-1.3.jar;modules/ZuckerReports/jasper/js_wsdl4j-1.5.1.jar;modules/ZuckerReports/jasper/jta.jar;modules/ZuckerReports/jasper/jxl-2.6.jar;modules/ZuckerReports/jasper/log4j-1.2.15.jar;modules/ZuckerReports/jasper/mondrian-3.1.1.12687-Jaspersoft.jar;modules/ZuckerReports/jasper/mysql-connector-java-3.1.11-bin.jar;modules/ZuckerReports/jasper/olap4j-0.9.7.145.jar;modules/ZuckerReports/jasper/png-encoder-1.5.jar;modules/ZuckerReports/jasper/poi-3.2-FINAL-20081019.jar;modules/ZuckerReports/jasper/rex-20080421.jar;modules/ZuckerReports/jasper/rhino-1.7R1.jar;modules/ZuckerReports/jasper/saaj-api-1.3.jar;modules/ZuckerReports/jasper/slf4j-api.jar;modules/ZuckerReports/jasper/slf4j-log4j12.jar;modules/ZuckerReports/jasper/spring.jar;modules/ZuckerReports/jasper/sqleonardo-2007.03.jar;modules/ZuckerReports/jasper/swingx-2007_10_07.jar;modules/ZuckerReports/jasper/xml-apis-ext.jar;modules/ZuckerReports/jasper/xml-apis.jar;modules/ZuckerReports/jasper/zuckerreports-1.0.jar" at.go_mobile.zuckerreports.JasperBatchMain custom/ZuckerReports/temp/aff882c1-684b-d2de-403e-4be367bc2f5f/cmd.properties 2&1 JasperBatchMain :: loading jasper design custom/ZuckerReports/resources/contact_counts_by_first_name.jasper JasperBatchMain :: getParameterValue(REPORT_PARAMETERS_MAP, java.util.Map) = null JasperBatchMain :: getParameterValue(JASPER_REPORT, net.sf.jasperreports.engine.JasperReport) = null JasperBatchMain :: getParameterValue(REPORT_CONNECTION, java.sql.Connection) = null JasperBatchMain :: getParameterValue(REPORT_MAX_COUNT, java.lang.Integer) = null JasperBatchMain :: getParameterValue(REPORT_DATA_SOURCE, net.sf.jasperreports.engine.JRDataSource) = null JasperBatchMain :: getParameterValue(REPORT_SCRIPTLET, net.sf.jasperreports.engine.JRAbstractScriptlet) = null JasperBatchMain :: getParameterValue(REPORT_LOCALE, java.util.Locale) = null JasperBatchMain :: getParameterValue(REPORT_RESOURCE_BUNDLE, java.util.ResourceBundle) = null JasperBatchMain :: getParameterValue(REPORT_TIME_ZONE, java.util.TimeZone) = null JasperBatchMain :: getParameterValue(REPORT_FORMAT_FACTORY, net.sf.jasperreports.engine.util.FormatFactory) = null JasperBatchMain :: getParameterValue(REPORT_CLASS_LOADER, java.lang.ClassLoader) = null JasperBatchMain :: getParameterValue(REPORT_URL_HANDLER_FACTORY, java.net.URLStreamHandlerFactory) = null JasperBatchMain :: getParameterValue(REPORT_FILE_RESOLVER, net.sf.jasperreports.engine.util.FileResolver) = null JasperBatchMain :: getParameterValue(REPORT_VIRTUALIZER, net.sf.jasperreports.engine.JRVirtualizer) = null JasperBatchMain :: getParameterValue(IS_IGNORE_PAGINATION, java.lang.Boolean) = null JasperBatchMain :: getParameterValue(REPORT_TEMPLATES, java.util.Collection) = null log4j:WARN No appenders could be found for logger (net.sf.jasperreports.extensions.ExtensionsEnviron ment). log4j:WARN Please initialize the log4j system properly. Exception in thread "main" java.lang.IllegalArgumentException: Null 'key' argument. at org.jfree.data.DefaultKeyedValues.setValue(Default KeyedValues.java:229) at org.jfree.data.DefaultKeyedValues2D.setValue(Defau ltKeyedValues2D.java:337) at org.jfree.data.DefaultKeyedValues2D.addValue(Defau ltKeyedValues2D.java:303) at org.jfree.data.category.DefaultCategoryDataset.add Value(DefaultCategoryDataset.java:222) at net.sf.jasperreports.charts.fill.JRFillCategoryDat aset.customIncrement(JRFillCategoryDataset.java:14 3) at net.sf.jasperreports.engine.fill.JRFillElementData set.increment(JRFillElementDataset.java:175) at net.sf.jasperreports.engine.fill.JRCalculator.calc ulateVariables(JRCalculator.java:148) at net.sf.jasperreports.engine.fill.JRVerticalFiller. fillDetail(JRVerticalFiller.java:736) at net.sf.jasperreports.engine.fill.JRVerticalFiller. fillReportContent(JRVerticalFiller.java:272) at net.sf.jasperreports.engine.fill.JRVerticalFiller. fillReport(JRVerticalFiller.java:114) at net.sf.jasperreports.engine.fill.JRBaseFiller.fill (JRBaseFiller.java:923) at net.sf.jasperreports.engine.fill.JRBaseFiller.fill (JRBaseFiller.java:826) at net.sf.jasperreports.engine.fill.JRFiller.fillRepo rt(JRFiller.java:59) at at.go_mobile.zuckerreports.JasperBatchMain.main(Ja sperBatchMain.java:126) The same report runs correctly in another SugarCRM installation on the same server. The installation in which the report runs correctly is of the same version, and has the same version of the ZuckerReports module. The report previously ran correctly on both installations. I think that the only changes that have been made on the installation in which the report now does not work since the report was last successfully run are the additions of a few custom fields in the Contacts module. These changes should have nothing to do with ZuckerReports. I have tried uninstalling and reinstalling the ZuckerReports module, but the problem remains. A google search for the warnings given in the error message ie. * log4j:WARN No appenders could be found for logger (net.sf.jasperreports.extensions.ExtensionsEnviron ment). * log4j:WARN Please initialize the log4j system properly. Returns a few links (not specific to ZuckerReports) with tips similar to the following: * log4j.properties or log4j.xml needs to be on the classpath where log4j can find it. I cannot find a file with either of those names anywhere on my server, and yet the report can be run successfully on one of my SugarCRM installations. So I figure log4j must be being configured another way. Can anyone suggest a way to solve this problem? Or explain how I might discover how log4j is configured in ZuckerReports? Or explain how I might compare the working with the non-working installation in order to help find a solution? (I have tried searching for files containing "log4j" in both installations and comparing but all I can find are .jar files (nothing I can read with a text editor), and the .jar files found in each installation appear to be the same.)

    Read the article

  • Hadoop hdfs namenode is throwing an error

    - by KarmicDice
    Full list of error: hb@localhost:/etc/hadoop/conf$ sudo service hadoop-hdfs-namenode start * Starting Hadoop namenode: starting namenode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-namenode-localhost.out 12/09/10 14:41:09 INFO namenode.NameNode: STARTUP_MSG: /************************************************************ STARTUP_MSG: Starting NameNode STARTUP_MSG: host = localhost/127.0.0.1 STARTUP_MSG: args = [] STARTUP_MSG: version = 2.0.0-cdh4.0.1 STARTUP_MSG: classpath = /etc/hadoop/conf:/usr/lib/hadoop/lib/xmlenc-0.52.jar:/usr/lib/hadoop/lib/protobuf-java-2.4.0a.jar:/usr/lib/hadoop/lib/kfs-0.3.jar:/usr/lib/hadoop/lib/asm-3.2.jar:/usr/lib/hadoop/lib/commons-logging-api-1.1.jar:/usr/lib/hadoop/lib/jasper-compiler-5.5.23.jar:/usr/lib/hadoop/lib/stax-api-1.0.1.jar:/usr/lib/hadoop/lib/commons-configuration-1.6.jar:/usr/lib/hadoop/lib/jets3t-0.6.1.jar:/usr/lib/hadoop/lib/jersey-server-1.8.jar:/usr/lib/hadoop/lib/oro-2.0.8.jar:/usr/lib/hadoop/lib/aspectjrt-1.6.5.jar:/usr/lib/hadoop/lib/json-simple-1.1.jar:/usr/lib/hadoop/lib/snappy-java-1.0.3.2.jar:/usr/lib/hadoop/lib/commons-httpclient-3.1.jar:/usr/lib/hadoop/lib/log4j-1.2.15.jar:/usr/lib/hadoop/lib/servlet-api-2.5.jar:/usr/lib/hadoop/lib/jackson-xc-1.8.8.jar:/usr/lib/hadoop/lib/jersey-json-1.8.jar:/usr/lib/hadoop/lib/jackson-mapper-asl-1.8.8.jar:/usr/lib/hadoop/lib/commons-el-1.0.jar:/usr/lib/hadoop/lib/slf4j-api-1.6.1.jar:/usr/lib/hadoop/lib/commons-collections-3.2.1.jar:/usr/lib/hadoop/lib/commons-logging-1.1.1.jar:/usr/lib/hadoop/lib/jackson-core-asl-1.8.8.jar:/usr/lib/hadoop/lib/jersey-core-1.8.jar:/usr/lib/hadoop/lib/commons-codec-1.4.jar:/usr/lib/hadoop/lib/jsr305-1.3.9.jar:/usr/lib/hadoop/lib/commons-cli-1.2.jar:/usr/lib/hadoop/lib/activation-1.1.jar:/usr/lib/hadoop/lib/jaxb-impl-2.2.3-1.jar:/usr/lib/hadoop/lib/jetty-util-6.1.26.cloudera.1.jar:/usr/lib/hadoop/lib/jasper-runtime-5.5.23.jar:/usr/lib/hadoop/lib/commons-beanutils-1.7.0.jar:/usr/lib/hadoop/lib/commons-lang-2.5.jar:/usr/lib/hadoop/lib/commons-digester-1.8.jar:/usr/lib/hadoop/lib/commons-io-2.1.jar:/usr/lib/hadoop/lib/jsp-api-2.1.jar:/usr/lib/hadoop/lib/guava-11.0.2.jar:/usr/lib/hadoop/lib/jetty-6.1.26.cloudera.1.jar:/usr/lib/hadoop/lib/jsch-0.1.42.jar:/usr/lib/hadoop/lib/zookeeper-3.4.3-cdh4.0.1.jar:/usr/lib/hadoop/lib/avro-1.5.4.jar:/usr/lib/hadoop/lib/core-3.1.1.jar:/usr/lib/hadoop/lib/paranamer-2.3.jar:/usr/lib/hadoop/lib/jettison-1.1.jar:/usr/lib/hadoop/lib/jackson-jaxrs-1.8.8.jar:/usr/lib/hadoop/lib/slf4j-log4j12-1.6.1.jar:/usr/lib/hadoop/lib/commons-beanutils-core-1.8.0.jar:/usr/lib/hadoop/lib/commons-net-3.1.jar:/usr/lib/hadoop/lib/jaxb-api-2.2.2.jar:/usr/lib/hadoop/lib/commons-math-2.1.jar:/usr/lib/hadoop/lib/jline-0.9.94.jar:/usr/lib/hadoop/.//hadoop-annotations.jar:/usr/lib/hadoop/.//hadoop-annotations-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop/.//hadoop-common-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop/.//hadoop-auth-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop/.//hadoop-common.jar:/usr/lib/hadoop/.//hadoop-auth.jar:/usr/lib/hadoop/.//hadoop-common-2.0.0-cdh4.0.1-tests.jar:/usr/lib/hadoop-hdfs/./:/usr/lib/hadoop-hdfs/lib/protobuf-java-2.4.0a.jar:/usr/lib/hadoop-hdfs/lib/snappy-java-1.0.3.2.jar:/usr/lib/hadoop-hdfs/lib/log4j-1.2.15.jar:/usr/lib/hadoop-hdfs/lib/jackson-mapper-asl-1.8.8.jar:/usr/lib/hadoop-hdfs/lib/slf4j-api-1.6.1.jar:/usr/lib/hadoop-hdfs/lib/commons-logging-1.1.1.jar:/usr/lib/hadoop-hdfs/lib/jackson-core-asl-1.8.8.jar:/usr/lib/hadoop-hdfs/lib/commons-daemon-1.0.3.jar:/usr/lib/hadoop-hdfs/lib/zookeeper-3.4.3-cdh4.0.1.jar:/usr/lib/hadoop-hdfs/lib/avro-1.5.4.jar:/usr/lib/hadoop-hdfs/lib/paranamer-2.3.jar:/usr/lib/hadoop-hdfs/lib/jline-0.9.94.jar:/usr/lib/hadoop-hdfs/.//hadoop-hdfs-2.0.0-cdh4.0.1-tests.jar:/usr/lib/hadoop-hdfs/.//hadoop-hdfs-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-hdfs/.//hadoop-hdfs.jar:/usr/lib/hadoop-yarn/lib/protobuf-java-2.4.0a.jar:/usr/lib/hadoop-yarn/lib/asm-3.2.jar:/usr/lib/hadoop-yarn/lib/netty-3.2.3.Final.jar:/usr/lib/hadoop-yarn/lib/javax.inject-1.jar:/usr/lib/hadoop-yarn/lib/jersey-server-1.8.jar:/usr/lib/hadoop-yarn/lib/jersey-guice-1.8.jar:/usr/lib/hadoop-yarn/lib/snappy-java-1.0.3.2.jar:/usr/lib/hadoop-yarn/lib/log4j-1.2.15.jar:/usr/lib/hadoop-yarn/lib/guice-3.0.jar:/usr/lib/hadoop-yarn/lib/jackson-mapper-asl-1.8.8.jar:/usr/lib/hadoop-yarn/lib/junit-4.8.2.jar:/usr/lib/hadoop-yarn/lib/jackson-core-asl-1.8.8.jar:/usr/lib/hadoop-yarn/lib/jersey-core-1.8.jar:/usr/lib/hadoop-yarn/lib/jdiff-1.0.9.jar:/usr/lib/hadoop-yarn/lib/guice-servlet-3.0.jar:/usr/lib/hadoop-yarn/lib/aopalliance-1.0.jar:/usr/lib/hadoop-yarn/lib/commons-io-2.1.jar:/usr/lib/hadoop-yarn/lib/avro-1.5.4.jar:/usr/lib/hadoop-yarn/lib/paranamer-2.3.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-web-proxy.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-nodemanager.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-resourcemanager-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-common.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-common.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-applications-distributedshell-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-web-proxy-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-api.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-resourcemanager.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-common-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-server-nodemanager-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-site.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-api-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-common-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-applications-distributedshell.jar:/usr/lib/hadoop-yarn/.//hadoop-yarn-site-2.0.0-cdh4.0.1.jar:/usr/lib/hadoop-mapreduce/.//* STARTUP_MSG: build = file:///var/lib/jenkins/workspace/generic-package-ubuntu64-12-04/CDH4.0.1-Packaging-Hadoop-2012-06-28_17-01-57/hadoop-2.0.0+91-1.cdh4.0.1.p0.1~precise/src/hadoop-common-project/hadoop-common -r 4d98eb718ec0cce78a00f292928c5ab6e1b84695; compiled by 'jenkins' on Thu Jun 28 17:39:19 PDT 2012 ************************************************************/ 12/09/10 14:41:10 WARN impl.MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-namenode.properties,hadoop-metrics2.properties hdfs-site.xml: hb@localhost:/etc/hadoop/conf$ cat hdfs-site.xml <?xml version="1.0" encoding="UTF-8"?> <!--Autogenerated by Cloudera CM on 2012-09-03T10:13:30.628Z--> <configuration> <property> <name>dfs.https.address</name> <value>localhost:50470</value> </property> <property> <name>dfs.https.port</name> <value>50470</value> </property> <property> <name>dfs.namenode.http-address</name> <value>localhost:50070</value> </property> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.blocksize</name> <value>134217728</value> </property> <property> <name>dfs.client.use.datanode.hostname</name> <value>false</value> </property> </configuration>

    Read the article

  • How to resolve: 'cmd' is not recognized as an internal or external command?

    - by qwer1234
    I have searched other forums to solve this error where it would either end with: 1.) re-install OS 2.) Setting path variable C:/Windows/System32 The latter did not work, and as you can probably imagine, I do not want to have to re-install my OS... I am running the command "mvn jetty:run" and the following is my stack trace, finishing with the message: "'cmd' is not recognized as an internal or external command, operable problem or batch file" as stated in the title of this question. [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building Test Tool [INFO] task-segment: [jetty:run] [INFO] ------------------------------------------------------------------------ [INFO] Preparing jetty:run [WARNING] Removing: run from forked lifecycle, to prevent recursive invocation. [INFO] [resources:resources] [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 32 resources [INFO] Copying 192 resources [INFO] [compiler:compile] [INFO] Compiling 1854 source files to C:\Development\global_stock_record\test\java\Turtle\target\classes [INFO] ------------------------------------------------------------------------ [ERROR] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [INFO] Compilation failure C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[45,29] cannot find symbol symbol : class CompilerEnvirons location: package org.mozilla.javascript C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[47,29] cannot find symbol symbol : class ContextFactory location: package org.mozilla.javascript C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[49,39] cannot find symbol symbol : class ClassCompiler location: package org.mozilla.javascript.optimizer C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[181,55] cannot find symbol symbol : class CompilerEnvirons location: class net.sf.jasperreports.compilers.JavaScriptClassCompiler C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\export\JRXmlExporter.java:[99,26] package org.w3c.tools.codec does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[26,34] package org.apache.commons.digester does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[27,34] package org.apache.commons.digester does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[34,47] cannot find symbol symbol: class ObjectCreationFactory public abstract class JRBaseFactory implements ObjectCreationFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[41,21] cannot find symbol symbol : class Digester location: class net.sf.jasperreports.engine.xml.JRBaseFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[47,8] cannot find symbol symbol : class Digester location: class net.sf.jasperreports.engine.xml.JRBaseFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[56,25] cannot find symbol symbol : class Digester location: class net.sf.jasperreports.engine.xml.JRBaseFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Code39Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\BarcodeComponent.java:[41,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Code39Component.java:[66,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.Code39Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\BarcodeComponent.java:[179,29] cannot find symbol symbol : class HumanReadablePlacement location: class net.sf.jasperreports.components.barcode4j.BarcodeComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN128Component.java:[26,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\DataMatrixComponent.java:[26,45] package org.krysalis.barcode4j.impl.datamatrix does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\FourStateBarcodeComponent.java:[26,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCAComponent.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCEComponent.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN13Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN8Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Interleaved2Of5Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN128Component.java:[57,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.EAN128Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\DataMatrixComponent.java:[62,22] cannot find symbol symbol : class SymbolShapeHint location: class net.sf.jasperreports.components.barcode4j.DataMatrixComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\FourStateBarcodeComponent.java:[76,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.FourStateBarcodeComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCAComponent.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.UPCAComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCEComponent.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.UPCEComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN13Component.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.EAN13Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN8Component.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.EAN8Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Interleaved2Of5Component.java:[60,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.Interleaved2Of5Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRHibernateAbstractDataSource.java:[36,25] package org.hibernate.type does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[49,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[50,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[51,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[52,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[53,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[54,25] package org.hibernate.type does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRHibernateAbstractDataSource.java:[173,38] cannot find symbol symbol : class Type location: class net.sf.jasperreports.engine.data.JRHibernateAbstractDataSource C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[66,35] cannot find symbol symbol : class Type location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[89,9] cannot find symbol symbol : class Session location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[90,9] cannot find symbol symbol : class Query location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[92,9] cannot find symbol symbol : class ScrollableResults location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[359,8] cannot find symbol symbol : class Type location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[474,8] cannot find symbol symbol : class ScrollableResults location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barbecue\BarbecueFillComponent.java:[40,31] package net.sourceforge.barbecue does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[38,27] package org.apache.tools.ant does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[39,27] package org.apache.tools.ant does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[40,27] package org.apache.tools.ant does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[41,33] package org.apache.tools.ant.types does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[42,33] package org.apache.tools.ant.types does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[43,43] package org.apache.tools.ant.types.resources does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[44,32] package org.apache.tools.ant.util does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[45,32] package org.apache.tools.ant.util does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRBaseAntTask.java:[34,36] package org.apache.tools.ant.taskdefs does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRBaseAntTask.java:[41,35] cannot find symbol symbol: class MatchingTask public class JRBaseAntTask extends MatchingTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[74,9] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[76,9] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[86,23] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[104,8] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[131,8] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[145,30] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[183,41] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[211,33] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[276,32] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\TransformedPropertyRule.java:[27,34] package org.apache.commons.digester does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\TransformedPropertyRule.java:[37,54] cannot find symbol symbol: class Rule public abstract class TransformedPropertyRule extends Rule C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[29,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[30,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[31,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[45,9] cannot find symbol symbol : class Connection location: class net.sf.jasperreports.data.mondrian.MondrianDataAdapterService C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[40,10] package jxl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[41,10] package jxl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[42,10] package jxl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[43,20] package jxl.read.biff does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[66,9] cannot find symbol symbol : class Workbook location: class net.sf.jasperreports.engine.data.JRXlsDataSource C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[83,24] cannot find symbol symbol : class Workbook location: class net.sf.jasperreports.engine.data.JRXlsDataSource C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\xmla\JRXmlaMember.java:[26,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\result\JROlapMember.java:[26,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\xmla\JRXmlaMember.java:[89,8] cannot find symbol symbol : class Member location: class net.sf.jasperreports.olap.xmla.JRXmlaMember C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\result\JROlapMember.java:[46,1] cannot find symbol symbol : class Member location: interface net.sf.jasperreports.olap.result.JROlapMember C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\web\actions\AbstractAction.java:[43,36] package org.codehaus.jackson.annotate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\web\actions\AbstractAction.java:[49,1] cannot find symbol symbol: class JsonTypeInfo @JsonTypeInfo(use=JsonTypeInfo.Id.NAME, include=JsonTypeInfo.As.PROPERTY, property="actionName") C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[32,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[33,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[34,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[35,34] package org.krysalis.barcode4j.impl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[36,42] package org.krysalis.barcode4j.impl.codabar does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[37,42] package org.krysalis.barcode4j.impl.code128 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[38,42] package org.krysalis.barcode4j.impl.code128 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[39,41] package org.krysalis.barcode4j.impl.code39 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[40,45] package org.krysalis.barcode4j.impl.datamatrix does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[41,45] package org.krysalis.barcode4j.impl.datamatrix does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[42,44] package org.krysalis.barcode4j.impl.fourstate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[43,44] package org.krysalis.barcode4j.impl.fourstate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[44,44] package org.krysalis.barcode4j.impl.fourstate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[45,42] package org.krysalis.barcode4j.impl.int2of5 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[46,41] package org.krysalis.barcode4j.impl.pdf417 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[47,42] package org.krysalis.barcode4j.impl.postnet does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[48,41] package org.krysalis.barcode4j.impl.upcean does not exist [INFO] ------------------------------------------------------------------------ [INFO] For more information, run Maven with the -e switch [INFO] ------------------------------------------------------------------------ [INFO] Total time: 17 seconds [INFO] Finished at: Fri Dec 07 11:46:28 EST 2012 [INFO] Final Memory: 27M/63M [INFO] ------------------------------------------------------------------------

    Read the article

  • A class meant for an alfresco behavior and its bean, how do they work and how are they deployed trough eclipse

    - by MrHappy
    (This is a partial repost of a question asked 10 days ago because only 1 part was answered(not included), I've rewritten it into a way better question and added 3 more tags) where do I put the DeleteAsset.class or why isn't it being found? I've put the compiled class from the bin of the workspace of eclipse into alfresco-4.2.c/tomcat/webapps/alfresco/WEB-INF/classes/com/openerp/behavior/ and right now it's giving me Error loading class [com.openerp.behavior.DeleteAsset] for bean with name 'deletionBehavior' defined in URL [file:/home/openerp/alfresco-4.2.c/tomcat/shared/classes/alfresco/extension/cust??om-web-context.xml]: problem with class file or dependent class; nested exception is java.lang.NoClassDefFoundError: com/openerp/behavior/DeleteAsset (wrong name: DeleteAsset) when I put it in there. (See bean below!) The code(I'd trying to work without the model class, idk if I made any silly mistakes on that): package com.openerp.behavior; import java.util.List; import java.net.*; import java.io.*; import org.alfresco.repo.node.NodeServicePolicies; import org.alfresco.repo.policy.Behaviour; import org.alfresco.repo.policy.JavaBehaviour; import org.alfresco.repo.policy.PolicyComponent; import org.alfresco.repo.policy.Behaviour.NotificationFrequency; import org.alfresco.repo.security.authentication.AuthenticationUtil; import org.alfresco.repo.security.authentication.AuthenticationUtil.RunAsWork; import org.alfresco.service.cmr.repository.ChildAssociationRef; import org.alfresco.service.cmr.repository.NodeRef; import org.alfresco.service.cmr.repository.NodeService; import org.alfresco.service.namespace.NamespaceService; import org.alfresco.service.namespace.QName; import org.alfresco.service.transaction.TransactionService; import org.apache.log4j.Logger; //this is the newer version //import com.openerp.model.openerpJavaModel; public class DeleteAsset implements NodeServicePolicies.BeforeDeleteNodePolicy { private PolicyComponent policyComponent; private Behaviour beforeDeleteNode; private NodeService nodeService; public void init() { this.beforeDeleteNode = new JavaBehaviour(this,"beforeDeleteNode",NotificationFrequency.EVERY_EVENT); this.policyComponent.bindClassBehaviour(QName.createQName("http://www.someco.com/model/content/1.0","beforeDeleteNode"), QName.createQName("http://www.someco.com/model/content/1.0","sc:doc"), this.beforeDeleteNode); } public setNodeService(NodeService nodeService){ this.nodeService = nodeService; } @Override public void beforeDeleteNode(NodeRef node) { System.out.println("beforeDeleteNode!"); try { QName attachmentID1= QName.createQName("http://www.someco.com/model/content/1.0", "OpenERPattachmentID1"); // this could/shoul be defined in your OpenERPModel-class int attachmentid = (Integer)nodeService.getProperty(node, attachmentID1); //int attachmentid = 123; URL oracle = new URL("http://0.0.0.0:1885/delete/%20?attachmentid=" + attachmentid); URLConnection yc = oracle.openConnection(); BufferedReader in = new BufferedReader(new InputStreamReader( yc.getInputStream())); String inputLine; while ((inputLine = in.readLine()) != null) //System.out.println(inputLine); in.close(); } catch(Exception e) { e.printStackTrace(); } } } This is my full custom-web-context file: <?xml version='1.0' encoding='UTF-8'?> <!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN' 'http://www.springframework.org/dtd/spring-beans.dtd'> <beans> <!-- Registration of new models --> <bean id="smartsolution.dictionaryBootstrap" parent="dictionaryModelBootstrap" depends-on="dictionaryBootstrap"> <property name="models"> <list> <value>alfresco/extension/scOpenERPModel.xml</value> </list> </property> </bean> <!-- deletion of attachments within openERP when delete is initiated in Alfresco--> <bean id="DeleteAsset" class="com.openerp.behavior.DeleteAsset" init-method="init"> <property name="NodeService"> <ref bean="NodeService" /> </property> <property name="PolicyComponent"> <ref bean="PolicyComponent" /> </property> </bean> and content type: <type name="sc:doc"> <title>OpenERP Document</title> <parent>cm:content</parent> There's also this when I open share An error has occured in the Share component: /share/service/components/dashlets/my-sites. It responded with a status of 500 - Internal Error. Error Code Information: 500 - An error inside the HTTP server which prevented it from fulfilling the request. Error Message: 09230001 Failed to execute script 'classpath*:alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js': 09230000 09230001 Failed during processing of IMAP server status configuration from Alfresco: 09230000 Unable to retrieve IMAP server status from Alfresco: 404 Server: Alfresco Spring WebScripts - v1.2.0 (Release 1207) schema 1,000 Time: Oct 23, 2013 11:40:06 AM Click here to view full technical information on the error. Exception: org.alfresco.error.AlfrescoRuntimeException - 09230001 Failed during processing of IMAP server status configuration from Alfresco: 09230000 Unable to retrieve IMAP server status from Alfresco: 404 org.alfresco.web.scripts.SingletonValueProcessorExtension.getSingletonValue(SingletonValueProcessorExtension.java:108) org.alfresco.web.scripts.SingletonValueProcessorExtension.getSingletonValue(SingletonValueProcessorExtension.java:59) org.alfresco.web.scripts.ImapServerStatus.getEnabled(ImapServerStatus.java:49) sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) java.lang.reflect.Method.invoke(Method.java:606) org.mozilla.javascript.MemberBox.invoke(MemberBox.java:155) org.mozilla.javascript.JavaMembers.get(JavaMembers.java:117) org.mozilla.javascript.NativeJavaObject.get(NativeJavaObject.java:113) org.mozilla.javascript.ScriptableObject.getProperty(ScriptableObject.java:1544) org.mozilla.javascript.ScriptRuntime.getObjectProp(ScriptRuntime.java:1375) org.mozilla.javascript.ScriptRuntime.getObjectProp(ScriptRuntime.java:1364) org.mozilla.javascript.gen.c6._c1(file:/opt/alfresco-4.2.c/tomcat/webapps/share/WEB-INF/classes/alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js:4) org.mozilla.javascript.gen.c6.call(file:/opt/alfresco-4.2.c/tomcat/webapps/share/WEB-INF/classes/alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js) org.mozilla.javascript.optimizer.OptRuntime.callName0(OptRuntime.java:108) org.mozilla.javascript.gen.c6._c0(file:/opt/alfresco-4.2.c/tomcat/webapps/share/WEB-INF/classes/alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js:51) org.mozilla.javascript.gen.c6.call(file:/opt/alfresco-4.2.c/tomcat/webapps/share/WEB-INF/classes/alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js) org.mozilla.javascript.ContextFactory.doTopCall(ContextFactory.java:393) org.mozilla.javascript.ScriptRuntime.doTopCall(ScriptRuntime.java:2834) org.mozilla.javascript.gen.c6.call(file:/opt/alfresco-4.2.c/tomcat/webapps/share/WEB-INF/classes/alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js) org.mozilla.javascript.gen.c6.exec(file:/opt/alfresco-4.2.c/tomcat/webapps/share/WEB-INF/classes/alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js) org.springframework.extensions.webscripts.processor.JSScriptProcessor.executeScriptImpl(JSScriptProcessor.java:318) org.springframework.extensions.webscripts.processor.JSScriptProcessor.executeScript(JSScriptProcessor.java:192) org.springframework.extensions.webscripts.AbstractWebScript.executeScript(AbstractWebScript.java:1305) org.springframework.extensions.webscripts.DeclarativeWebScript.execute(DeclarativeWebScript.java:86) org.springframework.extensions.webscripts.PresentationContainer.executeScript(PresentationContainer.java:70) org.springframework.extensions.webscripts.LocalWebScriptRuntimeContainer.executeScript(LocalWebScriptRuntimeContainer.java:240) org.springframework.extensions.webscripts.AbstractRuntime.executeScript(AbstractRuntime.java:377) org.springframework.extensions.webscripts.AbstractRuntime.executeScript(AbstractRuntime.java:209) org.springframework.extensions.webscripts.WebScriptProcessor.executeBody(WebScriptProcessor.java:310) org.springframework.extensions.surf.render.AbstractProcessor.execute(AbstractProcessor.java:57) org.springframework.extensions.surf.render.RenderService.process(RenderService.java:599) org.springframework.extensions.surf.render.RenderService.renderSubComponent(RenderService.java:505) org.springframework.extensions.surf.render.RenderService.renderChromeInclude(RenderService.java:1284) org.springframework.extensions.directives.ChromeIncludeFreeMarkerDirective.execute(ChromeIncludeFreeMarkerDirective.java:81) freemarker.core.Environment.visit(Environment.java:274) freemarker.core.UnifiedCall.accept(UnifiedCall.java:126) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.IfBlock.accept(IfBlock.java:82) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Environment.process(Environment.java:199) org.springframework.extensions.webscripts.processor.FTLTemplateProcessor.process(FTLTemplateProcessor.java:171) org.springframework.extensions.webscripts.WebTemplateProcessor.executeBody(WebTemplateProcessor.java:438) org.springframework.extensions.surf.render.AbstractProcessor.execute(AbstractProcessor.java:57) org.springframework.extensions.surf.render.RenderService.processRenderable(RenderService.java:204) org.springframework.extensions.surf.render.bean.ChromeRenderer.body(ChromeRenderer.java:95) org.springframework.extensions.surf.render.AbstractRenderer.render(AbstractRenderer.java:77) org.springframework.extensions.surf.render.bean.ChromeRenderer.render(ChromeRenderer.java:86) org.springframework.extensions.surf.render.RenderService.processComponent(RenderService.java:432) org.springframework.extensions.surf.render.bean.ComponentRenderer.body(ComponentRenderer.java:94) org.springframework.extensions.surf.render.AbstractRenderer.render(AbstractRenderer.java:77) org.springframework.extensions.surf.render.RenderService.renderComponent(RenderService.java:961) org.springframework.extensions.surf.render.RenderService.renderRegionComponents(RenderService.java:900) org.springframework.extensions.surf.render.RenderService.renderChromeInclude(RenderService.java:1263) org.springframework.extensions.directives.ChromeIncludeFreeMarkerDirective.execute(ChromeIncludeFreeMarkerDirective.java:81) freemarker.core.Environment.visit(Environment.java:274) freemarker.core.UnifiedCall.accept(UnifiedCall.java:126) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Environment.process(Environment.java:199) org.springframework.extensions.webscripts.processor.FTLTemplateProcessor.process(FTLTemplateProcessor.java:171) org.springframework.extensions.webscripts.WebTemplateProcessor.executeBody(WebTemplateProcessor.java:438) org.springframework.extensions.surf.render.AbstractProcessor.execute(AbstractProcessor.java:57) org.springframework.extensions.surf.render.RenderService.processRenderable(RenderService.java:204) org.springframework.extensions.surf.render.bean.ChromeRenderer.body(ChromeRenderer.java:95) org.springframework.extensions.surf.render.AbstractRenderer.render(AbstractRenderer.java:77) org.springframework.extensions.surf.render.bean.ChromeRenderer.render(ChromeRenderer.java:86) org.springframework.extensions.surf.render.bean.RegionRenderer.body(RegionRenderer.java:99) org.springframework.extensions.surf.render.AbstractRenderer.render(AbstractRenderer.java:77) org.springframework.extensions.surf.render.RenderService.renderRegion(RenderService.java:851) org.springframework.extensions.directives.RegionDirectiveData.render(RegionDirectiveData.java:91) org.springframework.extensions.surf.extensibility.impl.ExtensibilityModelImpl.merge(ExtensibilityModelImpl.java:408) org.springframework.extensions.surf.extensibility.impl.AbstractExtensibilityDirective.merge(AbstractExtensibilityDirective.java:169) org.springframework.extensions.surf.extensibility.impl.AbstractExtensibilityDirective.execute(AbstractExtensibilityDirective.java:137) freemarker.core.Environment.visit(Environment.java:274) freemarker.core.UnifiedCall.accept(UnifiedCall.java:126) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.IteratorBlock$Context.runLoop(IteratorBlock.java:179) freemarker.core.Environment.visit(Environment.java:428) freemarker.core.IteratorBlock.accept(IteratorBlock.java:102) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.IteratorBlock$Context.runLoop(IteratorBlock.java:179) freemarker.core.Environment.visit(Environment.java:428) freemarker.core.IteratorBlock.accept(IteratorBlock.java:102) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Macro$Context.runMacro(Macro.java:172) freemarker.core.Environment.visit(Environment.java:614) freemarker.core.UnifiedCall.accept(UnifiedCall.java:106) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.IfBlock.accept(IfBlock.java:82) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Macro$Context.runMacro(Macro.java:172) freemarker.core.Environment.visit(Environment.java:614) freemarker.core.UnifiedCall.accept(UnifiedCall.java:106) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Environment$3.render(Environment.java:246) org.springframework.extensions.surf.extensibility.impl.DefaultExtensibilityDirectiveData.render(DefaultExtensibilityDirectiveData.java:119) org.springframework.extensions.surf.extensibility.impl.ExtensibilityModelImpl.merge(ExtensibilityModelImpl.java:408) org.springframework.extensions.surf.extensibility.impl.AbstractExtensibilityDirective.merge(AbstractExtensibilityDirective.java:169) org.springframework.extensions.surf.extensibility.impl.AbstractExtensibilityDirective.execute(AbstractExtensibilityDirective.java:137) freemarker.core.Environment.visit(Environment.java:274) freemarker.core.UnifiedCall.accept(UnifiedCall.java:126) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Environment.visit(Environment.java:406) freemarker.core.BodyInstruction.accept(BodyInstruction.java:93) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Macro$Context.runMacro(Macro.java:172) freemarker.core.Environment.visit(Environment.java:614) freemarker.core.UnifiedCall.accept(UnifiedCall.java:106) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.MixedContent.accept(MixedContent.java:92) freemarker.core.Environment.visit(Environment.java:221) freemarker.core.Environment.process(Environment.java:199) org.springframework.extensions.webscripts.processor.FTLTemplateProcessor.process(FTLTemplateProcessor.java:171) org.springframework.extensions.webscripts.WebTemplateProcessor.executeBody(WebTemplateProcessor.java:438) org.springframework.extensions.surf.render.AbstractProcessor.execute(AbstractProcessor.java:57) org.springframework.extensions.surf.render.RenderService.processTemplate(RenderService.java:721) org.springframework.extensions.surf.render.bean.TemplateInstanceRenderer.body(TemplateInstanceRenderer.java:140) org.springframework.extensions.surf.render.AbstractRenderer.render(AbstractRenderer.java:77) org.springframework.extensions.surf.render.bean.PageRenderer.body(PageRenderer.java:85) org.springframework.extensions.surf.render.AbstractRenderer.render(AbstractRenderer.java:77) org.springframework.extensions.surf.render.RenderService.renderPage(RenderService.java:762) org.springframework.extensions.surf.mvc.PageView.dispatchPage(PageView.java:411) org.springframework.extensions.surf.mvc.PageView.renderView(PageView.java:306) org.springframework.extensions.surf.mvc.AbstractWebFrameworkView.renderMergedOutputModel(AbstractWebFrameworkView.java:316) org.springframework.web.servlet.view.AbstractView.render(AbstractView.java:250) org.springframework.web.servlet.DispatcherServlet.render(DispatcherServlet.java:1047) org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:817) org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:719) org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:644) org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:549) javax.servlet.http.HttpServlet.service(HttpServlet.java:621) javax.servlet.http.HttpServlet.service(HttpServlet.java:722) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:305) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) org.alfresco.web.site.servlet.MTAuthenticationFilter.doFilter(MTAuthenticationFilter.java:74) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:243) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) org.alfresco.web.site.servlet.SSOAuthenticationFilter.doFilter(SSOAuthenticationFilter.java:374) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:243) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:222) org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:123) org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:472) org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:168) org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:99) org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:929) org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:118) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:407) org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1002) org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:585) org.apache.tomcat.util.net.AprEndpoint$SocketWithOptionsProcessor.run(AprEndpoint.java:1771) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:724) Exception: org.springframework.extensions.webscripts.WebScriptException - 09230000 09230001 Failed during processing of IMAP server status configuration from Alfresco: 09230000 Unable to retrieve IMAP server status from Alfresco: 404 org.springframework.extensions.webscripts.processor.JSScriptProcessor.executeScriptImpl(JSScriptProcessor.java:324) Exception: org.springframework.extensions.webscripts.WebScriptException - 09230001 Failed to execute script 'classpath*:alfresco/site-webscripts/org/alfresco/components/dashlets/my-sites.get.js': 09230000 09230001 Failed during processing of IMAP server status configuration from Alfresco: 09230000 Unable to retrieve IMAP server status from Alfresco: 404 org.springframework.extensions.webscripts.processor.JSScriptProcessor.executeScript(JSScriptProcessor.java:200) UPDATE: I think I've found the problem. Being a newbie to eclipse I haven't managed the dependecies well I think. Could anyone link me to a tutorial describing how to get org.alfresco.repo.node.NodeServicePolicies; as seen in import org.alfresco.repo.node.NodeServicePolicies; and other such imports into eclipse, I've got the alfresco source from svn but the tutorial I've found seems to fail me. java/lang/Error\00\F1Unresolved compilation problems: The declared package "com.openerp.behavior" does not match the expected package "java.com.openerp.behavior" The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.alfresco cannot be resolved The import org.apache cannot be resolved The import com.openerp cannot be resolved NodeServicePolicies cannot be resolved to a type PolicyComponent cannot be resolved to a type Behaviour cannot be resolved to a type NodeService cannot be resolved to a type Behaviour cannot be resolved to a type JavaBehaviour cannot be resolved to a type NotificationFrequency cannot be resolved to a variable PolicyComponent cannot be resolved to a type QName cannot be resolved QName cannot be resolved Behaviour cannot be resolved to a type Return type for the method is missing NodeService cannot be resolved to a type NodeService cannot be resolved to a type NodeRef cannot be resolved to a type QName cannot be resolved to a type QName cannot be resolved NodeService cannot be resolved to a type \00\00\00\00\00(Ljava/lang/String;)V\00LineNumberTable\00LocalVariableTable\00this\00'Ljava/com/openerp/behavior/DeleteAsset;\00init\008Unresolved compilation problems: Behaviour cannot be resolved to a type JavaBehaviour cannot be resolved to a type NotificationFrequency cannot be resolved to a variable PolicyComponent cannot be resolved to a type QName cannot be resolved QName cannot be resolved Behaviour cannot be resolved to a type \00(LNodeRef;)V\00\00\B0Unresolved compilation problems: NodeRef cannot be resolved to a type QName cannot be resolved to a type QName cannot be resolved NodeService cannot be resolved to a type

    Read the article

  • Please help rails problem with stringify_keys error

    - by richard moss
    I have been trying to solve this for ages and can't figure it out. I have a form like so (taking out a lot of other fields) <% form_for @machine_enquiry, machine_enquiry_path(@machine_enquiry) do|me_form| %> <% me_form.fields_for :messages_attributes do |f| %> <%= f.text_field :title -%> <% end %> <%= me_form.submit 'Send message' %> <% end %> And an update action like @machine_enquiry = MachineEnquiry.find(params[:id]) @machine_enquiry.update_attributes(params[:machine_enquiry] And a machine_enquiry class like so: class MachineEnquiry < ActiveRecord::Base has_many :messages, :as => :messagable, :dependent => :destroy accepts_nested_attributes_for :messages end I am getting an error like so: NoMethodError in Machine enquiriesController#update undefined method `stringify_keys' for "2":String RAILS_ROOT: C:/INSTAN~2/rails_apps/Macrotec28th Application Trace | Framework Trace | Full Trace C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:294:in `assign_nested_attributes_for_collection_association' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:293:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:293:in `assign_nested_attributes_for_collection_association' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:215:in `messages_attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2745:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2745:in `attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2741:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2741:in `attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2627:in `update_attributes' C:/INSTAN~2/rails_apps/Macrotec28th/app/controllers/machine_enquiries_controller.rb:74:in `update' C:/INSTAN~2/rails_apps/Macrotec28th/app/controllers/machine_enquiries_controller.rb:72:in `update' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:294:in `assign_nested_attributes_for_collection_association' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:293:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:293:in `assign_nested_attributes_for_collection_association' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:215:in `messages_attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2745:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2745:in `attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2741:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2741:in `attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2627:in `update_attributes' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/mime_responds.rb:106:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/mime_responds.rb:106:in `respond_to' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:1322:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:1322:in `perform_action_without_filters' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/filters.rb:617:in `call_filters' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/filters.rb:610:in `perform_action_without_benchmark' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/benchmarking.rb:68:in `perform_action_without_rescue' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activesupport-2.3.2/lib/active_support/core_ext/benchmark.rb:17:in `ms' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activesupport-2.3.2/lib/active_support/core_ext/benchmark.rb:10:in `realtime' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activesupport-2.3.2/lib/active_support/core_ext/benchmark.rb:17:in `ms' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/benchmarking.rb:68:in `perform_action_without_rescue' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/rescue.rb:160:in `perform_action_without_flash' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/flash.rb:141:in `perform_action' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:523:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:523:in `process_without_filters' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/filters.rb:606:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:391:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:386:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/routing/route_set.rb:433:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:88:in `dispatch' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:111:in `_call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:82:in `initialize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:29:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:29:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/connection_adapters/abstract/query_cache.rb:34:in `cache' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:9:in `cache' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:28:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/connection_adapters/abstract/connection_pool.rb:361:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/head.rb:9:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/methodoverride.rb:24:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/params_parser.rb:15:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/rewindable_input.rb:25:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/session/cookie_store.rb:93:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/reloader.rb:9:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/failsafe.rb:11:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/lock.rb:11:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/lock.rb:11:in `synchronize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/lock.rb:11:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:106:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/cgi_process.rb:44:in `dispatch_cgi' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:102:in `dispatch_cgi' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:28:in `dispatch' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/rails.rb:76:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/rails.rb:74:in `synchronize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/rails.rb:74:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:159:in `process_client' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:158:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:158:in `process_client' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `initialize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `new' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:268:in `initialize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:268:in `new' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:268:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/configurator.rb:282:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/configurator.rb:281:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/configurator.rb:281:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:128:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/command.rb:212:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:281 C:/INSTAN~2/ruby/bin/mongrel_rails:19:in `load' C:/INSTAN~2/ruby/bin/mongrel_rails:19 C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:294:in `assign_nested_attributes_for_collection_association' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:293:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:293:in `assign_nested_attributes_for_collection_association' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/nested_attributes.rb:215:in `messages_attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2745:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2745:in `attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2741:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2741:in `attributes=' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/base.rb:2627:in `update_attributes' C:/INSTAN~2/rails_apps/Macrotec28th/app/controllers/machine_enquiries_controller.rb:74:in `update' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/mime_responds.rb:106:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/mime_responds.rb:106:in `respond_to' C:/INSTAN~2/rails_apps/Macrotec28th/app/controllers/machine_enquiries_controller.rb:72:in `update' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:1322:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:1322:in `perform_action_without_filters' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/filters.rb:617:in `call_filters' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/filters.rb:610:in `perform_action_without_benchmark' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/benchmarking.rb:68:in `perform_action_without_rescue' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activesupport-2.3.2/lib/active_support/core_ext/benchmark.rb:17:in `ms' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activesupport-2.3.2/lib/active_support/core_ext/benchmark.rb:10:in `realtime' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activesupport-2.3.2/lib/active_support/core_ext/benchmark.rb:17:in `ms' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/benchmarking.rb:68:in `perform_action_without_rescue' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/rescue.rb:160:in `perform_action_without_flash' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/flash.rb:141:in `perform_action' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:523:in `send' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:523:in `process_without_filters' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/filters.rb:606:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:391:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/base.rb:386:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/routing/route_set.rb:433:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:88:in `dispatch' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:111:in `_call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:82:in `initialize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:29:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:29:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/connection_adapters/abstract/query_cache.rb:34:in `cache' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:9:in `cache' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/query_cache.rb:28:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/activerecord-2.3.2/lib/active_record/connection_adapters/abstract/connection_pool.rb:361:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/head.rb:9:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/methodoverride.rb:24:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/params_parser.rb:15:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/rewindable_input.rb:25:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/session/cookie_store.rb:93:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/reloader.rb:9:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/failsafe.rb:11:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/lock.rb:11:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/lock.rb:11:in `synchronize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/vendor/rack-1.0/rack/lock.rb:11:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:106:in `call' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/cgi_process.rb:44:in `dispatch_cgi' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:102:in `dispatch_cgi' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.2/lib/action_controller/dispatcher.rb:28:in `dispatch' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/rails.rb:76:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/rails.rb:74:in `synchronize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/rails.rb:74:in `process' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:159:in `process_client' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:158:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:158:in `process_client' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `initialize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `new' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:285:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:268:in `initialize' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:268:in `new' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel.rb:268:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/configurator.rb:282:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/configurator.rb:281:in `each' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/configurator.rb:281:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:128:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/lib/mongrel/command.rb:212:in `run' C:/INSTAN~2/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:281 C:/INSTAN~2/ruby/bin/mongrel_rails:19:in `load' C:/INSTAN~2/ruby/bin/mongrel_rails:19 Request Parameters: {"commit"=>"Send message", "_method"=>"put", "machine_enquiry"=>{"messages_attributes"=>{"message"=>"2", "title"=>"1", "message_type_id"=>"1", "contact_detail_ids"=>["1", "11"]}}, "id"=>"2", "datetime"=>""} Why am I getting this error? Can anyone help with this?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Class member functions instantiated by traits [policies, actually]

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched Stack Overflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate member functions? [Update: I used the wrong term here. It should be "policies" rather than "traits." Traits describe existing classes. Policies prescribe synthetic classes.] The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state information was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (VC++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice? UPDATE: Here's another try at explaining it. I want the user to be able to fill out an order (manifest) for a custom optimizer, something like ordering off of a Chinese menu - one from column A, one from column B, etc.. Waiter, from column A (updaters), I'll have the BFGS update with Cholesky-decompositon sauce. From column B (line-searchers), I'll have the cubic interpolation line-search with an eta of 0.4 and a rho of 1e-4, please. Etc... UPDATE: Okay, okay. Here's the playing-around that I've done. I offer it reluctantly, because I suspect it's a completely wrong-headed approach. It runs okay under vc++ 2008. #include <boost/utility.hpp> #include <boost/type_traits/integral_constant.hpp> namespace dj { struct CBFGS { void bar() {printf("CBFGS::bar %d\n", data);} CBFGS(): data(1234){} int data; }; template<class T> struct is_CBFGS: boost::false_type{}; template<> struct is_CBFGS<CBFGS>: boost::true_type{}; struct LMQN {LMQN(): data(54.321){} void bar() {printf("LMQN::bar %lf\n", data);} double data; }; template<class T> struct is_LMQN: boost::false_type{}; template<> struct is_LMQN<LMQN> : boost::true_type{}; // "Order form" struct default_optimizer_traits { typedef CBFGS update_type; // Selection from column A - updaters }; template<class traits> class Optimizer; template<class traits> void foo(typename boost::enable_if<is_LMQN<typename traits::update_type>, Optimizer<traits> >::type& self) { printf(" LMQN %lf\n", self.data); } template<class traits> void foo(typename boost::enable_if<is_CBFGS<typename traits::update_type>, Optimizer<traits> >::type& self) { printf("CBFGS %d\n", self.data); } template<class traits = default_optimizer_traits> class Optimizer{ friend typename traits::update_type; //friend void dj::foo<traits>(typename Optimizer<traits> & self); // How? public: //void foo(void); // How??? void foo() { dj::foo<traits>(*this); } void bar() { data.bar(); } //protected: // How? typedef typename traits::update_type update_type; update_type data; }; } // namespace dj int main() { dj::Optimizer<> opt; opt.foo(); opt.bar(); std::getchar(); return 0; }

    Read the article

  • wxWidgets in Code::Blocks

    - by Vlad
    Hello all, I'm trying to compile the minimal sample from the "Cross-Platform GUI Programming with wxWidgets" book but the following compile errors: ||=== minimal, Debug ===| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0x918)||undefined reference to `__Unwind_Resume' | C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0x931)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0xa96)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0xada)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.text+0xb1e)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_frame.o):frame.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_datacmn.o):datacmn.cpp:(.eh_frame+0x11)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x63a)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x696)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x6f2)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x74a)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.text+0x7a2)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdicmn.o):gdicmn.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0x88f)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0x927)||undefined reference to `__Unwind_Resume' | C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0x9bf)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0xb8b)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.text+0xc87)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menu.o):menu.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xbc0)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xc59)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xcf5)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xda6)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.text+0xdce)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_menucmn.o):menucmn.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x1ff)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x257)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x2af)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x2fc)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.text+0x36d)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_icon.o):icon.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0x4a8)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0x73a)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0x813)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0xc06)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.text+0xd3e)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_gdiimage.o):gdiimage.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0x970)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xa80)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xb8c)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xc78)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.text+0xd4f)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_event.o):event.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x2ef)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x32b)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x43d)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x586)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.text+0x601)||undefined reference to `__Unwind_Resume'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_appcmn.o):appcmn.cpp:(.eh_frame+0x12)||undefined reference to `___gxx_personality_v0'| C:\SourceCode\Libraries\wxWidgets2.8\lib\gcc_lib\libwxmsw28u_core.a(corelib_app.o):app.cpp:(.text+0x1da)||undefined reference to `__Unwind_Resume'| ||More errors follow but not being shown.| ||Edit the max errors limit in compiler options...| ||=== Build finished: 50 errors, 0 warnings ===| Here's the code sample from the book: #include "wx/wx.h" #include "mondrian.xpm" // Declare the application class class MyApp : public wxApp { public: // Called on application startup virtual bool OnInit(); }; // Declare our main frame class class MyFrame : public wxFrame { public: // Constructor MyFrame(const wxString& title); // Event handlers void OnQuit(wxCommandEvent& event); void OnAbout(wxCommandEvent& event); private: // This class handles events DECLARE_EVENT_TABLE() }; // Implements MyApp& GetApp() DECLARE_APP(MyApp) // Give wxWidgets the means to create a MyApp object IMPLEMENT_APP(MyApp) // Initialize the application bool MyApp::OnInit() { // Create the main application window MyFrame *frame = new MyFrame(wxT("Minimal wxWidgets App")); // Show it frame->Show(true); // Start the event loop return true; } // Event table for MyFrame BEGIN_EVENT_TABLE(MyFrame, wxFrame) EVT_MENU(wxID_ABOUT, MyFrame::OnAbout) EVT_MENU(wxID_EXIT, MyFrame::OnQuit) END_EVENT_TABLE() void MyFrame::OnAbout(wxCommandEvent& event) { wxString msg; msg.Printf(wxT("Hello and welcome to %s"), wxVERSION_STRING); wxMessageBox(msg, wxT("About Minimal"), wxOK | wxICON_INFORMATION, this); } void MyFrame::OnQuit(wxCommandEvent& event) { // Destroy the frame Close(); } MyFrame::MyFrame(const wxString& title) : wxFrame(NULL, wxID_ANY, title) { // Set the frame icon SetIcon(wxIcon(mondrian_xpm)); // Create a menu bar wxMenu *fileMenu = new wxMenu; // The “About” item should be in the help menu wxMenu *helpMenu = new wxMenu; helpMenu->Append(wxID_ABOUT, wxT("&About...\tF1"), wxT("Show about dialog")); fileMenu->Append(wxID_EXIT, wxT("E&xit\tAlt-X"), wxT("Quit this program")); // Now append the freshly created menu to the menu bar... wxMenuBar *menuBar = new wxMenuBar(); menuBar->Append(fileMenu, wxT("&File")); menuBar->Append(helpMenu, wxT("&Help")); // ... and attach this menu bar to the frame SetMenuBar(menuBar); // Create a status bar just for fun CreateStatusBar(2); SetStatusText(wxT("Welcome to wxWidgets!")); } So what's happenning? Thanks! P.S.: I installed wxWidgets through wxPack wich afaik comes with everything precomplied and i also added the wxWidgets directory to Global variables-base in Code::Blocks so everything should be correctly set, right?

    Read the article

  • A plugin is preventing Eclipse from starting up

    - by Mahmoud Hossam
    It just gives me a blank window, and the splash screen doesn't go away. I tried running it in a terminal, turns out it's a problematic plugin. Is there a way to disable that plugin without the GUI? There's the error log: [org.eclipse.contribution.weaving.jdt] error at org/eclipse/contribution/jdt/IsWovenTester.aj::0 class 'org.eclipse.contribution.jdt.IsWovenTester' is already woven and has not been built in reweavable mode [org.eclipse.contribution.weaving.jdt] error at org/eclipse/contribution/jdt/IsWovenTester.aj::0 class 'org.eclipse.contribution.jdt.IsWovenTester$WeavingMarker' is already woven and has not been built in reweavable mode [org.eclipse.jdt.core] warning at org/eclipse/contribution/jdt/sourceprovider/SourceTransformerAspect.aj:106::0 does not match because declaring type is org.eclipse.jdt.core.IOpenable, if match desired use target(org.eclipse.jdt.core.ICompilationUnit) [Xlint:unmatchedSuperTypeInCall] see also: org/eclipse/jdt/internal/core/SourceRefElement.java:198::0 [org.eclipse.jdt.ui] warning at org/eclipse/contribution/jdt/sourceprovider/SourceTransformerAspect.aj:106::0 does not match because declaring type is org.eclipse.jdt.core.ITypeRoot, if match desired use target(org.eclipse.jdt.core.ICompilationUnit) [Xlint:unmatchedSuperTypeInCall] see also: org/eclipse/jdt/internal/ui/javaeditor/ASTProvider.java:572::0 [org.eclipse.contribution.weaving.jdt] error at org/eclipse/contribution/jdt/sourceprovider/SourceTransformerAspect.aj::0 class 'org.eclipse.contribution.jdt.sourceprovider.SourceTransformerAspect' is already woven and has not been built in reweavable mode [org.eclipse.contribution.weaving.jdt] error at org/eclipse/contribution/jdt/cuprovider/CompilationUnitProviderAspect.aj::0 class 'org.eclipse.contribution.jdt.cuprovider.CompilationUnitProviderAspect' is already woven and has not been built in reweavable mode [ScalaPlugin] [scalaLibBundle] Found 0 bundles: LogFilter.isLoggable threw a non-fatal unchecked exception as follows: java.lang.NullPointerException at org.eclipse.core.internal.runtime.Log.isLoggable(Log.java:101) at org.eclipse.equinox.log.internal.ExtendedLogReaderServiceFactory.safeIsLoggable(ExtendedLogReaderServiceFactory.java:59) at org.eclipse.equinox.log.internal.ExtendedLogReaderServiceFactory.logPrivileged(ExtendedLogReaderServiceFactory.java:164) at org.eclipse.equinox.log.internal.ExtendedLogReaderServiceFactory.log(ExtendedLogReaderServiceFactory.java:150) at org.eclipse.equinox.log.internal.ExtendedLogServiceFactory.log(ExtendedLogServiceFactory.java:65) at org.eclipse.equinox.log.internal.ExtendedLogServiceImpl.log(ExtendedLogServiceImpl.java:87) at org.eclipse.equinox.log.internal.LoggerImpl.log(LoggerImpl.java:54) at org.eclipse.core.internal.runtime.Log.log(Log.java:60) at scala.tools.eclipse.util.DefaultLogger.warning(DefaultLogger.scala:46) at scala.tools.eclipse.ScalaPlugin$$anonfun$3.apply(ScalaPlugin.scala:131) at scala.tools.eclipse.ScalaPlugin$$anonfun$3.apply(ScalaPlugin.scala:130) at scala.Option.getOrElse(Option.scala:108) at scala.tools.eclipse.ScalaPlugin.<init>(ScalaPlugin.scala:130) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:525) at java.lang.Class.newInstance0(Class.java:372) at java.lang.Class.newInstance(Class.java:325) at org.eclipse.osgi.framework.internal.core.AbstractBundle.loadBundleActivator(AbstractBundle.java:166) at org.eclipse.osgi.framework.internal.core.BundleContextImpl.start(BundleContextImpl.java:679) at org.eclipse.osgi.framework.internal.core.BundleHost.startWorker(BundleHost.java:381) at org.eclipse.osgi.framework.internal.core.AbstractBundle.start(AbstractBundle.java:299) at org.eclipse.osgi.framework.util.SecureAction.start(SecureAction.java:440) at org.eclipse.osgi.internal.loader.BundleLoader.setLazyTrigger(BundleLoader.java:268) at org.eclipse.core.runtime.internal.adaptor.EclipseLazyStarter.postFindLocalClass(EclipseLazyStarter.java:107) at org.eclipse.osgi.baseadaptor.loader.ClasspathManager.findLocalClass(ClasspathManager.java:462) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.findLocalClass(DefaultClassLoader.java:216) at org.eclipse.osgi.internal.loader.BundleLoader.findLocalClass(BundleLoader.java:400) at org.eclipse.osgi.internal.loader.BundleLoader.findClassInternal(BundleLoader.java:476) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:429) at org.eclipse.osgi.internal.loader.BundleLoader.findClass(BundleLoader.java:417) at org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader.loadClass(DefaultClassLoader.java:107) at java.lang.ClassLoader.loadClass(ClassLoader.java:356) at org.eclipse.osgi.internal.loader.BundleLoader.loadClass(BundleLoader.java:345) at org.eclipse.osgi.framework.internal.core.BundleHost.loadClass(BundleHost.java:229) at org.eclipse.osgi.framework.internal.core.AbstractBundle.loadClass(AbstractBundle.java:1207) at org.eclipse.core.internal.registry.osgi.RegistryStrategyOSGI.createExecutableExtension(RegistryStrategyOSGI.java:174) at org.eclipse.core.internal.registry.ExtensionRegistry.createExecutableExtension(ExtensionRegistry.java:905) at org.eclipse.core.internal.registry.ConfigurationElement.createExecutableExtension(ConfigurationElement.java:243) at org.eclipse.core.internal.registry.ConfigurationElementHandle.createExecutableExtension(ConfigurationElementHandle.java:55) at org.eclipse.contribution.jdt.cuprovider.CompilationUnitProviderRegistry.registerProviders(CompilationUnitProviderRegistry.java:69) at org.eclipse.contribution.jdt.cuprovider.CompilationUnitProviderRegistry.getProvider(CompilationUnitProviderRegistry.java:46) at org.eclipse.contribution.jdt.cuprovider.CompilationUnitProviderAspect.ajc$inlineAccessMethod$org_eclipse_contribution_jdt_cuprovider_CompilationUnitProviderAspect$org_eclipse_contribution_jdt_cuprovider_CompilationUnitProviderRegistry$getProvider(CompilationUnitProviderAspect.aj:1) at org.eclipse.jdt.internal.core.PackageFragment.init$_aroundBody7$advice(PackageFragment.java:47) at org.eclipse.jdt.internal.core.PackageFragment.getCompilationUnit(PackageFragment.java:216) at org.eclipse.jdt.internal.core.JavaModelManager.createCompilationUnitFrom(JavaModelManager.java:962) at org.eclipse.jdt.internal.core.JavaModelManager.create(JavaModelManager.java:871) at org.eclipse.jdt.core.JavaCore.create(JavaCore.java:2622) at org.eclipse.jdt.internal.ui.javaeditor.CompilationUnitDocumentProvider.createCompilationUnit(CompilationUnitDocumentProvider.java:941) at org.eclipse.jdt.internal.ui.javaeditor.CompilationUnitDocumentProvider.createFileInfo(CompilationUnitDocumentProvider.java:974) at org.eclipse.ui.editors.text.TextFileDocumentProvider.connect(TextFileDocumentProvider.java:478) at org.eclipse.jdt.internal.ui.javaeditor.CompilationUnitDocumentProvider.connect(CompilationUnitDocumentProvider.java:1243) at org.eclipse.ui.texteditor.AbstractTextEditor.doSetInput(AbstractTextEditor.java:4213) at org.eclipse.ui.texteditor.StatusTextEditor.doSetInput(StatusTextEditor.java:237) at org.eclipse.ui.texteditor.AbstractDecoratedTextEditor.doSetInput(AbstractDecoratedTextEditor.java:1451) at org.eclipse.jdt.internal.ui.javaeditor.JavaEditor.internalDoSetInput(JavaEditor.java:2563) at org.eclipse.jdt.internal.ui.javaeditor.JavaEditor.doSetInput(JavaEditor.java:2536) at org.eclipse.jdt.internal.ui.javaeditor.CompilationUnitEditor.doSetInput(CompilationUnitEditor.java:1395) at org.eclipse.ui.texteditor.AbstractTextEditor$19.run(AbstractTextEditor.java:3200) at org.eclipse.jface.operation.ModalContext.runInCurrentThread(ModalContext.java:464) at org.eclipse.jface.operation.ModalContext.run(ModalContext.java:372) at org.eclipse.jface.window.ApplicationWindow$1.run(ApplicationWindow.java:759) at org.eclipse.swt.custom.BusyIndicator.showWhile(BusyIndicator.java:70) at org.eclipse.jface.window.ApplicationWindow.run(ApplicationWindow.java:756) at org.eclipse.ui.internal.WorkbenchWindow.run(WorkbenchWindow.java:2642) at org.eclipse.ui.texteditor.AbstractTextEditor.internalInit(AbstractTextEditor.java:3218) at org.eclipse.ui.texteditor.AbstractTextEditor.init(AbstractTextEditor.java:3245) at org.eclipse.ui.internal.EditorManager.createSite(EditorManager.java:828) at org.eclipse.ui.internal.EditorReference.createPartHelper(EditorReference.java:647) at org.eclipse.ui.internal.EditorReference.createPart(EditorReference.java:465) at org.eclipse.ui.internal.WorkbenchPartReference.getPart(WorkbenchPartReference.java:595) at org.eclipse.ui.internal.EditorAreaHelper.setVisibleEditor(EditorAreaHelper.java:271) at org.eclipse.ui.internal.EditorManager.setVisibleEditor(EditorManager.java:1459) at org.eclipse.ui.internal.EditorManager$5.runWithException(EditorManager.java:972) at org.eclipse.ui.internal.StartupThreading$StartupRunnable.run(StartupThreading.java:31) at org.eclipse.swt.widgets.RunnableLock.run(RunnableLock.java:35) at org.eclipse.swt.widgets.Synchronizer.runAsyncMessages(Synchronizer.java:135) at org.eclipse.swt.widgets.Display.runAsyncMessages(Display.java:3563) at org.eclipse.swt.widgets.Display.readAndDispatch(Display.java:3212) at org.eclipse.ui.application.WorkbenchAdvisor.openWindows(WorkbenchAdvisor.java:803) at org.eclipse.ui.internal.Workbench$33.runWithException(Workbench.java:1595) at org.eclipse.ui.internal.StartupThreading$StartupRunnable.run(StartupThreading.java:31) at org.eclipse.swt.widgets.RunnableLock.run(RunnableLock.java:35) at org.eclipse.swt.widgets.Synchronizer.runAsyncMessages(Synchronizer.java:135) at org.eclipse.swt.widgets.Display.runAsyncMessages(Display.java:3563) at org.eclipse.swt.widgets.Display.readAndDispatch(Display.java:3212) at org.eclipse.ui.internal.Workbench.runUI(Workbench.java:2604) at org.eclipse.ui.internal.Workbench.access$4(Workbench.java:2494) at org.eclipse.ui.internal.Workbench$7.run(Workbench.java:674) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:667) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:123) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:344) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:601) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:622) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:577) at org.eclipse.equinox.launcher.Main.run(Main.java:1410) at org.eclipse.equinox.launcher.Main.main(Main.java:1386) [StartupDiagnostics$] startup diagnostics: previous version = 2.0.0.rc01-2_09-201111091447-ce49e0a [StartupDiagnostics$] startup diagnostics: CURRENT version = 2.0.0.rc01-2_09-201111091447-ce49e0a [ScalaPlugin] Scala compiler bundle: reference:file:plugins/org.scala-ide.scala.compiler_2.9.2.r25964-b20111108034957.jar [org.eclipse.jdt.core] warning at org/eclipse/contribution/jdt/sourceprovider/SourceTransformerAspect.aj:106::0 does not match because declaring type is org.eclipse.jdt.core.IOpenable, if match desired use target(org.eclipse.jdt.core.ICompilationUnit) [Xlint:unmatchedSuperTypeInCall] see also: org/eclipse/jdt/internal/core/LocalVariable.java:363::0 [org.eclipse.contribution.weaving.jdt] error at org/eclipse/contribution/jdt/imagedescriptor/ImageDescriptorSelectorAspect.aj::0 class 'org.eclipse.contribution.jdt.imagedescriptor.ImageDescriptorSelectorAspect' is already woven and has not been built in reweavable mode [org.eclipse.jdt.ui] warning at org/eclipse/contribution/jdt/sourceprovider/SourceTransformerAspect.aj:106::0 does not match because declaring type is org.eclipse.jdt.core.IOpenable, if match desired use target(org.eclipse.jdt.core.ICompilationUnit) [Xlint:unmatchedSuperTypeInCall] see also: org/eclipse/jdt/internal/ui/text/java/hover/JavadocHover.java:630::0 [org.eclipse.contribution.weaving.jdt] error at org/eclipse/contribution/jdt/itdawareness/ITDAwarenessAspect.aj::0 class 'org.eclipse.contribution.jdt.itdawareness.ITDAwarenessAspect' is already woven and has not been built in reweavable mode [ScalaPlugin] open Ride.java

    Read the article

  • Maven2 - problem with pluginManagement and parent-child relationship

    - by Newtopian
    from maven documentation pluginManagement: is an element that is seen along side plugins. Plugin Management contains plugin elements in much the same way, except that rather than configuring plugin information for this particular project build, it is intended to configure project builds that inherit from this one. However, this only configures plugins that are actually referenced within the plugins element in the children. The children have every right to override pluginManagement definitions. Now : if I have this in my parent POM <build> <pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <executions> Some stuff for the children </execution> </executions> </plugin> </plugins> </pluginManagement> </build> and I run mvn help:effective-pom on the parent project I get what I want, namely the plugins part directly under build (the one doing the work) remains empty. Now if I do the following : <build> <pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <executions> Some stuff for the children </execution> </executions> </plugin> </plugins> </pluginManagement> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>2.0.2</version> <inherited>true</inherited> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> </plugins> </build> mvn help:effective-pom I get again just what I want, the plugins contains just what is declared and the pluginManagement section is ignored. BUT changing with the following <build> <pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <executions> Some stuff for the children </execution> </executions> </plugin> </plugins> </pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <inherited>false</inherited> <!-- this perticular config is NOT for kids... for parent only --> <executions> some stuff for adults only </execution> </executions> </plugin> </plugins> </build> and running mvn help:effective-pom the stuff from pluginManagement section is added on top of what is declared already. as such : <build> <pluginManagement> ... </pluginManagement> <plugins> <plugin> <artifactId>maven-dependency-plugin</artifactId> <version>2.0</version> <inherited>false</inherited> <!-- this perticular config is NOT for kids... for parent only --> <executions> Some stuff for the children </execution> <executions> some stuff for adults only </execution> </executions> </plugin> </plugins> </build> Is there a way to exclude the part for children from the parent pom's section ? In effect what I want is for the pluginManagement to behave exactly as the documentation states, that is I want it to apply for children only but not for the project in which it is declared. As a corrolary, is there a way I can override the parts from the pluginManagement by declaring the plugin in the normal build section of a project ? whatever I try I get that the section is added to executions but I cannot override one that exists already. EDIT: I never did find an acceptable solution for this and as such the issue remains open. Closest solution was offered below and is currently the accepted solution for this question until something better comes up. Right now there are three ways to achieve the desired result (modulate plugin behaviour depending on where in the inheritance hierarchy the current POM is): 1 - using profiles, it will work but you must beware that profiles are not inherited, which is somewhat counter intuitive. They are (if activated) applied to the POM where declared and then this generated POM is propagated down. As such the only way to activate the profile for child POM is specifically on the command line (least I did not find another way). Property, file and other means of activation fail to activate the POM because the trigger is not in the POM where the profile is declared. 2 - (this is what I ended up doing) Declare the plugin as not inherited in the parent and re-declare (copy-paste) the tidbit in every child where it is wanted. Not ideal but it is simple and it works. 3 - Split the aggregation nature and parent nature of the parent POM. Then since the part that only applies to the parent is in a different project it is now possible to use pluginManagement as firstly intended. However this means that a new artificial project must be created that does not contribute to the end product but only serves the could system. This is clear case of conceptual bleed. Also this only applies to my specific and is hard to generalize, so I abandoned efforts to try and make this work in favor of the not-pretty but more contained cut and paste patch described in 2. If anyone coming across this question has a better solution either because of my lack of knowledge of Maven or because the tool evolved to allow this please post the solution here for future reference. Thank you all for your help :-)

    Read the article

  • makefile pathing issues on OSX

    - by Justin808
    OK, I thought I would try one last update and see if it gets me anywhere. I've created a very small test case. This should not build anything, it just tests the path settings. Also I've setup the path so there are no spaces. The is the smallest, simplest test case I could come up with. This makefile will set the path, echo the path, run avr-gcc -v with the full path specified and then try to run it without the full path specified. It should find avr-gcc in the path on the second try, but does not. makefile TOOLCHAIN := /Users/justinzaun/Desktop/AVRBuilder.app/Contents/Resources/avrchain PATH := ${TOOLCHAIN}/bin:${PATH} export PATH all: @echo ${PATH} @echo -------- "${TOOLCHAIN}/bin/avr-gcc" -v @echo -------- avr-gcc -v output JUSTINs-MacBook-Air:Untitled justinzaun$ make /Users/justinzaun/Desktop/AVRBuilder.app/Contents/Resources/avrchain/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin -------- "/Users/justinzaun/Desktop/AVRBuilder.app/Contents/Resources/avrchain/bin/avr-gcc" -v Using built-in specs. COLLECT_GCC=/Users/justinzaun/Desktop/AVRBuilder.app/Contents/Resources/avrchain/bin/avr-gcc COLLECT_LTO_WRAPPER=/Users/justinzaun/Desktop/AVRBuilder.app/Contents/Resources/avrchain/bin/../libexec/gcc/avr/4.6.3/lto-wrapper Target: avr Configured with: /Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../gcc/configure --prefix=/Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../build/ --exec-prefix=/Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../build/ --datadir=/Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../build/ --target=avr --enable-languages=c,objc,c++ --disable-libssp --disable-lto --disable-nls --disable-libgomp --disable-gdbtk --disable-threads --enable-poison-system-directories Thread model: single gcc version 4.6.3 (GCC) -------- avr-gcc -v make: avr-gcc: No such file or directory make: *** [all] Error 1 JUSTINs-MacBook-Air:Untitled justinzaun$ Original Question I'm trying to set the path from within the makefile. I can't seem to do this on OSX. Setting the path with PATH := /new/bin/:$(PATH) does not work. See my makefile below. makefile PROJECTNAME = Untitled # Name of target controller # (e.g. 'at90s8515', see the available avr-gcc mmcu # options for possible values) MCU = atmega640 # id to use with programmer # default: PROGRAMMER_MCU=$(MCU) # In case the programer used, e.g avrdude, doesn't # accept the same MCU name as avr-gcc (for example # for ATmega8s, avr-gcc expects 'atmega8' and # avrdude requires 'm8') PROGRAMMER_MCU = $(MCU) # Source files # List C/C++/Assembly source files: # (list all files to compile, e.g. 'a.c b.cpp as.S'): # Use .cc, .cpp or .C suffix for C++ files, use .S # (NOT .s !!!) for assembly source code files. PRJSRC = main.c \ utils.c # additional includes (e.g. -I/path/to/mydir) INC = # libraries to link in (e.g. -lmylib) LIBS = # Optimization level, # use s (size opt), 1, 2, 3 or 0 (off) OPTLEVEL = s ### You should not have to touch anything below this line ### PATH := /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/bin:/usr/bin:/bin:$(PATH) CPATH := /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/include # HEXFORMAT -- format for .hex file output HEXFORMAT = ihex # compiler CFLAGS = -I. $(INC) -g -mmcu=$(MCU) -O$(OPTLEVEL) \ -fpack-struct -fshort-enums \ -funsigned-bitfields -funsigned-char \ -Wall -Wstrict-prototypes \ -Wa,-ahlms=$(firstword \ $(filter %.lst, $(<:.c=.lst))) # c++ specific flags CPPFLAGS = -fno-exceptions \ -Wa,-ahlms=$(firstword \ $(filter %.lst, $(<:.cpp=.lst)) \ $(filter %.lst, $(<:.cc=.lst)) \ $(filter %.lst, $(<:.C=.lst))) # assembler ASMFLAGS = -I. $(INC) -mmcu=$(MCU) \ -x assembler-with-cpp \ -Wa,-gstabs,-ahlms=$(firstword \ $(<:.S=.lst) $(<.s=.lst)) # linker LDFLAGS = -Wl,-Map,$(TRG).map -mmcu=$(MCU) \ -lm $(LIBS) ##### executables #### CC=avr-gcc OBJCOPY=avr-objcopy OBJDUMP=avr-objdump SIZE=avr-size AVRDUDE=avrdude REMOVE=rm -f ##### automatic target names #### TRG=$(PROJECTNAME).out DUMPTRG=$(PROJECTNAME).s HEXROMTRG=$(PROJECTNAME).hex HEXTRG=$(HEXROMTRG) $(PROJECTNAME).ee.hex # Start by splitting source files by type # C++ CPPFILES=$(filter %.cpp, $(PRJSRC)) CCFILES=$(filter %.cc, $(PRJSRC)) BIGCFILES=$(filter %.C, $(PRJSRC)) # C CFILES=$(filter %.c, $(PRJSRC)) # Assembly ASMFILES=$(filter %.S, $(PRJSRC)) # List all object files we need to create OBJDEPS=$(CFILES:.c=.o) \ $(CPPFILES:.cpp=.o) \ $(BIGCFILES:.C=.o) \ $(CCFILES:.cc=.o) \ $(ASMFILES:.S=.o) # Define all lst files. LST=$(filter %.lst, $(OBJDEPS:.o=.lst)) # All the possible generated assembly # files (.s files) GENASMFILES=$(filter %.s, $(OBJDEPS:.o=.s)) .SUFFIXES : .c .cc .cpp .C .o .out .s .S \ .hex .ee.hex .h .hh .hpp # Make targets: # all, disasm, stats, hex, writeflash/install, clean all: $(TRG) $(TRG): $(OBJDEPS) $(CC) $(LDFLAGS) -o $(TRG) $(OBJDEPS) #### Generating assembly #### # asm from C %.s: %.c $(CC) -S $(CFLAGS) $< -o $@ # asm from (hand coded) asm %.s: %.S $(CC) -S $(ASMFLAGS) $< > $@ # asm from C++ .cpp.s .cc.s .C.s : $(CC) -S $(CFLAGS) $(CPPFLAGS) $< -o $@ #### Generating object files #### # object from C .c.o: $(CC) $(CFLAGS) -c $< -o $@ # object from C++ (.cc, .cpp, .C files) .cc.o .cpp.o .C.o : $(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $@ # object from asm .S.o : $(CC) $(ASMFLAGS) -c $< -o $@ #### Generating hex files #### # hex files from elf .out.hex: $(OBJCOPY) -j .text \ -j .data \ -O $(HEXFORMAT) $< $@ .out.ee.hex: $(OBJCOPY) -j .eeprom \ --change-section-lma .eeprom=0 \ -O $(HEXFORMAT) $< $@ #### Information #### info: @echo PATH: @echo "$(PATH)" $(CC) -v which $(CC) #### Cleanup #### clean: $(REMOVE) $(TRG) $(TRG).map $(DUMPTRG) $(REMOVE) $(OBJDEPS) $(REMOVE) $(LST) $(REMOVE) $(GENASMFILES) $(REMOVE) $(HEXTRG) error JUSTINs-MacBook-Air:Untitled justinzaun$ make avr-gcc -I. -g -mmcu=atmega640 -Os -fpack-struct -fshort-enums -funsigned-bitfields -funsigned-char -Wall -Wstrict-prototypes -Wa,-ahlms=main.lst -c main.c -o main.o make: avr-gcc: No such file or directory make: *** [main.o] Error 1 JUSTINs-MacBook-Air:Untitled justinzaun$ If I change my CC= to include the full path: CC=/Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/bin/avr-gcc then it finds it, but this doesn't seem the correct way to do things. For instance its trying to use the system as not the one in the correct path. update - Just to be sure, I'm adding the output of my ls command too so everyone knows the file exist. Also I've added a make info target to the makefile and showing that output as well. JUSTINs-MacBook-Air:Untitled justinzaun$ ls /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/bin ar avr-elfedit avr-man avr-strip objcopy as avr-g++ avr-nm avrdude objdump avr-addr2line avr-gcc avr-objcopy c++ ranlib avr-ar avr-gcc-4.6.3 avr-objdump g++ strip avr-as avr-gcov avr-ranlib gcc avr-c++ avr-gprof avr-readelf ld avr-c++filt avr-ld avr-size ld.bfd avr-cpp avr-ld.bfd avr-strings nm JUSTINs-MacBook-Air:Untitled justinzaun$ Output of make info with the \ in my path JUSTINs-MacBook-Air:Untitled justinzaun$ make info PATH: /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin avr-gcc -v make: avr-gcc: No such file or directory make: *** [info] Error 1 JUSTINs-MacBook-Air:Untitled justinzaun$ Output of make info with the \ not in my path JUSTINs-MacBook-Air:Untitled justinzaun$ make info PATH: /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR Builder.app/Contents/Resources/avrchain/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin avr-gcc -v make: avr-gcc: No such file or directory make: *** [info] Error 1 JUSTINs-MacBook-Air:Untitled justinzaun$ update - When I have my CC set to include the full path as described above, this is the result of make info. JUSTINs-MacBook-Air:Untitled justinzaun$ make info PATH: /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR Builder.app/Contents/Resources/avrchain/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/bin/avr-gcc -v Using built-in specs. COLLECT_GCC=/Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR Builder.app/Contents/Resources/avrchain/bin/avr-gcc COLLECT_LTO_WRAPPER=/Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR Builder.app/Contents/Resources/avrchain/bin/../libexec/gcc/avr/4.6.3/lto-wrapper Target: avr Configured with: /Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../gcc/configure --prefix=/Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../build/ --exec-prefix=/Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../build/ --datadir=/Users/justinzaun/Development/AVRBuilder/Packages/gccobj/../build/ --target=avr --enable-languages=c,objc,c++ --disable-libssp --disable-lto --disable-nls --disable-libgomp --disable-gdbtk --disable-threads --enable-poison-system-directories Thread model: single gcc version 4.6.3 (GCC) which /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR\ Builder.app/Contents/Resources/avrchain/bin/avr-gcc /Users/justinzaun/Library/Developer/Xcode/DerivedData/AVR_Builder-gxiykwiwjywvoagykxvmotvncbyd/Build/Products/Debug/AVR Builder.app/Contents/Resources/avrchain/bin/avr-gcc JUSTINs-MacBook-Air:Untitled justinzaun$

    Read the article

< Previous Page | 224 225 226 227 228 229 230  | Next Page >