Search Results

Search found 6392 results on 256 pages for 'reduce duplicate'.

Page 237/256 | < Previous Page | 233 234 235 236 237 238 239 240 241 242 243 244  | Next Page >

  • Pre-rentrée Oracle Open World 2012 : à vos agendas

    - by Eric Bezille
    A maintenant moins d'un mois de l’événement majeur d'Oracle, qui se tient comme chaque année à San Francisco, fin septembre, début octobre, les spéculations vont bon train sur les annonces qui vont y être dévoilées... Et sans lever le voile, je vous engage à prendre connaissance des sujets des "Key Notes" qui seront tenues par Larry Ellison, Mark Hurd, Thomas Kurian (responsable des développements logiciels) et John Fowler (responsable des développements systèmes) afin de vous donner un avant goût. Stratégie et Roadmaps Oracle Bien entendu, au-delà des séances plénières qui vous donnerons  une vision précise de la stratégie, et pour ceux qui seront sur place, je vous engage à ne pas manquer les séances d'approfondissement qui auront lieu dans la semaine, dont voici quelques morceaux choisis : "Accelerate your Business with the Oracle Hardware Advantage" avec John Fowler, le lundi 1er Octobre, 3:15pm-4:15pm "Why Oracle Softwares Runs Best on Oracle Hardware" , avec Bradley Carlile, le responsable des Benchmarks, le lundi 1er Octobre, 12:15pm-13:15pm "Engineered Systems - from Vision to Game-changing Results", avec Robert Shimp, le lundi 1er Octobre 1:45pm-2:45pm "Database and Application Consolidation on SPARC Supercluster", avec Hugo Rivero, responsable dans les équipes d'intégration matériels et logiciels, le lundi 1er Octobre, 4:45pm-5:45pm "Oracle’s SPARC Server Strategy Update", avec Masood Heydari, responsable des développements serveurs SPARC, le mardi 2 Octobre, 10:15am - 11:15am "Oracle Solaris 11 Strategy, Engineering Insights, and Roadmap", avec Markus Flier, responsable des développements Solaris, le mercredi 3 Octobre, 10:15am - 11:15am "Oracle Virtualization Strategy and Roadmap", avec Wim Coekaerts, responsable des développement Oracle VM et Oracle Linux, le lundi 1er Octobre, 12:15pm-1:15pm "Big Data: The Big Story", avec Jean-Pierre Dijcks, responsable du développement produits Big Data, le lundi 1er Octobre, 3:15pm-4:15pm "Scaling with the Cloud: Strategies for Storage in Cloud Deployments", avec Christine Rogers,  Principal Product Manager, et Chris Wood, Senior Product Specialist, Stockage , le lundi 1er Octobre, 10:45am-11:45am Retours d'expériences et témoignages Si Oracle Open World est l'occasion de partager avec les équipes de développement d'Oracle en direct, c'est aussi l'occasion d'échanger avec des clients et experts qui ont mis en oeuvre  nos technologies pour bénéficier de leurs retours d'expériences, comme par exemple : "Oracle Optimized Solution for Siebel CRM at ACCOR", avec les témoignages d'Eric Wyttynck, directeur IT Multichannel & CRM  et Pascal Massenet, VP Loyalty & CRM systems, sur les bénéfices non seulement métiers, mais également projet et IT, le mercredi 3 Octobre, 1:15pm-2:15pm "Tips from AT&T: Oracle E-Business Suite, Oracle Database, and SPARC Enterprise", avec le retour d'expérience des experts Oracle, le mardi 2 Octobre, 11:45am-12:45pm "Creating a Maximum Availability Architecture with SPARC SuperCluster", avec le témoignage de Carte Wright, Database Engineer à CKI, le mercredi 3 Octobre, 11:45am-12:45pm "Multitenancy: Everybody Talks It, Oracle Walks It with Pillar Axiom Storage", avec le témoignage de Stephen Schleiger, Manager Systems Engineering de Navis, le lundi 1er Octobre, 1:45pm-2:45pm "Oracle Exadata for Database Consolidation: Best Practices", avec le retour d'expérience des experts Oracle ayant participé à la mise en oeuvre d'un grand client du monde bancaire, le lundi 1er Octobre, 4:45pm-5:45pm "Oracle Exadata Customer Panel: Packaged Applications with Oracle Exadata", animé par Tim Shetler, VP Product Management, mardi 2 Octobre, 1:15pm-2:15pm "Big Data: Improving Nearline Data Throughput with the StorageTek SL8500 Modular Library System", avec le témoignage du CTO de CSC, Alan Powers, le jeudi 4 Octobre, 12:45pm-1:45pm "Building an IaaS Platform with SPARC, Oracle Solaris 11, and Oracle VM Server for SPARC", avec le témoignage de Syed Qadri, Lead DBA et Michael Arnold, System Architect d'US Cellular, le mardi 2 Octobre, 10:15am-11:15am "Transform Data Center TCO with Oracle Optimized Servers: A Customer Panel", avec les témoignages notamment d'AT&T et Liberty Global, le mardi 2 Octobre, 11:45am-12:45pm "Data Warehouse and Big Data Customers’ View of the Future", avec The Nielsen Company US, Turkcell, GE Retail Finance, Allianz Managed Operations and Services SE, le lundi 1er Octobre, 4:45pm-5:45pm "Extreme Storage Scale and Efficiency: Lessons from a 100,000-Person Organization", le témoignage de l'IT interne d'Oracle sur la transformation et la migration de l'ensemble de notre infrastructure de stockage, mardi 2 Octobre, 1:15pm-2:15pm Echanges avec les groupes d'utilisateurs et les équipes de développement Oracle Si vous avez prévu d'arriver suffisamment tôt, vous pourrez également échanger dès le dimanche avec les groupes d'utilisateurs, ou tous les soirs avec les équipes de développement Oracle sur des sujets comme : "To Exalogic or Not to Exalogic: An Architectural Journey", avec Todd Sheetz - Manager of DBA and Enterprise Architecture, Veolia Environmental Services, le dimanche 30 Septembre, 2:30pm-3:30pm "Oracle Exalytics and Oracle TimesTen for Exalytics Best Practices", avec Mark Rittman, de Rittman Mead Consulting Ltd, le dimanche 30 Septembre, 10:30am-11:30am "Introduction of Oracle Exadata at Telenet: Bringing BI to Warp Speed", avec Rudy Verlinden & Eric Bartholomeus - Managers IT infrastructure à Telenet, le dimanche 30 Septembre, 1:15pm-2:00pm "The Perfect Marriage: Sun ZFS Storage Appliance with Oracle Exadata", avec Melanie Polston, directeur, Data Management, de Novation et Charles Kim, Managing Director de Viscosity, le dimanche 30 Septembre, 9:00am-10am "Oracle’s Big Data Solutions: NoSQL, Connectors, R, and Appliance Technologies", avec Jean-Pierre Dijcks et les équipes de développement Oracle, le lundi 1er Octobre, 6:15pm-7:00pm Testez et évaluez les solutions Et pour finir, vous pouvez même tester les technologies au travers du Oracle DemoGrounds, (1133 Moscone South pour la partie Systèmes Oracle, OS, et Virtualisation) et des "Hands-on-Labs", comme : "Deploying an IaaS Environment with Oracle VM", le mardi 2 Octobre, 10:15am-11:15am "Virtualize and Deploy Oracle Applications in Minutes with Oracle VM: Hands-on Lab", le mardi 2 Octobre, 11:45am-12:45pm (il est fortement conseillé d'avoir suivi le "Hands-on-Labs" précédent avant d'effectuer ce Lab. "x86 Enterprise Cloud Infrastructure with Oracle VM 3.x and Sun ZFS Storage Appliance", le mercredi 3 Octobre, 5:00pm-6:00pm "StorageTek Tape Analytics: Managing Tape Has Never Been So Simple", le mercredi 3 Octobre, 1:15pm-2:15pm "Oracle’s Pillar Axiom 600 Storage System: Power and Ease", le lundi 1er Octobre, 12:15pm-1:15pm "Enterprise Cloud Infrastructure for SPARC with Oracle Enterprise Manager Ops Center 12c", le lundi 1er Octobre, 1:45pm-2:45pm "Managing Storage in the Cloud", le mardi 2 Octobre, 5:00pm-6:00pm "Learn How to Write MapReduce on Oracle’s Big Data Platform", le lundi 1er Octobre, 12:15pm-1:15pm "Oracle Big Data Analytics and R", le mardi 2 Octobre, 1:15pm-2:15pm "Reduce Risk with Oracle Solaris Access Control to Restrain Users and Isolate Applications", le lundi 1er Octobre, 10:45am-11:45am "Managing Your Data with Built-In Oracle Solaris ZFS Data Services in Release 11", le lundi 1er Octobre, 4:45pm-5:45pm "Virtualizing Your Oracle Solaris 11 Environment", le mardi 2 Octobre, 1:15pm-2:15pm "Large-Scale Installation and Deployment of Oracle Solaris 11", le mercredi 3 Octobre, 3:30pm-4:30pm En conclusion, une semaine très riche en perspective, et qui vous permettra de balayer l'ensemble des sujets au coeur de vos préoccupations, de la stratégie à l'implémentation... Cette semaine doit se préparer, pour tailler votre agenda sur mesure, à travers les plus de 2000 sessions dont je ne vous ai fait qu'un extrait, et dont vous pouvez retrouver l'ensemble en ligne.

    Read the article

  • European Interoperability Framework - a new beginning?

    - by trond-arne.undheim
    The most controversial document in the history of the European Commission's IT policy is out. EIF is here, wrapped in the Communication "Towards interoperability for European public services", and including the new feature European Interoperability Strategy (EIS), arguably a higher strategic take on the same topic. Leaving EIS aside for a moment, the EIF controversy has been around IPR, defining open standards and about the proper terminology around standardization deliverables. Today, as the document finally emerges, what is the verdict? First of all, to be fair to those among you who do not spend your lives in the intricate labyrinths of Commission IT policy documents on interoperability, let's define what we are talking about. According to the Communication: "An interoperability framework is an agreed approach to interoperability for organisations that want to collaborate to provide joint delivery of public services. Within its scope of applicability, it specifies common elements such as vocabulary, concepts, principles, policies, guidelines, recommendations, standards, specifications and practices." The Good - EIF reconfirms that "The Digital Agenda can only take off if interoperability based on standards and open platforms is ensured" and also confirms that "The positive effect of open specifications is also demonstrated by the Internet ecosystem." - EIF takes a productive and pragmatic stance on openness: "In the context of the EIF, openness is the willingness of persons, organisations or other members of a community of interest to share knowledge and stimulate debate within that community, the ultimate goal being to advance knowledge and the use of this knowledge to solve problems" (p.11). "If the openness principle is applied in full: - All stakeholders have the same possibility of contributing to the development of the specification and public review is part of the decision-making process; - The specification is available for everybody to study; - Intellectual property rights related to the specification are licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software" (p. 26). - EIF is a formal Commission document. The former EIF 1.0 was a semi-formal deliverable from the PEGSCO, a working group of Member State representatives. - EIF tackles interoperability head-on and takes a clear stance: "Recommendation 22. When establishing European public services, public administrations should prefer open specifications, taking due account of the coverage of functional needs, maturity and market support." - The Commission will continue to support the National Interoperability Framework Observatory (NIFO), reconfirming the importance of coordinating such approaches across borders. - The Commission will align its internal interoperability strategy with the EIS through the eCommission initiative. - One cannot stress the importance of using open standards enough, whether in the context of open source or non-open source software. The EIF seems to have picked up on this fact: What does the EIF says about the relation between open specifications and open source software? The EIF introduces, as one of the characteristics of an open specification, the requirement that IPRs related to the specification have to be licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software. In this way, companies working under various business models can compete on an equal footing when providing solutions to public administrations while administrations that implement the standard in their own software (software that they own) can share such software with others under an open source licence if they so decide. - EIF is now among the center pieces of the Digital Agenda (even though this demands extensive inter-agency coordination in the Commission): "The EIS and the EIF will be maintained under the ISA Programme and kept in line with the results of other relevant Digital Agenda actions on interoperability and standards such as the ones on the reform of rules on implementation of ICT standards in Europe to allow use of certain ICT fora and consortia standards, on issuing guidelines on essential intellectual property rights and licensing conditions in standard-setting, including for ex-ante disclosure, and on providing guidance on the link between ICT standardisation and public procurement to help public authorities to use standards to promote efficiency and reduce lock-in.(Communication, p.7)" All in all, quite a few good things have happened to the document in the two years it has been on the shelf or was being re-written, depending on your perspective, in any case, awaiting the storms to calm. The Bad - While a certain pragmatism is required, and governments cannot migrate to full openness overnight, EIF gives a bit too much room for governments not to apply the openness principle in full. Plenty of reasons are given, which should maybe have been put as challenges to be overcome: "However, public administrations may decide to use less open specifications, if open specifications do not exist or do not meet functional interoperability needs. In all cases, specifications should be mature and sufficiently supported by the market, except if used in the context of creating innovative solutions". - EIF does not use the internationally established terminology: open standards. Rather, the EIF introduces the notion of "formalised specification". How do "formalised specifications" relate to "standards"? According to the FAQ provided: The word "standard" has a specific meaning in Europe as defined by Directive 98/34/EC. Only technical specifications approved by a recognised standardisation body can be called a standard. Many ICT systems rely on the use of specifications developed by other organisations such as a forum or consortium. The EIF introduces the notion of "formalised specification", which is either a standard pursuant to Directive 98/34/EC or a specification established by ICT fora and consortia. The term "open specification" used in the EIF, on the one hand, avoids terminological confusion with the Directive and, on the other, states the main features that comply with the basic principle of openness laid down in the EIF for European Public Services. Well, this may be somewhat true, but in reality, Europe is 30 year behind in terminology. Unless the European Standardization Reform gets completed in the next few months, most Member States will likely conclude that they will go on referencing and using standards beyond those created by the three European endorsed monopolists of standardization, CEN, CENELEC and ETSI. Who can afford to begin following the strict Brussels rules for what they can call open standards when, in reality, standards stemming from global standardization organizations, so-called fora/consortia, dominate in the IT industry. What exactly is EIF saying? Does it encourage Member States to go on using non-ESO standards as long as they call it something else? I guess I am all for it, although it is a bit cumbersome, no? Why was there so much interest around the EIF? The FAQ attempts to explain: Some Member States have begun to adopt policies to achieve interoperability for their public services. These actions have had a significant impact on the ecosystem built around the provision of such services, e.g. providers of ICT goods and services, standardisation bodies, industry fora and consortia, etc... The Commission identified a clear need for action at European level to ensure that actions by individual Member States would not create new electronic barriers that would hinder the development of interoperable European public services. As a result, all stakeholders involved in the delivery of electronic public services in Europe have expressed their opinions on how to increase interoperability for public services provided by the different public administrations in Europe. Well, it does not take two years to read 50 consultation documents, and the EU Standardization Reform is not yet completed, so, more pragmatically, you finally had to release the document. Ok, let's leave some of that aside because the document is out and some people are happy (and others definitely not). The Verdict Considering the controversy, the delays, the lobbying, and the interests at stake both in the EU, in Member States and among vendors large and small, this document is pretty impressive. As with a good wine that has not yet come to full maturity, let's say that it seems to be coming in in the 85-88/100 range, but only a more fine-grained analysis, enjoyment in good company, and ultimately, implementation, will tell. The European Commission has today adopted a significant interoperability initiative to encourage public administrations across the EU to maximise the social and economic potential of information and communication technologies. Today, we should rally around this achievement. Tomorrow, let's sit down and figure out what it means for the future.

    Read the article

  • New Feature in ODI 11.1.1.6: ODI for Big Data

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} By Ananth Tirupattur Starting with Oracle Data Integrator 11.1.1.6.0, ODI is offering a solution to process Big Data. This post provides an overview of this feature. With all the buzz around Big Data and before getting into the details of ODI for Big Data, I will provide a brief introduction to Big Data and Oracle Solution for Big Data. So, what is Big Data? Big data includes: structured data (this includes data from relation data stores, xml data stores), semi-structured data (this includes data from weblogs) unstructured data (this includes data from text blob, images) Traditionally, business decisions are based on the information gathered from transactional data. For example, transactional Data from CRM applications is fed to a decision system for analysis and decision making. Products such as ODI play a key role in enabling decision systems. However, with the emergence of massive amounts of semi-structured and unstructured data it is important for decision system to include them in the analysis to achieve better decision making capability. While there is an abundance of opportunities for business for gaining competitive advantages, process of Big Data has challenges. The challenges of processing Big Data include: Volume of data Velocity of data - The high Rate at which data is generated Variety of data In order to address these challenges and convert them into opportunities, we would need an appropriate framework, platform and the right set of tools. Hadoop is an open source framework which is highly scalable, fault tolerant system, for storage and processing large amounts of data. Hadoop provides 2 key services, distributed and reliable storage called Hadoop Distributed File System or HDFS and a framework for parallel data processing called Map-Reduce. Innovations in Hadoop and its related technology continue to rapidly evolve, hence therefore, it is highly recommended to follow information on the web to keep up with latest information. Oracle's vision is to provide a comprehensive solution to address the challenges faced by Big Data. Oracle is providing the necessary Hardware, software and tools for processing Big Data Oracle solution includes: Big Data Appliance Oracle NoSQL Database Cloudera distribution for Hadoop Oracle R Enterprise- R is a statistical package which is very popular among data scientists. ODI solution for Big Data Oracle Loader for Hadoop for loading data from Hadoop to Oracle. Further details can be found here: http://www.oracle.com/us/products/database/big-data-appliance/overview/index.html ODI Solution for Big Data: ODI’s goal is to minimize the need to understand the complexity of Hadoop framework and simplify the adoption of processing Big Data seamlessly in an enterprise. ODI is providing the capabilities for an integrated architecture for processing Big Data. This includes capability to load data in to Hadoop, process data in Hadoop and load data from Hadoop into Oracle. ODI is expanding its support for Big Data by providing the following out of the box Knowledge Modules (KMs). IKM File to Hive (LOAD DATA).Load unstructured data from File (Local file system or HDFS ) into Hive IKM Hive Control AppendTransform and validate structured data on Hive IKM Hive TransformTransform unstructured data on Hive IKM File/Hive to Oracle (OLH)Load processed data in Hive to Oracle RKM HiveReverse engineer Hive tables to generate models Using the Loading KM you can map files (local and HDFS files) to the corresponding Hive tables. For example, you can map weblog files categorized by date into a corresponding partitioned Hive table schema. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Hive control Append KM you can validate and transform data in Hive. In the below example, two source Hive tables are joined and mapped to a target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} The Hive Transform KM facilitates processing of semi-structured data in Hive. In the below example, the data from weblog is processed using a Perl script and mapped to target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Oracle Loader for Hadoop (OLH) KM you can load data from Hive table or HDFS to a corresponding table in Oracle. OLH is available as a standalone product. ODI greatly enhances OLH capability by generating the configuration and mapping files for OLH based on the configuration provided in the interface and KM options. ODI seamlessly invokes OLH when executing the scenario. In the below example, a HDFS file is mapped to a table in Oracle. Development and Deployment:The following diagram illustrates the development and deployment of ODI solution for Big Data. Using the ODI Studio on your development machine create and develop ODI solution for processing Big Data by connecting to a MySQL DB or Oracle database on a BDA machine or Hadoop cluster. Schedule the ODI scenarios to be executed on the ODI agent deployed on the BDA machine or Hadoop cluster. ODI Solution for Big Data provides several exciting new capabilities to facilitate the adoption of Big Data in an enterprise. You can find more information about the Oracle Big Data connectors on OTN. You can find an overview of all the new features introduced in ODI 11.1.1.6 in the following document: ODI 11.1.1.6 New Features Overview

    Read the article

  • How to Share Files Between User Accounts on Windows, Linux, or OS X

    - by Chris Hoffman
    Your operating system provides each user account with its own folders when you set up several different user accounts on the same computer. Shared folders allow you to share files between user accounts. This process works similarly on Windows, Linux, and Mac OS X. These are all powerful multi-user operating systems with similar folder and file permission systems. Windows On Windows, the “Public” user’s folders are accessible to all users. You’ll find this folder under C:\Users\Public by default. Files you place in any of these folders will be accessible to other users, so it’s a good way to share music, videos, and other types of files between users on the same computer. Windows even adds these folders to each user’s libraries by default. For example, a user’s Music library contains the user’s music folder under C:\Users\NAME\as well as the public music folder under C:\Users\Public\. This makes it easy for each user to find the shared, public files. It also makes it easy to make a file public — just drag and drop a file from the user-specific folder to the public folder in the library. Libraries are hidden by default on Windows 8.1, so you’ll have to unhide them to do this. These Public folders can also be used to share folders publically on the local network. You’ll find the Public folder sharing option under Advanced sharing settings in the Network and Sharing Control Panel. You could also choose to make any folder shared between users, but this will require messing with folder permissions in Windows. To do this, right-click a folder anywhere in the file system and select Properties. Use the options on the Security tab to change the folder’s permissions and make it accessible to different user accounts. You’ll need administrator access to do this. Linux This is a bit more complicated on Linux, as typical Linux distributions don’t come with a special user folder all users have read-write access to. The Public folder on Ubuntu is for sharing files between computers on a network. You can use Linux’s permissions system to give other user accounts read or read-write access to specific folders. The process below is for Ubuntu 14.04, but it should be identical on any other Linux distribution using GNOME with the Nautilus file manager. It should be similar for other desktop environments, too. Locate the folder you want to make accessible to other users, right-click it, and select Properties. On the Permissions tab, give “Others” the “Create and delete files” permission. Click the Change Permissions for Enclosed Files button and give “Others” the “Read and write” and “Create and Delete Files” permissions. Other users on the same computer will then have read and write access to your folder. They’ll find it under /home/YOURNAME/folder under Computer. To speed things up, they can create a link or bookmark to the folder so they always have easy access to it. Mac OS X Mac OS X creates a special Shared folder that all user accounts have access to. This folder is intended for sharing files between different user accounts. It’s located at /Users/Shared. To access it, open the Finder and click Go > Computer. Navigate to Macintosh HD > Users > Shared. Files you place in this folder can be accessed by any user account on your Mac. These tricks are useful if you’re sharing a computer with other people and you all have your own user accounts — maybe your kids have their own limited accounts. You can share a music library, downloads folder, picture archive, videos, documents, or anything else you like without keeping duplicate copies.

    Read the article

  • Check Your Spelling, Grammar, and Style in Firefox and Chrome

    - by Matthew Guay
    Are you tired of making simple writing mistakes that get past your browser’s spell-check?  Here’s how you can get advanced grammar check and more in Firefox and Chrome with After the Deadline. Microsoft Word has spoiled us with grammar, syntax, and spell checking, but the default spell check in Firefox and Chrome still only does basic checks.  Even webapps like Google Docs don’t check more than basic spelling errors.  However, WordPress.com is an exception; it offers advanced spelling, grammar, and syntax checking with its After the Deadline proofing system.  This helps you keep from making embarrassing mistakes on your blog posts, and now, thanks to a couple free browser plugins, it can help you keep from making these mistakes in any website or webapp. After the Deadline in Google Chrome Add the After the Deadline extension (link below) to Chrome as usual. As soon as it’s installed, you’re ready to start improving your online writing.  To check spelling, grammar, and more, click the ABC button that you’ll now see at the bottom of most text boxes online. After a quick scan, grammar mistakes are highlighted in green, complex expressions and other syntax problems are highlighted in blue, and spelling mistakes are highlighted in red as would be expected.  Click on an underlined word to choose one of its recommended changes or ignore the suggestion. Or, if you want more explanation about what was wrong with that word or phrase, click Explain for more info. And, if you forget to run an After the Deadline scan before submitting a text entry, it will automatically check to make sure you still want to submit it.  Click Cancel to go back and check your writing first.   To change the After the Deadline settings, click its icon in the toolbar and select View Options.  Additionally, if you want to disable it on the site you’re on, you can click Disable on this site directly from the popup. From the settings page, you can choose extra things to check for such as double negatives and redundant phrases, as well as add sites and words to ignore. After the Deadline in Firefox Add the After the Deadline add-on to Firefox (link below) as normal. After the Deadline basically the same in Firefox as it does in Chrome.  Select the ABC icon in the lower right corner of textboxes to check them for problems, and After the Deadline will underline the problems as it did in Chrome.  To view a suggested change in Firefox, right-click on the underlined word and select the recommended change or ignore the suggestion. And, if you forget to check, you’ll see a friendly reminder asking if you’re sure you want to submit your text like it is. You can access the After the Deadline settings in Firefox from the menu bar.  Click Tools, then select AtD Preferences.  In Firefox, the settings are in a options dialog with three tabs, but it includes the same options as the Chrome settings page.  Here you can make After the Deadline as correction-happy as you like.   Conclusion The web has increasingly become an interactive place, and seldom does a day go by that we aren’t entering text in forms and comments that may stay online forever.  Even our insignificant tweets are being archived in the Library of Congress.  After the Deadline can help you make sure that your permanent internet record is as grammatically correct as possible.  Even though it doesn’t catch every problem, and even misses some spelling mistakes, it’s still a great help. Links Download the After the Deadline extension for Google Chrome Download the After the Deadline add-on for Firefox Similar Articles Productive Geek Tips Quick Tip: Disable Favicons in FirefoxStupid Geek Tricks: Duplicate a Tab with a Shortcut Key in Chrome or FirefoxHow to Disable the New Geolocation Feature in Google ChromeStupid Geek Tricks: Compare Your Browser’s Memory Usage with Google ChromeStop YouTube Videos from Automatically Playing in Chrome TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Easily Search Food Recipes With Recipe Chimp Tech Fanboys Field Guide Check these Awesome Chrome Add-ons iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7 Create Nice Charts With These Web Based Tools

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Underwriting in a New Frontier: Spurring Innovation

    - by [email protected]
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Susan Keuer, product strategy manager for Oracle Insurance, shares her experiences and insight from the 2010 Association of Home Office Underwriters (AHOU) Annual Conference, April 11-14, in San Antonio, Texas    How can I be more innovative in underwriting?  It's a common question I hear from insurance carriers, producers and others, so it was no surprise that it was the key theme at the recent 2010 AHOU Annual Conference.  This year's event drew more than 900 insurance professionals involved in the underwriting process across life and annuities, property and casualty and reinsurance from around the globe, including the U.S., Canada, Australia, Bahamas, and more, to San Antonio - a Texas city where innovation transformed a series of downtown drainage canals into its premiere River Walk tourist destination.   CNN's Medical Correspondent Dr. Sanjay Gupta kicked off the conference with a phenomenal opening session that drove home the theme of the conference, "Underwriting in a New Frontier:  Spurring Innovation."   Drawing from his own experience as a neurosurgeon treating critically injured medical patients in the field in Iraq, Gupta inspired audience members to think outside the box during the underwriting process. He shared a compelling story of operating on a soldier who had suffered a head-related trauma in a field hospital.  With minimal supplies available Gupta used a Black and Decker saw to operate on the soldier's head and reduce pressure on his swelling brain. Drawing from this example, Gupta encouraged underwriters to think creatively, be innovative, and consider new tools and sources of information, such as social networking sites, during the underwriting process. So as you are looking at risk take into consideration all resources you have available.    Gupta also stressed the concept of IKIGAI - noting that individuals who believe that their life is worth living are less likely to die than are their counterparts without this belief.  How does one quantify this approach to life or thought process when evaluating risk?  Could this be something to consider as a "category" in the near future? How can this same belief in your own work spur innovation?   The role of technology was a hot topic of discussion throughout the conference.  Sessions delved into the latest in underwriting software to the rise of social media and how it is being increasingly integrated into underwriting process and solutions.  In one session a trio of panelists representing the carrier, producer and vendor communities stressed the importance to underwriters of leveraging new technology and the plethora of online information sources, which all could be used to accurately, honestly and consistently evaluate the risk throughout the underwriting process.   Another focused on the explosion of social media noting:  1.    Social media is growing exponentially - About eight percent of Americans used social media five years ago. Today about 46 percent of Americans do so, with 85 percent of financial services professionals using social media in their work.  2.    It will impact your business - Underwriters reconfirmed over and over that they are increasingly using "free" tools that are available in cyberspace in lieu of more costly solutions, such as inspection reports conducted by individuals in the field.  3.    Information is instantly available on the Web, anytime, anywhere - LinkedIn was mentioned as a way to connect to peers in the underwriting community and producers alike.  Many carriers and agents also are using Facebook to promote their company to customers - and as a point-of-entry to allow them to perform some functionality - such as accessing product marketing information versus directing users to go to the carrier's own proprietary website.  Other carriers have released their tight brand marketing to allow their producers to drive more business to their personal Facebook site where they offer innovative tools such as Application Capture or asking medical information in a more relaxed fashion.     Other key topics at the conference included the economy, ongoing industry consolidation, real-estate valuations as an asset and input into the underwriting process, and producer trends.  All stressed a "back to basics" approach for low cost, term products.   Finally, Connie Merritt, RN, PHN, entertained the large group of atttendees with audience-engaging insight on how to "Tame the Lions in Your Life - Dealing with Complainers, Bullies, Grump and Curmudgeon." Merritt noted "we are too busy for our own good." She shared how her overachieving personality had impacted her life.  Audience members then were asked to pick red, yellow, blue, or green shapes, without knowing that each one represented a specific personality trait.  For example, those who picked blue were the peacemakers. Those who choose yellow were social - the hint was to "Be Quiet Longer."  She then offered these "lion taming" steps:   1.    Admit It 2.    Accept It 3.    Let Go 4.    Be Present (which paralleled Gupta's IKIGAI concept)   When thinking about underwriting I encourage you to be present in the moment and think creatively, but don't be afraid to look ahead to the future and be an innovator.  I hope to see you at next year's AHOU Annual Conference, May 1-4, 2011 at The Mirage in Las Vegas, Nev.     Susan Keuer is the product strategy manager for new business underwriting.  She brings more than 20 years of insurance industry experience working with leading insurance carriers and technology companies to her role on the product strategy team for life/annuities solutions within the Oracle Insurance Global Business Unit  

    Read the article

  • Packaging Swing apps with integrated JavaFX content

    - by igor
    JavaFX provides a lot of interesting capabilities for developing rich client applications in Java, but what if you are working on an existing Swing application and you want to take advantage of these new features?  Maybe you want to use one or two controls like the LineChart or a MediaView.  Maybe you want to embed a large Scene Graph as an initial step in porting your application to FX.  A hybrid Swing/FX application might just be the answer. Developing a hybrid Swing + JavaFX application is not terribly difficult, but until recently the deployment of hybrid applications has not simple as a "pure" JavaFX application.  The existing tools focused on packaging FX Applications, or Swing applications - they did not account for hybrid applications. But with JavaFX 2.2 the tools include support for this hybrid application use case.  Solution  In JavaFX 2.2 we extended the packaging ant tasks to greatly simplify deploying hybrid applications.  You now use the same deployment approach as you would for pure JavaFX applications.  Just bundle your main application jar with the fx:jar ant task and then generate html/jnlp files using fx:deploy.  The only difference is setting toolkit attribute for the fx:application tag as shown below: <fx:application id="swingFXApp" mainClass="${main.class}" toolkit="swing"/>  The value of ${main.class} in the example above is your application class which has a main method.  It does not need to extend JavaFX Application class. The resulting package provides support for the same set of execution modes as a package for a JavaFX application, although the packages which are created are not identical to the packages created for a pure FX application.  You will see two JNLP files generated in the case of a hybrid application - one for use from Swing applet and another for the webstart launch.  Note that these improvements do not alter the set of features available to Swing applications. The packaging tools just make it easier to use the advanced features of JavaFX in your Swing application. The same limits still apply, for example a Swing application can not use JavaFX Preloaders and code changes are necessary to support HTML splash screens. Why should I use the JavaFX ant tasks for packaging my Swing application?  While using FX packaging tool for a Swing application may seem like a mismatch at face value, there are some really good reasons to use this approach.  The primary justification for our packaging tools is to simplify the creation of your application artifacts, and to reduce manual errors.  Plus, no one should have to write JNLP by hand. Some specific benefits include: Your application jar will include a launcher program.  This improves your standalone launch by: checking for the JavaFX runtime guiding the user through any necessary installations setting the system proxy for Java The ant tasks will generate JNLP and HTML files for your swing app: avoids learning unnecessary details about JNLP, and eliminates the error-prone hand editing of JNLP files simplifies using advanced features like embedding JNLP and signing jars as BLOBs to improve launch performance.you can also embed the signing certificate details to improve the user's experience  allows the use of web page templates to inject the generated code directly into your actual web page instead of being forced to copy/paste the generated code snippets. What about native packing? Absolutely!  The very same ant task can generate a native bundle for a Swing application with JavaFX content.  Try running one of these sample native bundles for the "SwingInterop" FX example: exe and dmg.   I also used another feature on these examples: a click-through license agreement for .exe installers and OS X DMG drag installers. Small Caveat This packaging procedure is optimized around using the JavaFX packaging tools for your entire Swing application.  If you are trying to embed JavaFX content into existing project (with an existing build/packing process) then you may need to experiment in order to find the best way to integrate the JavaFX packaging steps into your existing build procedure. As long as you can use ant in your build process this should be a workable approach. It some cases solution could be less than ideal. For example, you need to use fx:jar to package your main jar file in order to produce a double-clickable jar or a native bundle.  The jar will be created from scratch, but you may already be creating the main jar file with a custom manifest.  This may lead to some redundant steps in your build process.  Hopefully the benefits will outweigh the problems. This is an area of ongoing development for the team, and we will continue to refine and improve both the tools and the process. Please share your experiences and suggestions with us.  You can comment here on the blog or file issues to JIRA. Sample code Here is the full ant code used to package SwingInterop.  You can grab latest JavaFX samples and try it yourself:  <target name="-post-jar"> <taskdef resource="com/sun/javafx/tools/ant/antlib.xml" uri="javafx:com.sun.javafx.tools.ant" classpath="${javafx.tools.ant.jar}"/> <!-- Mark application as Swing-based --> <fx:application id="swingFXApp" mainClass="${main.class}" toolkit="swing"/> <!-- Create doubleclickable jar file with embedded launcher --> <fx:jar destfile="${dist.jar}"> <fileset dir="${build.classes.dir}"/> <fx:application refid="swingFXApp" name="SwingInterop"/> <manifest> <attribute name="Implementation-Vendor" value="${application.vendor}"/> <attribute name="Implementation-Title" value="${application.title}"/> <attribute name="Implementation-Version" value="1.0"/> </manifest> </fx:jar> <!-- sign application jar. Use new self signed certificate --> <delete file="${build.dir}/test.keystore"/> <genkey alias="TestAlias" storepass="xyz123" keystore="${build.dir}/test.keystore" dname="CN=Samples, OU=JavaFX Dev, O=Oracle, C=US"/> <fx:signjar keystore="${build.dir}/test.keystore" alias="TestAlias" storepass="xyz123"> <fileset file="${dist.jar}"/> </fx:signjar> <!-- generate JNLPs, HTML and native bundles --> <fx:deploy width="960" height="720" includeDT="true" nativeBundles="all" outdir="${basedir}/${dist.dir}" embedJNLP="true" outfile="${application.title}"> <fx:application refId="swingFXApp"/> <fx:resources> <fx:fileset dir="${basedir}/${dist.dir}" includes="SwingInterop.jar"/> </fx:resources> <fx:permissions/> <info title="Sample app: ${application.title}" vendor="${application.vendor}"/> </fx:deploy> </target>

    Read the article

  • How to restore your production database without needing additional storage

    - by David Atkinson
    Production databases can get very large. This in itself is to be expected, but when a copy of the database is needed the database must be restored, requiring additional and costly storage.  For example, if you want to give each developer a full copy of your production server, you'll need n times the storage cost for your n-developer team. The same is true for any test databases that are created during the course of your project lifecycle. If you've read my previous blog posts, you'll be aware that I've been focusing on the database continuous integration theme. In my CI setup I create a "production"-equivalent database directly from its source control representation, and use this to test my upgrade scripts. Despite this being a perfectly valid and practical thing to do as part of a CI setup, it's not the exact equivalent to running the upgrade script on a copy of the actual production database. So why shouldn't I instead simply restore the most recent production backup as part of my CI process? There are two reasons why this would be impractical. 1. My CI environment isn't an exact copy of my production environment. Indeed, this would be the case in a perfect world, and it is strongly recommended as a good practice if you follow Jez Humble and David Farley's "Continuous Delivery" teachings, but in practical terms this might not always be possible, especially where storage is concerned. It may just not be possible to restore a huge production database on the environment you've been allotted. 2. It's not just about the storage requirements, it's also the time it takes to do the restore. The whole point of continuous integration is that you are alerted as early as possible whether the build (yes, the database upgrade script counts!) is broken. If I have to run an hour-long restore each time I commit a change to source control I'm just not going to get the feedback quickly enough to react. So what's the solution? Red Gate has a technology, SQL Virtual Restore, that is able to restore a database without using up additional storage. Although this sounds too good to be true, the explanation is quite simple (although I'm sure the technical implementation details under the hood are quite complex!) Instead of restoring the backup in the conventional sense, SQL Virtual Restore will effectively mount the backup using its HyperBac technology. It creates a data and log file, .vmdf, and .vldf, that becomes the delta between the .bak file and the virtual database. This means that both read and write operations are permitted on a virtual database as from SQL Server's point of view it is no different from a conventional database. Instead of doubling the storage requirements upon a restore, there is no 'duplicate' storage requirements, other than the trivially small virtual log and data files (see illustration below). The benefit is magnified the more databases you mount to the same backup file. This technique could be used to provide a large development team a full development instance of a large production database. It is also incredibly easy to set up. Once SQL Virtual Restore is installed, you simply run a conventional RESTORE command to create the virtual database. This is what I have running as part of a nightly "release test" process triggered by my CI tool. RESTORE DATABASE WidgetProduction_virtual FROM DISK=N'C:\WidgetWF\ProdBackup\WidgetProduction.bak' WITH MOVE N'WidgetProduction' TO N'C:\WidgetWF\ProdBackup\WidgetProduction_WidgetProduction_Virtual.vmdf', MOVE N'WidgetProduction_log' TO N'C:\WidgetWF\ProdBackup\WidgetProduction_log_WidgetProduction_Virtual.vldf', NORECOVERY, STATS=1, REPLACE GO RESTORE DATABASE mydatabase WITH RECOVERY   Note the only change from what you would do normally is the naming of the .vmdf and .vldf files. SQL Virtual Restore intercepts this by monitoring the extension and applies its magic, ensuring the 'virtual' restore happens rather than the conventional storage-heavy restore. My automated release test then applies the upgrade scripts to the virtual production database and runs some validation tests, giving me confidence that were I to run this on production for real, all would go smoothly. For illustration, here is my 8Gb production database: And its corresponding backup file: Here are the .vldf and .vmdf files, which represent the only additional used storage for the new database following the virtual restore.   The beauty of this product is its simplicity. Once it is installed, the interaction with the backup and virtual database is exactly the same as before, as the clever stuff is being done at a lower level. SQL Virtual Restore can be downloaded as a fully functional 14-day trial. Technorati Tags: SQL Server

    Read the article

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • Part 1 - 12c Database and WLS - Overview

    - by Steve Felts
    The download of Oracle 12c database became available on June 25, 2013.  There are some big new features in 12c database and WebLogic Server will take advantage of them. Immediately, we will support using 12c database and drivers with WLS 10.3.6 and 12.1.1.  When the next version of WLS ships, additional functionality will be supported (those rows in the table below with all "No" values will get a "Yes).  The following table maps the Oracle 12c Database features supported with various combinations of currently available WLS releases, 11g and 12c Drivers, and 11g and 12c Databases. Feature WebLogic Server 10.3.6/12.1.1 with 11g drivers and 11gR2 DB WebLogic Server 10.3.6/12.1.1 with 11g drivers and 12c DB WebLogic Server 10.3.6/12.1.1 with 12c drivers and 11gR2 DB WebLogic Server 10.3.6/12.1.1 with 12c drivers and 12c DB JDBC replay No No No Yes (Active GridLink only in 10.3.6, add generic in 12.1.1) Multi Tenant Database No Yes (except set container) No Yes (except set container) Dynamic switching between Tenants No No No No Database Resident Connection pooling (DRCP) No No No No Oracle Notification Service (ONS) auto configuration No No No No Global Database Services (GDS) No Yes (Active GridLink only) No Yes (Active GridLink only) JDBC 4.1 (using ojdbc7.jar files & JDK 7) No No Yes Yes  The My Oracle Support (MOS) document covering this is "WebLogic Server 12.1.1 and 10.3.6 Support for Oracle 12c Database [ID 1564509.1]" at the link https://support.oracle.com/epmos/faces/DocumentDisplay?id=1564509.1. The following documents are also key references:12c Oracle Database Developer Guide http://docs.oracle.com/cd/E16655_01/appdev.121/e17620/toc.htm 12c Oracle Database Administrator's Guide http://docs.oracle.com/cd/E16655_01/server.121/e17636/toc.htm . I plan to write some related blog articles not to duplicate existing product documentation but to introduce the features, provide some examples, and tie together some information to make it easier to understand. How do you get started with 12c?  The easiest way is to point your data source at a 12c database.  The only change on the WLS side is to update the URL in your data source (assuming that you are not just upgrading your database).  You can continue to use the 11.2.0.3 driver jar files that shipped with WLS 10.3.6 or 12.1.1.  You shouldn't see any changes in your application.  You can take advantage of enhancements on the database side that don't affect the mid-tier.  On the WLS side, you can take advantage of using Global Data Service or connecting to a tenant in a multi-tenant database transparently. If you want to use the 12c client jar files, it's a bit of work because they aren't shipped with WLS and you can't just drop in ojdbc6.jar as in the old days.  You need to use a matched set of jar files and they need to come before existing jar files in the CLASSPATH.  The MOS article is written from the standpoint that you need to get the jar files directly - download almost 1G and install over 600M footprint to get 15 jar files.  Assuming that you have the database installed and you can get access to the installation (or ask the DBA), you need to copy the 15 jar files to each machine with a WLS installation and get them in your CLASSPATH.  You can play with setting the PRE_CLASSPATH but the more practical approach may be to just update WL_HOME/common/bin/commEnv.sh directly.  There's a change in the transaction completion behavior (read the MOS) so if you think you might run into that, you will want to set -Doracle.jdbc.autoCommitSpecCompliant=false.  Also if you are running with Active GridLink, you must set -Doracle.ucp.PreWLS1212Compatible=true (how's that for telling you that this is fixed in WLS 12.1.2).  Once you get the configuration out of the way, you can start using the new ojdbc7.jar in place of the ojdbc6.jar to get the new JDBC 4.1 API's.  You can also start using Application Continuity.  This feature is also known as JDBC Replay because when a connection fails you get a new one with all JDBC operations up to the failure point automatically replayed.  As you might expect, there are some limitations but it's an interesting feature.  Obviously I'm going to focus on the 12c database features that we can leverage in WLS data source.  You will need to read other sources or the product documentation to get all of the new features.

    Read the article

  • The Business of Winning Innovation: An Exclusive Blog Series

    - by Kerrie Foy
    "The Business of Winning Innovation” is a series of articles authored by Oracle Agile PLM experts on what it takes to make innovation a successful and lucrative competitive advantage. Our customers have proven Agile PLM applications to be enormously flexible and comprehensive, so we’ve launched this article series to showcase some of the most fascinating, value-packed use cases. In this article by Keith Colonna, we kick-off the series by taking a look at the science side of innovation within the Consumer Products industry and how PLM can help companies innovate faster, cheaper, smarter. This article will review how innovation has become the lifeline for growth within consumer products companies and how certain companies are “winning” by creating a competitive advantage for themselves by taking a more enterprise-wide,systematic approach to “innovation”.   Managing the Science of Innovation within the Consumer Products Industry By: Keith Colonna, Value Chain Solution Manager, Oracle The consumer products (CP) industry is very mature and competitive. Most companies within this industry have saturated North America (NA) with their products thus maximizing their NA growth potential. Future growth is expected to come from either expansion outside of North America and/or by way of new ideas and products. Innovation plays an integral role in both of these strategies, whether you’re innovating business processes or the products themselves, and may cause several challenges for the typical CP company, Becoming more innovative is both an art and a science. Most CP companies are very good at the art of coming up with new innovative ideas, but many struggle with perfecting the science aspect that involves the best practice processes that help companies quickly turn ideas into sellable products and services. Symptoms and Causes of Business Pain Struggles associated with the science of innovation show up in a variety of ways, like: · Establishing and storing innovative product ideas and data · Funneling these ideas to the chosen few · Time to market cycle time and on-time launch rates · Success rates, or how often the best idea gets chosen · Imperfect decision making (i.e. the ability to kill projects that are not projected to be winners) · Achieving financial goals · Return on R&D investment · Communicating internally and externally as more outsource partners are added globally · Knowing your new product pipeline and project status These challenges (and others) can be consolidated into three root causes: A lack of visibility Poor data with limited access The inability to truly collaborate enterprise-wide throughout your extended value chain Choose the Right Remedy Product Lifecycle Management (PLM) solutions are uniquely designed to help companies solve these types challenges and their root causes. However, PLM solutions can vary widely in terms of configurability, functionality, time-to-value, etc. Business leaders should evaluate PLM solution in terms of their own business drivers and long-term vision to determine the right fit. Many of these solutions are point solutions that can help you cure only one or two business pains in the short term. Others have been designed to serve other industries with different needs. Then there are those solutions that demo well but are owned by companies that are either unable or unwilling to continuously improve their solution to stay abreast of the ever changing needs of the CP industry to grow through innovation. What the Right PLM Solution Should Do for You Based on more than twenty years working in the CP industry, I recommend investing in a single solution that can help you solve all of the issues associated with the science of innovation in a totally integrated fashion. By integration I mean the (1) integration of the all of the processes associated with the development, maintenance and delivery of your product data, and (2) the integration, or harmonization of this product data with other downstream sources, like ERP, product catalogues and the GS1 Global Data Synchronization Network (or GDSN, which is now a CP industry requirement for doing business with most retailers). The right PLM solution should help you: Increase Revenue. A best practice PLM solution should help a company grow its revenues by consolidating product development cycle-time and helping companies get new and improved products to market sooner. PLM should also eliminate many of the root causes for a product being returned, refused and/or reclaimed (which takes away from top-line growth) by creating an enterprise-wide, collaborative, workflow-driven environment. Reduce Costs. A strong PLM solution should help shave many unnecessary costs that companies typically take for granted. Rationalizing SKU’s, components (ingredients and packaging) and suppliers is a major opportunity at most companies that PLM should help address. A natural outcome of this rationalization is lower direct material spend and a reduction of inventory. Another cost cutting opportunity comes with PLM when it helps companies avoid certain costs associated with process inefficiencies that lead to scrap, rework, excess and obsolete inventory, poor end of life administration, higher cost of quality and regulatory and increased expediting. Mitigate Risk. Risks are the hardest to quantify but can be the most costly to a company. Food safety, recalls, line shutdowns, customer dissatisfaction and, worst of all, the potential tarnishing of your brands are a few of the debilitating risks that CP companies deal with on a daily basis. These risks are so uniquely severe that they require an enterprise PLM solution specifically designed for the CP industry that safeguards product information and processes while still allowing the art of innovation to flourish. Many CP companies have already created a winning advantage by leveraging a single, best practice PLM solution to establish an enterprise-wide, systematic approach to innovation. Oracle’s Answer for the Consumer Products Industry Oracle is dedicated to solving the growth and innovation challenges facing the CP industry. Oracle’s Agile Product Lifecycle Management for Process solution was originally developed with and for CP companies and is driven by a specialized development staff solely focused on maintaining and continuously improving the solution per the latest industry requirements. Agile PLM for Process helps CP companies handle all of the processes associated with managing the science of the innovation process, including: specification management, new product development/project and portfolio management, formulation optimization, supplier management, and quality and regulatory compliance to name a few. And as I mentioned earlier, integration is absolutely critical. Many Oracle CP customers, both with Oracle ERP systems and non-Oracle ERP systems, report benefits from Oracle’s Agile PLM for Process. In future articles we will explain in greater detail how both existing Oracle customers (like Gallo, Smuckers, Land-O-Lakes and Starbucks) and new Oracle customers (like ConAgra, Tyson, McDonalds and Heinz) have all realized the benefits of Agile PLM for Process and its integration to their ERP systems. More to Come Stay tuned for more articles in our blog series “The Business of Winning Innovation.” While we will also feature articles focused on other industries, look forward to more on how Agile PLM for Process addresses innovation challenges facing the CP industry. Additional topics include: Innovation Data Management (IDM), New Product Development (NPD), Product Quality Management (PQM), Menu Management,Private Label Management, and more! . Watch this video for more info about Agile PLM for Process

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • ANTS Memory Profiler 7.0

    - by James Michael Hare
    I had always been a fan of ANTS products (Reflector is absolutely invaluable, and their performance profiler is great as well – very easy to use!), so I was curious to see what the ANTS Memory Profiler could show me. Background While a performance profiler will track how much time is typically spent in each unit of code, a memory profiler gives you much more detail on how and where your memory is being consumed and released in a program. As an example, I’d been working on a data access layer at work to call a market data web service.  This web service would take a list of symbols to quote and would return back the quote data.  To help consolidate the thousands of web requests per second we get and reduce load on the web services, we implemented a 5-second cache of quote data.  Not quite long enough to where customers will typically notice a quote go “stale”, but just long enough to be able to collapse multiple quote requests for the same symbol in a short period of time. A 5-second cache may not sound like much, but it actually pays off by saving us roughly 42% of our web service calls, while still providing relatively up-to-date information.  The question is whether or not the extra memory involved in maintaining the cache was worth it, so I decided to fire up the ANTS Memory Profiler and take a look at memory usage. First Impressions The main thing I’ve always loved about the ANTS tools is their ease of use.  Pretty much everything is right there in front of you in a way that makes it easy for you to find what you need with little digging required.  I’ve worked with other, older profilers before (that shall remain nameless other than to hint it was created by a very large chip maker) where it was a mind boggling experience to figure out how to do simple tasks. Not so with AMP.  The opening dialog is very straightforward.  You can choose from here whether to debug an executable, a web application (either in IIS or from VS’s web development server), windows services, etc. So I chose a .NET Executable and navigated to the build location of my test harness.  Then began profiling. At this point while the application is running, you can see a chart of the memory as it ebbs and wanes with allocations and collections.  At any given point in time, you can take snapshots (to compare states) zoom in, or choose to stop at any time.  Snapshots Taking a snapshot also gives you a breakdown of the managed memory heaps for each generation so you get an idea how many objects are staying around for extended periods of time (as an object lives and survives collections, it gets promoted into higher generations where collection becomes less frequent). Generating a snapshot brings up an analysis view with very handy graphs that show your generation sizes.  Almost all my memory is in Generation 1 in the managed memory component of the first graph, which is good news to me, because Gen 2 collections are much rarer.  I once3 made the mistake once of caching data for 30 minutes and found it didn’t get collected very quick after I released my reference because it had been promoted to Gen 2 – doh! Analysis It looks like (from the second pie chart) that the majority of the allocations were in the string class.  This also is expected for me because the majority of the memory allocated is in the web service responses, so it doesn’t seem the entities I’m adapting to (to prevent being too tightly coupled to the web service proxy classes, which can change easily out from under me) aren’t taking a significant portion of memory. I also appreciate that they have clear summary text in key places such as “No issues with large object heap fragmentation were detected”.  For novice users, this type of summary information can be critical to getting them to use a tool and develop a good working knowledge of it. There is also a handy link at the bottom for “What to look for on the summary” which loads a web page of help on key points to look for. Clicking over to the session overview, it’s easy to compare the samples at each snapshot to see how your memory is growing, shrinking, or staying relatively the same.  Looking at my snapshots, I’m pretty happy with the fact that memory allocation and heap size seems to be fairly stable and in control: Once again, you can check on the large object heap, generation one heap, and generation two heap across each snapshot to spot trends. Back on the analysis tab, we can go to the [Class List] button to get an idea what classes are making up the majority of our memory usage.  As was little surprise to me, System.String was the clear majority of my allocations, though I found it surprising that the System.Reflection.RuntimeMehtodInfo came in second.  I was curious about this, so I selected it and went into the [Instance Categorizer].  This view let me see where these instances to RuntimeMehtodInfo were coming from. So I scrolled back through the graph, and discovered that these were being held by the System.ServiceModel.ChannelFactoryRefCache and I was satisfied this was just an artifact of my WCF proxy. I also like that down at the bottom of the Instance Categorizer it gives you a series of filters and offers to guide you on which filter to use based on the problem you are trying to find.  For example, if I suspected a memory leak, I might try to filter for survivors in growing classes.  This means that for instances of a class that are growing in memory (more are being created than cleaned up), which ones are survivors (not collected) from garbage collection.  This might allow me to drill down and find places where I’m holding onto references by mistake and not freeing them! Finally, if you want to really see all your instances and who is holding onto them (preventing collection), you can go to the “Instance Retention Graph” which creates a graph showing what references are being held in memory and who is holding onto them. Visual Studio Integration Of course, VS has its own profiler built in – and for a free bundled profiler it is quite capable – but AMP gives a much cleaner and easier-to-use experience, and when you install it you also get the option of letting it integrate directly into VS. So once you go back into VS after installation, you’ll notice an ANTS menu which lets you launch the ANTS profiler directly from Visual Studio.   Clicking on one of these options fires up the project in the profiler immediately, allowing you to get right in.  It doesn’t integrate with the Visual Studio windows themselves (like the VS profiler does), but still the plethora of information it provides and the clear and concise manner in which it presents it makes it well worth it. Summary If you like the ANTS series of tools, you shouldn’t be disappointed with the ANTS Memory Profiler.  It was so easy to use that I was able to jump in with very little product knowledge and get the information I was looking it for. I’ve used other profilers before that came with 3-inch thick tomes that you had to read in order to get anywhere with the tool, and this one is not like that at all.  It’s built for your everyday developer to get in and find their problems quickly, and I like that! Tweet Technorati Tags: Influencers,ANTS,Memory,Profiler

    Read the article

  • How to store generated eigen faces for future face recognition?

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong? 2.Instead of running the training set everytime how eigen faces generated are stored so that stored eigen faces are used for future face recoginition for a new input image.So it reduces wastage of time.

    Read the article

  • What's New In 11.1.2.1 (Talleyrand SP1)

    - by russ.bishop
    This release is primarily about bug fixes and that's what we spent the most time on, but we also addressed a number of other things: 1. Performance improvements We've done a lot of work to improve the performance of page load and execution times. For example, the View Compare page is about half the size it was previously! We've also done a lot of work on the server to improve performance of queries, exports, action scripts, etc. We implemented some finer-grained locking so fewer operations will block other users while they are in progress. We made some optimizations to improve performance when you have a lot of network or database latency as well. Just a few examples: An Import that previously took 8 GB of memory and hours to complete now runs in about 30 minutes and never takes more than 1 GB of RAM. Searching by exact Node Name now completes within 2 seconds even for a hierarchy with millions of nodes. Another search that was taking 30 seconds to run now completes in less than 5 seconds. 2. Upgrade support This release supports automatic upgrade from previous releases, built right into the console. 3. Console Improvements The Console has been reorganized and made easier to use. It is also much more multi-threaded so it responds quicker without freezing up when you save changes or when it needs to get status. 4. Property Namespaces Properties now have a concept called a Namespace. This is tied into the Application Templates to prevent conflicts with duplicate property names. Right now, if you have an AccountType and you pull in the HFM template, it also has AccountType so you end up creating properties with decorations on the name like "Account Type (HFM)". This is no longer necessary. In addition, properties within a namespace must have unique labels but they can be duplicated across namespaces. So in the Property Grid when you click on the HFM category, you just see "AccountType". When you click on MyCategory, you see "AccountType", but they are different properties with different values. Within formulas, the names are still unique (eg: Custom.AccountType vs HFM.AccountType). I'll write more about this one later. 5. Single Sign On DRM now supports Single Sign-On via HSS. For example, if you are using Oracle's OAM as your SSO solution then you configure HSS to use OAM just like you would before. You also configure DRM to use HSS, again just like before. Then you configure OAM to protect the DRM web app, like you would any other website. However once you do those things, users are no longer prompted to enter their username/password. They simply get redirected to OAM if they don't already have a login token, otherwise they pick their application and sail right into DRM. You can also avoid having to pick an application (see the next item) 6. URL-based navigation You can now specify the application you want to log into via the URL. Combined with SSO and your Intranet, it becomes easy to provide links on our intranet portal that take users directly into a specific DRM application. We also support specifying the Version, Hierarchy, and Node. Again, this can be used on your internal portal, but the scenarios get even more interesting when you are using workflow like Oracle BPEL you can automatically generate links within emails that will take users directly to a specific node in the UI. 7. Job status and cancellation A lot of the jobs now report their status and support true cancellation. Action Scripts also report a progress complete percentage since the amount of work is known ahead of time. 8. Action Script Options Action scripts support Option declarations at the top of the file so a script can self-describe (when specified in the file, the corresponding item in the file is ignored). For example: Option|DetectDelimiter Option|UsePropertyNames|true This will tell DRM to automatically detect the delimiter (a pipe symbol in this case) and that all references to properties are by Name, not by Label. Note that when you load a script in the UI, if you use Labels we automatically try to match them up if they are unique. Any duplicates are indicated and you are presented with a choice to pick which property you actually referred to. This is somewhat similar to Version substitution, but tailored for properties. There are other more minor changes and like I said earlier a lot of bug fixes and performance improvements. Hopefully I will get a chance to dig into some of these things in future blog posts.

    Read the article

  • Vectorization of matlab code for faster execution

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); Running time for 50 images:Elapsed time is 103.947573 seconds. QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong?

    Read the article

  • Big Visible Charts

    - by Robert May
    An important part of Agile is the concept of transparency and visibility. In proper functioning teams, stakeholders can look at any team at any time in the iteration or release and see how that team is doing by simply looking at what we call Big Visible Charts. If you’ve done Scrum, you’ve seen these charts. However, interpreting these charts can often be an art form. There are several different charts that can be useful. In this newsletter, I’ll focus on the Iteration Burndown and Cumulative Flow charts. I’ve included a copy of the spreadsheet that I used to create the charts, and if you don’t have a tool that creates them for you, you can use this spreadsheet to do so. Our preferred tool for managing Scrum projects is Rally. Rally creates all of these charts for you, saving you quite a bit of time. The Iteration Burndown and Cumulative Flow Charts This is the main chart that teams use. Although less useful to stakeholders, this chart is critical to the team and provides quite a bit of information to the team about how their iteration is going. Most charts are a combination of the charts below, so you may need to combine aspects of each section to understand what is happening in your iterations. Ideal Ah, isn’t that a pretty picture? Unfortunately, it’s also very unrealistic. I’ve seen iterations that come close to ideal, but never that match perfectly. If your iteration matches perfectly, chances are, someone is playing with the numbers. Reality is just too difficult to have a burndown chart that matches this exactly. Late Planning Iteration started, but the team didn’t. You can tell this by the fact that the real number of estimated hours didn’t appear until day two. In the cumulative flow, you can also see that nothing was defined in Day one and two. You want to avoid situations like this. You’ll note that the team had to burn faster than is ideal to meet the iteration because of the late planning. This often results in long weeks and days. Testing Starved Determining whether or not testing is starved is difficult without the cumulative flow. The pattern in the burndown could be nothing more that developers not completing stories early enough or could be caused by stories being too big. With the cumulative flow, however, you see that only small bites are in progress and stories were completed early, but testing didn’t start testing until the end of the iteration, and didn’t complete testing all stories in the iteration. When this happens, question whether or not your testing resources are sufficient for your team and whether or not acceptance is adequately defined. No Testing With this one, both graphs show the same thing; the team needs testers and testing! Without testing, what was completed cannot be verified to make sure that it is acceptable to the business. If you find yourself in this situation, review your testing practices and acceptance testing process and make changes today. Late Development With this situation, both graphs tell a story. In the top graph, you can see that the hours failed to burn down as quickly as the team expected. This could be caused by the team not correctly estimating their hours or the team could have had illness or some other issue that affected them. Often, when teams are tackling something that is more unknown, they’ll run into technical barriers that cause the burn down to happen slower than expected. In the cumulative flow graph, you can see that not much was completed in the first few days. This could be because of illness or technical barriers or simply poor estimation. Testing was able to keep up with everything that was completed, however. No Tool Updating When you see graphs that look like this, you can be assured that it’s because the team is not updating the tool that generates the graphs. Review your policy for when they are to update. On the teams that I run, I require that each team member updates the tool at least once daily. You should also check to see how well the team is breaking down stories into tasks. If they’re creating few large tasks, graphs can look similar to this. As a general rule, I never allow tasks, other than Unit Testing and Uncertainty, to be greater than eight hours in duration. Scope Increase I always encourage team members to enter in however much time they think they have left on a task, even if that means increasing the total amount of time left to do. You get a much better and more realistic picture this way. Increasing time remaining could explain the burndown graph, but by looking at the cumulative flow graph, we can see that stories were added to the iteration and scope was increased. Since planning should consume all of the hours in the iteration, this is almost always a bad thing. If the scope change happened late in the iteration and the hours remaining were well below the ideal burn, then increasing scope is probably o.k., but estimation needs to get better. However, with the charts above, that’s clearly not what happened and the team was required to do extra work to make the iteration. If you find this happening, your product owner and ScrumMasters need training. The team also needs to learn to say no. Scope Decrease Scope decreases are just as bad as scope increases. Usually, graphs above show that the team did a poor job of estimating their stories and part way through had to reduce scope to change the iteration. This will happen once in a while, but if you find it’s a pattern on your team, you need to re-evaluate planning. Some teams are hopelessly optimistic. In those cases, I’ll introduce a task I call “Uncertainty.” With Uncertainty, the team estimates how many hours they might need if things don’t go well with the tasks they’ve defined. They try to estimate things that could go poorly and increase the time appropriately. Having an Uncertainty task allows them to have a low and high estimate. Uncertainty should not just be an arbitrary buffer. It must correlate to real uncertainty in the tasks that have been defined. Stories are too Big Often, we see graphs like the ones above. Note that the burndown looks fairly good, other than the chunky acceptance of stories. However, when you look at cumulative flow, you can see that at one point, everything is in progress. This is a bad thing. When you see graphs like this, you’re in one of two states. You may just have a very small team and can only handle one or two stories in your iteration. If you have more than one or two people, then the most likely problem is that your stories are far too big. To combat this, break large high hour stories into smaller pieces that can be completed independently and accepted independently. If you don’t, you’ll likely be requiring your testers to do heroic things to complete testing on the last day of the iteration and you’re much more likely to have the entire iteration fail, because of the limited amount of things that can be completed. Summary There are other charts that can be useful when doing scrum. If you don’t have any big visible charts, you really need to evaluate your process and change. These charts can provide the team a wealth of information and help you write better software. If you have any questions about charts that you’re seeing on your team, contact me with a screen capture of the charts and I’ll tell you what I’m seeing in those charts. I always want this information to be useful, so please let me know if you have other questions. Technorati Tags: Agile

    Read the article

  • Partner Blog Series: PwC Perspectives Part 2 - Jumpstarting your IAM program with R2

    - by Tanu Sood
    Identity and access management (IAM) isn’t a new concept. Over the past decade, companies have begun to address identity management through a variety of solutions that have primarily focused on provisioning. . The new age workforce is converging at a rapid pace with ever increasing demand to use diverse portfolio of applications and systems to interact and interface with their peers in the industry and customers alike. Oracle has taken a significant leap with their release of Identity and Access Management 11gR2 towards enabling this global workforce to conduct their business in a secure, efficient and effective manner. As companies deal with IAM business drivers, it becomes immediately apparent that holistic, rather than piecemeal, approaches better address their needs. When planning an enterprise-wide IAM solution, the first step is to create a common framework that serves as the foundation on which to build the cost, compliance and business process efficiencies. As a leading industry practice, IAM should be established on a foundation of accurate data for identity management, making this data available in a uniform manner to downstream applications and processes. Mature organizations are looking beyond IAM’s basic benefits to harness more advanced capabilities in user lifecycle management. For any organization looking to embark on an IAM initiative, consider the following use cases in managing and administering user access. Expanding the Enterprise Provisioning Footprint Almost all organizations have some helpdesk resources tied up in handling access requests from users, a distraction from their core job of handling problem tickets. This dependency has mushroomed from the traditional acceptance of provisioning solutions integrating and addressing only a portion of applications in the heterogeneous landscape Oracle Identity Manager (OIM) 11gR2 solves this problem by offering integration with third party ticketing systems as “disconnected applications”. It allows for the existing business processes to be seamlessly integrated into the system and tracked throughout its lifecycle. With minimal effort and analysis, an organization can begin integrating OIM with groups or applications that are involved with manually intensive access provisioning and de-provisioning activities. This aspect of OIM allows organizations to on-board applications and associated business processes quickly using out of box templates and frameworks. This is especially important for organizations looking to fold in users and resources from mergers and acquisitions. Simplifying Access Requests Organizations looking to implement access request solutions often find it challenging to get their users to accept and adopt the new processes.. So, how do we improve the user experience, make it intuitive and personalized and yet simplify the user access process? With R2, OIM helps organizations alleviate the challenge by placing the most used functionality front and centre in the new user request interface. Roles, application accounts, and entitlements can all be found in the same interface as catalog items, giving business users a single location to go to whenever they need to initiate, approve or track a request. Furthermore, if a particular item is not relevant to a user’s job function or area inside the organization, it can be hidden so as to not overwhelm or confuse the user with superfluous options. The ability to customize the user interface to suit your needs helps in exercising the business rules effectively and avoiding access proliferation within the organization. Saving Time with Templates A typical use case that is most beneficial to business users is flexibility to place, edit, and withdraw requests based on changing circumstances and business needs. With OIM R2, multiple catalog items can now be added and removed from the shopping cart, an ecommerce paradigm that many users are already familiar with. This feature can be especially useful when setting up a large number of new employees or granting existing department or group access to a newly integrated application. Additionally, users can create their own shopping cart templates in order to complete subsequent requests more quickly. This feature saves the user from having to search for and select items all over again if a request is similar to a previous one. Advanced Delegated Administration A key feature of any provisioning solution should be to empower each business unit in managing their own access requests. By bringing administration closer to the user, you improve user productivity, enable efficiency and alleviate the administration overhead. To do so requires a federated services model so that the business units capable of shouldering the onus of user life cycle management of their business users can be enabled to do so. OIM 11gR2 offers advanced administrative options for creating, managing and controlling business logic and workflows through easy to use administrative interface and tools that can be exposed to delegated business administrators. For example, these business administrators can establish or modify how certain requests and operations should be handled within their business unit based on a number of attributes ranging from the type of request or the risk level of the individual items requested. Closed-Loop Remediation Security continues to be a major concern for most organizations. Identity management solutions bolster security by ensuring only the right users have the right access to the right resources. To prevent unauthorized access and where it already exists, the ability to detect and remediate it, are key requirements of an enterprise-grade proven solution. But the challenge with most solutions today is that some of this information still exists in silos. And when changes are made to systems directly, not all information is captured. With R2, oracle is offering a comprehensive Identity Governance solution that our customer organizations are leveraging for closed loop remediation that allows for an automated way for administrators to revoke unauthorized access. The change is automatically captured and the action noted for continued management. Conclusion While implementing provisioning solutions, it is important to keep the near term and the long term goals in mind. The provisioning solution should always be a part of a larger security and identity management program but with the ability to seamlessly integrate not only with the company’s infrastructure but also have the ability to leverage the information, business models compiled and used by the other identity management solutions. This allows organizations to reduce the cost of ownership, close security gaps and leverage the existing infrastructure. And having done so a multiple clients’ sites, this is the approach we recommend. In our next post, we will take a journey through our experiences of advising clients looking to upgrade to R2 from a previous version or migrating from a different solution. Meet the Writers:   Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL). Jenny (Xiao) Zhang is a member of the Advisory Security practice within PwC.  She has consulted across multiple industries including financial services, entertainment and retail. Jenny has three years of experience in delivering IT solutions out of which she has been implementing Identity Management solutions for the past one and a half years.

    Read the article

  • SQLAuthority News – Great Time Spent at Great Indian Developers Summit 2014

    - by Pinal Dave
    The Great Indian Developer Conference (GIDS) is one of the most popular annual event held in Bangalore. This year GIDS is scheduled on April 22, 25. I will be presented total four sessions at this event and each session is very different from each other. Here are the details of four of my sessions, which I presented there. Pluralsight Shades This event was a great event and I had fantastic fun presenting a technology over here. I was indeed very excited that along with me, I had many of my friends presenting at the event as well. I want to thank all of you to attend my session and having standing room every single time. I have already sent resources in my newsletter. You can sign up for the newsletter over here. Indexing is an Art I was amazed with the crowd present in the sessions at GIDS. There was a great interest in the subject of SQL Server and Performance Tuning. Audience at GIDS I believe event like such provides a great platform to meet and share knowledge. Pinal at Pluralsight Booth Here are the abstract of the sessions which I had presented. They were recorded so at some point in time they will be available, but if you want the content of all the courses immediately, I suggest you check out my video courses on the same subject on Pluralsight. Indexes, the Unsung Hero Relevant Pluralsight Course Slow Running Queries are the most common problem that developers face while working with SQL Server. While it is easy to blame SQL Server for unsatisfactory performance, the issue often persists with the way queries have been written, and how Indexes has been set up. The session will focus on the ways of identifying problems that slow down SQL Server, and Indexing tricks to fix them. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. Indexes are the most crucial objects of the database. They are the first stop for any DBA and Developer when it is about performance tuning. There is a good side as well evil side to indexes. To master the art of performance tuning one has to understand the fundamentals of indexes and the best practices associated with the same. We will cover various aspects of Indexing such as Duplicate Index, Redundant Index, Missing Index as well as best practices around Indexes. SQL Server Performance Troubleshooting: Ancient Problems and Modern Solutions Relevant Pluralsight Course Many believe Performance Tuning and Troubleshooting is an art which has been lost in time. However, truth is that art has evolved with time and there are more tools and techniques to overcome ancient troublesome scenarios. There are three major resources that when bottlenecked creates performance problems: CPU, IO, and Memory. In this session we will focus on High CPU scenarios detection and their resolutions. If time permits we will cover other performance related tips and tricks. At the end of this session, attendees will have a clear idea as well as action items regarding what to do when facing any of the above resource intensive scenarios. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. To master the art of performance tuning one has to understand the fundamentals of performance, tuning and the best practices associated with the same. We will discuss about performance tuning in this session with the help of Demos. Pinal Dave at GIDS MySQL Performance Tuning – Unexplored Territory Relevant Pluralsight Course Performance is one of the most essential aspects of any application. Everyone wants their server to perform optimally and at the best efficiency. However, not many people talk about MySQL and Performance Tuning as it is an extremely unexplored territory. In this session, we will talk about how we can tune MySQL Performance. We will also try and cover other performance related tips and tricks. At the end of this session, attendees will not only have a clear idea, but also carry home action items regarding what to do when facing any of the above resource intensive scenarios. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. To master the art of performance tuning one has to understand the fundamentals of performance, tuning and the best practices associated with the same. You will also witness some impressive performance tuning demos in this session. Hidden Secrets and Gems of SQL Server We Bet You Never Knew Relevant Pluralsight Course SQL Trio Session! It really amazes us every time when someone says SQL Server is an easy tool to handle and work with. Microsoft has done an amazing work in making working with complex relational database a breeze for developers and administrators alike. Though it looks like child’s play for some, the realities are far away from this notion. The basics and fundamentals though are simple and uniform across databases, the behavior and understanding the nuts and bolts of SQL Server is something we need to master over a period of time. With a collective experience of more than 30+ years amongst the speakers on databases, we will try to take a unique tour of various aspects of SQL Server and bring to you life lessons learnt from working with SQL Server. We will share some of the trade secrets of performance, configuration, new features, tuning, behaviors, T-SQL practices, common pitfalls, productivity tips on tools and more. This is a highly demo filled session for practical use if you are a SQL Server developer or an Administrator. The speakers will be able to stump you and give you answers on almost everything inside the Relational database called SQL Server. I personally attended the session of Vinod Kumar, Balmukund Lakhani, Abhishek Kumar and my favorite Govind Kanshi. Summary If you have missed this event here are two action items 1) Sign up for Resource Newsletter 2) Watch my video courses on Pluralsight Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, SQLAuthority News, T SQL Tagged: GIDS

    Read the article

  • The challenge of communicating externally with IRM secured content

    - by Simon Thorpe
    I am often asked by customers about how they handle sending IRM secured documents to external parties. Their concern is that using IRM to secure sensitive information they need to share outside their business, is troubled with the inability for third parties to install the software which enables them to gain access to the information. It is a very legitimate question and one i've had to answer many times in the past 10 years whilst helping customers plan successful IRM deployments. The operating system does not provide the required level of content security The problem arises from what IRM delivers, persistent security to your sensitive information where ever it resides and whenever it is in use. Oracle IRM gives customers an array of features that help ensure sensitive information in an IRM document or email is always protected and only accessed by authorized users using legitimate applications. Examples of such functionality are; Control of the clipboard, either by disabling completely in the opened document or by allowing the cut and pasting of information between secured IRM documents but not into insecure applications. Protection against programmatic access to the document. Office documents and PDF documents have the ability to be accessed by other applications and scripts. With Oracle IRM we have to protect against this to ensure content cannot be leaked by someone writing a simple program. Securing of decrypted content in memory. At some point during the process of opening and presenting a sealed document to an end user, we must decrypt it and give it to the application (Adobe Reader, Microsoft Word, Excel etc). This process must be secure so that someone cannot simply get access to the decrypted information. The operating system alone just doesn't have the functionality to deliver these types of features. This is why for every IRM technology there must be some extra software installed and typically this software requires administrative rights to do so. The fact is that if you want to have very strong security and access control over a document you are going to send to someone who is beyond your network infrastructure, there must be some software to provide that functionality. Simple installation with Oracle IRM The software used to control access to Oracle IRM sealed content is called the Oracle IRM Desktop. It is a small, free piece of software roughly about 12mb in size. This software delivers functionality for everything a user needs to work with an Oracle IRM solution. It provides the functionality for all formats we support, the storage and transparent synchronization of user rights and unique to Oracle, the ability to search inside sealed files stored on the local computer. In Oracle we've made every technical effort to ensure that installing this software is a simple as possible. In situations where the user's computer is part of the enterprise, this software is typically deployed using existing technologies such as Systems Management Server from Microsoft or by using Active Directory Group Policies. However when sending sealed content externally, you cannot automatically install software on the end users machine. You need to rely on them to download and install themselves. Again we've made every effort for this manual install process to be as simple as we can. Starting with the small download size of the software itself to the simple installation process, most end users are able to install and access sealed content very quickly. You can see for yourself how easily this is done by walking through our free and easy self service demonstration of using sealed content. How to handle objections and ensure there is value However the fact still remains that end users may object to installing, or may simply be unable to install the software themselves due to lack of permissions. This is often a problem with any technology that requires specialized software to access a new type of document. In Oracle, over the past 10 years, we've learned many ways to get over this barrier of getting software deployed by external users. First and I would say of most importance, is the content MUST have some value to the person you are asking to install software. Without some type of value proposition you are going to find it very difficult to get past objections to installing the IRM Desktop. Imagine if you were going to secure the weekly campus restaurant menu and send this to contractors. Their initial response will be, "why on earth are you asking me to download some software just to access your menu!?". A valid objection... there is no value to the user in doing this. Now consider the scenario where you are sending one of your contractors their employment contract which contains their address, social security number and bank account details. Are they likely to take 5 minutes to install the IRM Desktop? You bet they are, because there is real value in doing so and they understand why you are doing it. They want their personal information to be securely handled and a quick download and install of some software is a small task in comparison to dealing with the loss of this information. Be clear in communicating this value So when sending sealed content to people externally, you must be clear in communicating why you are using an IRM technology and why they need to install some software to access the content. Do not try and avoid the issue, you must be clear and upfront about it. In doing so you will significantly reduce the "I didn't know I needed to do this..." responses and also gain respect for being straight forward. One customer I worked with, 6 months after the initial deployment of Oracle IRM, called me panicking that the partner they had started to share their engineering documents with refused to install any software to access this highly confidential intellectual property. I explained they had to communicate to the partner why they were doing this. I told them to go back with the statement that "the company takes protecting its intellectual property seriously and had decided to use IRM to control access to engineering documents." and if the partner didn't respect this decision, they would find another company that would. The result? A few days later the partner had made the Oracle IRM Desktop part of their approved list of software in the company. Companies are successful when sending sealed content to third parties We have many, many customers who send sensitive content to third parties. Some customers actually sell access to Oracle IRM protected content and therefore 99% of their users are external to their business, one in particular has sold content to hundreds of thousands of external users. Oracle themselves use the technology to secure M&A documents, payroll data and security assessments which go beyond the traditional enterprise security perimeter. Pretty much every company who deploys Oracle IRM will at some point be sending those documents to people outside of the company, these customers must be successful otherwise Oracle IRM wouldn't be successful. Because our software is used by a wide variety of companies, some who use it to sell content, i've often run into people i'm sharing a sealed document with and they already have the IRM Desktop installed due to accessing content from another company. The future In summary I would say that yes, this is a hurdle that many customers are concerned about but we see much evidence that in practice, people leap that hurdle with relative ease as long as they are good at communicating the value of using IRM and also take measures to ensure end users can easily go through the process of installation. We are constantly developing new ideas to reducing this hurdle and maybe one day the operating systems will give us enough rich security functionality to have no software installation. Until then, Oracle IRM is by far the easiest solution to balance security and usability for your business. If you would like to evaluate it for yourselves, please contact us.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

< Previous Page | 233 234 235 236 237 238 239 240 241 242 243 244  | Next Page >