Search Results

Search found 30190 results on 1208 pages for 'table row'.

Page 242/1208 | < Previous Page | 238 239 240 241 242 243 244 245 246 247 248 249  | Next Page >

  • OWB 11gR2 &ndash; Flexible and extensible

    - by David Allan
    The Oracle data integration extensibility capabilities are something I love, nothing more frustrating than a tool or platform that is very constraining. I think extensibility and flexibility are invaluable capabilities in the data integration arena. I liked Uli Bethke's posting on some extensibility capabilities with ODI (see Nesting ODI Substitution Method Calls here), he has some useful guidance on making customizations to existing KMs, nice to learn by example. I thought I'd illustrate the same capabilities with ODI's partner OWB for the OWB community. There is a whole new world of potential. The LKM/IKM/CKM/JKMs are the primary templates that are supported (plus the Oracle Target code template), so there is a lot of potential for customizing and extending the product in this release. Enough waffle... Diving in at the deep end from Uli's post, in OWB the table operator has a number of additional properties in OWB 11gR2 that let you annotate the column usage with ODI-like properties such as the slowly changing usage or for your own user-defined purpose as in Uli's post, below you see for the target table SALES_TARGET we can use the UD5 property which when assigned the code template (knowledge module) which has been modified with Uli's change we can do custom things such as creating indices - provides The code template used by the mapping has the additional step which is basically the code illustrated from Uli's posting just used directly, the ODI 10g substitution references also supported from within OWB's runtime. Now to see whether this does what we expect before we execute it, we can check out the generated code similar to how the traditional mapping generation and preview works, you do this by clicking on the 'Inspect Code' button on the execution units code template assignment. This then  creates another tab with prefix 'Code - <mapping name>' where the generated code is put, scrolling down we find the last step with the indices being created, looks good, so we are ready to deploy and execute. After executing the mapping we can then use the 'Audit Information' panel (select the mapping in the designer tree and click on View/Audit Information), this gives us a view of the execution where we can drill into the tasks that were executed and inspect both the template and the generated code that was executed and any potential errors. Reflecting back on earlier versions of OWB, these were the kinds of features that were always highly desirable, getting under the hood of the code generation and tweaking bit and pieces - fun and powerful stuff! We can step it up a bit here and explore some further ideas. The example below is a daisy-chained set of execution units where the intermediate table is a target of one unit and the source for another. We want that table to be a global temporary table, so can tweak the templates. Back to the copy of SQL Control Append (for demo purposes) we modify the create target table step to make the table a global temporary table, with the option of on commit preserve rows. You can get a feel for some of the customizations and changes possible, providing some great flexibility and extensibility for the data integration tools.

    Read the article

  • OWB 11gR2 &ndash; Degenerate Dimensions

    - by David Allan
    Ever wondered how to build degenerate dimensions in OWB and get the benefits of slowly changing dimensions and cube loading? Now its possible through some changes in 11gR2 to make the dimension and cube loading much more flexible. This will let you get the benefits of OWB's surrogate key handling and slowly changing dimension reference when loading the fact table and need degenerate dimensions (see Ralph Kimball's degenerate dimensions design tip). Here we will see how to use the cube operator to load slowly changing, regular and degenerate dimensions. The cube and cube operator can now work with dimensions which have no surrogate key as well as dimensions with surrogates, so you can get the benefit of the cube loading and incorporate the degenerate dimension loading. What you need to do is create a dimension in OWB that is purely used for ETL metadata; the dimension itself is never deployed (its table is, but has not data) it has no surrogate keys has a single level with a business attribute the degenerate dimension data and a dummy attribute, say description just to pass the OWB validation. When this degenerate dimension is added into a cube, you will need to configure the fact table created and set the 'Deployable' flag to FALSE for the foreign key generated to the degenerate dimension table. The degenerate dimension reference will then be in the cube operator and used when matching. Create the degenerate dimension using the regular wizard. Delete the Surrogate ID attribute, this is not needed. Define a level name for the dimension member (any name). After the wizard has completed, in the editor delete the hierarchy STANDARD that was automatically generated, there is only a single level, no need for a hierarchy and this shouldn't really be created. Deploy the implementing table DD_ORDERNUMBER_TAB, this needs to be deployed but with no data (the mapping here will do a left outer join of the source data with the empty degenerate dimension table). Now, go ahead and build your cube, use the regular TIMES dimension for example and your degenerate dimension DD_ORDERNUMBER, can add in SCD dimensions etc. Configure the fact table created and set Deployable to false, so the foreign key does not get generated. Can now use the cube in a mapping and load data into the fact table via the cube operator, this will look after surrogate lookups and slowly changing dimension references.   If you generate the SQL you will see the ON clause for matching includes the columns representing the degenerate dimension columns. Here we have seen how this use case for loading fact tables using degenerate dimensions becomes a whole lot simpler using OWB 11gR2. I'm sure there are other use cases where using this mix of dimensions with surrogate and regular identifiers is useful, Fact tables partitioned by date columns is another classic example that this will greatly help and make the cube operator much more useful. Good to hear any comments.

    Read the article

  • SQL Monitor’s data repository

    - by Chris Lambrou
    As one of the developers of SQL Monitor, I often get requests passed on by our support people from customers who are looking to dip into SQL Monitor’s own data repository, in order to pull out bits of information that they’re interested in. Since there’s clearly interest out there in playing around directly with the data repository, I thought I’d write some blog posts to start to describe how it all works. The hardest part for me is knowing where to begin, since the schema of the data repository is pretty big. Hmmm… I guess it’s tricky for anyone to write anything but the most trivial of queries against the data repository without understanding the hierarchy of monitored objects, so perhaps my first post should start there. I always imagine that whenever a customer fires up SSMS and starts to explore their SQL Monitor data repository database, they become immediately bewildered by the schema – that was certainly my experience when I did so for the first time. The following query shows the number of different object types in the data repository schema: SELECT type_desc, COUNT(*) AS [count] FROM sys.objects GROUP BY type_desc ORDER BY type_desc;  type_desccount 1DEFAULT_CONSTRAINT63 2FOREIGN_KEY_CONSTRAINT181 3INTERNAL_TABLE3 4PRIMARY_KEY_CONSTRAINT190 5SERVICE_QUEUE3 6SQL_INLINE_TABLE_VALUED_FUNCTION381 7SQL_SCALAR_FUNCTION2 8SQL_STORED_PROCEDURE100 9SYSTEM_TABLE41 10UNIQUE_CONSTRAINT54 11USER_TABLE193 12VIEW124 With 193 tables, 124 views, 100 stored procedures and 381 table valued functions, that’s quite a hefty schema, and when you browse through it using SSMS, it can be a bit daunting at first. So, where to begin? Well, let’s narrow things down a bit and only look at the tables belonging to the data schema. That’s where all of the collected monitoring data is stored by SQL Monitor. The following query gives us the names of those tables: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' ORDER BY sch.name, obj.name; This query still returns 110 tables. I won’t show them all here, but let’s have a look at the first few of them:  name 1data.Cluster_Keys 2data.Cluster_Machine_ClockSkew_UnstableSamples 3data.Cluster_Machine_Cluster_StableSamples 4data.Cluster_Machine_Keys 5data.Cluster_Machine_LogicalDisk_Capacity_StableSamples 6data.Cluster_Machine_LogicalDisk_Keys 7data.Cluster_Machine_LogicalDisk_Sightings 8data.Cluster_Machine_LogicalDisk_UnstableSamples 9data.Cluster_Machine_LogicalDisk_Volume_StableSamples 10data.Cluster_Machine_Memory_Capacity_StableSamples 11data.Cluster_Machine_Memory_UnstableSamples 12data.Cluster_Machine_Network_Capacity_StableSamples 13data.Cluster_Machine_Network_Keys 14data.Cluster_Machine_Network_Sightings 15data.Cluster_Machine_Network_UnstableSamples 16data.Cluster_Machine_OperatingSystem_StableSamples 17data.Cluster_Machine_Ping_UnstableSamples 18data.Cluster_Machine_Process_Instances 19data.Cluster_Machine_Process_Keys 20data.Cluster_Machine_Process_Owner_Instances 21data.Cluster_Machine_Process_Sightings 22data.Cluster_Machine_Process_UnstableSamples 23… There are two things I want to draw your attention to: The table names describe a hierarchy of the different types of object that are monitored by SQL Monitor (e.g. clusters, machines and disks). For each object type in the hierarchy, there are multiple tables, ending in the suffixes _Keys, _Sightings, _StableSamples and _UnstableSamples. Not every object type has a table for every suffix, but the _Keys suffix is especially important and a _Keys table does indeed exist for every object type. In fact, if we limit the query to return only those tables ending in _Keys, we reveal the full object hierarchy: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' AND obj.name LIKE '%_Keys' ORDER BY sch.name, obj.name;  name 1data.Cluster_Keys 2data.Cluster_Machine_Keys 3data.Cluster_Machine_LogicalDisk_Keys 4data.Cluster_Machine_Network_Keys 5data.Cluster_Machine_Process_Keys 6data.Cluster_Machine_Services_Keys 7data.Cluster_ResourceGroup_Keys 8data.Cluster_ResourceGroup_Resource_Keys 9data.Cluster_SqlServer_Agent_Job_History_Keys 10data.Cluster_SqlServer_Agent_Job_Keys 11data.Cluster_SqlServer_Database_BackupType_Backup_Keys 12data.Cluster_SqlServer_Database_BackupType_Keys 13data.Cluster_SqlServer_Database_CustomMetric_Keys 14data.Cluster_SqlServer_Database_File_Keys 15data.Cluster_SqlServer_Database_Keys 16data.Cluster_SqlServer_Database_Table_Index_Keys 17data.Cluster_SqlServer_Database_Table_Keys 18data.Cluster_SqlServer_Error_Keys 19data.Cluster_SqlServer_Keys 20data.Cluster_SqlServer_Services_Keys 21data.Cluster_SqlServer_SqlProcess_Keys 22data.Cluster_SqlServer_TopQueries_Keys 23data.Cluster_SqlServer_Trace_Keys 24data.Group_Keys The full object type hierarchy looks like this: Cluster Machine LogicalDisk Network Process Services ResourceGroup Resource SqlServer Agent Job History Database BackupType Backup CustomMetric File Table Index Error Services SqlProcess TopQueries Trace Group Okay, but what about the individual objects themselves represented at each level in this hierarchy? Well that’s what the _Keys tables are for. This is probably best illustrated by way of a simple example – how can I query my own data repository to find the databases on my own PC for which monitoring data has been collected? Like this: SELECT clstr._Name AS cluster_name, srvr._Name AS instance_name, db._Name AS database_name FROM data.Cluster_SqlServer_Database_Keys db JOIN data.Cluster_SqlServer_Keys srvr ON db.ParentId = srvr.Id -- Note here how the parent of a Database is a Server JOIN data.Cluster_Keys clstr ON srvr.ParentId = clstr.Id -- Note here how the parent of a Server is a Cluster WHERE clstr._Name = 'dev-chrisl2' -- This is the hostname of my own PC ORDER BY clstr._Name, srvr._Name, db._Name;  cluster_nameinstance_namedatabase_name 1dev-chrisl2SqlMonitorData 2dev-chrisl2master 3dev-chrisl2model 4dev-chrisl2msdb 5dev-chrisl2mssqlsystemresource 6dev-chrisl2tempdb 7dev-chrisl2sql2005SqlMonitorData 8dev-chrisl2sql2005TestDatabase 9dev-chrisl2sql2005master 10dev-chrisl2sql2005model 11dev-chrisl2sql2005msdb 12dev-chrisl2sql2005mssqlsystemresource 13dev-chrisl2sql2005tempdb 14dev-chrisl2sql2008SqlMonitorData 15dev-chrisl2sql2008master 16dev-chrisl2sql2008model 17dev-chrisl2sql2008msdb 18dev-chrisl2sql2008mssqlsystemresource 19dev-chrisl2sql2008tempdb These results show that I have three SQL Server instances on my machine (a default instance, one named sql2005 and one named sql2008), and each instance has the usual set of system databases, along with a database named SqlMonitorData. Basically, this is where I test SQL Monitor on different versions of SQL Server, when I’m developing. There are a few important things we can learn from this query: Each _Keys table has a column named Id. This is the primary key. Each _Keys table has a column named ParentId. A foreign key relationship is defined between each _Keys table and its parent _Keys table in the hierarchy. There are two exceptions to this, Cluster_Keys and Group_Keys, because clusters and groups live at the root level of the object hierarchy. Each _Keys table has a column named _Name. This is used to uniquely identify objects in the table within the scope of the same shared parent object. Actually, that last item isn’t always true. In some cases, the _Name column is actually called something else. For example, the data.Cluster_Machine_Services_Keys table has a column named _ServiceName instead of _Name (sorry for the inconsistency). In other cases, a name isn’t sufficient to uniquely identify an object. For example, right now my PC has multiple processes running, all sharing the same name, Chrome (one for each tab open in my web-browser). In such cases, multiple columns are used to uniquely identify an object within the scope of the same shared parent object. Well, that’s it for now. I’ve given you enough information for you to explore the _Keys tables to see how objects are stored in your own data repositories. In a future post, I’ll try to explain how monitoring data is stored for each object, using the _StableSamples and _UnstableSamples tables. If you have any questions about this post, or suggestions for future posts, just submit them in the comments section below.

    Read the article

  • How To - Guide to Importing Data from a MySQL Database to Excel using MySQL for Excel

    - by Javier Treviño
    Fetching data from a database to then get it into an Excel spreadsheet to do analysis, reporting, transforming, sharing, etc. is a very common task among users. There are several ways to extract data from a MySQL database to then import it to Excel; for example you can use the MySQL Connector/ODBC to configure an ODBC connection to a MySQL database, then in Excel use the Data Connection Wizard to select the database and table from which you want to extract data from, then specify what worksheet you want to put the data into.  Another way is to somehow dump a comma delimited text file with the data from a MySQL table (using the MySQL Command Line Client, MySQL Workbench, etc.) to then in Excel open the file using the Text Import Wizard to attempt to correctly split the data in columns. These methods are fine, but involve some degree of technical knowledge to make the magic happen and involve repeating several steps each time data needs to be imported from a MySQL table to an Excel spreadsheet. So, can this be done in an easier and faster way? With MySQL for Excel you can. MySQL for Excel features an Import MySQL Data action where you can import data from a MySQL Table, View or Stored Procedure literally with a few clicks within Excel.  Following is a quick guide describing how to import data using MySQL for Excel. This guide assumes you already have a working MySQL Server instance, Microsoft Office Excel 2007 or 2010 and MySQL for Excel installed. 1. Opening MySQL for Excel Being an Excel Add-In, MySQL for Excel is opened from within Excel, so to use it open Excel, go to the Data tab located in the Ribbon and click MySQL for Excel at the far right of the Ribbon. 2. Creating a MySQL Connection (may be optional) If you have MySQL Workbench installed you will automatically see the same connections that you can see in MySQL Workbench, so you can use any of those and there may be no need to create a new connection. If you want to create a new connection (which normally you will do only once), in the Welcome Panel click New Connection, which opens the Setup New Connection dialog. Here you only need to give your new connection a distinctive Connection Name, specify the Hostname (or IP address) where the MySQL Server instance is running on (if different than localhost), the Port to connect to and the Username for the login. If you wish to test if your setup is good to go, click Test Connection and an information dialog will pop-up stating if the connection is successful or errors were found. 3.Opening a connection to a MySQL Server To open a pre-configured connection to a MySQL Server you just need to double-click it, so the Connection Password dialog is displayed where you enter the password for the login. 4. Selecting a MySQL Schema After opening a connection to a MySQL Server, the Schema Selection Panel is shown, where you can select the Schema that contains the Tables, Views and Stored Procedures you want to work with. To do so, you just need to either double-click the desired Schema or select it and click Next >. 5. Importing data… All previous steps were really the basic minimum needed to drill-down to the DB Object Selection Panel  where you can see the Database Objects (grouped by type: Tables, Views and Procedures in that order) that you want to perform actions against; in the case of this guide, the action of importing data from them. a. From a MySQL Table To import from a Table you just need to select it from the list of Database Objects’ Tables group, after selecting it you will note actions below the list become available; then click Import MySQL Data. The Import Data dialog is displayed; you can see some basic information here like the name of the Excel worksheet the data will be imported to (in the window title), the Table Name, the total Row Count and a 10 row preview of the data meant for the user to see the columns that the table contains and to provide a way to select which columns to import. The Import Data dialog is designed with defaults in place so all data is imported (all rows and all columns) by just clicking Import; this is important to minimize the number of clicks needed to get the job done. After the import is performed you will have the data in the Excel worksheet formatted automatically. If you need to override the defaults in the Import Data dialog to change the columns selected for import or to change the number of imported rows you can easily do so before clicking Import. In the screenshot below the defaults are overridden to import only the first 3 columns and rows 10 – 60 (Limit to 50 Rows and Start with Row 10). If the number of rows to be imported exceeds the maximum number of rows Excel can hold in its worksheet, a warning will be displayed in the dialog, meaning the imported number of rows will be limited by that maximum number (65,535 rows if the worksheet is in Compatibility Mode).  In the screenshot below you can see the Table contains 80,559 rows, but only 65,534 rows will be imported since the first row is used for the column names if the Include Column Names as Headers checkbox is checked. b. From a MySQL View Similar to the way of importing from a Table, to import from a View you just need to select it from the list of Database Objects’ Views group, then click Import MySQL Data. The Import Data dialog is displayed; identically to the way everything looks when importing from a table, the dialog displays the View Name, the total Row Count and the data preview grid. Since Views are really a filtered way to display data from Tables, it is actually as if we are extracting data from a Table; so the Import Data dialog is actually identical for those 2 Database Objects. After the import is performed, the data in the Excel spreadsheet looks like the following screenshot. Note that you can override the defaults in the Import Data dialog in the same way described above for importing data from Tables. Also the Compatibility Mode warning will be displayed if data exceeds the maximum number of rows explained before. c. From a MySQL Procedure Too import from a Procedure you just need to select it from the list of Database Objects’ Procedures group (note you can see Procedures here but not Functions since these return a single value, so by design they are filtered out). After the selection is made, click Import MySQL Data. The Import Data dialog is displayed, but this time you can see it looks different to the one used for Tables and Views.  Given the nature of Store Procedures, they require first that values are supplied for its Parameters and also Procedures can return multiple Result Sets; so the Import Data dialog shows the Procedure Name and the Procedure Parameters in a grid where their values are input. After you supply the Parameter Values click Call. After calling the Procedure, the Result Sets returned by it are displayed at the bottom of the dialog; output parameters and the return value of the Procedure are appended as the last Result Set of the group. You can see each Result Set is displayed as a tab so you can see a preview of the returned data.  You can specify if you want to import the Selected Result Set (default), All Result Sets – Arranged Horizontally or All Result Sets – Arranged Vertically using the Import drop-down list; then click Import. After the import is performed, the data in the Excel spreadsheet looks like the following screenshot.  Note in this example all Result Sets were imported and arranged vertically. As you can see using MySQL for Excel importing data from a MySQL database becomes an easy task that requires very little technical knowledge, so it can be done by any type of user. Hope you enjoyed this guide! Remember that your feedback is very important for us, so drop us a message: MySQL on Windows (this) Blog - https://blogs.oracle.com/MySqlOnWindows/ Forum - http://forums.mysql.com/list.php?172 Facebook - http://www.facebook.com/mysql Cheers!

    Read the article

  • Using Radio Button in GridView with Validation

    - by Vincent Maverick Durano
    A developer is asking how to select one radio button at a time if the radio button is inside the GridView.  As you may know setting the group name attribute of radio button will not work if the radio button is located within a Data Representation control like GridView. This because the radio button inside the gridview bahaves differentely. Since a gridview is rendered as table element , at run time it will assign different "name" to each radio button. Hence you are able to select multiple rows. In this post I'm going to demonstrate how select one radio button at a time in gridview and add a simple validation on it. To get started let's go ahead and fire up visual studio and the create a new web application / website project. Add a WebForm and then add gridview. The mark up would look something like this: <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false" > <Columns> <asp:TemplateField> <ItemTemplate> <asp:RadioButton ID="rb" runat="server" /> </ItemTemplate> </asp:TemplateField> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Col1" HeaderText="First Column" /> <asp:BoundField DataField="Col2" HeaderText="Second Column" /> </Columns> </asp:GridView> Noticed that I've added a templatefield column so that we can add the radio button there. Also I have set up some BoundField columns and set the DataFields as RowNumber, Col1 and Col2. These columns are just dummy columns and i used it for the simplicity of this example. Now where these columns came from? These columns are created by hand at the code behind file of the ASPX. Here's the code below: private DataTable FillData() { DataTable dt = new DataTable(); DataRow dr = null; //Create DataTable columns dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Col1", typeof(string))); dt.Columns.Add(new DataColumn("Col2", typeof(string))); //Create Row for each columns dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Col1"] = "AA"; dr["Col2"] = "BB"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); return dt; } And here's the code for binding the GridView with the dummy data above. protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { GridView1.DataSource = FillData(); GridView1.DataBind(); } } Okay we have now a GridView data with a radio button on each row. Now lets go ahead and switch back to ASPX mark up. In this example I'm going to use a JavaScript for validating the radio button to select one radio button at a time. Here's the javascript code below: function CheckOtherIsCheckedByGVID(rb) { var isChecked = rb.checked; var row = rb.parentNode.parentNode; if (isChecked) { row.style.backgroundColor = '#B6C4DE'; row.style.color = 'black'; } var currentRdbID = rb.id; parent = document.getElementById("<%= GridView1.ClientID %>"); var items = parent.getElementsByTagName('input'); for (i = 0; i < items.length; i++) { if (items[i].id != currentRdbID && items[i].type == "radio") { if (items[i].checked) { items[i].checked = false; items[i].parentNode.parentNode.style.backgroundColor = 'white'; items[i].parentNode.parentNode.style.color = '#696969'; } } } } The function above sets the row of the current selected radio button's style to determine that the row is selected and then loops through the radio buttons in the gridview and then de-select the previous selected radio button and set the row style back to its default. You can then call the javascript function above at onlick event of radio button like below: <asp:RadioButton ID="rb" runat="server" onclick="javascript:CheckOtherIsCheckedByGVID(this);" /> Here's the output below: On Load: After Selecting a Radio Button: As you have noticed, on initial load there's no default selected radio in the GridView. Now let's add a simple validation for that. We will basically display an error message if a user clicks a button that triggers a postback without selecting  a radio button in the GridView. Here's the javascript for the validation: function ValidateRadioButton(sender, args) { var gv = document.getElementById("<%= GridView1.ClientID %>"); var items = gv.getElementsByTagName('input'); for (var i = 0; i < items.length ; i++) { if (items[i].type == "radio") { if (items[i].checked) { args.IsValid = true; return; } else { args.IsValid = false; } } } } The function above loops through the rows in gridview and find all the radio buttons within it. It will then check each radio button checked property. If a radio is checked then set IsValid to true else set it to false.  The reason why I'm using IsValid is because I'm using the ASP validator control for validation. Now add the following mark up below under the GridView declaration: <br /> <asp:Label ID="lblMessage" runat="server" /> <br /> <asp:Button ID="btn" runat="server" Text="POST" onclick="btn_Click" ValidationGroup="GroupA" /> <asp:CustomValidator ID="CustomValidator1" runat="server" ErrorMessage="Please select row in the grid." ClientValidationFunction="ValidateRadioButton" ValidationGroup="GroupA" style="display:none"></asp:CustomValidator> <asp:ValidationSummary ID="ValidationSummary1" runat="server" ValidationGroup="GroupA" HeaderText="Error List:" DisplayMode="BulletList" ForeColor="Red" /> And then at Button Click event add this simple code below just to test if  the validation works: protected void btn_Click(object sender, EventArgs e) { lblMessage.Text = "Postback at: " + DateTime.Now.ToString("hh:mm:ss tt"); } Here's the output below that you can see in the browser:   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,JavaScript,GridView

    Read the article

  • Temporary Tables in Stored Procedures

    - by Paul White
    Ask anyone what the primary advantage of temporary tables over table variables is, and the chances are they will say that temporary tables support statistics and table variables do not. This is true, of course; even the indexes that enforce PRIMARY KEY and UNIQUE constraints on table variables do not have populated statistics associated with them, and it is not possible to manually create statistics or non-constraint indexes on table variables. Intuitively, then, any query that has alternative execution...(read more)

    Read the article

  • Removing hard-coded values and defensive design vs YAGNI

    - by Ben Scott
    First a bit of background. I'm coding a lookup from Age - Rate. There are 7 age brackets so the lookup table is 3 columns (From|To|Rate) with 7 rows. The values rarely change - they are legislated rates (first and third columns) that have stayed the same for 3 years. I figured that the easiest way to store this table without hard-coding it is in the database in a global configuration table, as a single text value containing a CSV (so "65,69,0.05,70,74,0.06" is how the 65-69 and 70-74 tiers would be stored). Relatively easy to parse then use. Then I realised that to implement this I would have to create a new table, a repository to wrap around it, data layer tests for the repo, unit tests around the code that unflattens the CSV into the table, and tests around the lookup itself. The only benefit of all this work is avoiding hard-coding the lookup table. When talking to the users (who currently use the lookup table directly - by looking at a hard copy) the opinion is pretty much that "the rates never change." Obviously that isn't actually correct - the rates were only created three years ago and in the past things that "never change" have had a habit of changing - so for me to defensively program this I definitely shouldn't store the lookup table in the application. Except when I think YAGNI. The feature I am implementing doesn't specify that the rates will change. If the rates do change, they will still change so rarely that maintenance isn't even a consideration, and the feature isn't actually critical enough that anything would be affected if there was a delay between the rate change and the updated application. I've pretty much decided that nothing of value will be lost if I hard-code the lookup, and I'm not too concerned about my approach to this particular feature. My question is, as a professional have I properly justified that decision? Hard-coding values is bad design, but going to the trouble of removing the values from the application seems to violate the YAGNI principle. EDIT To clarify the question, I'm not concerned about the actual implementation. I'm concerned that I can either do a quick, bad thing, and justify it by saying YAGNI, or I can take a more defensive, high-effort approach, that even in the best case ultimately has low benefits. As a professional programmer does my decision to implement a design that I know is flawed simply come down to a cost/benefit analysis?

    Read the article

  • Oracle Enterprise Manager 12c Ops Center Jump-Start for Partners

    - by Get_Specialized!
    Following the Normal 0 false false false EN-US X-NONE X-NONE Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} announcement at Oracle OpenWorld Tokyo, Partners can check out these resources to further learn about Oracle Enterprise Manager 12c Op Center and then use it to optimize your solution/services or offer new ones: Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Product Documentation Oracle Technical Network Resources Online Learning Series for Partners in the OPN Enterprise Manager KnowledgeZone Whitepaper Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Making Infrastructure-as-a-Service in the Enterprise a Reality IDC report: Oracle Enterprise Manager 12c Embraces the Cloud with Integrated Lifecycle Management Follow-up webcast April 12th  Total Cloud Control for Systems Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle Enterprise Manager Ops Center 12c is no extra charge and included in the support contract of Oracle Systems customers.To learn more see the Ops Center Everywhere Program And if you're not already a member, be sure and join the Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle Enterprise Manager KnowledgeZone on the Oracle PartnerNetwork  Portal

    Read the article

  • Function Folding in #PowerQuery

    - by Darren Gosbell
    Originally posted on: http://geekswithblogs.net/darrengosbell/archive/2014/05/16/function-folding-in-powerquery.aspxLooking at a typical Power Query query you will noticed that it's made up of a number of small steps. As an example take a look at the query I did in my previous post about joining a fact table to a slowly changing dimension. It was roughly built up of the following steps: Get all records from the fact table Get all records from the dimension table do an outer join between these two tables on the business key (resulting in an increase in the row count as there are multiple records in the dimension table for each business key) Filter out the excess rows introduced in step 3 remove extra columns that are not required in the final result set. If Power Query was to execute a query like this literally, following the same steps in the same order it would not be overly efficient. Particularly if your two source tables were quite large. However Power Query has a feature called function folding where it can take a number of these small steps and push them down to the data source. The degree of function folding that can be performed depends on the data source, As you might expect, relational data sources like SQL Server, Oracle and Teradata support folding, but so do some of the other sources like OData, Exchange and Active Directory. To explore how this works I took the data from my previous post and loaded it into a SQL database. Then I converted my Power Query expression to source it's data from that database. Below is the resulting Power Query which I edited by hand so that the whole thing can be shown in a single expression: let     SqlSource = Sql.Database("localhost", "PowerQueryTest"),     BU = SqlSource{[Schema="dbo",Item="BU"]}[Data],     Fact = SqlSource{[Schema="dbo",Item="fact"]}[Data],     Source = Table.NestedJoin(Fact,{"BU_Code"},BU,{"BU_Code"},"NewColumn"),     LeftJoin = Table.ExpandTableColumn(Source, "NewColumn"                                   , {"BU_Key", "StartDate", "EndDate"}                                   , {"BU_Key", "StartDate", "EndDate"}),     BetweenFilter = Table.SelectRows(LeftJoin, each (([Date] >= [StartDate]) and ([Date] <= [EndDate])) ),     RemovedColumns = Table.RemoveColumns(BetweenFilter,{"StartDate", "EndDate"}) in     RemovedColumns If the above query was run step by step in a literal fashion you would expect it to run two queries against the SQL database doing "SELECT * …" from both tables. However a profiler trace shows just the following single SQL query: select [_].[BU_Code],     [_].[Date],     [_].[Amount],     [_].[BU_Key] from (     select [$Outer].[BU_Code],         [$Outer].[Date],         [$Outer].[Amount],         [$Inner].[BU_Key],         [$Inner].[StartDate],         [$Inner].[EndDate]     from [dbo].[fact] as [$Outer]     left outer join     (         select [_].[BU_Key] as [BU_Key],             [_].[BU_Code] as [BU_Code2],             [_].[BU_Name] as [BU_Name],             [_].[StartDate] as [StartDate],             [_].[EndDate] as [EndDate]         from [dbo].[BU] as [_]     ) as [$Inner] on ([$Outer].[BU_Code] = [$Inner].[BU_Code2] or [$Outer].[BU_Code] is null and [$Inner].[BU_Code2] is null) ) as [_] where [_].[Date] >= [_].[StartDate] and [_].[Date] <= [_].[EndDate] The resulting query is a little strange, you can probably tell that it was generated programmatically. But if you look closely you'll notice that every single part of the Power Query formula has been pushed down to SQL Server. Power Query itself ends up just constructing the query and passing the results back to Excel, it does not do any of the data transformation steps itself. So now you can feel a bit more comfortable showing Power Query to your less technical Colleagues knowing that the tool will do it's best fold all the  small steps in Power Query down the most efficient query that it can against the source systems.

    Read the article

  • Configurable tables in sql database

    - by dot
    I have the following tables in my database: Config Table: ====================================== Start_Range | End Range | Config_id 10 | 15 | 1 ====================================== Available_UserIDs ========================== ID | UserID | Used_YN | 1 | 10 | t | 1 | 11 | f | 1 | 12 | f | 1 | 13 | f | 1 | 14 | f | 1 | 15 | f | ========================== Users ========================== UserId | FName | LName | 10 |John | Doe | ========================== This is used in a reservation system of sorts... which lets an administrator specify a range of numbers that will be assigned to users in the config table. Once the range has been defined, the system then populates the Available_userIDs table with all the numbers in between the range, and sets the Used_YN flag to false As users sign up, they grab the next user_id number that's not in use... and reserve it. Then the system adds a record to the Users table. Once the admin has specified a range, it is possible that they can change it. For example, they can start with 10-15... and then when the range is used up, they should be able to specify another range like 16 - 99. I've put a unique constraint on the Available_UserIDs table, as well as on the Users table - to ensure that UserIds can't be duplicated. My questions are as follows: What's the best way to prevent the admins from using a range that's already in use? I thought of the following options: -- check either the Users table to see if the start range or ending range numbers are being used. If they are, assume that all the numbers in between are in use too, and reject the range. -- let them specify whatever they want, try to populate the Available_UserIDs table. If there are duplicates, just ignore that specific error message from the database and continue on. How do I find gaps in the number ranges? For example, if they specify 10-15, and then 20-25, it'd be nice to be able to somehow suggest on my web page that 16-19 is currently available. I found this article: http://stackoverflow.com/questions/1312101/how-to-find-a-gap-in-running-counter-with-sql But it only seems to return the first available number... so in my example above, it would only return the number 16. I'm sure there's a simpler way to do things that I'm overlooking!

    Read the article

  • TechEd 2014 Day 3

    - by John Paul Cook
    There is some confusion about durability of data stored in SQL Server in-memory tables, so some review of the concepts is appropriate. The in-memory option is enabled at the database level. Enabling it at the database level only gives you the option to specify the in-memory feature on a table by table basis. No existing tables or new tables will by default become in-memory tables when you enable the feature at the database level. If you choose to make a table an in-memory table, by default it is...(read more)

    Read the article

  • TechEd 2014 Day 3

    - by John Paul Cook
    There is some confusion about durability of data stored in SQL Server in-memory tables, so some review of the concepts is appropriate. The in-memory option is enabled at the database level. Enabling it at the database level only gives you the option to specify the in-memory feature on a table by table basis. No existing tables or new tables will by default become in-memory tables when you enable the feature at the database level. If you choose to make a table an in-memory table, by default it is...(read more)

    Read the article

  • Mysql - help me optimize this query

    - by sandeepan-nath
    About the system: -The system has a total of 8 tables - Users - Tutor_Details (Tutors are a type of User,Tutor_Details table is linked to Users) - learning_packs, (stores packs created by tutors) - learning_packs_tag_relations, (holds tag relations meant for search) - tutors_tag_relations and tags and orders (containing purchase details of tutor's packs), order_details linked to orders and tutor_details. For a more clear idea about the tables involved please check the The tables section in the end. -A tags based search approach is being followed.Tag relations are created when new tutors register and when tutors create packs (this makes tutors and packs searcheable). For details please check the section How tags work in this system? below. Following is a simpler representation (not the actual) of the more complex query which I am trying to optimize:- I have used statements like explanation of parts in the query select SUM(DISTINCT( t.tag LIKE "%Dictatorship%" )) as key_1_total_matches, SUM(DISTINCT( t.tag LIKE "%democracy%" )) as key_2_total_matches, td., u., count(distinct(od.id_od)), if (lp.id_lp > 0) then some conditional logic on lp fields else 0 as tutor_popularity from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN `some other tables on lp.id_lp - let's call learning pack tables set (including Learning_Packs table)` LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) where some condition on Users table's fields AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN `some conditions on learning pack tables set` ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN `some conditions on webclasses tables set` ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and some conditions on Orders table's fields ELSE 1 END AND ( t.tag LIKE "%Dictatorship%" OR t.tag LIKE "%democracy%") group by td.id_tutor HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 ===================================================================== What does the above query do? Does AND logic search on the search keywords (2 in this example - "Democracy" and "Dictatorship"). Returns only those tutors for which both the keywords are present in the union of the two sets - tutors details and details of all the packs created by a tutor. To make things clear - Suppose a Tutor name "Sandeepan Nath" has created a pack "My first pack", then:- Searching "Sandeepan Nath" returns Sandeepan Nath. Searching "Sandeepan first" returns Sandeepan Nath. Searching "Sandeepan second" does not return Sandeepan Nath. ====================================================================================== The problem The results returned by the above query are correct (AND logic working as per expectation), but the time taken by the query on heavily loaded databases is like 25 seconds as against normal query timings of the order of 0.005 - 0.0002 seconds, which makes it totally unusable. It is possible that some of the delay is being caused because all the possible fields have not yet been indexed, but I would appreciate a better query as a solution, optimized as much as possible, displaying the same results ========================================================================================== How tags work in this system? When a tutor registers, tags are entered and tag relations are created with respect to tutor's details like name, surname etc. When a Tutors create packs, again tags are entered and tag relations are created with respect to pack's details like pack name, description etc. tag relations for tutors stored in tutors_tag_relations and those for packs stored in learning_packs_tag_relations. All individual tags are stored in tags table. ==================================================================== The tables Most of the following tables contain many other fields which I have omitted here. CREATE TABLE IF NOT EXISTS users ( id_user int(10) unsigned NOT NULL AUTO_INCREMENT, name varchar(100) NOT NULL DEFAULT '', surname varchar(155) NOT NULL DEFAULT '', PRIMARY KEY (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=636 ; CREATE TABLE IF NOT EXISTS tutor_details ( id_tutor int(10) NOT NULL AUTO_INCREMENT, id_user int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_tutor), KEY Users_FKIndex1 (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=51 ; CREATE TABLE IF NOT EXISTS orders ( id_order int(10) unsigned NOT NULL AUTO_INCREMENT, PRIMARY KEY (id_order), KEY Orders_FKIndex1 (id_user), ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=275 ; ALTER TABLE orders ADD CONSTRAINT Orders_ibfk_1 FOREIGN KEY (id_user) REFERENCES users (id_user) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS order_details ( id_od int(10) unsigned NOT NULL AUTO_INCREMENT, id_order int(10) unsigned NOT NULL DEFAULT '0', id_author int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_od), KEY Order_Details_FKIndex1 (id_order) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=284 ; ALTER TABLE order_details ADD CONSTRAINT Order_Details_ibfk_1 FOREIGN KEY (id_order) REFERENCES orders (id_order) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs ( id_lp int(10) unsigned NOT NULL AUTO_INCREMENT, id_author int(10) unsigned NOT NULL DEFAULT '0', PRIMARY KEY (id_lp), KEY Learning_Packs_FKIndex2 (id_author), KEY id_lp (id_lp) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=23 ; CREATE TABLE IF NOT EXISTS tags ( id_tag int(10) unsigned NOT NULL AUTO_INCREMENT, tag varchar(255) DEFAULT NULL, PRIMARY KEY (id_tag), UNIQUE KEY tag (tag), KEY id_tag (id_tag), KEY tag_2 (tag), KEY tag_3 (tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3419 ; CREATE TABLE IF NOT EXISTS tutors_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, KEY Tutors_Tag_Relations (id_tag), KEY id_tutor (id_tutor), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE tutors_tag_relations ADD CONSTRAINT Tutors_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, id_lp int(10) unsigned DEFAULT NULL, KEY Learning_Packs_Tag_Relations_FKIndex1 (id_tag), KEY id_lp (id_lp), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE learning_packs_tag_relations ADD CONSTRAINT Learning_Packs_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; =================================================================================== Following is the exact query (this includes classes also - tutors can create classes and search terms are matched with classes created by tutors):- select count(distinct(od.id_od)) as tutor_popularity, CASE WHEN (IF((wc.id_wc 0), ( wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT'))), 0)) THEN 1 ELSE 0 END as 'classes_published', CASE WHEN (IF((lp.id_lp 0), (lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT'))),0)) THEN 1 ELSE 0 END as 'packs_published', td . * , u . * from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN Learning_Packs_Categories AS lpc ON lpc.id_lp_cat = lp.id_lp_cat LEFT JOIN Learning_Packs_Categories AS lpcp ON lpcp.id_lp_cat = lpc.id_parent LEFT JOIN Learning_Pack_Content as lpct on (lp.id_lp = lpct.id_lp) LEFT JOIN Webclasses_Tag_Relations AS wtagrels ON td.id_tutor = wtagrels.id_tutor LEFT JOIN WebClasses AS wc ON wtagrels.id_wc = wc.id_wc LEFT JOIN Learning_Packs_Categories AS wcc ON wcc.id_lp_cat = wc.id_wp_cat LEFT JOIN Learning_Packs_Categories AS wccp ON wccp.id_lp_cat = wcc.id_parent LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) OR (t.id_tag = wtagrels.id_tag) where (u.country='IE' or u.country IN ('INT')) AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and o.order_status = 'paid' and CASE WHEN (od.id_wc 0) THEN od.can_attend_class=1 ELSE 1 END ELSE 1 END AND 1 group by td.id_tutor order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 Please note - The provided database structure does not show all the fields and tables as in this query

    Read the article

  • AT&T U-verse 2Wire Router - Increase session table limit?

    - by caleban
    AT&T U-verse VDSL "fiber to the node" 24Mbit down / 3Mbit up 2Wire Router Model 3800HGV-B Software Version 6.1.9.24-enh.tm The 2Wire router appears to have a limit of 1024 TCP and UDP sessions. This limit appears to apply to all sessions regardless of any static IP, firewall off, DMZ plus, secondary router configurations. I've tried using the 2Wire router alone and also configuring the 2Wire static IP addressing, firewall off, DMZ plus, etc. setup along with my own pfSense router/firewall. Either way it appears I exceed the 1024 session limit and sessions start being reset. Running out of sessions isn't being caused by torrents or p2p etc. We're a business and our legitimate uses are exceeding this session limit. AT&T tells me it's not possible to bridge the router or increase or avoid the session table limit. I'm curious if anyone has found a way around either of these issues.

    Read the article

  • How to I create a table of contents in a Word document that has a mind of it's own?

    - by Howiecamp
    I'm embarrassed to admit that I'm struggling to get a table of contents going in a Word doc that's already been created. I know enough to understand that the TOC is based on the type of the header/style and indentation. My approach so far has been to auto-generate the TOC and then try (unsuccessfully) to fix the problems; perhaps this isn't the best approach in this situation. What's happening is that the TOC is missing half my sections and for others it's adding way too much detail. Again my sense is I have to "fix" individual section headings but I haven't been successful so far.

    Read the article

  • Advised auditing method for MS SQL to track changes made to a specific table by a specific user?

    - by scape
    What is the best method for tracking changes or logging the queries done to a table by a specific user when the person is using Management Studio? I'm using 2008 R2 Express Edition and want to specifically track a single user who logs in through Management studio and runs queries to make changes manually. I want to see what query was run and thus determine what was changed and how. I am not interested in restoring the information. I considered Change Tracking but read that it is not ideal for auditing as well I am unsure how to read the data, then I considered the Bulk-Logging option on the database however I then have to consider handling the log files which may grow huge as the database is used constantly by a web app. I am wondering if there is a more concise method to do what I want?

    Read the article

  • How can we recover/restore lost/overwritten data in our MSSQL 2008 table?

    - by TeTe
    I am in serious trouble and I am seeking professional advices here. We are using MSSQL server 2008. We removed primary key, replaced exiting data with new data resulted losing our critical business data in its child tables on MSSQL Server. It was completely human mistake and we didn't have disk failure. 1) The last backup file was a month ago which means it is useless. 2) We created Maintenance Plans to backup our database at 12AM everyday but those files are nohwere to be found 3) A friend of mine said we can recover from Transaction Logs. When I go to TaskRestore Transaction log is dimmed/disabled. 4) I checked ManagementMaintenance Plans. I can't find any restored point there. It seems that our maintenance plan hasn't been working. Is there any third party tool to recover lost/overwritten data from MSSQL table? Thanks a lot.

    Read the article

  • How to create an array of User Objects in Powerbuilder?

    - by TomatoSandwich
    The application has many different windows. One is a single 'row' window, which relates to a single row of data in a table, say 'Order'. Another is a 'multiple row' datawindow, where each row in the datawindow relates to a row in 'Order', used for spreadsheet-like data entry Functionality extentions have create a detail table, say 'Suppliers', where an order may require multiple suppliers to fill the order. Normally, suppliers are not required, because they are already in the warehouse (0), or there may need to be an order to a supplier to complete an order (1), or multiple suppliers may need to be contacted (more than one). As a single order is entered, once the items are entered, a User Object is populated depending on the status of the items in the warehouse. If required, this creates a 1-to-many relationship between the order and the "backorder". In the PB side, there is a single object uo_backorder which is created on the window, and is referenced by the window depending on the command (button popup, save, etc) I have been tasked to create the 'backorder' functionality on the spreadsheet-line window. Previously the default options for backorders were used when orders were created from the multiple-row window. A workaround already exists where unconfirmed orders could be opened in the single-row window, and the backorder information manipulated there. However, the userbase wants this functionality on the one window. Since the functionality of uo_backorder already exists, I assumed I could just copy the code from the single-order window, but create an array of uo_backorder objects to cope with multiple rows. I tried the following: forward .. type uo_backorder from popupdwpb within w_order_conv end type end forward global type w_order_conv from singleform .. uo_backorder uo_backorder end type type variables .. uo_backorder iuo_backorders[] end variables .. public function boolean iuo_backorders(); .. long ll_count ll_count = UpperBound(iuo_backorders[]) iuo_backorders[ll_count+1] = uo_backorder //THIS ISN'T RIGHT lb_ok = iuo_backorders[ll_count+1].init('w_backorder_popup', '', '', '', 'd_backorder_popup', sqlca, useTransObj()) return lb_ok end function .. <utility functions> .. type uo_backorder from popupdwpb within w_order_conv integer x = 28 integer y = 28 integer width ... end type on uo_backorder.destroy call popupdwpb::destroy end on The issue I face now is that the code commented "THIS ISN'T RIGHT" isn't correct. It is associating the visual object placed on the face of the main window to each array cell, so anytime I reference the array cell object it's actually referencing the one original object, not the new instances that I (thought) I was creating. If I change the code iuo_backorders[ll_count+1] = create uo_backorder the code doesn't run, saying that it failed to initalize the popup window. I think this is related to the class being called the same thing as the instance. What I want to end up with is an array of uo_backorder objects that I can associate to each row of my datawindow (first row = first cell, etc). I think the issue lays in the fact it's a visual object, and I can't seem to get the window to run without adding a dummy object on the face of the window (functionality from the original single-row window). Since it's a VISUAL object, does the object indeed need to be embedded on the windowface for the window to know what object I'm talking about? If so, how does one create multiple windowface objects (one to many, depending on when a row is added)? Don't hesitate to inquire regarding any more information this issue may require from myself. I have no idea what is 'standard' or 'default' in PB, or what is custom and needs more explaining.

    Read the article

  • TableView Cells Use Whole Screen Height

    - by Kyle
    I read through this tutorial Appcelerator: Using JSON to Build a Twitter Client and attempted to create my own simple application to interact with a Jetty server I setup running some Spring code. I basically call a get http request that gives me a bunch of contacts in JSON format. I then populate several rows with my JSON data and try to build a TableView. All of that works, however, my tableView rows take up the whole screen. Each row is one screen. I can scroll up and down and see all my data, but I'm trying to figure out what's wrong in my styling that's making the cells use the whole screen. My CSS is not great, so any help is appreciated. Thanks! Here's my js file that's loading the tableView: // create variable "win" to refer to current window var win = Titanium.UI.currentWindow; // Function loadContacts() function loadContacts() { // empty array "rowData" for table view cells var rowData = []; // create http client var loader = Titanium.Network.createHTTPClient(); // set http request method and url loader.setRequestHeader("Accept", "application/json"); loader.open("GET", "http://localhost:8080/contactsample/contacts"); // run the function when the data is ready for us to process loader.onload = function(){ Ti.API.debug("JSON Data: " + this.responseText); // evaluate json var contacts = JSON.parse(this.responseText); for(var i=0; i < contacts.length; i++) { var id = contacts[i].id; Ti.API.info("JSON Data, Row[" + i + "], ID: " + contacts[i].id); var name = contacts[i].name; Ti.API.info("JSON Data, Row[" + i + "], Name: " + contacts[i].name); var phone = contacts[i].phone; Ti.API.info("JSON Data, Row[" + i + "], Phone: " + contacts[i].phone); var address = contacts[i].address; Ti.API.info("JSON Data, Row[" + i + "], Address: " + contacts[i].address); // create row var row = Titanium.UI.createTableViewRow({ height:'auto' }); // create row's view var contactView = Titanium.UI.createView({ height:'auto', layout:'vertical', top:5, right:5, bottom:5, left:5 }); var nameLbl = Titanium.UI.createLabel({ text:name, left:5, height:24, width:236, textAlign:'left', color:'#444444', font:{ fontFamily:'Trebuchet MS', fontSize:16, fontWeight:'bold' } }); var phoneLbl = Titanium.UI.createLabel({ text: phone, top:0, bottom:2, height:'auto', width:236, textAlign:'right', font:{ fontSize:14} }); var addressLbl = Titanium.UI.createLabel({ text: address, top:0, bottom:2, height:'auto', width:236, textAlign:'right', font:{ fontSize:14} }); contactView.add(nameLbl); contactView.add(phoneLbl); contactView.add(addressLbl); row.add(contactView); row.className = "item" + i; rowData.push(row); } Ti.API.info("RowData: " + rowData); // create table view var tableView = Titanium.UI.createTableView( { data: rowData }); win.add(tableView); }; // send request loader.send(); } // get contacts loadContacts(); And here are some screens showing my problem. I tried playing with the top, bottom, right, left pixels a bit and didn't seem to be getting anywhere. All help is greatly appreciated. Thanks!

    Read the article

  • mySQL to XLS using PHP?

    - by kielie
    Hi guys, how can I create a .XLS document from a mySQL table using PHP? I have tried just about everything, with no success. Basically, I need to take form data, and input it into a database, which I have done, and then I need to retrieve that table data and parse it into a microsoft excel file, which needs to be saved automatically onto the web server. <?php // DB TABLE Exporter // // How to use: // // Place this file in a safe place, edit the info just below here // browse to the file, enjoy! // CHANGE THIS STUFF FOR WHAT YOU NEED TO DO $dbhost = "-"; $dbuser = "-"; $dbpass = "-"; $dbname = "-"; $dbtable = "-"; // END CHANGING STUFF $cdate = date("Y-m-d"); // get current date // first thing that we are going to do is make some functions for writing out // and excel file. These functions do some hex writing and to be honest I got // them from some where else but hey it works so I am not going to question it // just reuse // This one makes the beginning of the xls file function xlsBOF() { echo pack("ssssss", 0x809, 0x8, 0x0, 0x10, 0x0, 0x0); return; } // This one makes the end of the xls file function xlsEOF() { echo pack("ss", 0x0A, 0x00); return; } // this will write text in the cell you specify function xlsWriteLabel($Row, $Col, $Value ) { $L = strlen($Value); echo pack("ssssss", 0x204, 8 + $L, $Row, $Col, 0x0, $L); echo $Value; return; } // make the connection an DB query $dbc = mysql_connect( $dbhost , $dbuser , $dbpass ) or die( mysql_error() ); mysql_select_db( $dbname ); $q = "SELECT * FROM ".$dbtable." WHERE date ='$cdate'"; $qr = mysql_query( $q ) or die( mysql_error() ); // start the file xlsBOF(); // these will be used for keeping things in order. $col = 0; $row = 0; // This tells us that we are on the first row $first = true; while( $qrow = mysql_fetch_assoc( $qr ) ) { // Ok we are on the first row // lets make some headers of sorts if( $first ) { foreach( $qrow as $k => $v ) { // take the key and make label // make it uppper case and replace _ with ' ' xlsWriteLabel( $row, $col, strtoupper( ereg_replace( "_" , " " , $k ) ) ); $col++; } // prepare for the first real data row $col = 0; $row++; $first = false; } // go through the data foreach( $qrow as $k => $v ) { // write it out xlsWriteLabel( $row, $col, $v ); $col++; } // reset col and goto next row $col = 0; $row++; } xlsEOF(); exit(); ?> I just can't seem to figure out how to integrate fwrite into all that to write the generated data into a .xls file, how would I go about doing that? I need to get this working quite urgently, so any help would be greatly appreciated. Thanx guys.

    Read the article

  • Saving a .xls file with fwrite

    - by kielie
    hi guys, I have to create a script that takes a mySQL table, and exports it into .XSL format, and then saves that file into a specified folder on the web host. I got it working, but now I can't seem to get it to automatically save the file to the location without prompting the user. It needs to run every day at a specified time, so it can save the previous days leads into a .XSL file on the web host. Here is the code: <?php // DB TABLE Exporter // // How to use: // // Place this file in a safe place, edit the info just below here // browse to the file, enjoy! // CHANGE THIS STUFF FOR WHAT YOU NEED TO DO $dbhost = "-"; $dbuser = "-"; $dbpass = "-"; $dbname = "-"; $dbtable = "-"; // END CHANGING STUFF $cdate = date("Y-m-d"); // get current date // first thing that we are going to do is make some functions for writing out // and excel file. These functions do some hex writing and to be honest I got // them from some where else but hey it works so I am not going to question it // just reuse // This one makes the beginning of the xls file function xlsBOF() { echo pack("ssssss", 0x809, 0x8, 0x0, 0x10, 0x0, 0x0); return; } // This one makes the end of the xls file function xlsEOF() { echo pack("ss", 0x0A, 0x00); return; } // this will write text in the cell you specify function xlsWriteLabel($Row, $Col, $Value ) { $L = strlen($Value); echo pack("ssssss", 0x204, 8 + $L, $Row, $Col, 0x0, $L); echo $Value; return; } // make the connection an DB query $dbc = mysql_connect( $dbhost , $dbuser , $dbpass ) or die( mysql_error() ); mysql_select_db( $dbname ); $q = "SELECT * FROM ".$dbtable." WHERE date ='$cdate'"; $qr = mysql_query( $q ) or die( mysql_error() ); // Ok now we are going to send some headers so that this // thing that we are going make comes out of browser // as an xls file. // header("Pragma: public"); header("Expires: 0"); header("Cache-Control: must-revalidate, post-check=0, pre-check=0"); header("Content-Type: application/force-download"); header("Content-Type: application/octet-stream"); header("Content-Type: application/download"); //this line is important its makes the file name header("Content-Disposition: attachment;filename=export_".$dbtable.".xls "); header("Content-Transfer-Encoding: binary "); // start the file xlsBOF(); // these will be used for keeping things in order. $col = 0; $row = 0; // This tells us that we are on the first row $first = true; while( $qrow = mysql_fetch_assoc( $qr ) ) { // Ok we are on the first row // lets make some headers of sorts if( $first ) { foreach( $qrow as $k => $v ) { // take the key and make label // make it uppper case and replace _ with ' ' xlsWriteLabel( $row, $col, strtoupper( ereg_replace( "_" , " " , $k ) ) ); $col++; } // prepare for the first real data row $col = 0; $row++; $first = false; } // go through the data foreach( $qrow as $k => $v ) { // write it out xlsWriteLabel( $row, $col, $v ); $col++; } // reset col and goto next row $col = 0; $row++; } xlsEOF(); exit(); ?> I tried using, fwrite to accomplish this, but it didn't seem to go very well, I removed the header information too, but nothing worked. Here is the original code, as I found it, any help would be greatly appreciated. :-) Thanx in advance. :-)

    Read the article

  • How can I create a SQL table using excel columns?

    - by Phsika
    I need to help to generate column name from excel automatically. I think that: we can do below codes: CREATE TABLE [dbo].[Addresses_Temp] ( [FirstName] VARCHAR(20), [LastName] VARCHAR(20), [Address] VARCHAR(50), [City] VARCHAR(30), [State] VARCHAR(2), [ZIP] VARCHAR(10) ) via C#. How can I learn column name from Excel? private void Form1_Load(object sender, EventArgs e) { ExcelToSql(); } void ExcelToSql() { string connectionString = @"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Source\MPD.xlsm;Extended Properties=""Excel 12.0;HDR=YES;"""; // if you don't want to show the header row (first row) // use 'HDR=NO' in the string string strSQL = "SELECT * FROM [Sheet1$]"; OleDbConnection excelConnection = new OleDbConnection(connectionString); excelConnection.Open(); // This code will open excel file. OleDbCommand dbCommand = new OleDbCommand(strSQL, excelConnection); OleDbDataAdapter dataAdapter = new OleDbDataAdapter(dbCommand); // create data table DataTable dTable = new DataTable(); dataAdapter.Fill(dTable); // bind the datasource // dataBingingSrc.DataSource = dTable; // assign the dataBindingSrc to the DataGridView // dgvExcelList.DataSource = dataBingingSrc; // dispose used objects if (dTable.Rows.Count > 0) MessageBox.Show("Count:" + dTable.Rows.Count.ToString()); dTable.Dispose(); dataAdapter.Dispose(); dbCommand.Dispose(); excelConnection.Close(); excelConnection.Dispose(); }

    Read the article

  • Suppose i have an HTML table. How do I use JQuery events on this?

    - by alex
    <table> <tr class="myRow"><td class="col1"></td><td class="col2"></td></tr> <tr class="myRow"><td class="col1"></td><td class="col2"></td></tr> <tr class="myRow"><td class="col1"></td><td class="col2"></td></tr> <tr class="myRow"><td class="col1"></td><td class="col2"></td></tr> <tr class="myRow"><td class="col1"></td><td class="col2"></td></tr> </table> How do I make the appropriate col1 fill with the letters "ABC" when the user rollovers the row? And then disappear the "ABC" when the user moves the mouse away from that row? So far, I got this. I solved it. $(".ep").hover(function(){ $(this).find('td.playButtonCol').html('PLAY'); },function(){ $(this).find('td.playButtonCol').html(''); });

    Read the article

  • HTML Tables with jQuery Filtering

    - by Bry4n
    Let's say I have... <form action="#"> <fieldset> to:<input type="text" name="search" value="" id="to" /> from:<input type="text" name="search" value="" id="from" /> </fieldset> </form> <table border=1"> <tr class="headers"> <th class="bluedata"height="20px" valign="top">63rd St. &amp; Malvern Av. Loop<BR/></th> <th class="yellowdata"height="20px" valign="top">52nd St. &amp; Lansdowne Av.<BR/></th> <th class="bluedata"height="20px" valign="top">Lancaster &amp; Girard Avs<BR/></th> <th class="yellowdata"height="20px" valign="top">40th St. &amp; Lancaster Av.<BR/></th> <th class="bluedata"height="20px" valign="top">36th &amp; Market Sts<BR/></th> <th class="yellowdata"height="20px" valign="top">Juniper Station<BR/></th> </tr> <tr> <td class="bluedata"height="20px" title="63rd St. &amp; Malvern Av. Loop"> <table width="100%"><tr><td>12:17am</td></tr><tr><td>12:17am</td></tr><tr><td>12:47am</td></tr></table> </td> <td class="yellowdata"height="20px" title="52nd St. &amp; Lansdowne Av."> <table width="100%"><tr><td>12:17am</td></tr><tr><td>12:17am</td></tr><tr><td>12:47am</td></tr></table> </td> <td class="bluedata"height="20px" title="Lancaster &amp; Girard Avs"> <table width="100%"><tr><td>12:17am</td></tr><tr><td>12:17am</td></tr><tr><td>12:47am</td></tr></table> </td> <td class="yellowdata"height="20px" title="40th St. &amp; Lancaster Av."> <table width="100%"><tr><td>12:17am</td></tr><tr><td>12:17am</td></tr><tr><td>12:47am</td></tr></table> </td> <td class="bluedata"height="20px" title="36th &amp; Market Sts"> <table width="100%"><tr><td>12:17am</td></tr><tr><td>12:17am</td></tr><tr><td>12:47am</td></tr></table> </td> <td class="bluedata"height="20px" title="Juniper Station"> <table width="100%"><tr><td>12:17am</td></tr><tr><td>12:17am</td></tr><tr><td>12:47am</td></tr></table> </td> </tr> </table> Now depending upon what data is typed into the textboxes, I need the table trs/tds to show or hide. So if I type in 63rd in "to" box, and juniper in the "from" box, I need only those two trs/tds showing in that order and none of the others.

    Read the article

  • How do I add mouseClicked event to a swing table?

    - by Ayelet
    Hi, I am a new, terribly green user of Swing. I managed to create a table class using examples from java.sun tutorials, and I managed to load data dynamically into it. I want to be able to react to a click on a row by displaying a dialog box. How do I add the event Handler that will identify the selected row number? The main function code: public static void main(String[] args) { javax.swing.SwingUtilities.invokeLater(new Runnable() { public void run() { try { MainWindow window = new MainWindow(); window.frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); //Create and set up the content pane. createAndShowGUI(); //... and: private static void createAndShowGUI() { //Create and set up the window. JFrame frame = new JFrame("Data Table"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); //Create and set up data of the content pane. TableClass mainTable = new TableClass(fh.getColNames(), fh.getTableContent()); mainTable.setOpaque(true); frame.setContentPane(mainTable); //Display the window. frame.pack(); frame.setVisible(true); } Thank you

    Read the article

< Previous Page | 238 239 240 241 242 243 244 245 246 247 248 249  | Next Page >