Search Results

Search found 18774 results on 751 pages for 'query expressions'.

Page 272/751 | < Previous Page | 268 269 270 271 272 273 274 275 276 277 278 279  | Next Page >

  • New DMV–yes… no… that’s complicated

    - by Michael Zilberstein
    Remember the excitement about new sys.dm_exec_query_profiles DMV? It promised to be a gamechanger, providing query visibility at a runtime and easily extractable information about heavy iterators in execution plan. So it has been announced but missing. Now in CTP2 it is finally here. So, singing one of my favorite Queen songs “… It finally happened - I’m slightly mad…” , I tried to observe query execution data at a runtime. And… nothing. Query is running, DMV is empty. That’s really disappointing...(read more)

    Read the article

  • Sharing object between 2 classes

    - by Justin
    I am struggling to wrap my head around being able to share an object between two classes. I want to be able to create only one instance of the object, commonlib in my main class and then have the classes, foo1 and foo2, to be able to mutually share the properties of the commonlib. commonlib is a 3rd party class which has a property Queries that will be added to in each child class of bar. This is why it is vital that only one instance is created. I create two separate queries in foo1 and foo2. This is my setup: abstract class bar{ //common methods } class foo1 extends bar{ //add query to commonlib } class foo2 extends bar{ //add query to commonlib } class main { public $commonlib = new commonlib(); public function start(){ //goal is to share one instance of $this->commonlib between foo1 and foo2 //so that they can both add to the properites of $this->commonlib (global //between the two) //now execute all of the queries after foo1 and foo2 add their query $this->commonlib->RunQueries(); } }

    Read the article

  • How does Google store search trends in backend?

    - by Achshar
    Google trends shows what query has been searched how many times and some other properties of the said query. But how is this data stored in a database? Storing a new row for every search does not seem right. They also tell the query on a time graph, so they must have some way to look for individual searches made by users, but the number of queries they get every day, it does not feel right that they would store every search in a database row along with a time-stamp. This does not apply to just Google trends or Google in general but any other big site that gets awful number of queries and then has tools to see them in depth. I am not an expert on this but I am interested to know some high level structure of how things work behind the scenes.

    Read the article

  • Google Analytics Request URI to Event advanced filter

    - by confidentjohn
    I have a query string attached to a Request URI. Whilst I can see this data within the pages report and it works, I was thinking about setting up an advanced filter to convert the request URI to an Event, with the hope this would clean up my pages report and sit this query with related events in my data. I can see in advanced filters that this is possible, but seems limited to specifying a single event area, so Cat, action or Label, not all 3. Does any one know how I could set up an advanced filter to find any URIs that contain a specific query string, say example below. www.example.com?querystring=123 and convert this into an event, where I can set the Cat, action and label.

    Read the article

  • Fixing Gatekeeper Row Cardinality Estimate Issues

    The Query Optimiser needs a good estimate of the number of rows likely to be returned by each physical operator in order to select the best query plan from the most likely alternatives. Sometimes these estimates can go so wildly wrong as to result in a very slow query. Joe Sack shows how it can happen with SQL Queries on a data warehouse with a star schema. Make working with SQL a breezeSQL Prompt 5.3 is the effortless way to write, edit, and explore SQL. It's packed with features such as code completion, script summaries, and SQL reformatting, that make working with SQL a breeze. Try it now.

    Read the article

  • Consuming OData based Rest service in C# [en-US]

    - by ruimachado
    Nowadays comunication between applications is an active topic with daily usage and a large amount of pratical appliances. While developing an app in witch I had to consume an OData I found out that combining Linq with my code made this operation pretty easy.The algorithm to consume OData starts with adding a service reference to Visual Studio:After adding the service reference in wich you define the uri to the service, we start building our code.In your code the algorithm is the following:Define the Uri to your OData ServiceDefine the context of your odata, wich contains all entities exposed by the service.Query the context using LinqPrint the resultEasy and simple.Example code:01public static void Main(string[] args){02 03        Uri serviceUri= newUri("http://example.host.odataservice.net/service.svc", UriKind.Absolute);04        ODataService.ServiceEntities context = newODataService.ServiceEntities (serviceUri);05 06        context.Credentials = newSystem.Net.NetworkCredential(Username,Password);07 08         var query = from ServiceObject in context.YourEntity09                     select ServiceObject ;10 11        foreach (var myObject in query)12        {13            Console.WriteLine("\n Field1: {0} | Field2: {1}",14            myObject .Field1, myObject .Field2);15 16        }17}That’s it.Thank you,Rui Machadorpmachado.wordpress.com

    Read the article

  • Where can I get the 10k common English dictionary words which Stack overflow uses in related question? [migrated]

    - by itpian.com
    Where can I get the 10k common English dictionary words which Stack overflow uses in related question? Here in SE podcast - http://blog.stackoverflow.com/2008/12/podcast-32/ One of our major performance optimizations for the “related questions” query is removing the top 10,000 most common English dictionary words (as determined by Google search) before submitting the query to the SQL Server 2008 full text engine. It’s shocking how little is left of most posts once you remove the top 10k English dictionary words. This helps limit and narrow the returned results, which makes the query dramatically faster.

    Read the article

  • ??????????????????????????/????????????????????????·???????????|WebLogic Channel|??????

    - by ???02
    ??????????????????·???????Oracle Coherence??????Java???????????????????????????????????????????????????????????????????Java API??????Oracle Coherence???????????3????????????????????????Coherence???????????????????????????????3???????????(???)???????Coherence???????????????Java?????????? ???????????????????????·??????????/????·????Oracle Coherence???????????????????????Java API??????Oracle Coherence???????????????????????????????????????????????????????????????? ?????????????Coherence??????????????????????????????/???????????????????????????????????????????3???????(4)????????/???????????? ????????????????????????????????????·???/????????? Oracle Coherence????????????????1?????????????????????????????????????????????????????????????????????????????????????????????????????????????Oracle Coherence?????????????????????????·????????????????????????????????????????In-Place Processing????????Oracle Coherence???In-Place Processing????????????????????????????????????????? ????·???/???????????In-Place Processing??????????????????·?????????????????????????????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????? ???In-Place Processing????????·????????????Oracle Coherence 3.6????????????Coherence Query Language(CohQL)??????????????????????????????CohQL???????????????????SQL?????????????????SQL?WHERE?????????????????????????????(5)??????????????? ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????(?????)????????????????????????????????????????????????????????????????????????????? Oracle Coherence?????????????????????????????????????Oracle Coherence???????????????????????????????????????????????????????????????????????????????????????????????/???????????????????????????????????????????? ??????·????????????????????????????????????????????????????Oracle Coherence?????????????????????????????????????????????(??????)????????????????????????????????????????????????????????? ???????·????????????Continuous Query Cache??????????????????????????????????????????????????????????????????????????????????????????????????????????????Continuous Query Cache????????????????????????(6)??????????????????? ????Oracle Coherence????????????Invocation Service??????????????????(4)?????In-Place Processing?????????????·?????????????????????????????????????????????????????Java??????????????????????????????·???????????????????????????????????????????????? ??????????????????????Oracle Coherence ??????????????????????????????????????????CPU???????????????????????Oracle Coherence???????????????????????????????????Web???????????????????????????Oracle Coherence?????????????????????????????????????????*   *   * ?????????Java????????????????????Oracle Coherence?6???????????????????????????Oracle Coherence????????????????????????????????????????????????????????Oracle Coherence?????:Aleksandar Seovic?Mark Falco?Patrick Peralta??:????·??????????????·????Oracle Coherence: Share and Manage Data In Clusters?···3????????????·??????????????????????????

    Read the article

  • AIX Checklist for stable obiee deployment

    - by user554629
    Common AIX configuration issues     ( last updated 27 Aug 2012 ) OBIEE is a complicated system with many moving parts and connection points.The purpose of this article is to provide a checklist to discuss OBIEE deployment with your systems administrators. The information in this article is time sensitive, and updated as I discover new  issues or details. What makes OBIEE different? When Tech Support suggests AIX component upgrades to a stable, locked-down production AIX environment, it is common to get "push back".  "Why is this necessary?  We aren't we seeing issues with other software?"It's a fair question that I have often struggled to answer; here are the talking points: OBIEE is memory intensive.  It is the entire purpose of the software to trade memory for repetitive, more expensive database requests across a network. OBIEE is implemented in C++ and is very dependent on the C++ runtime to behave correctly. OBIEE is aggressively thread efficient;  if atomic operations on a particular architecture do not work correctly, the software crashes. OBIEE dynamically loads third-party database client libraries directly into the nqsserver process.  If the library is not thread-safe, or corrupts process memory the OBIEE crash happens in an unrelated part of the code.  These are extremely difficult bugs to find. OBIEE software uses 99% common source across multiple platforms:  Windows, Linux, AIX, Solaris and HPUX.  If a crash happens on only one platform, we begin to suspect other factors.  load intensity, system differences, configuration choices, hardware failures.  It is rare to have a single product require so many diverse technical skills.   My role in support is to understand system configurations, performance issues, and crashes.   An analyst trained in Business Analytics can't be expected to know AIX internals in the depth required to make configuration choices.  Here are some guidelines. AIX C++ Runtime must be at  version 11.1.0.4$ lslpp -L | grep xlC.aixobiee software will crash if xlC.aix.rte is downlevel;  this is not a "try it" suggestion.Nov 2011 11.1.0.4 version  is appropriate for all AIX versions ( 5, 6, 7 )Download from here:https://www-304.ibm.com/support/docview.wss?uid=swg24031426 No reboot is necessary to install, it can even be installed while applications are using the current version.Restart the apps, and they will pick up the latest version. AIX 5.3 Technology Level 12 is required when running on Power5,6,7 processorsAIX 6.1 was introduced with the newer Power chips, and we have seen no issues with 6.1 or 7.1 versions.Customers with an unstable deployment, dozens of unexplained crashes, became stable after the upgrade.If your AIX system is 5.3, the minimum TL level should be at or higher than this:$ oslevel -s  5300-12-03-1107IBM typically supports only the two latest versions of AIX ( 6.1 and 7.1, for example).  AIX 5.3 is still supported and popular running in an LPAR. obiee userid limits$ ulimit -Ha  ( hard limits )$ ulimit -a   ( default limits )core file size (blocks)     unlimiteddata seg size (kbytes)      unlimitedfile size (blocks)          unlimitedmax memory size (kbytes)    unlimitedopen files                  10240 cpu time (seconds)          unlimitedvirtual memory (kbytes)     unlimitedIt is best to establish the values in /etc/security/limitsroot user is needed to observe and modify this file.If you modify a limit, you will need to relog in to change it again.  For example,$ ulimit -c 0$ ulimit -c 2097151cannot modify limit: Operation not permitted$ ulimit -c unlimited$ ulimit -c0There are only two meaningful values for ulimit -c ; zero or unlimited.Anything else is likely to produce a truncated core file that cannot be analyzed. Deploy 32-bit or 64-bit ?Early versions of OBIEE offered 32-bit or 64-bit choice to AIX customers.The 32-bit choice was needed if a database vendor did not supply a 64-bit client library.That's no longer an issue and beginning with OBIEE 11, 32-bit code is no longer shipped.A common error that leads to "out of memory" conditions to to accept the 32-bit memory configuration choices on 64-bit deployments.  The significant configuration choices are: Maximum process data (heap) size is in an AIX environment variableLDR_CNTRL=IGNOREUNLOAD@LOADPUBLIC@PREREAD_SHLIB@MAXDATA=0x... Two thread stack sizes are made in obiee NQSConfig.INI[ SERVER ]SERVER_THREAD_STACK_SIZE = 0;DB_GATEWAY_THREAD_STACK_SIZE = 0; Sort memory in NQSConfig.INI[ GENERAL ]SORT_MEMORY_SIZE = 4 MB ;SORT_BUFFER_INCREMENT_SIZE = 256 KB ; Choosing a value for MAXDATA:0x080000000  2GB Default maximum 32-bit heap size ( 8 with 7 zeros )0x100000000  4GB 64-bit breaking even with 32-bit ( 1 with 8 zeros )0x200000000  8GB 64-bit double 32-bit max0x400000000 16GB 64-bit safetyUsing 2GB heap size for a 64-bit process will almost certainly lead to an out-of-memory situation.Registers are twice as big ... consume twice as much memory in the heap.Upgrading to a 4GB heap for a 64-bit process is just "breaking even" with 32-bit.A 32-bit process is constrained by the 32-bit virtual addressing limits.  Heap memory is used for dynamic requirements of obiee software, thread stacks for each of the configured threads, and sometimes for shared libraries. 64-bit processes are not constrained in this way;  extra heap space can be configured for safety against a query that might create a sudden requirement for excessive storage.  If the storage is not available, this query might crash the whole server and disrupt existing users.There is no performance penalty on AIX for configuring more memory than required;  extra memory can be configured for safety.  If there are no other considerations, start with 8GB.Choosing a value for Thread Stack size:zero is the value documented to select an appropriate default for thread stack size.  My preference is to change this to an absolute value, even if you intend to use the documented default;  it provides better documentation and removes the "surprise" factor.There are two thread types that can be configured. GATEWAY is used by a thread pool to call a database client library to establish a DB connection.The default size is 256KB;  many customers raise this to 512KB ( no performance penalty for over-configuring ). This value must be set to 1 MB if Teradata connections are used. SERVER threads are used to run queries.  OBIEE uses recursive algorithms during the analysis of query structures which can consume significant thread stack storage.  It's difficult to provide guidance on a value that depends on data and complexity.  The general notion is to provide more space than you think you need,  "double down" and increase the value if you run out, otherwise inspect the query to understand why it is too complex for the thread stack.  There are protections built into the software to abort a single user query that is too complex, but the algorithms don't cover all situations.256 KB  The default 32-bit stack size.  Many customers increased this to 512KB on 32-bit.  A 64-bit server is very likely to crash with this value;  the stack contains mostly register values, which are twice as big.512 KB  The documented 64-bit default.  Some early releases of obiee didn't set this correctly, resulting in 256KB stacks.1 MB  The recommended 64-bit setting.  If your system only ever uses 512KB of stack space, there is no performance penalty for using 1MB stack size.2 MB  Many large customers use this value for safety.  No performance penalty.nqscheduler does not use the NQSConfig.INI file to set thread stack size.If this process crashes because the thread stack is too small, use this to set 2MB:export OBI_BACKGROUND_STACK_SIZE=2048 Shared libraries are not (shared) When application libraries are loaded at run-time, AIX makes a decision on whether to load the libraries in a "public" memory segment.  If the filesystem library permissions do not have the "Read-Other" permission bit, AIX loads the library into private process memory with two significant side-effects:* The libraries reduce the heap storage available.      Might be significant in 32-bit processes;  irrelevant in 64-bit processes.* Library code is loaded into multiple real pages for execution;  one copy for each process.Multiple execution images is a significant issue for both 32- and 64-bit processes.The "real memory pages" saved by using public memory segments is a minor concern.  Today's machines typically have plenty of real memory.The real problem with private copies of libraries is that they consume processor cache blocks, which are limited.   The same library instructions executing in different real pages will cause memory delays as the i-cache ( instruction cache 128KB blocks) are refreshed from real memory.   Performance loss because instructions are delayed is something that is difficult to measure without access to low-level cache fault data.   The machine just appears to be running slowly for no observable reason.This is an easy problem to detect, and an easy problem to correct.Detection:  "genld -l" AIX command produces a list of the libraries used by each process and the AIX memory address where they are loaded.32-bit public segment is 13 ( "dxxxxxxx" ).   private segments are 2-a.64-bit public segment is 9 ( "9xxxxxxxxxxxxxxx") ; private segment is 8.genld -l | grep -v ' d| 9' | sort +2provides a list of privately loaded libraries. Repair: chmod o+r <libname>AIX shared libraries will have a suffix of ".so" or ".a".Another technique is to change all libraries in a selected directory to repair those that might not be currently loaded.   The usual directories that need repair are obiee code, httpd code and plugins, database client libraries and java.chmod o+r /shr/dir/*.a /shr/dir/*.so Configure your system for diagnosticsProduction systems shouldn't crash, and yet bad things happen to good software.If obiee software crashes and produces a core, you should configure your system for reliable transfer of the failing conditions to Oracle Tech Support.  Here's what we need to be able to diagnose a core file from your system.* fullcore enabled. chdev -lsys0 -a fullcore=true* core naming enabled. chcore -n on -d* ulimit must not truncate core. see item 3.* pstack.sh is used to capture core documentation.* obidoc is used to capture current AIX configuration.* snapcore  AIX utility captures core and libraries. Use the proper syntax. $ snapcore -r corename executable-fullpath   /tmp/snapcore will contain the .pax.Z output file.  It is compressed.* If cores are directed to a common directory, ensure obiee userid can write to the directory.  ( chcore -p /cores -d ; chmod 777 /cores )The filesystem must have sufficient space to hold a crashing obiee application.Use:  df -k  Check the "Free" column ( not "% Used" )  8388608 is 8GB. Disable Oracle Client Library signal handlingThe Oracle DB Client Library is frequently distributed with the sqlplus development kit.By default, the library enables a signal handler, which will document a call stack if the application crashes.   The signal handler is not needed, and definitely disruptive to obiee diagnostics.   It needs to be disabled.   sqlnet.ora is typically located at:   $ORACLE_HOME/network/admin/sqlnet.oraAdd this line at the top of the file:   DIAG_SIGHANDLER_ENABLED=FALSE Disable async query in the RPD connection pool.This might be an obiee 10.1.3.4 issue only ( still checking  )."async query" must be disabled in the connection pools.It was designed to enable query cancellation to a database, and turned out to have too many edge conditions in normal communication that produced random corruption of data and crashes.  Please ensure it is turned off in the RPD. Check AIX error report (errpt).Errors external to obiee applications can trigger crashes.  $ /bin/errpt -aHardware errors ( firmware, adapters, disks ) should be reported to IBM support.All application core files are recorded by AIX;  the most recent ones are listed first. Reserved for something important to say.

    Read the article

  • Nashorn in the Twitterverse, Continued

    - by jlaskey
    After doing the Twitter example, it seemed reasonable to try graphing the result with JavaFX.  At this time the Nashorn project doesn't have an JavaFX shell, so we have to go through some hoops to create an JavaFX application.  I thought showing you some of those hoops might give you some idea about what you can do mixing Nashorn and Java (we'll add a JavaFX shell to the todo list.) First, let's look at the meat of the application.  Here is the repackaged version of the original twitter example. var twitter4j      = Packages.twitter4j; var TwitterFactory = twitter4j.TwitterFactory; var Query          = twitter4j.Query; function getTrendingData() {     var twitter = new TwitterFactory().instance;     var query   = new Query("nashorn OR nashornjs");     query.since("2012-11-21");     query.count = 100;     var data = {};     do {         var result = twitter.search(query);         var tweets = result.tweets;         for each (tweet in tweets) {             var date = tweet.createdAt;             var key = (1900 + date.year) + "/" +                       (1 + date.month) + "/" +                       date.date;             data[key] = (data[key] || 0) + 1;         }     } while (query = result.nextQuery());     return data; } Instead of just printing out tweets, getTrendingData tallies "tweets per date" during the sample period (since "2012-11-21", the date "New Project: Nashorn" was posted.)   getTrendingData then returns the resulting tally object. Next, use JavaFX BarChart to display that data. var javafx         = Packages.javafx; var Stage          = javafx.stage.Stage var Scene          = javafx.scene.Scene; var Group          = javafx.scene.Group; var Chart          = javafx.scene.chart.Chart; var FXCollections  = javafx.collections.FXCollections; var ObservableList = javafx.collections.ObservableList; var CategoryAxis   = javafx.scene.chart.CategoryAxis; var NumberAxis     = javafx.scene.chart.NumberAxis; var BarChart       = javafx.scene.chart.BarChart; var XYChart        = javafx.scene.chart.XYChart; var Series         = XYChart.Series; var Data           = XYChart.Data; function graph(stage, data) {     var root = new Group();     stage.scene = new Scene(root);     var dates = Object.keys(data);     var xAxis = new CategoryAxis();     xAxis.categories = FXCollections.observableArrayList(dates);     var yAxis = new NumberAxis("Tweets", 0.0, 200.0, 50.0);     var series = FXCollections.observableArrayList();     for (var date in data) {         series.add(new Data(date, data[date]));     }     var tweets = new Series("Tweets", series);     var barChartData = FXCollections.observableArrayList(tweets);     var chart = new BarChart(xAxis, yAxis, barChartData, 25.0);     root.children.add(chart); } I should point out that there is a lot of subtlety going on in the background.  For example; stage.scene = new Scene(root) is equivalent to stage.setScene(new Scene(root)). If Nashorn can't find a property (scene), then it searches (via Dynalink) for the Java Beans equivalent (setScene.)  Also note, that Nashorn is magically handling the generic class FXCollections.  Finally,  with the call to observableArrayList(dates), Nashorn is automatically converting the JavaScript array dates to a Java collection.  It really is hard to identify which objects are JavaScript and which are Java.  Does it really matter? Okay, with the meat out of the way, let's talk about the hoops. When working with JavaFX, you start with a main subclass of javafx.application.Application.  This class handles the initialization of the JavaFX libraries and the event processing.  This is what I used for this example; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import javafx.application.Application; import javafx.stage.Stage; import javax.script.ScriptEngine; import javax.script.ScriptEngineManager; import javax.script.ScriptException; public class TrendingMain extends Application { private static final ScriptEngineManager MANAGER = new ScriptEngineManager(); private final ScriptEngine engine = MANAGER.getEngineByName("nashorn"); private Trending trending; public static void main(String[] args) { launch(args); } @Override public void start(Stage stage) throws Exception { trending = (Trending) load("Trending.js"); trending.start(stage); } @Override public void stop() throws Exception { trending.stop(); } private Object load(String script) throws IOException, ScriptException { try (final InputStream is = TrendingMain.class.getResourceAsStream(script)) { return engine.eval(new InputStreamReader(is, "utf-8")); } } } To initialize Nashorn, we use JSR-223's javax.script.  private static final ScriptEngineManager MANAGER = new ScriptEngineManager(); private final ScriptEngine engine = MANAGER.getEngineByName("nashorn"); This code sets up an instance of the Nashorn engine for evaluating scripts. The  load method reads a script into memory and then gets engine to eval that script.  Note, that load also returns the result of the eval. Now for the fun part.  There are several different approaches we could use to communicate between the Java main and the script.  In this example we'll use a Java interface.  The JavaFX main needs to do at least start and stop, so the following will suffice as an interface; public interface Trending {     public void start(Stage stage) throws Exception;     public void stop() throws Exception; } At the end of the example's script we add; (function newTrending() {     return new Packages.Trending() {         start: function(stage) {             var data = getTrendingData();             graph(stage, data);             stage.show();         },         stop: function() {         }     } })(); which instantiates a new subclass instance of Trending and overrides the start and stop methods.  The result of this function call is what is returned to main via the eval. trending = (Trending) load("Trending.js"); To recap, the script Trending.js contains functions getTrendingData, graph and newTrending, plus the call at the end to newTrending.  Back in the Java code, we cast the result of the eval (call to newTrending) to Trending, thus, we end up with an object that we can then use to call back into the script.  trending.start(stage); Voila. ?

    Read the article

  • How to batch rename files using bash

    - by Alex Popov
    I know there are lots of such questions, but I couldn't find one (or a combination of several), which describes the things I want to do. I think I need to use regular expressions, but I am not very good with that. I use zsh. I have a folder with files, which I want to rename: I want the files challenge1.rb, challenge2.rb, challenge3.rb, etc. to be renamed to c1.rb, c2.rb etc. Similarly task1.rb and similar must be renamed to t1.rb etc. sample_spec_c1.rb, sample_spec_c2.rb etc. must be renamed to c1_spec.rb, c2_spec.rb etc. So I guess I need some combination of regular expressions and iteration, but I don't know how to write the bash script.

    Read the article

  • Weblogic JMS System Error

    - by Jeune
    We're getting a JMS error which we don't have a lot to go with: org.springframework.jms.UncategorizedJmsException: Uncategorized exception occured during JMS processing; nested exception is weblogic.jms.common.JMSException:[JMSClientExceptions:055039] A system error has occurred. The error is java.lang.NullPointerException; nested exception is java.lang.NullPointerException at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:131) at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:115) at com.pg.ecom.jms.producer.FormsCRRProducer.sendMessage(FormsCRRProducer.java:56) at com.pg.ecom.cpgt.processruleagent.managerbean.forms.GenerateFormsManagerBean.useNewGetTemplateData(GenerateFormsManagerBean.java:522) at com.pg.ecom.cpgt.processruleagent.managerbean.forms.GenerateFormsManagerBean.doService(GenerateFormsManagerBean.java:114) at com.pg.ecom.fw.processcontainer.AbstractManagerBean.doServiceWrapper(AbstractManagerBean.java:175) at com.pg.ecom.fw.processcontainer.AbstractManagerBean.doServiceRequest(AbstractManagerBean.java:151) at com.pg.ecom.fw.processcontainer.AbstractServlet.doManagerBeanServiceAndPresentation(AbstractServlet.java:1911) at com.pg.ecom.cpgt.processunit.servlet.CportalParamServlet.doService(CportalParamServlet.java:107) at com.pg.ecom.fw.processcontainer.AbstractServlet.service(AbstractServlet.java:983) at javax.servlet.http.HttpServlet.service(HttpServlet.java:856) at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227) at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:283) at weblogic.servlet.internal.TailFilter.doFilter(TailFilter.java:26) at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42) at com.pg.ecom.cpgt.processunit.filter.UploadMultipartFilter.doFilter(UploadMultipartFilter.java:28) at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42) at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3229) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:121) at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2002) at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:1908) at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1362) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:209) at weblogic.work.ExecuteThread.run(ExecuteThread.java:181) The only lead I have is line 127 in the code which is indicated by this error: Caused by: weblogic.jms.common.JMSException: [JMSClientExceptions:055039]A system error has occurred. The error is java.lang.Nul lPointerException at weblogic.jms.client.JMSSession.handleException(JMSSession.java:2853) at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:629) at weblogic.jms.client.JMSConsumer.receive(JMSConsumer.java:488) at weblogic.jms.client.WLConsumerImpl.receive(WLConsumerImpl.java:155) at org.springframework.jms.core.JmsTemplate.doReceive(JmsTemplate.java:734) at org.springframework.jms.core.JmsTemplate.doReceive(JmsTemplate.java:706) at org.springframework.jms.core.JmsTemplate$9.doInJms(JmsTemplate.java:681) at org.springframework.jms.core.JmsTemplate.execute(JmsTemplate.java:447) at org.springframework.jms.core.JmsTemplate.receiveSelected(JmsTemplate.java:679) at org.springframework.jms.core.JmsTemplate.receiveSelectedAndConvert(JmsTemplate.java:784) at com.pg.ecom.jms.service.ProducerServices.SendMessageSync(ProducerServices.java:127) ... 25 more This is line 127: try { Thread.yield(); //line 127 below status=(StatusMessageBean)getJmsTemplate.receiveSelectedAndConvert(statusDestination, "JMSCorrelationID='"+ producerMsg.getProcessID() +"'"); Thread.yield(); } catch (Exception e) { Thread.yield(); loggingInterface.doErrorLogging(e.fillInStackTrace()); } According to the BEA documentation, we should contact BEA about error 055039 but I would like to try asking here first before bringing this to them? Some more errors: Caused by: java.lang.NullPointerException at weblogic.jms.common.JMSVariableBinder$JMSCorrelationIDVariable.get(JMSVariableBinder.java:127) at weblogic.utils.expressions.Expression.evaluateExpr(Expression.java:271) at weblogic.utils.expressions.Expression.evaluateExpr(Expression.java:298) at weblogic.utils.expressions.Expression.evaluateBoolean(Expression.java:209) at weblogic.utils.expressions.Expression.evaluate(Expression.java:167) at weblogic.jms.common.JMSSQLFilter$Exp.evaluate(JMSSQLFilter.java:304) at weblogic.messaging.common.SQLFilter.match(SQLFilter.java:158) at weblogic.messaging.kernel.internal.MessageList.findNextVisible(MessageList.java:274) at weblogic.messaging.kernel.internal.QueueImpl.nextFromIteratorOrGroup(QueueImpl.java:441) at weblogic.messaging.kernel.internal.QueueImpl.nextMatchFromIteratorOrGroup(QueueImpl.java:350) at weblogic.messaging.kernel.internal.QueueImpl.get(QueueImpl.java:233) at weblogic.messaging.kernel.internal.QueueImpl.addReader(QueueImpl.java:1069) at weblogic.messaging.kernel.internal.ReceiveRequestImpl.start(ReceiveRequestImpl.java:178) at weblogic.messaging.kernel.internal.ReceiveRequestImpl.<init>(ReceiveRequestImpl.java:86) at weblogic.messaging.kernel.internal.QueueImpl.receive(QueueImpl.java:820) at weblogic.jms.backend.BEConsumerImpl.blockingReceiveStart(BEConsumerImpl.java:1172) at weblogic.jms.backend.BEConsumerImpl.receive(BEConsumerImpl.java:1383) at weblogic.jms.backend.BEConsumerImpl.invoke(BEConsumerImpl.java:1088) at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachine(Request.java:759) at weblogic.messaging.dispatcher.DispatcherImpl.dispatchAsyncInternal(DispatcherImpl.java:129) at weblogic.messaging.dispatcher.DispatcherImpl.dispatchAsync(DispatcherImpl.java:112) at weblogic.messaging.dispatcher.Request.dispatchAsync(Request.java:1046) at weblogic.jms.dispatcher.Request.dispatchAsync(Request.java:72) at weblogic.jms.frontend.FEConsumer.receive(FEConsumer.java:557) at weblogic.jms.frontend.FEConsumer.invoke(FEConsumer.java:806) at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachine(Request.java:759) at weblogic.messaging.dispatcher.DispatcherServerRef.invoke(DispatcherServerRef.java:276) at weblogic.messaging.dispatcher.DispatcherServerRef.handleRequest(DispatcherServerRef.java:141) at weblogic.messaging.dispatcher.DispatcherServerRef.access$000(DispatcherServerRef.java:36) at weblogic.messaging.dispatcher.DispatcherServerRef$2.run(DispatcherServerRef.java:112) ... 2 more Any ideas?

    Read the article

  • How to use objects as modules/functors in Scala?

    - by Jeff
    Hi. I want to use object instances as modules/functors, more or less as shown below: abstract class Lattice[E] extends Set[E] { val minimum: E val maximum: E def meet(x: E, y: E): E def join(x: E, y: E): E def neg(x: E): E } class Calculus[E](val lat: Lattice[E]) { abstract class Expr case class Var(name: String) extends Expr {...} case class Val(value: E) extends Expr {...} case class Neg(e1: Expr) extends Expr {...} case class Cnj(e1: Expr, e2: Expr) extends Expr {...} case class Dsj(e1: Expr, e2: Expr) extends Expr {...} } So that I can create a different calculus instance for each lattice (the operations I will perform need the information of which are the maximum and minimum values of the lattice). I want to be able to mix expressions of the same calculus but not be allowed to mix expressions of different ones. So far, so good. I can create my calculus instances, but problem is that I can not write functions in other classes that manipulate them. For example, I am trying to create a parser to read expressions from a file and return them; I also was trying to write an random expression generator to use in my tests with ScalaCheck. Turns out that every time a function generates an Expr object I can't use it outside the function. Even if I create the Calculus instance and pass it as an argument to the function that will in turn generate the Expr objects, the return of the function is not recognized as being of the same type of the objects created outside the function. Maybe my english is not clear enough, let me try a toy example of what I would like to do (not the real ScalaCheck generator, but close enough). def genRndExpr[E](c: Calculus[E], level: Int): Calculus[E]#Expr = { if (level > MAX_LEVEL) { val select = util.Random.nextInt(2) select match { case 0 => genRndVar(c) case 1 => genRndVal(c) } } else { val select = util.Random.nextInt(3) select match { case 0 => new c.Neg(genRndExpr(c, level+1)) case 1 => new c.Dsj(genRndExpr(c, level+1), genRndExpr(c, level+1)) case 2 => new c.Cnj(genRndExpr(c, level+1), genRndExpr(c, level+1)) } } } Now, if I try to compile the above code I get lots of error: type mismatch; found : plg.mvfml.Calculus[E]#Expr required: c.Expr case 0 = new c.Neg(genRndExpr(c, level+1)) And the same happens if I try to do something like: val boolCalc = new Calculus(Bool) val e1: boolCalc.Expr = genRndExpr(boolCalc) Please note that the generator itself is not of concern, but I will need to do similar things (i.e. create and manipulate calculus instance expressions) a lot on the rest of the system. Am I doing something wrong? Is it possible to do what I want to do? Help on this matter is highly needed and appreciated. Thanks a lot in advance. After receiving an answer from Apocalisp and trying it. Thanks a lot for the answer, but there are still some issues. The proposed solution was to change the signature of the function to: def genRndExpr[E, C <: Calculus[E]](c: C, level: Int): C#Expr I changed the signature for all the functions involved: getRndExpr, getRndVal and getRndVar. And I got the same error message everywhere I call these functions and got the following error message: error: inferred type arguments [Nothing,C] do not conform to method genRndVar's type parameter bounds [E,C genRndVar(c) Since the compiler seemed to be unable to figure out the right types I changed all function call to be like below: case 0 => new c.Neg(genRndExpr[E,C](c, level+1)) After this, on the first 2 function calls (genRndVal and genRndVar) there were no compiling error, but on the following 3 calls (recursive calls to genRndExpr), where the return of the function is used to build a new Expr object I got the following error: error: type mismatch; found : C#Expr required: c.Expr case 0 = new c.Neg(genRndExpr[E,C](c, level+1)) So, again, I'm stuck. Any help will be appreciated.

    Read the article

  • Why are there 3 conflicting OpenCV camera calibration formulas?

    - by John
    I'm having a problem with OpenCV's various parameterization of coordinates used for camera calibration purposes. The problem is that three different sources of information on image distortion formulae apparently give three non-equivalent description of the parameters and equations involved: (1) In their book "Learning OpenCV…" Bradski and Kaehler write regarding lens distortion (page 376): xcorrected = x * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ 2 * p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ], ycorrected = y * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ p1 * ( r^2 + 2 * y^2 ) + 2 * p2 * x * y ], where r = sqrt( x^2 + y^2 ). Assumably, (x, y) are the coordinates of pixels in the uncorrected captured image corresponding to world-point objects with coordinates (X, Y, Z), camera-frame referenced, for which xcorrected = fx * ( X / Z ) + cx and ycorrected = fy * ( Y / Z ) + cy, where fx, fy, cx, and cy, are the camera's intrinsic parameters. So, having (x, y) from a captured image, we can obtain the desired coordinates ( xcorrected, ycorrected ) to produced an undistorted image of the captured world scene by applying the above first two correction expressions. However... (2) The complication arises as we look at OpenCV 2.0 C Reference entry under the Camera Calibration and 3D Reconstruction section. For ease of comparison we start with all world-point (X, Y, Z) coordinates being expressed with respect to the camera's reference frame, just as in #1. Consequently, the transformation matrix [ R | t ] is of no concern. In the C reference, it is expressed that: x' = X / Z, y' = Y / Z, x'' = x' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ 2 * p1 * x' * y' + p2 * ( r'^2 + 2 * x'^2 ) ], y'' = y' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ p1 * ( r'^2 + 2 * y'^2 ) + 2 * p2 * x' * y' ], where r' = sqrt( x'^2 + y'^2 ), and finally that u = fx * x'' + cx, v = fy * y'' + cy. As one can see these expressions are not equivalent to those presented in #1, with the result that the two sets of corrected coordinates ( xcorrected, ycorrected ) and ( u, v ) are not the same. Why the contradiction? It seems to me the first set makes more sense as I can attach physical meaning to each and every x and y in there, while I find no physical meaning in x' = X / Z and y' = Y / Z when the camera focal length is not exactly 1. Furthermore, one cannot compute x' and y' for we don't know (X, Y, Z). (3) Unfortunately, things get even murkier when we refer to the writings in Intel's Open Source Computer Vision Library Reference Manual's section Lens Distortion (page 6-4), which states in part: "Let ( u, v ) be true pixel image coordinates, that is, coordinates with ideal projection, and ( u ~, v ~ ) be corresponding real observed (distorted) image coordinates. Similarly, ( x, y ) are ideal (distortion-free) and ( x ~, y ~ ) are real (distorted) image physical coordinates. Taking into account two expansion terms gives the following: x ~ = x * ( 1 + k1 * r^2 + k2 * r^4 ) + [ 2 p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ] y ~ = y * ( 1 + k1 * r^2 + k2 * r^4 ] + [ 2 p2 * x * y + p2 * ( r^2 + 2 * y^2 ) ], where r = sqrt( x^2 + y^2 ). ... "Because u ~ = cx + fx * u and v ~ = cy + fy * v , … the resultant system can be rewritten as follows: u ~ = u + ( u – cx ) * [ k1 * r^2 + k2 * r^4 + 2 * p1 * y + p2 * ( r^2 / x + 2 * x ) ] v ~ = v + ( v – cy ) * [ k1 * r^2 + k2 * r^4 + 2 * p2 * x + p1 * ( r^2 / y + 2 * y ) ] The latter relations are used to undistort images from the camera." Well, it would appear that the expressions involving x ~ and y ~ coincided with the two expressions given at the top of this writing involving xcorrected and ycorrected. However, x ~ and y ~ do not refer to corrected coordinates, according to the given description. I don't understand the distinction between the meaning of the coordinates ( x ~, y ~ ) and ( u ~, v ~ ), or for that matter, between the pairs ( x, y ) and ( u, v ). From their descriptions it appears their only distinction is that ( x ~, y ~ ) and ( x, y ) refer to 'physical' coordinates while ( u ~, v ~ ) and ( u, v ) do not. What is this distinction all about? Aren't they all physical coordinates? I'm lost! Thanks for any input!

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by Mohammad Ashraful Alam
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves most of the major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Parsing HTML Documents with the Html Agility Pack

    Screen scraping is the process of programmatically accessing and processing information from an external website. For example, a price comparison website might screen scrape a variety of online retailers to build a database of products and what various retailers are selling them for. Typically, screen scraping is performed by mimicking the behavior of a browser - namely, by making an HTTP request from code and then parsing and analyzing the returned HTML. The .NET Framework offers a variety of classes for accessing data from a remote website, namely the WebClient class and the HttpWebRequest class. These classes are useful for making an HTTP request to a remote website and pulling down the markup from a particular URL, but they offer no assistance in parsing the returned HTML. Instead, developers commonly rely on string parsing methods like String.IndexOf, String.Substring, and the like, or through the use of regular expressions. Another option for parsing HTML documents is to use the Html Agility Pack, a free, open-source library designed to simplify reading from and writing to HTML documents. The Html Agility Pack constructs a Document Object Model (DOM) view of the HTML document being parsed. With a few lines of code, developers can walk through the DOM, moving from a node to its children, or vice versa. Also, the Html Agility Pack can return specific nodes in the DOM through the use of XPath expressions. (The Html Agility Pack also includes a class for downloading an HTML document from a remote website; this means you can both download and parse an external web page using the Html Agility Pack.) This article shows how to get started using the Html Agility Pack and includes a number of real-world examples that illustrate this library's utility. A complete, working demo is available for download at the end of this article. Read on to learn more! Read More >

    Read the article

  • Uget tray icon not showing

    - by ArK
    Since I upgraded to Saucy, Uget is not showing in the system tray, although the Always show tray icon option in Uget settings is checked. P.S. this happens only with Uget, all the other Softwares have working tray icons (vlc,qbittorrent..) Here is the snapshot which shows the settings of Uget: sudo dpkg -l | grep -e "^rc" -e "^iU": rc account-plugin-generic-oauth 0.10bzr13.03.26-0ubuntu1.1 i386 GNOME Control Center account plugin for single signon - generic OAuth rc appmenu-gtk:i386 12.10.3daily13.04.03-0ubuntu1 i386 Export GTK menus over DBus rc appmenu-gtk3:i386 12.10.3daily13.04.03-0ubuntu1 i386 Export GTK menus over DBus rc arora 0.11.0-0ubuntu1 i386 simple cross platform web browser rc buc 0.5.2-20 i386 BUC rc clementine 1.1.1+dfsg-2ubuntu1 i386 modern music player and library organizer rc epiphany-browser 3.6.1-2ubuntu1 i386 Intuitive GNOME web browser rc epiphany-browser-data 3.6.1-2ubuntu3 all Data files for the GNOME web browser rc fancontrol 1:3.3.3-1ubuntu1 all utilities to read temperature/voltage/fan sensors rc flaremonitor 1.0-5 i386 It is an advanced browser integration helper module of FlareGet rc google-chrome-stable 28.0.1500.95-r213514 i386 The web browser from Google rc hal 0.5.14-8ubuntu1 i386 Hardware Abstraction Layer rc hotot-gtk 1:0.9.8.5+git20120630.884797d-1 all lightweight microblogging client - GTK+ wrapper rc jockey-common 0.9.7-0ubuntu13 all user interface and desktop integration for driver management rc libanalitza4abi1 4:4.10.4-0ubuntu0.1 i386 library to work with mathematical expressions rc libanalitza5 4:4.11.2-0ubuntu1 i386 library to work with mathematical expressions rc libanalitzagui4abi2 4:4.10.4-0ubuntu0.1 i386 library to work with mathematical expressions - GUI routines rc libanalitzaplot4 4:4.10.4-0ubuntu0.1 i386 library to work with mathematical expressions - plot routines rc libavcodec53:i386 6:0.8.6-1ubuntu2 i386 Libav codec library rc libavutil51:i386 6:0.8.6-1ubuntu2 i386 Libav utility library rc libbamf3-1:i386 0.4.0daily13.06.19~13.04-0ubuntu1 i386 Window matching library - shared library rc libboost-iostreams1.49.0 1.49.0-4 i386 Boost.Iostreams Library rc libboost-program-options1.49.0 1.49.0-4 i386 program options library for C++ rc libboost-python1.49.0 1.49.0-4 i386 Boost.Python Library rc libboost-thread1.49.0 1.49.0-4 i386 portable C++ multi-threading rc libbrlapi0.5:i386 4.4-8ubuntu4 i386 braille display access via BRLTTY - shared library rc libcamel-1.2-40 3.6.4-0ubuntu1.1 i386 Evolution MIME message handling library rc libcolumbus0-0 0.4.0daily13.04.16~13.04-0ubuntu1 i386 error tolerant matching engine - shared library rc libdns95 1:9.9.2.dfsg.P1-2ubuntu2.1 i386 DNS Shared Library used by BIND rc libdvbpsi7 0.2.2-1 i386 library for MPEG TS and DVB PSI tables decoding and generating rc libebackend-1.2-5 3.6.4-0ubuntu1.1 i386 Utility library for evolution data servers rc libechonest2.0:i386 2.0.2-0ubuntu1 i386 Qt library for communicating with The Echo Nest platform rc libechonest2.1:i386 2.1.0-2 i386 Qt library for communicating with The Echo Nest platform rc libedata-book-1.2-15 3.6.4-0ubuntu1.1 i386 Backend library for evolution address books rc libedata-cal-1.2-18 3.6.4-0ubuntu1.1 i386 Backend library for evolution calendars rc libftgl2 2.1.3~rc5-4ubuntu1 i386 library to render text in OpenGL using FreeType rc libgc1c3:i386 1:7.2d-0ubuntu5 i386 conservative garbage collector for C and C++ rc libgnome-desktop-3-4 3.6.3-0ubuntu1 i386 Utility library for loading .desktop files - runtime files rc libgtksourceview-3.0-0:i386 3.6.3-0ubuntu1 i386 shared libraries for the GTK+ syntax highlighting widget rc libgweather-3-1 3.6.2-0ubuntu1 i386 GWeather shared library rc libhal-storage1 0.5.14-8ubuntu1 i386 Hardware Abstraction Layer - shared library for storage devices rc libhal1 0.5.14-8ubuntu1 i386 Hardware Abstraction Layer - shared library rc libharfbuzz0:i386 0.9.13-1 i386 OpenType text shaping engine rc libhd16 16.0-2.2 i386 Hardware identification system library rc libibus-1.0-0:i386 1.4.2-0ubuntu2 i386 Intelligent Input Bus - shared library rc libical0 0.48-2 i386 iCalendar library implementation in C (runtime) rc libimobiledevice3 1.1.4-1ubuntu6.2 i386 Library for communicating with the iPhone and iPod Touch rc libisc92 1:9.9.2.dfsg.P1-2ubuntu2.1 i386 ISC Shared Library used by BIND rc libkdegamesprivate1 4:4.10.2-0ubuntu1 i386 private shared library for KDE games rc libkeybinder0 0.3.0-1ubuntu1 i386 registers global key bindings for applications rc libkgapi0:i386 0.4.4-0ubuntu1 i386 Google API library for KDE rc liblastfm1:i386 1.0.7-2 i386 Last.fm web services library rc libnetfilter-queue1 1.0.2-1 i386 Netfilter netlink-queue library rc libnl1:i386 1.1-7ubuntu1 i386 library for dealing with netlink sockets rc libossp-uuid16 1.6.2-1.3 i386 OSSP uuid ISO-C and C++ - shared library rc libpackagekit-glib2-14:i386 0.7.6-3ubuntu1 i386 Library for accessing PackageKit using GLib rc libpoppler28:i386 0.20.5-1ubuntu3 i386 PDF rendering library rc libprojectm2 2.1.0+dfsg-1build1 i386 Advanced Milkdrop-compatible music visualization library rc libqxt-core0:i386 0.6.1-7 i386 extensions to Qt core classes (LibQxt) rc libqxt-gui0:i386 0.6.1-7 i386 extensions to Qt GUI classes (LibQxt) rc libraw5:i386 0.14.7-0ubuntu1.13.04.2 i386 raw image decoder library rc librhythmbox-core6 2.98-0ubuntu5 i386 support library for the rhythmbox music player rc librhythmbox-core7 3.0.1-0~13.10~ppa1 i386 support library for the rhythmbox music player rc libsnmp15 5.4.3~dfsg-2.7ubuntu1 i386 SNMP (Simple Network Management Protocol) library rc libsqlite0 2.8.17-8fakesync1 i386 SQLite shared library rc libsyncdaemon-1.0-1 4.2.0-0ubuntu1 i386 Ubuntu One synchronization daemon library rc libtiff4:i386 3.9.7-2ubuntu1 i386 Tag Image File Format (TIFF) library (old version) rc libunity-core-6.0-5 7.0.0daily13.06.19~13.04-0ubuntu1 i386 Core library for the Unity interface. rc libva-wayland1:i386 1.2.1-0ubuntu0~raring i386 Video Acceleration (VA) API for Linux -- Wayland runtime rc libwayland0:i386 1.0.5-0ubuntu1 i386 wayland compositor infrastructure - shared libraries rc libwebp2:i386 0.1.3-3 i386 Lossy compression of digital photographic images. rc linux-image-3.8.0-19-generic 3.8.0-19.30 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-21-generic 3.8.0-21.32 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-22-generic 3.8.0-22.33 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-26-generic 3.8.0-26.38 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-27-generic 3.8.0-27.40 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.9.0-030900-generic 3.9.0-030900.201304291257 i386 Linux kernel image for version 3.9.0 on 32 bit x86 SMP rc linux-image-3.9.0-030900rc8-generic 3.9.0-030900rc8.201304211835 i386 Linux kernel image for version 3.9.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-19-generic 3.8.0-19.30 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-21-generic 3.8.0-21.32 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-22-generic 3.8.0-22.33 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-26-generic 3.8.0-26.38 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-27-generic 3.8.0-27.40 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc preload 0.6.4-2 i386 adaptive readahead daemon rc steam-launcher 1.0.0.39 all Launcher for the Steam software distribution service rc super-boot-manager 0.7.15 all Simple gui to configure Grub2, Burg and Plymouth. rc totem 3.6.3-0ubuntu6 i386 Simple media player for the GNOME desktop based on GStreamer rc transmission-gtk 2.77-0ubuntu1 i386 lightweight BitTorrent client (GTK interface) rc unity-common 7.0.0daily13.06.19~13.04-0ubuntu1 all Common files for the Unity interface. rc vino 3.6.2-0ubuntu4 i386 VNC server for GNOME rc wicd-daemon 1.7.2.4-4.1 all wired and wireless network manager - daemon rc wicd-gtk 1.7.2.4-4.1 all wired and wireless network manager - GTK+ client rc xscreensaver 5.15-2ubuntu1 i386 Automatic screensaver for X rc xscreensaver-data 5.15-3ubuntu1 i386 data files to be shared among screensaver frontends sudo dpkg -l | grep uget: ii uget 1.10.3-1 i386 easy-to-use download manager written in GTK+ sudo dpkg -l | grep indicator: ii gir1.2-appindicator3-0.1 12.10.1+13.10.20130920-0ubuntu2 i386 Typelib files for libappindicator3-1. ii gir1.2-syncmenu-0.1 12.10.5+13.10.20131011-0ubuntu1 i386 indicator for synchronisation processes status - bindings ii indicator-applet-complete 12.10.2+13.10.20130924.2-0ubuntu1 i386 Clone of the GNOME panel indicator applet ii indicator-application 12.10.1daily13.01.25-0ubuntu1 i386 Application Indicators ii indicator-appmenu 13.01.0+13.10.20130930-0ubuntu1 i386 Indicator for application menus. ii indicator-bluetooth 0.0.6+13.10.20131016-0ubuntu1 i386 System bluetooth indicator. ii indicator-datetime 13.10.0+13.10.20131023.2-0ubuntu1 i386 Simple clock ii indicator-keyboard 0.0.0+13.10.20131010.1-0ubuntu1 i386 Keyboard indicator ii indicator-messages 13.10.1+13.10.20131011-0ubuntu1 i386 indicator that collects messages that need a response ii indicator-multiload 0.3-0ubuntu1 i386 Graphical system load indicator for CPU, ram, etc. ii indicator-power 12.10.6+13.10.20131008-0ubuntu1 i386 Indicator showing power state. ii indicator-printers 0.1.7daily13.03.01-0ubuntu1 i386 indicator showing active print jobs ii indicator-session 12.10.5+13.10.20131023.1-0ubuntu1 i386 indicator showing session management, status and user switching ii indicator-sound 12.10.2+13.10.20131011-0ubuntu1 i386 System sound indicator. ii indicator-sync 12.10.5+13.10.20131011-0ubuntu1 i386 indicator for synchronisation processes status ii libappindicator1 12.10.1+13.10.20130920-0ubuntu2 i386 Application Indicators ii libappindicator3-1 12.10.1+13.10.20130920-0ubuntu2 i386 Application Indicators ii libindicator3-7 12.10.2+13.10.20130913-0ubuntu2 i386 panel indicator applet - shared library ii libindicator7 12.10.2+13.10.20130913-0ubuntu2 i386 panel indicator applet - shared library ii libsync-menu1:i386 12.10.5+13.10.20131011-0ubuntu1 i386 indicator for synchronisation processes status - libraries ii python-appindicator 12.10.1+13.10.20130920-0ubuntu2 i386 Python bindings for libappindicator ii sni-qt:i386 0.2.6-0ubuntu1 i386 indicator support for Qt ii telepathy-indicator 0.3.1daily13.06.19-0ubuntu1 i386 Desktop service to integrate Telepathy with the messaging menu.

    Read the article

  • Speed up SQL Server queries with PREFETCH

    - by Akshay Deep Lamba
    Problem The SAN data volume has a throughput capacity of 400MB/sec; however my query is still running slow and it is waiting on I/O (PAGEIOLATCH_SH). Windows Performance Monitor shows data volume speed of 4MB/sec. Where is the problem and how can I find the problem? Solution This is another summary of a great article published by R. Meyyappan at www.sqlworkshops.com.  In my opinion, this is the first article that highlights and explains with working examples how PREFETCH determines the performance of a Nested Loop join.  First of all, I just want to recall that Prefetch is a mechanism with which SQL Server can fire up many I/O requests in parallel for a Nested Loop join. When SQL Server executes a Nested Loop join, it may or may not enable Prefetch accordingly to the number of rows in the outer table. If the number of rows in the outer table is greater than 25 then SQL will enable and use Prefetch to speed up query performance, but it will not if it is less than 25 rows. In this section we are going to see different scenarios where prefetch is automatically enabled or disabled. These examples only use two tables RegionalOrder and Orders.  If you want to create the sample tables and sample data, please visit this site www.sqlworkshops.com. The breakdown of the data in the RegionalOrders table is shown below and the Orders table contains about 6 million rows. In this first example, I am creating a stored procedure against two tables and then execute the stored procedure.  Before running the stored proceudre, I am going to include the actual execution plan. --Example provided by www.sqlworkshops.com --Create procedure that pulls orders based on City --Do not forget to include the actual execution plan CREATE PROC RegionalOrdersProc @City CHAR(20) AS BEGIN DECLARE @OrderID INT, @OrderDetails CHAR(200) SELECT @OrderID = o.OrderID, @OrderDetails = o.OrderDetails       FROM RegionalOrders ao INNER JOIN Orders o ON (o.OrderID = ao.OrderID)       WHERE City = @City END GO SET STATISTICS time ON GO --Example provided by www.sqlworkshops.com --Execute the procedure with parameter SmallCity1 EXEC RegionalOrdersProc 'SmallCity1' GO After running the stored procedure, if we right click on the Clustered Index Scan and click Properties we can see the Estimated Numbers of Rows is 24.    If we right click on Nested Loops and click Properties we do not see Prefetch, because it is disabled. This behavior was expected, because the number of rows containing the value ‘SmallCity1’ in the outer table is less than 25.   Now, if I run the same procedure with parameter ‘BigCity’ will Prefetch be enabled? --Example provided by www.sqlworkshops.com --Execute the procedure with parameter BigCity --We are using cached plan EXEC RegionalOrdersProc 'BigCity' GO As we can see from the below screenshot, prefetch is not enabled and the query takes around 7 seconds to execute. This is because the query used the cached plan from ‘SmallCity1’ that had prefetch disabled. Please note that even if we have 999 rows for ‘BigCity’ the Estimated Numbers of Rows is still 24.   Finally, let’s clear the procedure cache to trigger a new optimization and execute the procedure again. DBCC freeproccache GO EXEC RegionalOrdersProc 'BigCity' GO This time, our procedure runs under a second, Prefetch is enabled and the Estimated Number of Rows is 999.   The RegionalOrdersProc can be optimized by using the below example where we are using an optimizer hint. I have also shown some other hints that could be used as well. --Example provided by www.sqlworkshops.com --You can fix the issue by using any of the following --hints --Create procedure that pulls orders based on City DROP PROC RegionalOrdersProc GO CREATE PROC RegionalOrdersProc @City CHAR(20) AS BEGIN DECLARE @OrderID INT, @OrderDetails CHAR(200) SELECT @OrderID = o.OrderID, @OrderDetails = o.OrderDetails       FROM RegionalOrders ao INNER JOIN Orders o ON (o.OrderID = ao.OrderID)       WHERE City = @City       --Hinting optimizer to use SmallCity2 for estimation       OPTION (optimize FOR (@City = 'SmallCity2'))       --Hinting optimizer to estimate for the currnet parameters       --option (recompile)       --Hinting optimize not to use histogram rather       --density for estimation (average of all 3 cities)       --option (optimize for (@City UNKNOWN))       --option (optimize for UNKNOWN) END GO Conclusion, this tip was mainly aimed at illustrating how Prefetch can speed up query execution and how the different number of rows can trigger this.

    Read the article

  • Investigation: Can different combinations of components effect Dataflow performance?

    - by jamiet
    Introduction The Dataflow task is one of the core components (if not the core component) of SQL Server Integration Services (SSIS) and often the most misunderstood. This is not surprising, its an incredibly complicated beast and we’re abstracted away from that complexity via some boxes that go yellow red or green and that have some lines drawn between them. Example dataflow In this blog post I intend to look under that facade and get into some of the nuts and bolts of the Dataflow Task by investigating how the decisions we make when building our packages can affect performance. I will do this by comparing the performance of three dataflows that all have the same input, all produce the same output, but which all operate slightly differently by way of having different transformation components. I also want to use this blog post to challenge a common held opinion that I see perpetuated over and over again on the SSIS forum. That is, that people assume adding components to a dataflow will be detrimental to overall performance. Its not surprising that people think this –it is intuitive to think that more components means more work- however this is not a view that I share. I have always been of the opinion that there are many factors affecting dataflow duration and the number of components is actually one of the less important ones; having said that I have never proven that assertion and that is one reason for this investigation. I have actually seen evidence that some people think dataflow duration is simply a function of number of rows and number of components. I’ll happily call that one out as a myth even without any investigation!  The Setup I have a 2GB datafile which is a list of 4731904 (~4.7million) customer records with various attributes against them and it contains 2 columns that I am going to use for categorisation: [YearlyIncome] [BirthDate] The data file is a SSIS raw format file which I chose to use because it is the quickest way of getting data into a dataflow and given that I am testing the transformations, not the source or destination adapters, I want to minimise external influences as much as possible. In the test I will split the customers according to month of birth (12 of those) and whether or not their yearly income is above or below 50000 (2 of those); in other words I will be splitting them into 24 discrete categories and in order to do it I shall be using different combinations of SSIS’ Conditional Split and Derived Column transformation components. The 24 datapaths that occur will each input to a rowcount component, again because this is the least resource intensive means of terminating a datapath. The test is being carried out on a Dell XPS Studio laptop with a quad core (8 logical Procs) Intel Core i7 at 1.73GHz and Samsung SSD hard drive. Its running SQL Server 2008 R2 on Windows 7. The Variables Here are the three combinations of components that I am going to test:     One Conditional Split - A single Conditional Split component CSPL Split by Month of Birth and income category that will use expressions on [YearlyIncome] & [BirthDate] to send each row to one of 24 outputs. This next screenshot displays the expression logic in use: Derived Column & Conditional Split - A Derived Column component DER Income Category that adds a new column [IncomeCategory] which will contain one of two possible text values {“LessThan50000”,”GreaterThan50000”} and uses [YearlyIncome] to determine which value each row should get. A Conditional Split component CSPL Split by Month of Birth and Income Category then uses that new column in conjunction with [BirthDate] to determine which of the same 24 outputs to send each row to. Put more simply, I am separating the Conditional Split of #1 into a Derived Column and a Conditional Split. The next screenshots display the expression logic in use: DER Income Category         CSPL Split by Month of Birth and Income Category       Three Conditional Splits - A Conditional Split component that produces two outputs based on [YearlyIncome], one for each Income Category. Each of those outputs will go to a further Conditional Split that splits the input into 12 outputs, one for each month of birth (identical logic in each). In this case then I am separating the single Conditional Split of #1 into three Conditional Split components. The next screenshots display the expression logic in use: CSPL Split by Income Category         CSPL Split by Month of Birth 1& 2       Each of these combinations will provide an input to one of the 24 rowcount components, just the same as before. For illustration here is a screenshot of the dataflow containing three Conditional Split components: As you can these dataflows have a fair bit of work to do and remember that they’re doing that work for 4.7million rows. I will execute each dataflow 10 times and use the average for comparison. I foresee three possible outcomes: The dataflow containing just one Conditional Split (i.e. #1) will be quicker There is no significant difference between any of them One of the two dataflows containing multiple transformation components will be quicker Regardless of which of those outcomes come to pass we will have learnt something and that makes this an interesting test to carry out. Note that I will be executing the dataflows using dtexec.exe rather than hitting F5 within BIDS. The Results and Analysis The table below shows all of the executions, 10 for each dataflow. It also shows the average for each along with a standard deviation. All durations are in seconds. I’m pasting a screenshot because I frankly can’t be bothered with the faffing about needed to make a presentable HTML table. It is plain to see from the average that the dataflow containing three conditional splits is significantly faster, the other two taking 43% and 52% longer respectively. This seems strange though, right? Why does the dataflow containing the most components outperform the other two by such a big margin? The answer is actually quite logical when you put some thought into it and I’ll explain that below. Before progressing, a side note. The standard deviation for the “Three Conditional Splits” dataflow is orders of magnitude smaller – indicating that performance for this dataflow can be predicted with much greater confidence too. The Explanation I refer you to the screenshot above that shows how CSPL Split by Month of Birth and salary category in the first dataflow is setup. Observe that there is a case for each combination of Month Of Date and Income Category – 24 in total. These expressions get evaluated in the order that they appear and hence if we assume that Month of Date and Income Category are uniformly distributed in the dataset we can deduce that the expected number of expression evaluations for each row is 12.5 i.e. 1 (the minimum) + 24 (the maximum) divided by 2 = 12.5. Now take a look at the screenshots for the second dataflow. We are doing one expression evaluation in DER Income Category and we have the same 24 cases in CSPL Split by Month of Birth and Income Category as we had before, only the expression differs slightly. In this case then we have 1 + 12.5 = 13.5 expected evaluations for each row – that would account for the slightly longer average execution time for this dataflow. Now onto the third dataflow, the quick one. CSPL Split by Income Category does a maximum of 2 expression evaluations thus the expected number of evaluations per row is 1.5. CSPL Split by Month of Birth 1 & CSPL Split by Month of Birth 2 both have less work to do than the previous Conditional Split components because they only have 12 cases to test for thus the expected number of expression evaluations is 6.5 There are two of them so total expected number of expression evaluations for this dataflow is 6.5 + 6.5 + 1.5 = 14.5. 14.5 is still more than 12.5 & 13.5 though so why is the third dataflow so much quicker? Simple, the conditional expressions in the first two dataflows have two boolean predicates to evaluate – one for Income Category and one for Month of Birth; the expressions in the Conditional Split in the third dataflow however only have one predicate thus they are doing a lot less work. To sum up, the difference in execution times can be attributed to the difference between: MONTH(BirthDate) == 1 && YearlyIncome <= 50000 and MONTH(BirthDate) == 1 In the first two dataflows YearlyIncome <= 50000 gets evaluated an average of 12.5 times for every row whereas in the third dataflow it is evaluated once and once only. Multiply those 11.5 extra operations by 4.7million rows and you get a significant amount of extra CPU cycles – that’s where our duration difference comes from. The Wrap-up The obvious point here is that adding new components to a dataflow isn’t necessarily going to make it go any slower, moreover you may be able to achieve significant improvements by splitting logic over multiple components rather than one. Performance tuning is all about reducing the amount of work that needs to be done and that doesn’t necessarily mean use less components, indeed sometimes you may be able to reduce workload in ways that aren’t immediately obvious as I think I have proven here. Of course there are many variables in play here and your mileage will most definitely vary. I encourage you to download the package and see if you get similar results – let me know in the comments. The package contains all three dataflows plus a fourth dataflow that will create the 2GB raw file for you (you will also need the [AdventureWorksDW2008] sample database from which to source the data); simply disable all dataflows except the one you want to test before executing the package and remember, execute using dtexec, not within BIDS. If you want to explore dataflow performance tuning in more detail then here are some links you might want to check out: Inequality joins, Asynchronous transformations and Lookups Destination Adapter Comparison Don’t turn the dataflow into a cursor SSIS Dataflow – Designing for performance (webinar) Any comments? Let me know! @Jamiet

    Read the article

  • Achieve Named Criteria with multiple tables in EJB Data control

    - by Deepak Siddappa
    In EJB create a named criteria using sparse xml and in named criteria wizard, only attributes related to the that particular entities will be displayed.  So here we can filter results only on particular entity bean. Take a scenario where we need to create Named Criteria based on multiple tables using EJB. In BC4J we can achieve this by creating view object based on multiple tables. So in this article, we will try to achieve named criteria based on multiple tables using EJB.Implementation StepsCreate Java EE Web Application with entity based on Departments and Employees, then create a session bean and data control for the session bean.Create a Java Bean, name as CustomBean and add below code to the file. Here in java bean from both Departments and Employees tables three fields are taken. public class CustomBean { private BigDecimal departmentId; private String departmentName; private BigDecimal locationId; private BigDecimal employeeId; private String firstName; private String lastName; public CustomBean() { super(); } public void setDepartmentId(BigDecimal departmentId) { this.departmentId = departmentId; } public BigDecimal getDepartmentId() { return departmentId; } public void setDepartmentName(String departmentName) { this.departmentName = departmentName; } public String getDepartmentName() { return departmentName; } public void setLocationId(BigDecimal locationId) { this.locationId = locationId; } public BigDecimal getLocationId() { return locationId; } public void setEmployeeId(BigDecimal employeeId) { this.employeeId = employeeId; } public BigDecimal getEmployeeId() { return employeeId; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getFirstName() { return firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getLastName() { return lastName; } } Open the sessionEJb file and add the below code to the session bean and expose the method in local/remote interface and generate a data control for that. Note:- Here in the below code "em" is a EntityManager. public List<CustomBean> getCustomBeanFindAll() { String queryString = "select d.department_id, d.department_name, d.location_id, e.employee_id, e.first_name, e.last_name from departments d, employees e\n" + "where e.department_id = d.department_id"; Query genericSearchQuery = em.createNativeQuery(queryString, "CustomQuery"); List resultList = genericSearchQuery.getResultList(); Iterator resultListIterator = resultList.iterator(); List<CustomBean> customList = new ArrayList(); while (resultListIterator.hasNext()) { Object col[] = (Object[])resultListIterator.next(); CustomBean custom = new CustomBean(); custom.setDepartmentId((BigDecimal)col[0]); custom.setDepartmentName((String)col[1]); custom.setLocationId((BigDecimal)col[2]); custom.setEmployeeId((BigDecimal)col[3]); custom.setFirstName((String)col[4]); custom.setLastName((String)col[5]); customList.add(custom); } return customList; } Open the DataControls.dcx file and create sparse xml for customBean. In sparse xml navigate to Named criteria tab -> Bind Variable section, create two binding variables deptId,fName. In sparse xml navigate to Named criteria tab ->Named criteria, create a named criteria and map the query attributes to the bind variables. In the ViewController create a file jspx page, from data control palette drop customBeanFindAll->Named Criteria->CustomBeanCriteria->Query as ADF Query Panel with Table. Run the jspx page and enter values in search form with departmentId as 50 and firstName as "M". Named criteria will filter the query of a data source and display the result like below.

    Read the article

  • T-SQL in Chicago – the LobsterPot teams with DataEducation

    - by Rob Farley
    In May, I’ll be in the US. I have board meetings for PASS at the SQLRally event in Dallas, and then I’m going to be spending a bit of time in Chicago. The big news is that while I’m in Chicago (May 14-16), I’m going to teach my “Advanced T-SQL Querying and Reporting: Building Effectiveness” course. This is a course that I’ve been teaching since the 2005 days, and have modified over time for 2008 and 2012. It’s very much my most popular course, and I love teaching it. Let me tell you why. For years, I wrote queries and thought I was good at it. I was a developer. I’d written a lot of C (and other, more fun languages like Prolog and Lisp) at university, and then got into the ‘real world’ and coded in VB, PL/SQL, and so on through to C#, and saw SQL (whichever database system it was) as just a way of getting the data back. I could write a query to return just about whatever data I wanted, and that was good. I was better at it than the people around me, and that helped. (It didn’t help my progression into management, then it just became a frustration, but for the most part, it was good to know that I was good at this particular thing.) But then I discovered the other side of querying – the execution plan. I started to learn about the translation from what I’d written into the plan, and this impacted my query-writing significantly. I look back at the queries I wrote before I understood this, and shudder. I wrote queries that were correct, but often a long way from effective. I’d done query tuning, but had largely done it without considering the plan, just inferring what indexes would help. This is not a performance-tuning course. It’s focused on the T-SQL that you read and write. But performance is a significant and recurring theme. Effective T-SQL has to be about performance – it’s the biggest way that a query becomes effective. There are other aspects too though – such as using constructs better. For example – I can write code that modifies data nicely, but if I haven’t learned about the MERGE statement and the way that it can impact things, I’m missing a few tricks. If you’re going to do this course, a good place to be is the situation I was in a few years before I wrote this course. You’re probably comfortable with writing T-SQL queries. You know how to make a SELECT statement do what you need it to, but feel there has to be a better way. You can write JOINs easily, and understand how to use LEFT JOIN to make sure you don’t filter out rows from the first table, but you’re coding blind. The first module I cover is on Query Execution. Take a look at the Course Outline at Data Education’s website. The first part of the first module is on the components of a SELECT statement (where I make you think harder about GROUP BY than you probably have before), but then we jump straight into Execution Plans. Some stuff on indexes is in there too, as is simplification and SARGability. Some of this is stuff that you may have heard me present on at conferences, but here you have me for three days straight. I’m sure you can imagine that we revisit these topics throughout the rest of the course as well, and you’d be right. In the second and third modules we look at a bunch of other aspects, including some of the T-SQL constructs that lots of people don’t know, and various other things that can help your T-SQL be, well, more effective. I’ve had quite a lot of people do this course and be itching to get back to work even on the first day. That’s not a comment about the jokes I tell, but because people want to look at the queries they run. LobsterPot Solutions is thrilled to be partnering with Data Education to bring this training to Chicago. Visit their website to register for the course. @rob_farley

    Read the article

  • Looking under the hood of SSRS

    - by Jim Giercyk
    SSRS is a powerful tool, but there is very little available to measure it’s performance or view the SSRS execution log or catalog in detail.  Here are a few simple queries that will give you insight to the system that you never had before.   ACTIVE REPORTS:  Have you ever seen your SQL Server performance take a nose dive due to a long-running report?  If the SPID is executing under a generic Report ID, or it is a scheduled job, you may have no way to tell which report is killing your server.  Running this query will show you which reports are executing at a given time, and WHO is executing them.   USE ReportServerNative SELECT runningjobs.computername,             runningjobs.requestname,              runningjobs.startdate,             users.username,             Datediff(s,runningjobs.startdate, Getdate()) / 60 AS    'Active Minutes' FROM runningjobs INNER JOIN users ON runningjobs.userid = users.userid ORDER BY runningjobs.startdate               SSRS CATALOG:  We have all asked “What was the last thing that changed”, or better yet, “Who in the world did that!”.  Here is a query that will show all of the reports in your SSRS catalog, when they were created and changed, and by who.           USE ReportServerNative SELECT DISTINCT catalog.PATH,                            catalog.name,                            users.username AS [Created By],                             catalog.creationdate,                            users_1.username AS [Modified By],                            catalog.modifieddate FROM catalog         INNER JOIN users ON catalog.createdbyid = users.userid  INNER JOIN users AS users_1 ON catalog.modifiedbyid = users_1.userid INNER JOIN executionlogstorage ON catalog.itemid = executionlogstorage.reportid WHERE ( catalog.name <> '' )               SSRS EXECUTION LOG:  Sometimes we need to know what was happening on the SSRS report server at a given time in the past.  This query will help you do just that.  You will need to set the timestart and timeend in the WHERE clause to suit your needs.         USE ReportServerNative SELECT catalog.name AS report,        executionlogstorage.username AS [User],        executionlogstorage.timestart,        executionlogstorage.timeend,         Datediff(mi,e.timestart,e.timeend) AS ‘Time In Minutes',        catalog.modifieddate AS [Report Last Modified],        users.username FROM   catalog  (nolock)        INNER JOIN executionlogstorage e (nolock)          ON catalog.itemid = executionlogstorage.reportid        INNER JOIN users (nolock)          ON catalog.modifiedbyid = users.userid WHERE  executionlogstorage.timestart >= Dateadd(s, -1, '03/31/2012')        AND executionlogstorage.timeend <= Dateadd(DAY, 1, '04/02/2012')      LONG RUNNING REPORTS:  This query will show the longest running reports over a given time period.  Note that the “>5” in the WHERE clause sets the report threshold at 5 minutes, so anything that ran less than 5 minutes will not appear in the result set.  Adjust the threshold and start/end times to your liking.  With this information in hand, you can better optimize your system by tweaking the longest running reports first.         USE ReportServerNative SELECT executionlogstorage.instancename,        catalog.PATH,        catalog.name,        executionlogstorage.username,        executionlogstorage.timestart,        executionlogstorage.timeend,        Datediff(mi, e.timestart, e.timeend) AS 'Minutes',        executionlogstorage.timedataretrieval,        executionlogstorage.timeprocessing,        executionlogstorage.timerendering,        executionlogstorage.[RowCount],        users_1.username        AS createdby,        CONVERT(VARCHAR(10), catalog.creationdate, 101)        AS 'Creation Date',        users.username        AS modifiedby,        CONVERT(VARCHAR(10), catalog.modifieddate, 101)        AS 'Modified Date' FROM   executionlogstorage e         INNER JOIN catalog          ON executionlogstorage.reportid = catalog.itemid        INNER JOIN users          ON catalog.modifiedbyid = users.userid        INNER JOIN users AS users_1          ON catalog.createdbyid = users_1.userid WHERE  ( e.timestart > '03/31/2012' )        AND ( e.timestart <= '04/02/2012' )        AND  Datediff(mi, e.timestart, e.timeend) > 5        AND catalog.name <> '' ORDER  BY 'Minutes' DESC        I have used these queries to build SSRS reports that I can refer to quickly, and export to Excel if I need to report or quantify my findings.  I encourage you to look at the data in the ReportServerNative database on your report server to understand the queries and create some of your own.  For instance, you may want a query to determine which reports are using which shared data sources.  Work smarter, not harder!

    Read the article

  • SEO non-English domain name advice

    - by Dominykas Mostauskis
    I'm starting a website, that is meant for a non-English region, using an alphabet that is a bit different than that of English. Current plan is as follows. The website name, and the domain name, will be in the local language (not English); however, domain name will be spelled in the English alphabet, while the website's title will be the same word(s), but spelled properly with accents. E.g.: 'www.litterat.fr' and 'Littérat'. Does the difference between domain name and website name character use influence the site's SEO? Is it better, SEO-wise, to choose a name that can be spelled the same way in the English alphabet? From my experience, when searching online, invariably, the English alphabet is used, no matter the language, so people will still be searching 'litterat' (without accents and such). Edit: To sum up: Things have been said about IDN (Internationalized domain name). To make it simple, they are second-level domain names that contain language specific characters (LSP)(e.g. www.café.fr). Here you can check what top-level domains support what LSPs. Check initall's answer for more info on using LSPs in paths and queries. To answer my question about how and if search engines relate keywords spelled with and without language specific characters: Google can potentially tell that series and séries is the same keyword. However, (most relevant for words that are spelled differently across languages and have different meanings, like séries), for Google to make the connection (or lack thereof) between e and é, it has to deduce two things: Language that you are searching in. Language of your query. You can specify it manually through Advanced search or it guesses it, sometimes. I presume it can guess it wrong too. The more keywords specific to this language you use the higher Google's chance to guess the language. Language of the crawled document, against which the ASCII version of the word will be compared (in this example – series). Again, check initall's answer for how to help Google in understanding what language your document is in. Once it has that it can tell whether or not these two spellings should be treated as the same keyword. Google has to understand that even though you're not using french (in this example) specific characters, you're searching in French. The reason why I used the french word séries in this example, is that it demonstrates this very well. You have it in French and you have it in English without the accent. So if your search query is ambiguous like our series, unless Google has something more to go on, it will presume that there's no correlation between your search and séries in French documents. If you augment your query to series romantiques (try it), Google will understand that you're searching in French and among your results you'll see séries as well. But this does not always work, you should test it out with your keywords first. For example, if you search series francaises, it will associate francaises with françaises, but it will not associate series with séries. It depends on the words. Note: worth stressing that this problem is very relevant to words that, written in plain ASCII, might have some other meanings in other languages, it is less relevant to words that can be, by a distinct margin, just some one language. Tip: I've noticed that sometimes even if my non-accented search query doesn't get associated with the properly spelled word in a document (especially if it's the title or an important keyword in the doc), it still comes up. I followed the link, did a Ctrl-F search for my non-accented search query and found nothing, then checked the meta-tags in the source and you had the page's title in both accented and non-accented forms. So if you have meta-tags that can be spelled with language specific characters and without, put in both. Footnote: I hope this helps. If you have anything to add or correct, go ahead.

    Read the article

  • Extreme Optimization –Mathematical Constants and Basic Functions

    - by JoshReuben
    Machine constants The MachineConstants class - contains constants for floating-point arithmetic because the CLS System.Single and Double floating-point types do not follow the standard conventions and are useless. machine constants for the Double type: machine precision: Epsilon , SqrtEpsilon CubeRootEpsilon largest possible value: MaxDouble , SqrtMaxDouble, LogMaxDouble smallest Double-precision floating point number that is greater than zero: MinDouble , SqrtMinDouble , LogMinDouble A similar set of constants is available for the Single Datatype  Mathematical Constants The Constants class contains static fields for many mathematical constants and common expressions involving small integers – if you are doing thousands of iterations, you wouldn't want to calculate OneOverSqrtTwoPi , Sqrt17 or Log17 !!! Fundamental constants E - The base for the natural logarithm, e (2.718...). EulersConstant - (0.577...). GoldenRatio - (1.618...). Pi - the ratio between the circumference and the diameter of a circle (3.1415...). Expressions involving fundamental constants: TwoPi, PiOverTwo, PiOverFour, LogTwoPi, PiSquared, SqrPi, SqrtTwoPi, OneOverSqrtPi, OneOverSqrtTwoPi Square roots of small integers: Sqrt2, Sqrt3, Sqrt5, Sqrt7, Sqrt17 Logarithms of small integers: Log2, Log3, Log10, Log17, InvLog10  Elementary Functions The IterativeAlgorithm<T> class in the Extreme.Mathematics namespace defines many elementary functions that are missing from System.Math. Hyperbolic Trig Functions: Cosh, Coth, Csch, Sinh, Sech, Tanh Inverse Hyperbolic Trig Functions: Acosh, Acoth, Acsch, Asinh, Asech, Atanh Exponential, Logarithmic and Miscellaneous Functions: ExpMinus1 - The exponential function minus one, ex-1. Hypot - The hypotenuse of a right-angled triangle with specified sides. LambertW - Lambert's W function, the (real) solution W of x=WeW. Log1PlusX - The natural logarithm of 1+x. Pow - A number raised to an integer power.

    Read the article

< Previous Page | 268 269 270 271 272 273 274 275 276 277 278 279  | Next Page >