Search Results

Search found 37841 results on 1514 pages for 'object state'.

Page 282/1514 | < Previous Page | 278 279 280 281 282 283 284 285 286 287 288 289  | Next Page >

  • How to apply custom BidirectionalGraph from QuickGraph to GraphLayout from Graph#?

    - by Dmitry
    Whats wrong? using QuickGraph; using GraphSharp; public class State { public string Name { get; set; } public override string ToString() { return Name; } } public class Event { public string Name; public override string ToString() { return Name; } } BidirectionalGraph<State, TaggedEdge<State, Event>> x = new BidirectionalGraph<State, TaggedEdge<State, Event>>(); GraphLayout graphLayout = new GraphLayout(); graphLayout.Graph = x; Error: Cannot implicitly convert type 'QuickGraph.BidirectionalGraph' to 'QuickGraph.IBidirectionalGraph'. An explicit conversion exists (are you missing a cast?) If I put the cast, then application gets fault error on start without any information Whats wrong?

    Read the article

  • JPA, scope, and autosave?

    - by arinte
    I am using JPA and lets say I do something like this public class MoRun extends Thread {... public void run() { final EntityManagerFactory emFactory = Persistence.createEntityManagerFactory("pu"); EntityManager manager = emFactory.createEntityManager(); manager.setFlushMode(FlushModeType.COMMIT); someMethod(manager); ... } public void someMethod(EntityManager manager){ Query query = manager.createNamedQuery("byStates"); List<State> list = query.getResultList(); for (State state : list) { if(someTest) state.setValue(...) } ... } So for those objects that pass "someTest" and values are updated are those changes automatically persisted to the db even though there is no transaction and I don't explicitly "manager.save(state)" the object? I ask because it seems like it is and I was wondering if the flush is doing it?

    Read the article

  • Select count / duplicates

    - by mike
    Hello! I have a table with all U.S. zip codes. each row contains the city and state name for the zip code. I'm trying to get a list of cities that show up in multiple states. This wouldn't be a problem if there weren't X amount of zip codes in the same city... So basically, I just want to the city in a state to count as 1 instead of it counting the city/state 7 times because there are 2+ zip codes in that city/state... I'm not really sure how to do this. I know I need to use count but how do I tell the mysql to only count a given city/state combo as 1?

    Read the article

  • ListView from cursor with checkbox

    - by ekawas
    Hi, I have a Listview that looks like the following: checkbox:textview {0 .. n} I have a OnCheckChangedListener that listens for checkbox changes (checkbox has focusable set to false as recommended by http://www.mousetech.com/blog/?p=74). The behaviour that I am looking for is that users can click the checkbox to set its state, and they can click on the listview item to get a description. Currently, checkbox state is saved properly and if you click on an item, then it shows a description. However, if you first change a state and then click to get the description, the checkbox reverts to a prior state. In fact all checkboxes revert back to a prior state. Anyone know how i can get this working? Thanks.

    Read the article

  • How do I cleanly design a central render/animation loop?

    - by mtoast
    I'm learning some graphics programming, and am in the midst of my first such project of any substance. But, I am really struggling at the moment with how to architect it cleanly. Let me explain. To display complicated graphics in my current language of choice (JavaScript -- have you heard of it?), you have to draw graphical content onto a <canvas> element. And to do animation, you must clear the <canvas> after every frame (unless you want previous graphics to remain). Thus, most canvas-related JavaScript demos I've seen have a function like this: function render() { clearCanvas(); // draw stuff here requestAnimationFrame(render); } render, as you may surmise, encapsulates the drawing of a single frame. What a single frame contains at a specific point in time, well... that is determined by the program state. So, in order for my program to do its thing, I just need to look at the state, and decide what to render. Right? Right. But that is more complicated than it seems. My program is called "Critter Clicker". In my program, you see several cute critters bouncing around the screen. Clicking on one of them agitates it, making it bounce around even more. There is also a start screen, which says "Click to start!" prior to the critters being displayed. Here are a few of the objects I'm working with in my program: StartScreenView // represents the start screen CritterTubView // represents the area in which the critters live CritterList // a collection of all the critters Critter // a single critter model CritterView // view of a single critter Nothing too egregious with this, I think. Yet, when I set out to flesh out my render function, I get stuck, because everything I write seems utterly ugly and reminiscent of a certain popular Italian dish. Here are a couple of approaches I've attempted, with my internal thought process included, and unrelated bits excluded for clarity. Approach 1: "It's conditions all the way down" // "I'll just write the program as I think it, one frame at a time." if (assetsLoaded) { if (userClickedToStart) { if (critterTubDisplayed) { if (crittersDisplayed) { forEach(crittersList, function(c) { if (c.wasClickedRecently) { c.getAgitated(); } }); } else { displayCritters(); } } else { displayCritterTub(); } } else { displayStartScreen(); } } That's a very much simplified example. Yet even with only a fraction of all the rendering conditions visible, render is already starting to get out of hand. So, I dispense with that and try another idea: Approach 2: Under the Rug // "Each view object shall be responsible for its own rendering. // "I'll pass each object the program state, and each can render itself." startScreen.render(state); critterTub.render(state); critterList.render(state); In this setup, I've essentially just pushed those crazy nested conditions to a deeper level in the code, hiding them from view. In other words, startScreen.render would check state to see if it needed actually to be drawn or not, and take the correct action. But this seems more like it only solves a code-aesthetic problem. The third and final approach I'm considering that I'll share is the idea that I could invent my own "wheel" to take care of this. I'm envisioning a function that takes a data structure that defines what should happen at any given point in the render call -- revealing the conditions and dependencies as a kind of tree. Approach 3: Mad Scientist renderTree({ phases: ['startScreen', 'critterTub', 'endCredits'], dependencies: { startScreen: ['assetsLoaded'], critterTub: ['startScreenClicked'], critterList ['critterTubDisplayed'] // etc. }, exclusions: { startScreen: ['startScreenClicked'], // etc. } }); That seems kind of cool. I'm not exactly sure how it would actually work, but I can see it being a rather nifty way to express things, especially if I flex some of JavaScript's events. In any case, I'm a little bit stumped because I don't see an obvious way to do this. If you couldn't tell, I'm coming to this from the web development world, and finding that doing animation is a bit more exotic than arranging an MVC application for handling simple requests - responses. What is the clean, established solution to this common-I-would-think problem?

    Read the article

  • Alter table add multiple columns ms sql

    - by phenevo
    Is anyone can tell me where is mistake in this query ALTER TABLE Countries ADD ( HasPhotoInReadyStorage bit, HasPhotoInWorkStorage bit, HasPhotoInMaterialStorage bit, HasText bit); ALTER TABLE Regions ADD ( HasPhotoInReadyStorage bit, HasPhotoInWorkStorage bit, HasPhotoInMaterialStorage bit HasText bit); ALTER TABLE Provinces ADD ( HasPhotoInReadyStorage bit, HasPhotoInWorkStorage bit, HasPhotoInMaterialStorage bit HasText bit); ALTER TABLE Cities ADD ( HasPhotoInReadyStorage bit, HasPhotoInWorkStorage bit, HasPhotoInMaterialStorage bit HasText bit); Alter table Hotels Add { HasPhotoInReadyStorage bit, HasPhotoInWorkStorage bit, HasPhotoInMaterialStorage bit, HasHotelPhotoInReadyStorage bit, HasHotelPhotoInWorkStorage bit, HasHotelPhotoInMaterialStorage bit, HasReporterData bit, HasMovieInReadyStorage bit, HasMovieInWorkStorage bit, HasMovieInMaterialStorage bit }; I get errors: Msg 102, Level 15, State 1, Line 2 Incorrect syntax near '('. Msg 102, Level 15, State 1, Line 9 Incorrect syntax near '('. Msg 102, Level 15, State 1, Line 15 Incorrect syntax near '('. Msg 102, Level 15, State 1, Line 22 Incorrect syntax near '('. Msg 102, Level 15, State 1, Line 29 Incorrect syntax near '{'.

    Read the article

  • Cannot connect to Open WiFi hotspot created by Android

    - by Bibhas
    I'm trying to share my 3G data connection via WiFi hotspot. I have an open Hotspot running on my phone(Xperia Neo V - MT11i - Android 2.3.4). But I cannot connect to it from my Ubuntu system. Here is the syslog while I try to connect to it - NetworkManager[1077]: <info> Activation (wlan0) starting connection 'TheNeo' NetworkManager[1077]: <info> (wlan0): device state change: disconnected -> prepare (reason 'none') [30 40 0] NetworkManager[1077]: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) scheduled... NetworkManager[1077]: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) started... NetworkManager[1077]: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) scheduled... NetworkManager[1077]: <info> Activation (wlan0) Stage 1 of 5 (Device Prepare) complete. NetworkManager[1077]: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) starting... NetworkManager[1077]: <info> (wlan0): device state change: prepare -> config (reason 'none') [40 50 0] NetworkManager[1077]: <info> Activation (wlan0/wireless): connection 'TheNeo' requires no security. No secrets needed. NetworkManager[1077]: <info> Config: added 'ssid' value 'TheNeo' NetworkManager[1077]: <info> Config: added 'scan_ssid' value '1' NetworkManager[1077]: <info> Config: added 'key_mgmt' value 'NONE' NetworkManager[1077]: <info> Activation (wlan0) Stage 2 of 5 (Device Configure) complete. NetworkManager[1077]: <info> Config: set interface ap_scan to 1 NetworkManager[1077]: <info> (wlan0): supplicant interface state: inactive -> scanning wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) NetworkManager[1077]: <info> (wlan0): supplicant interface state: scanning -> authenticating kernel: [17498.113553] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17498.310138] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17498.510069] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17498.710083] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17504.779927] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17504.976420] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17505.176379] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17505.376314] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17511.478385] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17511.674738] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17511.874655] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17512.074659] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17518.152643] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17518.349064] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17518.549051] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17518.748999] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17524.858896] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17525.055404] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17525.255387] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17525.455254] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17531.589176] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17531.785747] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17531.985724] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17532.185610] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17538.329257] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17538.528003] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17538.728024] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17538.927922] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17545.022036] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17545.218339] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17545.418319] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17545.618206] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out wpa_supplicant[29352]: Trying to authenticate with 5c:b5:24:2f:d1:2f (SSID='TheNeo' freq=2462 MHz) kernel: [17551.724177] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 1/3) kernel: [17551.920685] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 2/3) kernel: [17552.120597] wlan0: direct probe to 5c:b5:24:2f:d1:2f (try 3/3) kernel: [17552.320526] wlan0: direct probe to 5c:b5:24:2f:d1:2f timed out NetworkManager[1077]: <warn> Activation (wlan0/wireless): association took too long, failing activation. NetworkManager[1077]: <info> (wlan0): device state change: config -> failed (reason 'supplicant-timeout') [50 120 11] NetworkManager[1077]: <warn> Activation (wlan0) failed for access point (TheNeo) NetworkManager[1077]: <warn> Activation (wlan0) failed. NetworkManager[1077]: <info> (wlan0): device state change: failed -> disconnected (reason 'none') [120 30 0] NetworkManager[1077]: <info> (wlan0): deactivating device (reason 'none') [0] NetworkManager[1077]: <info> (wlan0): supplicant interface state: authenticating -> disconnected NetworkManager[1077]: <warn> Couldn't disconnect supplicant interface: This interface is not connected. Why is direct probe to 5c:b5:24:2f:d1:2f timed out? Any idea?

    Read the article

  • How I can add and remove the attribute "readonly" ?

    - by question_about_the_problem
    $(document).ready(function() { //Check City Value var city_value = parseInt($("#city").val()); if( city_value == 0) { $("#state").attr("readonly", true); //$("#rate").attr("readonly", "readonly"); } else { $("#state").removeAttr("readonly"); //document.getElementById("state").removeAttribute("readonly",0); //get_states(city_value); } /*** //Check State Value var state_value = parseInt($('#state').val()); if( state_value == 0) { $('#rate').attr('readonly', true); } else { $('#rate').attr('readonly', false); } ***/ });

    Read the article

  • Core Data: Fetch all entities in a to-many-relationship of a particular object?

    - by Björn Marschollek
    Hi there, in my iPhone application I am using simple Core Data Model with two entities (Item and Property): Item name properties Property name value item Item has one attribute (name) and one one-to-many-relationship (properties). Its inverse relationship is item. Property has two attributes the according inverse relationship. Now I want to show my data in table views on two levels. The first one lists all items; when one row is selected, a new UITableViewController is pushed onto my UINavigationController's stack. The new UITableView is supposed to show all properties (i.e. their names) of the selected item. To achieve this, I use a NSFetchedResultsController stored in an instance variable. On the first level, everything works fine when setting up the NSFetchedResultsController like this: -(NSFetchedResultsController *) fetchedResultsController { if (fetchedResultsController) return fetchedResultsController; // goal: tell the FRC to fetch all item objects. NSFetchRequest *fetch = [[NSFetchRequest alloc] init]; NSEntityDescription *entity = [NSEntityDescription entityForName:@"Item" inManagedObjectContext:self.moContext]; [fetch setEntity:entity]; NSSortDescriptor *sort = [[NSSortDescriptor alloc] initWithKey:@"name" ascending:YES]; [fetch setSortDescriptors:[NSArray arrayWithObject:sort]]; [fetch setFetchBatchSize:10]; NSFetchedResultsController *frController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetch managedObjectContext:self.moContext sectionNameKeyPath:nil cacheName:@"cache"]; self.fetchedResultsController = frController; fetchedResultsController.delegate = self; [sort release]; [frController release]; [fetch release]; return fetchedResultsController; } However, on the second-level UITableView, I seem to do something wrong. I implemented the fetchedresultsController in a similar way: -(NSFetchedResultsController *) fetchedResultsController { if (fetchedResultsController) return fetchedResultsController; // goal: tell the FRC to fetch all property objects that belong to the previously selected item NSFetchRequest *fetch = [[NSFetchRequest alloc] init]; // fetch all Property entities. NSEntityDescription *entity = [NSEntityDescription entityForName:@"Property" inManagedObjectContext:self.moContext]; [fetch setEntity:entity]; // limit to those entities that belong to the particular item NSPredicate *predicate = [NSPredicate predicateWithFormat:[NSString stringWithFormat:@"item.name like '%@'",self.item.name]]; [fetch setPredicate:predicate]; // sort it. Boring. NSSortDescriptor *sort = [[NSSortDescriptor alloc] initWithKey:@"name" ascending:YES]; [fetch setSortDescriptors:[NSArray arrayWithObject:sort]]; NSError *error = nil; NSLog(@"%d entities found.",[self.moContext countForFetchRequest:fetch error:&error]); // logs "3 entities found."; I added those properties before. See below for my saving "problem". if (error) NSLog("%@",error); // no error, thus nothing logged. [fetch setFetchBatchSize:20]; NSFetchedResultsController *frController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetch managedObjectContext:self.moContext sectionNameKeyPath:nil cacheName:@"cache"]; self.fetchedResultsController = frController; fetchedResultsController.delegate = self; [sort release]; [frController release]; [fetch release]; return fetchedResultsController; } Now it's getting weird. The above NSLog statement returns me the correct number of properties for the selected item. However, the UITableViewDelegate method tells me that there are no properties: -(NSInteger) tableView:(UITableView *)table numberOfRowsInSection:(NSInteger)section { id <NSFetchedResultsSectionInfo> sectionInfo = [[self.fetchedResultsController sections] objectAtIndex:section]; NSLog(@"Found %d properties for item \"%@\". Should have found %d.",[sectionInfo numberOfObjects], self.item.name, [self.item.properties count]); // logs "Found 0 properties for item "item". Should have found 3." return [sectionInfo numberOfObjects]; } The same implementation works fine on the first level. It's getting even weirder. I implemented some kind of UI to add properties. I create a new Property instance via Property *p = [NSEntityDescription insertNewObjectForEntityForName:@"Property" inManagedObjectContext:self.moContext];, set up the relationships and call [self.moContext save:&error]. This seems to work, as error is still nil and the object gets saved (I can see the number of properties when logging the Item instance, see above). However, the delegate methods are not fired. This seems to me due to the possibly messed up fetchRequest(Controller). Any ideas? Did I mess up the second fetch request? Is this the right way to fetch all entities in a to-many-relationship for a particular instance at all?

    Read the article

  • Nested for loop error with !null checking an element that doesn't exist

    - by Programatt
    I am currently using nested for loops in a 2D array of size 4,2. When I run my program, I get index out of bounds Exception on the following line else if (state[i][j+1] != null && state[i][j].getFlash() <= state[i][j].getCycleLength() && state[i][j+1].getCycleLength() == state[i][j].getCycleLength()){ } It says the index out of bounds is 2. I would understand the error if I wasn't checking to see if [i][j+1] wasn't null, but I don't understand the exception with the check? I tried moving around the !null check but the program still fails on this line. Any help would be greatly appreciated. Stack trace: Exception in thread "Timer-0" java.lang.ArrayIndexOutOfBoundsException: 2 at NatComp.data$1.run(data.java:67) at java.util.TimerThread.mainLoop(Timer.java:512) at java.util.TimerThread.run(Timer.java:462)

    Read the article

  • CakePHP Form Helper Database Interaction

    - by xtine
    Currently I am developing a CakePHP that will list various businesses. In the database, there is a table for businesses that lists them like so: id | name | address | city | state | state_id | zip | url The state column are abbreviations of states (for listing purposes) CA, AK, FL, etc and the state_id matches up with the ids in the states table: id | name | state_abbr I have an admin_add.ctp template with form helpers for inserting new businesses. For entering a state for a business I am going to have a pull down that lists all the states. However, how do I make the database insert so it will know how to add the state abbreviation and state id when I submit the form to add the business?

    Read the article

  • App closes after facebook login in IOS 5

    - by Aromal Sasidharan
    I am using facebook sdk 3.1 framework for my application. The login process works successfully and returns to the app after facebook login both in simulator(iOS 6.0 and 5.0) and in iPad(iOS 6). But When the same is deployed in IPad with IOS 5, after login, it does not return back to my application and shows a blank white Screen or sometimes my application closes. I dont know what went wrong in iOS 5 and facebook sdk 3.1 framework, also i am not getting any logs to debug... Please help Iam using this code for login NSArray *permissions = [[NSArray alloc] initWithObjects: //@"user_likes", //@"read_stream", @"publish_stream", @"user_events", @"read_friendlists", @"user_birthday", @"email", nil]; [FBSession openActiveSessionWithPermissions:permissions allowLoginUI:YES completionHandler: ^(FBSession *session, FBSessionState state, NSError *error) { NSLog(@"state %d", state); [self sessionStateChanged:session state:state error:error]; }];

    Read the article

  • how to call a function to refresh GUI

    - by SWKK
    Hi Guys, I am refactoring some code to decouple GUI from some state. #include <StateObject> Class GUI{ ... StateObject A; void doSomething() { A->hullaballoo();} **void ReFreshMyGui() { //take state A and redraw }** }; State object is being shared by multiple classes to update the state but this Gui Object specializes in displaying the state. So I would like to call the Refresh function via StateObject whenever its modified. I am not sure how or if signals will provide the solution. Any hints?

    Read the article

  • Java - Does null variable require space in memory

    - by Yatendra Goel
    class CheckStore { private String displayText; private boolean state; private String meaningfulText; private URL url; public CheckStore(String text, boolean state) { this.displayText = text; this.state = state; } : : } As I am initializing only two variables (displayText and state) in the constructor, Will the rest two variables (meaningfulText and url which will have the value null) will require space in memory to store null value. Q1. I think they will require space. If they will, then how much memory does a null value takes in the memory (like int takes 4 bytes). Q2. How much space a string takes in memory. I guess it will depend on the length of the string. So how much space a string takes of how much length?

    Read the article

  • float addition 2.5 + 2.5 = 4.0? RPN

    - by AJ Clou
    The code below is my subprogram to do reverse polish notation calculations... basically +, -, *, and /. Everything works in the program except when I try to add 2.5 and 2.5 the program gives me 4.0... I think I have an idea why, but I'm not sure how to fix it... Right now I am reading all the numbers and operators in from command line as required by this assignment, then taking that string and using sscanf to get the numbers out of it... I am thinking that somehow the array that contains the three characters '2', '.', and '5', is not being totally converted to a float... instead i think just the '2' is. Could someone please take a look at my code and either confirm or deny this, and possibly tell me how to fix it so that i get the proper answer? Thank you in advance for any help! float fsm (char mystring[]) { int i = -1, j, k = 0, state = 0; float num1, num2, ans; char temp[10]; c_stack top; c_init_stack (&top); while (1) { switch (state) { case 0: i++; if ((mystring[i]) == ' ') { state = 0; } else if ((isdigit (mystring[i])) || (mystring[i] == '.')) { state = 1; } else if ((mystring[i]) == '\0') { state = 3; } else { state = 4; } break; case 1: temp[k] = mystring[i]; k++; i++; if ((isdigit (mystring[i])) || (mystring[i] == '.')) { state = 1; } else { state = 2; } break; case 2: temp[k] = '\0'; sscanf (temp, "%f", &num1); c_push (&top, num1); i--; k = 0; state = 0; break; case 3: ans = c_pop (&top); if (c_is_empty (top)) return ans; else { printf ("There are still items on the stack\n"); exit (0); case 4: num2 = c_pop (&top); num1 = c_pop (&top); if (mystring[i] == '+'){ ans = num1 + num2; return ans; } else if (mystring[i] == '-'){ ans = num1 - num2; return ans; } else if (mystring[i] == '*'){ ans = num1 * num2; return ans; } else if (mystring[i] == '/'){ if (num2){ ans = num1 / num2; return ans; } else{ printf ("Error: cannot divide by 0\n"); exit (0); } } c_push (&top, ans); state = 0; break; } } } } Here is my main program: #include <stdio.h> #include <stdlib.h> #include "boolean.h" #include "c_stack.h" #include <string.h> int main(int argc, char *argv[]) { char mystring[100]; int i; sscanf("", "%s", mystring); for (i=1; i<argc; i++){ strcat(mystring, argv[i]); strcat(mystring, " "); } printf("%.2f\n", fsm(mystring)); } and here is the header file with prototypes and the definition for c_stack: #include "boolean.h" #ifndef CSTACK_H #define CSTACK_H typedef struct c_stacknode{ char data; struct c_stacknode *next; } *c_stack; #endif void c_init_stack(c_stack *); boolean c_is_full(void); boolean c_is_empty(c_stack); void c_push(c_stack *,char); char c_pop(c_stack *); void print_c_stack(c_stack); boolean is_open(char); boolean is_brother(char, char); float fsm(char[]);

    Read the article

  • Mapping UrlEncoded POST Values in ASP.NET Web API

    - by Rick Strahl
    If there's one thing that's a bit unexpected in ASP.NET Web API, it's the limited support for mapping url encoded POST data values to simple parameters of ApiController methods. When I first looked at this I thought I was doing something wrong, because it seems mighty odd that you can bind query string values to parameters by name, but can't bind POST values to parameters in the same way. To demonstrate here's a simple example. If you have a Web API method like this:[HttpGet] public HttpResponseMessage Authenticate(string username, string password) { …} and then hit with a URL like this: http://localhost:88/samples/authenticate?Username=ricks&Password=sekrit it works just fine. The query string values are mapped to the username and password parameters of our API method. But if you now change the method to work with [HttpPost] instead like this:[HttpPost] public HttpResponseMessage Authenticate(string username, string password) { …} and hit it with a POST HTTP Request like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Content-type: application/x-www-form-urlencoded Content-Length: 30 Username=ricks&Password=sekrit you'll find that while the request works, it doesn't actually receive the two string parameters. The username and password parameters are null and so the method is definitely going to fail. When I mentioned this over Twitter a few days ago I got a lot of responses back of why I'd want to do this in the first place - after all HTML Form submissions are the domain of MVC and not WebAPI which is a valid point. However, the more common use case is using POST Variables with AJAX calls. The following is quite common for passing simple values:$.post(url,{ Username: "Rick", Password: "sekrit" },function(result) {…}); but alas that doesn't work. How ASP.NET Web API handles Content Bodies Web API supports parsing content data in a variety of ways, but it does not deal with multiple posted content values. In effect you can only post a single content value to a Web API Action method. That one parameter can be very complex and you can bind it in a variety of ways, but ultimately you're tied to a single POST content value in your parameter definition. While it's possible to support multiple parameters on a POST/PUT operation, only one parameter can be mapped to the actual content - the rest have to be mapped to route values or the query string. Web API treats the whole request body as one big chunk of data that is sent to a Media Type Formatter that's responsible for de-serializing the content into whatever value the method requires. The restriction comes from async nature of Web API where the request data is read only once inside of the formatter that retrieves and deserializes it. Because it's read once, checking for content (like individual POST variables) first is not possible. However, Web API does provide a couple of ways to access the form POST data: Model Binding - object property mapping to bind POST values FormDataCollection - collection of POST keys/values ModelBinding POST Values - Binding POST data to Object Properties The recommended way to handle POST values in Web API is to use Model Binding, which maps individual urlencoded POST values to properties of a model object provided as the parameter. Model binding requires a single object as input to be bound to the POST data, with each POST key that matches a property name (including nested properties like Address.Street) being mapped and updated including automatic type conversion of simple types. This is a very nice feature - and a familiar one from MVC - that makes it very easy to have model objects mapped directly from inbound data. The obvious drawback with Model Binding is that you need a model for it to work: You have to provide a strongly typed object that can receive the data and this object has to map the inbound data. To rewrite the example above to use ModelBinding I have to create a class maps the properties that I need as parameters:public class LoginData { public string Username { get; set; } public string Password { get; set; } } and then accept the data like this in the API method:[HttpPost] public HttpResponseMessage Authenticate(LoginData login) { string username = login.Username; string password = login.Password; … } This works fine mapping the POST values to the properties of the login object. As a side benefit of this method definition, the method now also allows posting of JSON or XML to the same endpoint. If I change my request to send JSON like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: application/jsonContent-type: application/json Content-Length: 40 {"Username":"ricks","Password":"sekrit"} it works as well and transparently, courtesy of the nice Content Negotiation features of Web API. There's nothing wrong with using Model binding and in fact it's a common practice to use (view) model object for inputs coming back from the client and mapping them into these models. But it can be  kind of a hassle if you have AJAX applications with a ton of backend hits, especially if many methods are very atomic and focused and don't effectively require a model or view. Not always do you have to pass structured data, but sometimes there are just a couple of simple response values that need to be sent back. If all you need is to pass a couple operational parameters, creating a view model object just for parameter purposes seems like overkill. Maybe you can use the query string instead (if that makes sense), but if you can't then you can often end up with a plethora of 'message objects' that serve no further  purpose than to make Model Binding work. Note that you can accept multiple parameters with ModelBinding so the following would still work:[HttpPost] public HttpResponseMessage Authenticate(LoginData login, string loginDomain) but only the object will be bound to POST data. As long as loginDomain comes from the querystring or route data this will work. Collecting POST values with FormDataCollection Another more dynamic approach to handle POST values is to collect POST data into a FormDataCollection. FormDataCollection is a very basic key/value collection (like FormCollection in MVC and Request.Form in ASP.NET in general) and then read the values out individually by querying each. [HttpPost] public HttpResponseMessage Authenticate(FormDataCollection form) { var username = form.Get("Username"); var password = form.Get("Password"); …} The downside to this approach is that it's not strongly typed, you have to handle type conversions on non-string parameters, and it gets a bit more complicated to test such as setup as you have to seed a FormDataCollection with data. On the other hand it's flexible and easy to use and especially with string parameters is easy to deal with. It's also dynamic, so if the client sends you a variety of combinations of values on which you make operating decisions, this is much easier to work with than a strongly typed object that would have to account for all possible values up front. The downside is that the code looks old school and isn't as self-documenting as a parameter list or object parameter would be. Nevertheless it's totally functionality and a viable choice for collecting POST values. What about [FromBody]? Web API also has a [FromBody] attribute that can be assigned to parameters. If you have multiple parameters on a Web API method signature you can use [FromBody] to specify which one will be parsed from the POST content. Unfortunately it's not terribly useful as it only returns content in raw format and requires a totally non-standard format ("=content") to specify your content. For more info in how FromBody works and several related issues to how POST data is mapped, you can check out Mike Stalls post: How WebAPI does Parameter Binding Not really sure where the Web API team thought [FromBody] would really be a good fit other than a down and dirty way to send a full string buffer. Extending Web API to make multiple POST Vars work? Don't think so Clearly there's no native support for multiple POST variables being mapped to parameters, which is a bit of a bummer. I know in my own work on one project my customer actually found this to be a real sticking point in their AJAX backend work, and we ended up not using Web API and using MVC JSON features instead. That's kind of sad because Web API is supposed to be the proper solution for AJAX backends. With all of ASP.NET Web API's extensibility you'd think there would be some way to build this functionality on our own, but after spending a bit of time digging and asking some of the experts from the team and Web API community I didn't hear anything that even suggests that this is possible. From what I could find I'd say it's not possible primarily because Web API's Routing engine does not account for the POST variable mapping. This means [HttpPost] methods with url encoded POST buffers are not mapped to the parameters of the endpoint, and so the routes would never even trigger a request that could be intercepted. Once the routing doesn't work there's not much that can be done. If somebody has an idea how this could be accomplished I would love to hear about it. Do we really need multi-value POST mapping? I think that that POST value mapping is a feature that one would expect of any API tool to have. If you look at common APIs out there like Flicker and Google Maps etc. they all work with POST data. POST data is very prominent much more so than JSON inputs and so supporting as many options that enable would seem to be crucial. All that aside, Web API does provide very nice features with Model Binding that allows you to capture many POST variables easily enough, and logistically this will let you build whatever you need with POST data of all shapes as long as you map objects. But having to have an object for every operation that receives a data input is going to take its toll in heavy AJAX applications, with a lot of types created that do nothing more than act as parameter containers. I also think that POST variable mapping is an expected behavior and Web APIs non-support will likely result in many, many questions like this one: How do I bind a simple POST value in ASP.NET WebAPI RC? with no clear answer to this question. I hope for V.next of WebAPI Microsoft will consider this a feature that's worth adding. Related Articles Passing multiple POST parameters to Web API Controller Methods Mike Stall's post: How Web API does Parameter Binding Where does ASP.NET Web API Fit?© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   suppose we have this javascript code :  <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page :<body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code :using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and implicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   Suppose we have this javascript code :   <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people = new Array(); people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page : <body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code : using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and explicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

  • WCF timedout waiting for System.Diagnostics.Process to finish

    - by Bartek
    Dear All, We have a WCF Service deployed on Windows Server 2003 that handles file transfers. When file is in Unix format, I am converting it to Dos format in the initialization stage using System.Diagnostics.Process (.WaitForExit()). Client calls the service: obj_DataSenderService = New DataSendClient() obj_DataSenderService.InnerChannel.OperationTimeout = New TimeSpan(0, System.Configuration.ConfigurationManager.AppSettings("DatasenderServiceOperationTimeout"), 0) str_DataSenderGUID = obj_DataSenderService.Initialize(xe_InitDetails.GetXMLNode) This works fine, however for large files the conversion takes more than 10 minutes and I am getting exception: A first chance exception of type 'System.ServiceModel.CommunicationException' occurred in mscorlib.dll Additional information: The socket connection was aborted. This could be caused by an error processing your message or a receive timeout being exceeded by the remote host, or an underlying network resource issue. Local socket timeout was '00:59:59.8749992'. I tried configuring both client: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="None"> <transport clientCredentialType="Windows" protectionLevel="EncryptAndSign" /> <message clientCredentialType="Windows" /> </security> </binding> </netTcpBinding> </bindings> <client> <endpoint address="net.tcp://localhost:4000/DataSenderEndPoint" binding="netTcpBinding" bindingConfiguration="NetTcpBinding_IDataSend" contract="IDataSend" name="NetTcpBinding_IDataSend"> <identity> <servicePrincipalName value="host/localhost" /> <!--<servicePrincipalName value="host/axopwrapp01.Corp.Acxiom.net" />--> </identity> </endpoint> </client> </system.serviceModel> And service: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> </binding> </netTcpBinding> </bindings> </system.serviceModel> but without luck. In the Service trace viewer I can see: Close process timed out waiting for service dispatch to complete. with stack trace: System.ServiceModel.ServiceChannelManager.CloseInput(TimeSpan timeout) System.ServiceModel.Dispatcher.InstanceContextManager.CloseInput(TimeSpan timeout) System.ServiceModel.ServiceHostBase.OnClose(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close() DataSenderService.DataSender.OnStop() System.ServiceProcess.ServiceBase.DeferredStop() System.Runtime.Remoting.Messaging.StackBuilderSink._PrivateProcessMessage(IntPtr md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.PrivateProcessMessage(RuntimeMethodHandle md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.AsyncProcessMessage(IMessage msg, IMessageSink replySink) System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.DoAsyncCall() System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.ThreadPoolCallBack(Object o) System.Threading._ThreadPoolWaitCallback.WaitCallback_Context(Object state) System.Threading.ExecutionContext.runTryCode(Object userData) System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading._ThreadPoolWaitCallback.PerformWaitCallbackInternal(_ThreadPoolWaitCallback tpWaitCallBack) System.Threading._ThreadPoolWaitCallback.PerformWaitCallback(Object state) Many thanks Bartek

    Read the article

  • How to scale rotated objects properly in Actionscript 3?

    - by Tom
    This is unfortunately a quite complex issue to explain, so please don't get discouraged by the wall of text - it's there for a reason. ;) I'm working on a transformation manager for flash, written with Actionscript 3. Users can place objects on the screen, for example a rectangle. This rectangle can then be selected and transformed: move, scale or rotate. Because flash by default rotates around the top left point of the object, and I want it to rotate around the center, I created a wrapper setup for each display object (eg. a rectangle). This is how the wrappers are setup: //the position wrapper makes sure that we do get the top left position when we access x and y var positionWrapper:Sprite = new Sprite(); positionWrapper.x = renderObject.x; positionWrapper.y = renderObject.y; //set the render objects location to center at the rotation wrappers top left renderObject.x = 0 - renderObject.width / 2; renderObject.y = 0 - renderObject.height / 2; //now create a rotation wrapper, at the center of the display object var rotationWrapper:Sprite = new Sprite(); rotationWrapper.x = renderObject.width / 2; rotationWrapper.y = renderObject.height / 2; //put the rotation wrapper inside the position wrapper and the render object inside the rotation wrapper positionWrapper.addChild(rotationWrapper); rotationWrapper.addChild(renderObject); Now, the x and y of the object can be accessed and set directly: mainWrapper.x or mainWrapper.y. The rotation can be set and accessed from the child of this main wrapper: mainWrapper.getChildAt(0).rotation. Finally, the width and height of the display object can be retreived and set by getting the child of the rotation wrapper and accessing the display object directly. An example on how I access them: //get wrappers and render object var positionWrapper:Sprite = currentSelection["render"]; var rotationWrapper:Sprite = positionWrapper.getChildAt(0) as Sprite; var renderObject:DisplayObject = rotationWrapper.getChildAt(0); This works perfectly for all initial transformations: moving, scaling and rotating. However, the problem arises when you first rotate an object (eg. 45 degrees) and then scale it. The scaled object is getting out of shape and doesn't scale as it should. This for example happens when you scale to the left. Scaling left is basically adding n width to the object and then reduce the x coord of the position wrapper by n too: renderObject.width -= diffX; positionWrapper.x += diffX; This works when the object is not rotated. However, when it is, the position wrapper won't be rotated as it is a parent of the rotation wrapper. This will make the position wrapper move left horizontally while the width of the object is increased diagonally. I hope this makes any sense, if not, please tell me and I'll try to elaborate more. Now, to the question: should I use a different kind of setup, system or structure? Should I maybe use matrixes, if so, how would you keep a static width/height after rotation? Or how do I fix my current wrapper system for scaling after rotation? Any help is appreciated.

    Read the article

  • XNA Multiplayer Games and Networking

    - by JoshReuben
    ·        XNA communication must by default be lightweight – if you are syncing game state between players from the Game.Update method, you must minimize traffic. That game loop may be firing 60 times a second and player 5 needs to know if his tank has collided with any player 3 and the angle of that gun turret. There are no WCF ServiceContract / DataContract niceties here, but at the same time the XNA networking stack simplifies the details. The payload must be simplistic - just an ordered set of numbers that you would map to meaningful enum values upon deserialization.   Overview ·        XNA allows you to create and join multiplayer game sessions, to manage game state across clients, and to interact with the friends list ·        Dependency on Gamer Services - to receive notifications such as sign-in status changes and game invitations ·        two types of online multiplayer games: system link game sessions (LAN) and LIVE sessions (WAN). ·        Minimum dev requirements: 1 Xbox 360 console + Creators Club membership to test network code - run 1 instance of game on Xbox 360, and 1 on a Windows-based computer   Network Sessions ·        A network session is made up of players in a game + up to 8 arbitrary integer properties describing the session ·        create custom enums – (e.g. GameMode, SkillLevel) as keys in NetworkSessionProperties collection ·        Player state: lobby, in-play   Session Types ·        local session - for split-screen gaming - requires no network traffic. ·        system link session - connects multiple gaming machines over a local subnet. ·        Xbox LIVE multiplayer session - occurs on the Internet. Ranked or unranked   Session Updates ·        NetworkSession class Update method - must be called once per frame. ·        performs the following actions: o   Sends the network packets. o   Changes the session state. o   Raises the managed events for any significant state changes. o   Returns the incoming packet data. ·        synchronize the session à packet-received and state-change events à no threading issues   Session Config ·        Session host - gaming machine that creates the session. XNA handles host migration ·        NetworkSession properties: AllowJoinInProgress , AllowHostMigration ·        NetworkSession groups: AllGamers, LocalGamers, RemoteGamers   Subscribe to NetworkSession events ·        GamerJoined ·        GamerLeft ·        GameStarted ·        GameEnded – use to return to lobby ·        SessionEnded – use to return to title screen   Create a Session session = NetworkSession.Create(         NetworkSessionType.SystemLink,         maximumLocalPlayers,         maximumGamers,         privateGamerSlots,         sessionProperties );   Start a Session if (session.IsHost) {     if (session.IsEveryoneReady)     {        session.StartGame();        foreach (var gamer in SignedInGamer.SignedInGamers)        {             gamer.Presence.PresenceMode =                 GamerPresenceMode.InCombat;   Find a Network Session AvailableNetworkSessionCollection availableSessions = NetworkSession.Find(     NetworkSessionType.SystemLink,       maximumLocalPlayers,     networkSessionProperties); availableSessions.AllowJoinInProgress = true;   Join a Network Session NetworkSession session = NetworkSession.Join(     availableSessions[selectedSessionIndex]);   Sending Network Data var packetWriter = new PacketWriter(); foreach (LocalNetworkGamer gamer in session.LocalGamers) {     // Get the tank associated with this player.     Tank myTank = gamer.Tag as Tank;     // Write the data.     packetWriter.Write(myTank.Position);     packetWriter.Write(myTank.TankRotation);     packetWriter.Write(myTank.TurretRotation);     packetWriter.Write(myTank.IsFiring);     packetWriter.Write(myTank.Health);       // Send it to everyone.     gamer.SendData(packetWriter, SendDataOptions.None);     }   Receiving Network Data foreach (LocalNetworkGamer gamer in session.LocalGamers) {     // Keep reading while packets are available.     while (gamer.IsDataAvailable)     {         NetworkGamer sender;          // Read a single packet.         gamer.ReceiveData(packetReader, out sender);          if (!sender.IsLocal)         {             // Get the tank associated with this packet.             Tank remoteTank = sender.Tag as Tank;              // Read the data and apply it to the tank.             remoteTank.Position = packetReader.ReadVector2();             …   End a Session if (session.AllGamers.Count == 1)         {             session.EndGame();             session.Update();         }   Performance •        Aim to minimize payload, reliable in order messages •        Send Data Options: o   Unreliable, out of order -(SendDataOptions.None) o   Unreliable, in order (SendDataOptions.InOrder) o   Reliable, out of order (SendDataOptions.Reliable) o   Reliable, in order (SendDataOptions.ReliableInOrder) o   Chat data (SendDataOptions.Chat) •        Simulate: NetworkSession.SimulatedLatency , NetworkSession.SimulatedPacketLoss •        Voice support – NetworkGamer properties: HasVoice ,IsTalking , IsMutedByLocalUser

    Read the article

  • Get to Know a Candidate (3 of 25): Virgil Goode&ndash;Constitution Party

    - by Brian Lanham
    DISCLAIMER: This is not a post about “Romney” or “Obama”. This is not a post for whom I am voting. Information sourced for Wikipedia. Meet Virgil Goode of the Constitution Party Goode was served as a Republican member of the United States House of Representatives from 1997 to 2009. He represented the 5th congressional district of Virginia. Goode was born in Richmond, Virginia, the son of Alice Clara (née Besecker) and Virgil Hamlin Goode. He has spent most of his life in Rocky Mount. Goode graduated with a B.A. from the University of Richmond (Phi Beta Kappa) and with a J.D. from the University of Virginia School of Law. He also is a member of Lambda Chi Alpha Fraternity and served in the Army National Guard from 1969 to 1975. Goode grew up as a Democrat. He entered politics soon after graduating from law school. At the age of 27, he won a special election to the state Senate from a Southside district as an independent after the death of the Democratic incumbent. One of his major campaign focuses at the time was advocacy for the Equal Rights Amendment. Soon after being elected, he joined the Democrats. Goode wore his party ties very loosely. He became famous for his support of the tobacco industry, expressing his fear that "his elderly mother would be denied 'the one last pleasure' of smoking a cigarette on her hospital deathbed." He was an ardent defender of gun rights while being an enthusiastic supporter of L. Douglas Wilder, who later became the first elected black governor in the history of the United States. At the Democratic Party's state political convention in 1985, Goode nominated Wilder for lieutenant governor. However, while governor, Wilder cracked down on the sale of guns in the state. After the 1995 elections resulted in a 20–20 split between Democrats and Republicans in the State Senate, Goode seriously considered voting with the Republicans on organizing the chamber. Had he done so, the State Senate would have been under Republican control for the first time since Reconstruction (the Republicans ultimately won control outright in 1999). Goode's actions at the time "forced his party to share power with Republican lawmakers in the state legislature," which further upset the Democratic Party. Goode is on the ballot in CA, FL, ID, IO, LA, MI, MN, MS, MI, NJ, NM, NY, NV, ND, OH, SC, SD, TN, UT, VA, WA, WI, WY.  He is a write-in candidate in CA, CT, DC, GA, IL, IN, ME, MD, MA, MO, NC, TX, VT, WV Constitution Party This party was founded as the “U.S. Taxpayers’ Party” and considers itself conservative. The party's platform is predicated on the principles of the nation's founding documents. The party puts a large focus on immigration, calling for stricter penalties towards illegal immigrants and a moratorium on legal immigration until all federal subsidies to immigrants are discontinued.The party absorbed the American Independent Party, originally founded for George Wallace's 1968 presidential campaign. The American Independent Party of California has been an affiliate of the Constitution Party since its founding; however, current party leadership is disputed and the issue is in court to resolve this conflict. The Constitution Party has some substantial support from the Christian Right and in 2010 achieved major party status in Colorado. Learn more about Virgil Goode and Constitution Party on Wikipedia.

    Read the article

  • Html.ValidationSummary and Multiple Forms

    - by MightyZot
    Originally posted on: http://geekswithblogs.net/MightyZot/archive/2013/11/11/html.validationsummary-and-multiple-forms.aspxThe Html.ValidationSummary helper writes a div with a list of general errors added to the model state while a request is being serviced. There is generally one form per view or partial view, I think, so often there is only one call to Html.ValidationSummary in the page resulting from the assembly of your views. And, consequently, there is no problem with the markup that Html.ValidationSummary spits out as a result. What if you want to put multiple forms in one view? Even if you create a view model that’s an aggregate of the view models for each form, the error validation summary is going to contain errors from both forms. Check out this screen shot, which shows a page with multiple forms. Notice how the error validation summary shows up twice. Grrr! Errors for the login form also show up in the registration form. Luckily, there is an easy way around this. Pull the errors out of the model state and separate them for each form. You’ll need to identify the appropriate form by setting the key when you make calls to ModelState.AddModelError. Assume in my example that errors for the login form are added to model state using the “LoginForm” key. And, likewise, assume that errors for the registration form are added to model state using the “RegistrationForm” key. An example of that might look like this… // If we got this far, something failed, redisplay form ModelState.AddModelError("LoginForm", "User name or password is not right..."); return View(model); Over in the code for your View, you can pull each form’s errors from the model state using lambda expressions that look like these… var LoginFormErrors = ViewData.ModelState.Where(ms => ms.Key == "LoginForm"); var RegistrationFormErrors = ViewData.ModelState.Where(ms => ms.Key == "RegistrationForm"); Now that you have two collections containing errors, you can display only the errors specific to each form. I’m doing that in my code by removing the calls to Html.ValidationSummary and replacing them with enumerators that look like this… if(LoginFormErrors.Count() > 0) { <div class="cdt-error-list">     <ul>     @foreach (var entry in LoginFormErrors)     {         foreach (var error in entry.Value.Errors)         {             <li>@error.ErrorMessage</li>         }     }     </ul> </div> } …and for the registration form, the code looks like this… @if(RegistrationFormErrors.Count() > 0) { <div class="cdt-error-list">     <ul>     @foreach (var entry in RegistrationFormErrors)     {         foreach (var error in entry.Value.Errors)         {             <li>@error.ErrorMessage</li>         }     }     </ul> </div> } The result is a nice clean separation of the list of errors that are specific to each form. And, this is important because each form is submitted separately in my case, so both forms don’t generate errors in the same context. As you’ll see in the screen shot below, errors added to the model state when the login form is submitted do not show up in the registration form’s validation summary.

    Read the article

  • ADO.NET Data Services Entity Framework request error when property setter is internal

    - by Jim Straatman
    I receive an error message when exposing an ADO.NET Data Service using an Entity Framework data model that contains an entity (called "Case") with an internal setter on a property. If I modify the setter to be public (using the entity designer), the data services works fine. I don’t need the entity "Case" exposed in the data service, so I tried to limit which entities are exposed using SetEntitySetAccessRule. This didn’t work, and service end point fails with the same error. public static void InitializeService(IDataServiceConfiguration config) { config.SetEntitySetAccessRule("User", EntitySetRights.AllRead); } The error message is reported in a browser when the .svc endpoint is called. It is very generic, and reads “Request Error. The server encountered an error processing the request. See server logs for more details.” Unfortunately, there are no entries in the System and Application event logs. I found this stackoverflow question that shows how to configure tracing on the service. After doing so, the following NullReferenceExceptoin error was reported in the trace log. Does anyone know how to avoid this exception when including an entity with an internal setter? Blockquote 131076 3 0 2 MOTOJIM http://msdn.microsoft.com/en-US/library/System.ServiceModel.Diagnostics.TraceHandledException.aspx Handling an exception. 685a2910-19-128703978432492675 System.NullReferenceException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.PopulateMetadata() at System.Data.Services.DataService1.CreateProvider(Type dataServiceType, Object dataSourceInstance, DataServiceConfiguration&amp; configuration) at System.Data.Services.DataService1.EnsureProviderAndConfigForRequest() at System.Data.Services.DataService1.ProcessRequestForMessage(Stream messageBody) at SyncInvokeProcessRequestForMessage(Object , Object[] , Object[] ) at System.ServiceModel.Dispatcher.SyncMethodInvoker.Invoke(Object instance, Object[] inputs, Object[]&amp; outputs) at System.ServiceModel.Dispatcher.DispatchOperationRuntime.InvokeBegin(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage5(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage4(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage3(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage2(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage1(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.MessageRpc.Process(Boolean isOperationContextSet) </StackTrace> <ExceptionString>System.NullReferenceException: Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.P

    Read the article

< Previous Page | 278 279 280 281 282 283 284 285 286 287 288 289  | Next Page >