Search Results

Search found 21124 results on 845 pages for 'zend framework mvc'.

Page 282/845 | < Previous Page | 278 279 280 281 282 283 284 285 286 287 288 289  | Next Page >

  • .NET Framework 4 RTM on Windows server 2008 R2

    - by mare
    I've just installed .NET 4 on Windows SErver 2008 R2 x64 and I am getting 500 Internal Server Error with an ASP.NET MVC application which was previously running fine on 3.5. The application was upgraded from targeting 3.5 to target 4 and I personally built it today on my development machine (changed in VS - Properties to .NET Framework 4). On the server I installed .NET Framework 4 Client profile and Full both automatically through the Web Platform Installer. ASP.NET MVC 2 was also installed through Platform Installer. I created a new .NET 4 application pool in IIS and placed the web app in it. Also I have custom errors turned Off in web.config but even so no detailed error is displayed - just the plain IIS 7.5 500 Internal Server Error. Any suggestions?

    Read the article

  • Problem with constants in application.ini after PHP upgrade

    - by Marek
    Hi, I've upgraded PHP on my local dev system to version 5.3.0, and there is some problem when I use constants in application.ini - following manual http://framework.zend.com/manual/en/learning.quickstart.create-project.html I have: bootstrap.path = APPLICATION_PATH "/Bootstrap.php" which leads to: Warning: require_once(APPLICATION_PATH/Bootstrap.php) [function.require-once]: failed to open stream: No such file or directory in Zend\Application.php on line 320 any ideas? SOLVED: Actually name of my constant was _DIR_APPLICATION (code above was copied from ZF manual) - problem lies in this underscore at the begining - it seems that parse_ini_file() in PHP 5.3.0 doesn't replace constants named like this. Short test - you need two files: test.ini bootstrap.path = _DIR_APPLICATION "/Bootstrap.php" bootstrap.class = "Bootstrap" and test.php <?php define('_DIR_APPLICATION', 'test'); $data = parse_ini_file('test.ini'); print_r($data); try to run, then change constant name to 'DIR_APPLICATION' (in both files) and compare result ;)

    Read the article

  • free css ui template

    - by Dels
    Hi, Could someone show me some css ui framework/template for consistent web application, something like: http://www.webguitemplates.com/templates/futurism/futurism-blue http://www.webguitemplates.com/templates/simplus/simplus-silver http://www.adminizio.com/ http://gooeytemplates.myshopify.com/products/blue-atom http://gooeytemplates.myshopify.com/products/blue-carbon http://themeforest.net/category/site-templates/admin-skins http://demo.sproutcore.com/sample%5Fcontrols/ http://ukijs.org/functional/wave.html The framework/template is "pure" css and not javascript/ajax framework (ExtJS, JQuery UI, YUI, etc) and can work without JQuery or other JS/Ajax framework (mainly it just the UI). Maybe be a bit too much, but consider the template included: Form styling (input, button, select, fieldset, radio, checkbox, etc) Table styling (header, row-highlight, row-focus, etc) Navigation styling (tab based, list based, etc) Text typography (h1...h3, b, i, u, em, strong, a, etc) I found some here: http://www.webresourcesdepot.com/free-admin-template-for-web-applications/ http://blogfreakz.com/web-design/excellent-free-admin-template-for-web-applications/ I hope i could find any, especially the one that looks like google product (gmail, wave, analytics), just for speeding up web design process while maintaining consistency on UI design.

    Read the article

  • How far does Dependency Injection reach?

    - by Baddie
    My web app solution consists of 3 projects: Web App (ASP.NET MVC) Business Logic Layer (Class Library) Database Layer (Entity Framework) I want to use Ninject to manage the lifetime of the DataContext generated by the Entity Framework in the Database Layer. The Business Logic layer consists of classes which reference repositories (located in the database layer) and my ASP.NET MVC app references the business logic layer's service classes to run code. Each repository creates an instance of the MyDataContext object from the Entity Framework Repository public class MyRepository { private MyDataContext db; public MyRepository { this.db = new MyDataContext(); } // methods } Business Logic Classes public class BizLogicClass { private MyRepository repos; public MyRepository { this.repos = new MyRepository(); } // do stuff with the repos } Will Ninject handle the lifetime of MyDataContext despite the lengthy dependency chain from the Web App to the Data Layer?

    Read the article

  • Best way to sort MySql results based on two columns and show results using pagination?

    - by understack
    I want to sort results set first based on one column and then based on second column. I know how to do it on server side. And then I want to show these results with pagination feature. Question: would it be better to do it on client side via ajax in jQuery? I'm using Zend Framework. Would Zend_Paginator module be useful in this scenario? Basically I want to evaluate all the possible ways? Which one would be best and/or simplest option given I'm using jQuery and Zend Framework?

    Read the article

  • What's the best way to paginate a dataset with Zend_Framework and Doctrine?

    - by joedevon
    Before I start to build this myself I thought I'd ask others to share their experience. What's the best / your favorite way to paginate a dataset with an application built upon Zend_Framework and Doctrine as your ORM? I'm new to Doctrine. I'm calling the model directly from a View Helper, bypassing the Controller, although I'm still interested if your solution uses controllers. I did see one article on this topic: http://ciaranmcnulty.com/blog/2009/06/Simplify-pagination-logic-using-a-custom-zend-paginator-adapter Devzone has an article using Doctrine, Zend Framework OR Pear, but none of those options mention a #ZF app that uses Doctrine.

    Read the article

  • Are Symphony and CakePHP too slow to be usable?

    - by Aziz Light
    Until now, I have always said that CakePHP is too bloated and slow. I don't really know that, I just saw "some" benchmarks. What I really want to know, is that if those two frameworks (Symfony and CakePHP) are too slow to be usable in a way that the user will get frustrated. I already know that those frameworks are slower than other alternatives, but that's not the question. I ask the question because I want to create a project management web application and I still hesitate between a couple frameworks. I've had some trouble learning Zend, but imho I haven't tried hard enough. So in conclusion, in addition to the first question above, I would like to ask another question: If I want to create a project management tool (which is a pretty big project), which of the following should you suggest, considering the developement time, the speed of the resulting application, and the robustness of the final product: Symphony CakePHP Zend Framework Also I should mention that I don't know any of those frameworks, and that I want to learn one of them (at least).

    Read the article

  • Multiple .NET processes memory footprint

    - by mr.b
    I am developing an application suite that consists of several applications which user can run as needed (they can run all at the same time, or only several..). My concern is in physical memory footprint of each process, as shown in task manager. I am aware that Framework does memory management behind the curtains in terms that it devotes parts of memory for certain things that are not directly related to my application. The question. Does .NET Framework has some way of minimizing memory footprint of processes it runs when there are several processes running at the same time? (Noobish guess ahead) Like, if System.dll is already loaded by one process, does framework load it for each process, or it has some way of sharing it between processes? I am in no way striving to write as small (resource-wise) apps as possible (if I were, I probably wouldn't be using .NET Framework in the first place), but if there's something I can do something about over-using resources, I'd like to know about it.

    Read the article

  • Zend_Cache_Backend_Sqlite vs Zend_Cache_Backend_File

    - by Alekc
    Hi, Currently i'm using Zend_Cache_Backend_File for caching my project (especially responses from external web services). I was wandering if I could find some benefit in migrating the structure to Zend_Cache_Backend_Sqlite. Possible advantages are: File system is well-ordered (only 1 file in cache folder) Removing expired entries should be quicker (my assumption, since zend wouldn't need to scan internal-metadatas for expiring date of each cache) Possible disadvantages: Finding record to read (with files zend check if file exists based on filename and should be a bit quicker) in term of speed. I've tried to search a bit in internet but it seems that there are not a lot of discussion about the matter. What do you think about it? Thanks in advance.

    Read the article

  • Accessing the DI container from anywhere

    - by ChrisR
    I've implemented the Symfony2 Dependency Injection container in my Zend Framework project and it works fine in the MVC layer of my application. I've initialized the DIC in my bootstrap and can access it anywhere by calling: Zend_Controller_Front::getInstance()->getParam('bootstrap')->getDic() The problem is that there are some parts of my application that do not utilize the Zend Framework application/MVC layer. My CLI tools for example. I could perfectly initialize a new DIC there but that would just be some copy paste work from the Bootstrap file which is asking for trouble down the road (DRY principles, etc) Is it a better solution to make my DIC available in the Zend_Registry or as a singleton called by a static method DIC::getInstance() for example? I know Registry and singletons are considered bad things but the DIC is such a high level part of the application that I will probably never run into the problems that make it a bad thing. Is this a good solution or are there better ways of accomplishing a globally accessible DIC?

    Read the article

  • Possible to add javascript to Zend_Form_Element_Radio?

    - by Stepppo
    Ultimately, I'd like my Zend Form to render this HTML: <p>Do you have any documents to upload?</p> <p>Yes <input type="radio" value="Yes" name="uploadChoice" onClick="showTable()">&nbsp;&nbsp;No <input type="radio" value="No" name="uploadChoice" onClick="hideTable()" checked></p> Here's what I have in my Zend_Form: //create radio buttons $uploadQuestion = new Zend_Form_Element_Radio('upLoadQuestion'); $uploadQuestion->setLabel('Do you have any documents to upload?') ->addMultiOptions(array( 'yes' => 'Yes', 'no' => 'No' )) ->setSeparator(' '); The problem I'm running into is how to add the onClick="showTable()" and onClick="hideTable()" elements to their respective radio buttons. In the alternative, I could rework the javascript and add something like onClick="toggleTable()" to the radio buttons if I can't add something different to each of the radio buttons. But, will Zend let me do that?

    Read the article

  • advantages of Zend_Db_Table vs raw (My)SQL?

    - by sunwukung
    Currently working on a new Zend application and developing the Model. Having worked with Zend_Db_Table before, I opted to replace references in the Model to the Table API with a custom SQL script to take care of data access duties. Now I'm looking at developing a new application/domain model, and I wanted to get some feedback from people re: their experiences with Zend_Db API vs raw SQL, and use cases where it would be preferable to use the API. From a project perspective, the DB platform is unlikely to change from MySQL - so it doesn't need to be particularly abstract - and I assume writing a custom SQL API will be more performant than the assorted classes the Zend DB API requires.

    Read the article

  • What are the likely main reasons my website is very slow on IE?

    - by Bhupi
    Hi, I need to know what can be the main reasons (apart from the basics like grouping CSS selectors, reducing image size, using image sprite etc.) which makes a website slow on Internet Explorer, because my website works fine on the others like FF, chrome etc. Is it the huge use of Javascript framework (ie. jQuery, extjs, prototype)? Is it because of the use of plugins based on JS framework? Should I use core javascript and remove the use of any js framework? Should I try to avoid using jQuery(document).ready()? in case of jQuery framework? Above some of the questions which I know and please answer the questions which I couldn't ask because of lesser knowledge about these. I need to make my website perform well on IE (6,7,8) also please suggest. Thanks

    Read the article

  • website is very slow on IE

    - by Bhupi
    Hi, I need to know what can be the main reasons (apart from the basics like grouping CSS selectors, reducing image size, using image sprite etc.) which makes a website slow on Internet Explorer, because my website works fine on the others like FF, chrome etc. Is it the huge use of Javascript framework (ie. jQuery, extjs, prototype)? Is it because of the use of plugins based on JS framework? Should I use core javascript and remove the use of any js framework? Should I try to avoid using jQuery(document).ready()? in case of jQuery framework? Above some of the questions which I know and please answer the questions which I couldn't ask because of lesser knowledge about these. I need to make my website perform well on IE (6,7,8) also please suggest. Thanks

    Read the article

  • Threads in PHP.

    - by Muhammad Sajid
    Hello.. I am creating a web application using zend, here i create an interface from where user-A can send email to more than one user(s) & it works excellent but it slow the execution time because of which user-A wait too much for the "acknowledged response" ( which will show after the emails have sent. ) In Java there are "Threads" by which we can perform that task (send emails) & it does not slow the rest application. Is there any technique in PHP/Zend just like in Java by which we can divide our tasks which could take much time eg: sending emails. Thanks..

    Read the article

  • How do i return integers from a string ?

    - by kannan.ambadi
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Suppose you are passing a string(for e.g.: “My name has 1 K, 2 A and 3 N”)  which may contain integers, letters or special characters. I want to retrieve only numbers from the input string. We can implement it in many ways such as splitting the string into an array or by using TryParse method. I would like to share another idea, that’s by using Regular expressions. All you have to do is, create an instance of Regular Expression with a specified pattern for integer. Regular expression class defines a method called Split, which splits the specified input string based on the pattern provided during object initialization.     We can write the code as given below:   public static int[] SplitIdSeqenceValues(object combinedArgs)         {             var _argsSeperator = new Regex(@"\D+", RegexOptions.Compiled);               string[] splitedIntegers = _argsSeperator.Split(combinedArgs.ToString());               var args = new int[splitedIntegers.Length];               for (int i = 0; i < splitedIntegers.Length; i++)                 args[i] = MakeSafe.ToSafeInt32(splitedIntegers[i]);                           return args;         }    It would be better, if we set to RegexOptions.Compiled so that the regular expression will have performance boost by faster compilation.   Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Happy Programming  :))   

    Read the article

  • How fast are my services? Comparing basicHttpBinding and ws2007HttpBinding using the SO-Aware Test Workbench

    - by gsusx
    When working on real world WCF solutions, we become pretty aware of the performance implications of the binding and behavior configuration of WCF services. However, whether it’s a known fact the different binding and behavior configurations have direct reflections on the performance of WCF services, developers often struggle to figure out the real performance behavior of the services. We can attribute this to the lack of tools for correctly testing the performance characteristics of WCF services...(read more)

    Read the article

  • Using a service registry that doesn’t suck Part III: Service testing is part of SOA governance

    - by gsusx
    This is the third post of this series intended to highlight some of the principles of modern SOA governance solution. You can read the first two parts here: Using a service registry that doesn’t suck part I: UDDI is dead Using a service registry that doesn’t suck part II: Dear registry, do you have to be a message broker? This time I’ve decided to focus on what of the aspects that drives me ABSOLUTELY INSANE about traditional SOA Governance solutions: service testing or I should I say the lack of...(read more)

    Read the article

  • Using a service registry that doesn’t suck part II: Dear registry, do you have to be a message broker?

    - by gsusx
    Continuing our series of posts about service registry patterns that suck, we decided to address one of the most common techniques that Service Oriented (SOA) governance tools use to enforce policies. Scenario Service registries and repositories serve typically as a mechanism for storing service policies that model behaviors such as security, trust, reliable messaging, SLAs, etc. This makes perfect sense given that SOA governance registries were conceived as a mechanism to store and manage the policies...(read more)

    Read the article

  • Advice needed on how to start web programming? [closed]

    - by Recursion
    Possible Duplicate: Best approach to learning web programming I have resisted doing web programming for a while, but I have come to the realization that I need to learn it and may have resisted do to fear of the unknown. I am a regular applications and systems programmer with no real idea of how to even get started. I have tried to start a few times, rails, django, tornado, web.py, cherrypy, but always get discouraged and quit. The most web programming I have done was in HTML during 1995 for my geocities site. I have pretty decent experience with regular programming in C, Python, Assembly and Java. Just looking for a way to get started and get a good overview of the different technologies and frameworks. I am not doing this for a job or employment, just to learn.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 1

    - by rajbk
    This tutorial walks you through creating an report based on the Northwind sample database. You will add a client report definition file (RDLC), create a dataset for the RDLC, define queries using LINQ to Entities, design the report and add a ReportViewer web control to render the report in a ASP.NET web page. The report will have a chart control. Different results will be generated by changing filter criteria. At the end of the walkthrough, you should have a UI like the following.  From the UI below, a user is able to view the product list and can see a chart with the sum of Unit price for a given category. They can filter by Category and Supplier. The drop downs will auto post back when the selection is changed.  This demo uses Visual Studio 2010 RTM. This post is split into three parts. The last part has the sample code attached. Creating an ASP.NET report using Visual Studio 2010 - Part 2 Creating an ASP.NET report using Visual Studio 2010 - Part 3   Lets start by creating a new ASP.NET empty web application called “NorthwindReports” Creating the Data Access Layer (DAL) Add a web form called index.aspx to the root directory. You do this by right clicking on the NorthwindReports web project and selecting “Add item..” . Create a folder called “DAL”. We will store all our data access methods and any data transfer objects in here.   Right click on the DAL folder and add a ADO.NET Entity data model called Northwind. Select “Generate from database” and click Next. Create a connection to your database containing the Northwind sample database and click Next.   From the table list, select Categories, Products and Suppliers and click next. Our Entity data model gets created and looks like this:    Adding data transfer objects Right click on the DAL folder and add a ProductViewModel. Add the following code. This class contains properties we need to render our report. public class ProductViewModel { public int? ProductID { get; set; } public string ProductName { get; set; } public System.Nullable<decimal> UnitPrice { get; set; } public string CategoryName { get; set; } public int? CategoryID { get; set; } public int? SupplierID { get; set; } public bool Discontinued { get; set; } } Add a SupplierViewModel class. This will be used to render the supplier DropDownlist. public class SupplierViewModel { public string CompanyName { get; set; } public int SupplierID { get; set; } } Add a CategoryViewModel class. public class CategoryViewModel { public string CategoryName { get; set; } public int CategoryID { get; set; } } Create an IProductRepository interface. This will contain the signatures of all the methods we need when accessing the entity model.  This step is not needed but follows the repository pattern. interface IProductRepository { IQueryable<Product> GetProducts(); IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID); IQueryable<SupplierViewModel> GetSuppliers(); IQueryable<CategoryViewModel> GetCategories(); } Create a ProductRepository class that implements the IProductReposity above. The methods available in this class are as follows: GetProducts – returns an IQueryable of all products. GetProductsProjected – returns an IQueryable of ProductViewModel. The method filters all the products based on SupplierId and CategoryId if any. It then projects the result into the ProductViewModel. GetSuppliers() – returns an IQueryable of all suppliers projected into a SupplierViewModel GetCategories() – returns an IQueryable of all categories projected into a CategoryViewModel  public class ProductRepository : IProductRepository { /// <summary> /// IQueryable of all Products /// </summary> /// <returns></returns> public IQueryable<Product> GetProducts() { var dataContext = new NorthwindEntities(); var products = from p in dataContext.Products select p; return products; }   /// <summary> /// IQueryable of Projects projected /// into the ProductViewModel class /// </summary> /// <returns></returns> public IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID) { var projectedProducts = from p in GetProducts() select new ProductViewModel { ProductID = p.ProductID, ProductName = p.ProductName, UnitPrice = p.UnitPrice, CategoryName = p.Category.CategoryName, CategoryID = p.CategoryID, SupplierID = p.SupplierID, Discontinued = p.Discontinued }; // Filter on SupplierID if (supplierID.HasValue) { projectedProducts = projectedProducts.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { projectedProducts = projectedProducts.Where(a => a.CategoryID == categoryID); }   return projectedProducts; }     public IQueryable<SupplierViewModel> GetSuppliers() { var dataContext = new NorthwindEntities(); var suppliers = from s in dataContext.Suppliers select new SupplierViewModel { SupplierID = s.SupplierID, CompanyName = s.CompanyName }; return suppliers; }   public IQueryable<CategoryViewModel> GetCategories() { var dataContext = new NorthwindEntities(); var categories = from c in dataContext.Categories select new CategoryViewModel { CategoryID = c.CategoryID, CategoryName = c.CategoryName }; return categories; } } Your solution explorer should look like the following. Build your project and make sure you don’t get any errors. In the next part, we will see how to create the client report definition file using the Report Wizard.   Creating an ASP.NET report using Visual Studio 2010 - Part 2

    Read the article

  • Agile SOA Governance: SO-Aware and Visual Studio Integration

    - by gsusx
    One of the major limitations of traditional SOA governance platforms is the lack of integration as part of the development process. Tools like HP-Systinet or SOA Software are designed to operate by models on which the architects dictate the governance procedures and policies and the rest of the team members follow along. Consequently, those procedures are frequently rejected by developers and testers given that they can’t incorporate it as part of their daily activities. Having SOA governance products...(read more)

    Read the article

< Previous Page | 278 279 280 281 282 283 284 285 286 287 288 289  | Next Page >