Search Results

Search found 19458 results on 779 pages for 'interface implementation'.

Page 285/779 | < Previous Page | 281 282 283 284 285 286 287 288 289 290 291 292  | Next Page >

  • How to verify multiple properties on an object passed as parameter?

    - by Sandbox
    I want to verify multiple properties on an object passed as parameter. Mock<IInternalDataStore> mockOrder = new Mock<IInternalDataStore>(); I can think of doing it this way. Is this correct? Does a better way exist? mockDataStore.Setup(o => o.PlaceQuickOrder(It.Is<IOrder>(order => order.Id == 1))); mockDataStore.Setup(o => o.PlaceQuickOrder(It.Is<IOrder>(order => order.type == OrderType.Qucik))); mockDataStore.Setup(o => o.PlaceQuickOrder(It.Is<IOrder>(order => order.UnitName == "NYunit"))); mockDataStore.VerifyAll(); Another way of acheiving this would be to create a fake order object, expectedOrderObj with expected properties and do something like this: mockDataStore.Setup(o => o.PlaceQuickOrder(It.Is<IOrder>(order => order == expectedOrderObj ))); But, I don't want to override ==. Do we have a solution for this in moq? My classes look something like this: public interface IInternalDataStore { void PlaceQuickOrder(IOrder order); void PlaceUltraFastOrder(IOrder order); } public interface IOrder { public int Id { get; } public OrderType type { get; set; } public string UnitName { get; set; } } public enum OrderType { Qucik = 1, UltraFast = 2 }

    Read the article

  • two view controllers and reusability with delegate

    - by netcharmer
    Newbie question about design patterns in objC. I'm writing a functionality for my iphone app which I plan to use in other apps too. The functionality is written over two classes - Viewcontroller1 and Viewcontroller2. Viewcontroller1 is the root view of a navigation controller and it can push Viewcontroller2. Rest of the app will use only ViewController1 and will never access Viewcontroller2 directly. However, triggered by user events, Viewcontroller2 has to send a message to the rest of the app. My question is what is the best way of achieving it? Currently, I use two level of delegation to send the message out from Viewcontroller2. First send it to Viewcontroller1 and then let Viewcontroller1 send it to rest of the app or the application delegate. So my code looks like - //Viewcontroller1.h @protocol bellDelegate -(int)bellRang:(int)size; @end @interface Viewcontroller1 : UITableViewController <dummydelegate> { id <bellDelegate> delegate; @end //Viewcontroller1.m @implementation Viewcontroller1 -(void)viewDidLoad { //some stuff here Viewcontroller2 *vc2 = [[Viewcontroller2 alloc] init]; vc2.delegate = self; [self.navigationController pushViewController:vc2 animated:YES]; } -(int)dummyBell:(int)size { return([self.delegate bellRang:size]); } //Viewcontroller2.h @protocol dummyDelegate -(int)dummyBell:(int)size; @end @interface Viewcontroller2 : UITableViewController { id <dummyDelegate> delegate; @end //Viewcontroller2.m @implementation Viewcontroller2 -(int)eventFoo:(int)size { rval = [self.delegate dummyBell:size]; } @end

    Read the article

  • C# InternalsVisibleTo() attribute for VBNET 2.0 while testing?

    - by Will Marcouiller
    I'm building an Active Directory wrapper in VBNET 2.0 (can't use later .NET) in which I have the following: IUtilisateur IGroupe IUniteOrganisation These interfaces are implemented in internal classes (Friend in VBNET), so that I want to implement a façade in order to instiate each of the interfaces with their internal classes. This will allow the architecture a better flexibility, etc. Now, I want to test these classes (Utilisateur, Groupe, UniteOrganisation) in a different project within the same solution. However, these classes are internal. I would like to be able to instantiate them without going through my façade, but only for these tests, nothing more. Here's a piece of code to illustrate it: public static class DirectoryFacade { public static IGroupe CreerGroupe() { return new Groupe(); } } // Then in code, I would write something alike: public partial class MainForm : Form { public MainForm() { IGroupe g = DirectoryFacade.CreerGroupe(); // Doing stuff with instance here... } } // My sample interface: public interface IGroupe { string Domaine { get; set; } IList<IUtilisateur> Membres { get; } } internal class Groupe : IGroupe { private IList<IUtilisateur> _membres; internal Groupe() { _membres = new List<IUtilisateur>(); } public string Domaine { get; set; } public IList<IUtilisateur> Membres { get { return _membres; } } } I heard of InternalsVisibleTo() attribute, recently. I was wondering whether it is available in VBNET 2.0/VS2005 so that I could access the assmebly's internal classes for my tests? Otherwise, how could I achieve this?

    Read the article

  • How can I bind the same dependency to many dependents in Ninject?

    - by Mike Bantegui
    Let's I have three interfaces: IFoo, IBar, IBaz. I also have the classes Foo, Bar, and Baz that are the respective implementations. In the implementations, each depends on the interface IContainer. So for the Foo (and similarly for Bar and Baz) the implementation might read: class Foo : IFoo { private readonly IDependency Dependency; public Foo(IDependency dependency) { Dependency = dependency; } public void Execute() { Console.WriteLine("I'm using {0}", Dependency.Name); } } Let's furthermore say I have a class Container which happens to contain instances of the IFoo, IBar and IBaz: class Container : IContainer { private readonly IFoo _Foo; private readonly IBar _Bar; private readonly IBaz _Baz; public Container(IFoo foo, IBar bar, IBaz baz) { _Foo = foo; _Bar = bar; _Baz = baz; } } In this scenario, I would like the implementation class Container to bind against IContainer with the constraint that the IDependency that gets injected into IFoo, IBar, and IBaz be the same for all three. In the manual way, I might implement it as: IDependency dependency = new Dependency(); IFoo foo = new Foo(dependency); IBar bar = new Bar(dependency); IBaz baz = new Baz(dependency); IContainer container = new Container(foo, bar, baz); How can I achieve this within Ninject? Note: I am not asking how to do nested dependencies. My question is how I can guarantee that a given dependency is the same among a collection of objects within a materialized service. To be extremely explicit, I understand that Ninject in it's standard form will generate code that is equivalent to the following: IContainer container = new Container(new Foo(new Dependency()), new Bar(new Dependency()), new Baz(new Dependency())); I would not like that behavior.

    Read the article

  • java packets byte

    - by user303289
    Guys, I am implementing a protocol in one of the wireless project. I am stucked at one point. In of the java file i am suppose to receive a packet and that packet is 12 byte packet and I have to write different functions for reading different parts of packets and convert it to diferent type. Like I want first four byte in one of the function and convert it to int, next two bytes in string. and again next two in string, last two hop in string and followed by last two int. I want follwing function to implement: // here is the interface /* FloodingData should use methods defined in this class. */ class FloodingPacket{ public static void main(String arg[]){ byte FloodingPack[]; // just for example to test in code FloodingPack=new byte[12]; interface IFloodingPacket { // Returns the unique sequence number for the packet int getSequenceNumber() ; // Returns the source address for the packet String getSourceAddress(); // Returns the destination address for the packet String getDestinationAddress(); // Returns the last hop address for the packet String getLastHopAddress(); // Sets the last hop address to the address of the node // which the packet was received from void updateLastHopAddress(); // Returns the entire packet in bytes (for sending) byte[] getBytes(); // Sets the bytes of the packet (for receiving) void setBytes(byte[] packet); }

    Read the article

  • ASP.NET MVC Search

    - by Cameron
    Hi I'm building a very simple search system using ASP.NET MVC. I had it originally work by doing all the logic inside the controller but I am now moving the code piece by piece into a repository. Can anyone help me do this. Thanks. Here is the original Action Result that was in the controller. public ActionResult Index(String query) { var ArticleQuery = from m in _db.ArticleSet select m; if (!string.IsNullOrEmpty(query)) { ArticleQuery = ArticleQuery.Where(m => m.headline.Contains(query) orderby m.posted descending); } return View(ArticleQuery.ToList()); } As you can see, the Index method is used for both the initial list of articles and also for the search results (they use the same view). In the new system the code in the controller is as follows: public ActionResult Index() { return View(_repository.ListAll()); } The Repository has the following code: public IList<Article> ListAll() { var ArticleQuery = (from m in _db.ArticleSet orderby m.posted descending select m); return ArticleQuery.ToList(); } and the Interface has the following code: public interface INewsRepository { IList<Article> ListAll(); } So what I need to do is now add in the search query stuff into the repository/controller methods using this new way. Can anyone help? Thanks.

    Read the article

  • OSX: Programmatically added subviews not responding to mouse down events

    - by BigCola
    I have 3 subclasses: a Block class, a Row class and a Table class. All are subclasses of NSView. I have a Table added with IB which programmatically displays 8 rows, each of which displays 8 blocks. I overrode the mouseDown: method in Block to change the background color to red, but it doesn't work. Still if I add a block directly on top of the Table with IB it does work so I can't understand why it won't work in the first case. Here's the implementation code for Block and Row (Table's implementation works the same way as Row's): //block.m - (void)drawRect:(NSRect)dirtyRect { [color set]; [NSBezierPath fillRect:dirtyRect]; } -(void)mouseDown:(NSEvent *)theEvent { color = [NSColor redColor]; checked = YES; [self setNeedsDisplay:YES]; } //row.m - (void)drawRect:(NSRect)dirtyRect { [[NSColor blueColor] set]; [NSBezierPath fillRect:dirtyRect]; int x; for(x=0; x<8; x++){ int margin = x*2; NSRect rect = NSMakeRect(0, 50*x+margin, 50, 50); Block *block = [[Block alloc] initWithFrame:rect]; [self addSubview:block]; } }

    Read the article

  • My UITextView delegate method doesn't respond

    - by user611967
    Hi guys. I would like to start we that i'm not a very good english speaker, so excuse me if something is wrong. So I have this code header file : import @interface macViewController : UIViewController { UINavigationItem *navItem; UITextView *iTextView; } @property (nonatomic, retain) IBOutlet UINavigationItem *navItem; @property (nonatomic, retain) IBOutlet UITextView *iTextView; (IBAction) btnClicked; @end implementation file : import "macViewController.h" @implementation macViewController @synthesize navItem, iTextView; (IBAction) btnClicked { if (self.editing == YES) { self.editing = NO; [iTextView resignFirstResponder]; UIAlertView *alert = [[UIAlertView alloc]initWithTitle:@"Data Saved" message:@"Your data was saved" delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil]; [alert show]; } else { self.editing = YES; [iTextView becomeFirstResponder]; } NSLog(@"works"); self.navItem.rightBarButtonItem = self.editButtonItem; self.navItem.rightBarButtonItem.action = @selector(btnClicked); } (void) textViewDidChangeUITextView *)textView { NSLog(@"works"); } So like you guess it's a view based app wich when i tap Edit button the keyboard pops-up then i press Done button and keyboard disappear and appear a alert view. SO I WANTED TO MAKE THEN I TOUCH THE TEXTVIEW, EDIT BUTTON TO BECOME DONE BUTTON ... THE PROBLEM IS THAT THE METHOD I DELEGATE TO IT DOESN'T RESPOND ... (USING CONSOLE I SAW THAT NOTHING HAPPENS) ... I TRIED DIFFERENT CODE BUT ALL = 0 ... PLEASE HELP I'M NEW ...

    Read the article

  • Why can't these generic type parameters be inferred?

    - by Jon M
    Given the following interfaces/classes: public interface IRequest<TResponse> { } public interface IHandler<TRequest, TResponse> where TRequest : IRequest<TResponse> { TResponse Handle(TRequest request); } public class HandlingService { public TResponse Handle<TRequest, TResponse>(TRequest request) where TRequest : IRequest<TResponse> { var handler = container.GetInstance<IHandler<TRequest, TResponse>>(); return handler.Handle(request); } } public class CustomerResponse { public Customer Customer { get; set; } } public class GetCustomerByIdRequest : IRequest<CustomerResponse> { public int CustomerId { get; set; } } Why can't the compiler infer the correct types, if I try and write something like the following: var service = new HandlingService(); var request = new GetCustomerByIdRequest { CustomerId = 1234 }; var response = service.Handle(request); // Shouldn't this know that response is going to be CustomerResponse? I just get the 'type arguments cannot be inferred' message. Is this a limitation with generic type inference in general, or is there a way to make this work?

    Read the article

  • Initializing an object to all zeroes

    - by dash-tom-bang
    Oftentimes data structures' valid initialization is to set all members to zero. Even when programming in C++, one may need to interface with an external API for which this is the case. Is there any practical difference between: some_struct s; memset(s, 0, sizeof(s)); and simply some_struct s = { 0 }; Do folks find themselves using both, with a method for choosing which is more appropriate for a given application? For myself, as mostly a C++ programmer who doesn't use memset much, I'm never certain of the function signature so I find the second example is just easier to use in addition to being less typing, more compact, and maybe even more obvious since it says "this object is initialized to zero" right in the declaration rather than waiting for the next line of code and seeing, "oh, this object is zero initialized." When creating classes and structs in C++ I tend to use initialization lists; I'm curious about folks thoughts on the two "C style" initializations above rather than a comparison against what is available in C++ since I suspect many of us interface with C libraries even if we code mostly in C++ ourselves.

    Read the article

  • Is there any good reason for private methods existence in C# (and OOP in general)?

    - by Piotr Lopusiewicz
    I don't mean to troll but I really don't get it. Why would language designers allow private methods instead of some naming convention (see __ in Python) ? I searched for the answer and usual arguments are: a) To make the implementation cleaner/avoid long vertical list of methods in IDE autocompletion b) To announce to the world which methods are public interface and which may change and are just for implementation purpose c) Readability Ok so now, all of those could be achieved by naming all private methods with __ prefix or by "private" keyword which doesn't have any implications other than be information for IDE (don't put those in autocompletion) and other programers (don't use it unless you really must). Hell, one could even require unsafe-like keyword to access private methods to really discourage this. I am asking this because I work with some c# code and I keep changing private methods to public for test purposes as many in-between private methods (like string generators for xml serialization) are very useful for debugging purposes (like writing some part of string to log file etc.). So my question is: Is there anything which is achieved by access restriction but couldn't be achieved by naming conventions without restricting the access ?

    Read the article

  • Reference properteries declared in a protocol and implemented in the anonymous category?

    - by Heath Borders
    I have the following protocol: @protocol MyProtocol @property (nonatomic, retain) NSObject *myProtocolProperty; -(void) myProtocolMethod; @end and I have the following class: @interface MyClass : NSObject { } @end I have a class extension declared, I have to redeclare my protocol properties here or else I can't implement them with the rest of my class. @interface()<MyProtocol> @property (nonatomic, retain) NSObject *myExtensionProperty; /* * This redeclaration is required or my @synthesize myProtocolProperty fails */ @property (nonatomic, retain) NSObject *myProtocolProperty; - (void) myExtensionMethod; @end @implementation MyClass @synthesize myProtocolProperty = _myProtocolProperty; @synthesize myExtensionProperty = _myExtensionProperty; - (void) myProtocolMethod { } - (void) myExtensionMethod { } @end In a consumer method, I can call my protocol methods and properties just fine. Calling my extension methods and properties produces a warning and an error respectively. - (void) consumeMyClassWithMyProtocol: (MyClass<MyProtocol> *) myClassWithMyProtocol { myClassWithMyProtocol.myProtocolProperty; // works, yay! [myClassWithMyProtocol myProtocolMethod]; // works, yay! myClassWithMyProtocol.myExtensionProperty; // compiler error, yay! [myClassWithMyProtocol myExtensionMethod]; // compiler warning, yay! } Is there any way I can avoid redeclaring the properties in MyProtocol within my class extension in order to implement MyProtocol privately?

    Read the article

  • Main purpose of this task is to calculate volumes and surface areas of three dimensional geometric shapes like, cylinders, cones.

    - by Csc_Girl_Geek
    In Java Language Design your classes as below introducing: an Interface named “GeometricShapes” an abstract class named “ThreeDShapes” two child classes of ThreeDShapes: Cylinders and Cones. One test class names “TestShapes” Get the output for volumes and surface areas of cylinders and cones along with respective values of their appropriate input variables. Try to use toString() method and array. Your classes should be designed with methods that are required for Object-Oriented programming. So Far I Have: package Assignment2; public interface GeometricShapes { public void render(); public int[] getPosition(); public void setPosition(int x, int y); } package Assignment2; public abstract class ThreeDShapes implements GeometricShapes { public int[] position; public int[] size; public ThreeDShapes() { } public int[] getPosition() { return position; } public void setPosition(int x, int y) { position[0] = x; position[1] = y; } } package Assignment2; public class Cylinders extends ThreeDShapes { public Cylinder() { } public void render() { } } I don't think this is right and I do not know how to fix it. :( Please help.

    Read the article

  • Why does java.util.concurrent.ArrayBlockingQueue use 'while' loops instead of 'if' around calls to

    - by theFunkyEngineer
    I have been playing with my own version of this, using 'if', and all seems to be working fine. Of course this will break down horribly if signalAll() is used instead of signal(), but if only one thread at a time is notified, how can this go wrong? Their code here - check out the put() and take() methods; a simpler and more-to-the-point implementation can be seen at the top of the JavaDoc for Condition. Relevant portion of my implementation below. public Object get() { lock.lock(); try { if( items.size() < 1 ) hasItems.await(); Object poppedValue = items.getLast(); items.removeLast(); hasSpace.signal(); return poppedValue; } catch (InterruptedException e) { e.printStackTrace(); return null; } finally { lock.unlock(); } } public void put(Object item) { lock.lock(); try { if( items.size() >= capacity ) hasSpace.await(); items.addFirst(item); hasItems.signal(); return; } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } P.S. I know that generally, particularly in lib classes like this, one should let the exceptions percolate up.

    Read the article

  • Inheritance issue

    - by VenkateshGudipati
    hi Friends i am facing a issue in Inheritance i have a interface called Irewhizz interface irewhzz { void object save(object obj); void object getdata(object obj); } i write definition in different class like public user:irewhzz { public object save(object obj); { ....... } public object getdata(object obj); { ....... } } this is antoher class public client:irewhzz { public object save(object obj); { ....... } public object getdata(object obj); { ....... } } now i have different classes like public partial class RwUser { #region variables IRewhizzDataHelper irewhizz; IRewhizzRelationDataHelper irewhizzrelation; private string _firstName; private string _lastName; private string _middleName; private string _email; private string _website; private int _addressId; private string _city; private string _zipcode; private string _phone; private string _fax; //private string _location; private string _aboutMe; private string _username; private string _password; private string _securityQuestion; private string _securityQAnswer; private Guid _user_Id; private long _rwuserid; private byte[] _image; private bool _changepassword; private string _mobilephone; private int _role; #endregion //IRewhizz is the interface and its functions are implimented by UserDataHelper class //RwUser Class is inheriting the UserDataHelper Properties and functions. //Here UserDataHelper functions are called with Irewhizz Interface Object but not with the //UserDataHelper class Object It will resolves the unit testing conflict. #region Constructors public RwUser() : this(new UserDataHelper(), new RewhizzRelationalDataHelper()) { } public RwUser(IRewhizzDataHelper repositary, IRewhizzRelationDataHelper relationrepositary) { irewhizz = repositary; irewhizzrelation = relationrepositary; } #endregion #region Properties public int Role { get { return _role; } set { _role = value; } } public string MobilePhone { get { return _mobilephone; } set { _mobilephone = value; } } public bool ChangePassword { get { return _changepassword; } set { _changepassword = value; } } public byte[] Image { get { return _image; } set { _image = value; } } public string FirstName { get { return _firstName; } set { _firstName = value; } } public string LastName { get { return _lastName; } set { _lastName = value; } } public string MiddleName { get { return _middleName; } set { _middleName = value; } } public string Email { get { return _email; } set { _email = value; } } public string Website { get { return _website; } set { _website = value; } } public int AddressId { get { return _addressId; } set { _addressId = value; } } public string City { get { return _city; } set { _city = value; } } public string Zipcode { get { return _zipcode; } set { _zipcode = value; } } public string Phone { get { return _phone; } set { _phone = value; } } public string Fax { get { return _fax; } set { _fax = value; } } //public string Location //{ // get // { // return _location; // } // set // { // _location = value; // } //} public string AboutMe { get { return _aboutMe; } set { _aboutMe = value; } } public string username { get { return _username; } set { _username = value; } } public string password { get { return _password; } set { _password = value; } } public string SecurityQuestion { get { return _securityQuestion; } set { _securityQuestion = value; } } public string SecurityQAnswer { get { return _securityQAnswer; } set { _securityQAnswer = value; } } public Guid UserID { get { return _user_Id; } set { _user_Id = value; } } public long RwUserID { get { return _rwuserid; } set { _rwuserid = value; } } #endregion #region MemberFunctions // DataHelperDataContext db = new DataHelperDataContext(); // RewhizzDataHelper rwdh=new RewhizzDataHelper(); //It saves user information entered by user and returns the id of that user public object saveUserInfo(RwUser userObj) { userObj.UserID = irewhizzrelation.GetUserId(username); var res = irewhizz.saveData(userObj); return res; } //It returns the security questions for user registration } public class Agent : RwUser { IRewhizzDataHelper irewhizz; IRewhizzRelationDataHelper irewhizzrelation; private int _roleid; private int _speclisationid; private int[] _language; private string _brokaragecompany; private int _loctionType_lk; private string _rolename; private int[] _specialization; private string _agentID; private string _expDate; private string _regstates; private string _selLangs; private string _selSpels; private string _locations; public string Locations { get { return _locations; } set { _locations = value; } } public string SelectedLanguages { get { return _selLangs; } set { _selLangs = value; } } public string SelectedSpecialization { get { return _selSpels; } set { _selSpels = value; } } public string RegisteredStates { get { return _regstates; } set { _regstates = value; } } //private string _registeredStates; public string AgentID { get { return _agentID; } set { _agentID = value; } } public string ExpDate { get { return _expDate; } set { _expDate = value; } } private int[] _registeredStates; public SelectList RegisterStates { set; get; } public SelectList Languages { set; get; } public SelectList Specializations { set; get; } public int[] RegisterdStates { get { return _registeredStates; } set { _registeredStates = value; } } //public string RegisterdStates //{ // get // { // return _registeredStates; // } // set // { // _registeredStates = value; // } //} public int RoleId { get { return _roleid; } set { _roleid = value; } } public int SpeclisationId { get { return _speclisationid; } set { _speclisationid = value; } } public int[] Language { get { return _language; } set { _language = value; } } public int LocationTypeId { get { return _loctionType_lk; } set { _loctionType_lk = value; } } public string BrokarageCompany { get { return _brokaragecompany; } set { _brokaragecompany = value; } } public string Rolename { get { return _rolename; } set { _rolename = value; } } public int[] Specialization { get { return _specialization; } set { _specialization = value; } } public Agent() : this(new AgentDataHelper(), new RewhizzRelationalDataHelper()) { } public Agent(IRewhizzDataHelper repositary, IRewhizzRelationDataHelper relationrepositary) { irewhizz = repositary; irewhizzrelation = relationrepositary; } public void inviteclient() { //Code related to mailing } //DataHelperDataContext dataObj = new DataHelperDataContext(); //#region IRewhizzFactory Members //public List<object> getAgentInfo(string username) //{ // var res=dataObj.GetCompleteUserDetails(username); // return res.ToList(); // throw new NotImplementedException(); //} //public List<object> GetRegisterAgentData(string username) //{ // var res= dataObj.RegisteredUserdetails(username); // return res.ToList(); //} //public void saveAgentInfo(string username, string password, string firstname, string lastname, string middlename, string securityquestion, string securityQanswer) //{ // User userobj=new User(); // var result = dataObj.rw_Users_InsertUserInfo(firstname, middlename, lastname, dataObj.GetUserId(username), securityquestion, securityquestionanswer); // throw new NotImplementedException(); //} //#endregion public Agent updateData(Agent objectId) { objectId.UserID = irewhizzrelation.GetUserId(objectId.username); objectId = (Agent)irewhizz.updateData(objectId); return objectId; } public Agent GetAgentData(Agent agentodj) { agentodj.UserID = irewhizzrelation.GetUserId(agentodj.username); agentodj = (Agent)irewhizz.getData(agentodj); if (agentodj.RoleId != 0) agentodj.Rolename = (string)(string)irewhizzrelation.getValue(agentodj.RoleId); if (agentodj.RegisterdStates.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string regstates = ""; foreach (int i in agentodj.RegisterdStates) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); regstates += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.RegisterStates = selectlist; if(regstates!=null) agentodj.RegisteredStates = regstates.Remove(regstates.Length - 1); } if (agentodj.Language.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string selectedlang = ""; foreach (int i in agentodj.Language) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); selectedlang += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.Languages = selectlist; // agentodj.SelectedLanguages = selectedlang; } if (agentodj.Specialization.Count() != 0) { List<SelectListItem> list = new List<SelectListItem>(); string selectedspel = ""; foreach (int i in agentodj.Specialization) { SelectListItem listitem = new SelectListItem(); listitem.Value = i.ToString(); listitem.Text = (string)irewhizzrelation.getValue(i); list.Add(listitem); selectedspel += (string)irewhizzrelation.getValue(i) + ","; } SelectList selectlist = new SelectList(list, "Value", "Text"); agentodj.Specializations = selectlist; //agentodj.SelectedSpecialization = selectedspel; } return agentodj; } public void SaveImage(byte[] pic, String username) { irewhizzrelation.SaveImage(pic, username); } } now the issue is when ever i am calling agent class it is given error like null reference exception for rwuser class can any body give the solution thanks in advance

    Read the article

  • Mercurial on shared network drive?

    - by user1164199
    Right now I have my repo on my local drive. In order to back it up, I have to copy .hg to a window's network drive. At Is it a good idea to put Mercurial Repository in shared Network drive?, Lasse Karlsen said the repo shouldn't be on a shared folder on a network server because "mercurial cannot reliably hold locks in all situations". Would this still be an issue when the repository is only updated by a single user? If so, can someone explain to me why the corruption happens? A while back our IT had problem setting up a mercurial server. I am very fond of mercurial (it has a great interface and is very easy to work with), but if it's going to be such a pain in the neck to set up for multiple users, I am willing to look for something else. Does anyone have any suggestions (with reasons)? I am looking for a revision control program that has the following attributes: 2. Good interface (allow you to easily see revision and changes to the code over multiple revisions). 3. Work as a local repo or a network repo. 4. IT will feel comfortable installing on their network. Thanks, Stephen

    Read the article

  • Generating an identifier for objects so that they can be added to a hashtable I have created

    - by dukenukem
    I have a hashtable base class and I am creating different type of hashtable by deriving from it. I only allow it to accept objects that implement my IHashable interface.For example - class LinearProbingHashTable<T> : HashTableBase<T> where T: IHashable { ... ... ... } interface IHashable { /** * Every IHashable implementation should provide an indentfying value for use in generating a hash key. */ int getIdentifier(); } class Car : IHashable { public String Make { get; set; } public String Model { get; set; } public String Color { get; set; } public int Year { get; set; } public int getIdentifier() { /// ??? } } Can anyone suggest a good method for generating an identifier for the car that can be used by the hash function to place it in the hash table? I am actually really looking for a general purpose solution to generating an id for any given class. I would like to have a base class for all classes, HashableObject, that implements IHashable and its getIdentifier method. So then I could just derive from HashableObject which would automatically provide an identifier for any instances. Which means I wouldn't have to write a different getIdentifier method for every object I add to the hashtable. public class HashableObject : IHashable { public int getIdentifier() { // Looking for code here that would generate an id for any object... } } public class Dog : HashableObject { // Dont need to implement getIdentifier because the parent class does it for me }

    Read the article

  • Fake ISAPI Handler to serve static files with extention that are rewritted by url rewriter

    - by developerit
    Introduction I often map html extention to the asp.net dll in order to use url rewritter with .html extentions. Recently, in the new version of www.nouvelair.ca, we renamed all urls to end with .html. This works great, but failed when we used FCK Editor. Static html files would not get serve because we mapped the html extension to the .NET Framework. We can we do to to use .html extension with our rewritter but still want to use IIS behavior with static html files. Analysis I thought that this could be resolve with a simple HTTP handler. We would map urls of static files in our rewriter to this handler that would read the static file and serve it, just as IIS would do. Implementation This is how I coded the class. Note that this may not be bullet proof. I only tested it once and I am sure that the logic behind IIS is more complicated that this. If you find errors or think of possible improvements, let me know. Imports System.Web Imports System.Web.Services ' Author: Nicolas Brassard ' For: Solutions Nitriques inc. http://www.nitriques.com ' Date Created: April 18, 2009 ' Last Modified: April 18, 2009 ' License: CPOL (http://www.codeproject.com/info/cpol10.aspx) ' Files: ISAPIDotNetHandler.ashx ' ISAPIDotNetHandler.ashx.vb ' Class: ISAPIDotNetHandler ' Description: Fake ISAPI handler to serve static files. ' Usefull when you want to serve static file that has a rewrited extention. ' Example: It often map html extention to the asp.net dll in order to use url rewritter with .html. ' If you want to still serve static html file, add a rewritter rule to redirect html files to this handler Public Class ISAPIDotNetHandler Implements System.Web.IHttpHandler Sub ProcessRequest(ByVal context As HttpContext) Implements IHttpHandler.ProcessRequest ' Since we are doing the job IIS normally does with html files, ' we set the content type to match html. ' You may want to customize this with your own logic, if you want to serve ' txt or xml or any other text file context.Response.ContentType = "text/html" ' We begin a try here. Any error that occurs will result in a 404 Page Not Found error. ' We replicate the behavior of IIS when it doesn't find the correspoding file. Try ' Declare a local variable containing the value of the query string Dim uri As String = context.Request("fileUri") ' If the value in the query string is null, ' throw an error to generate a 404 If String.IsNullOrEmpty(uri) Then Throw New ApplicationException("No fileUri") End If ' If the value in the query string doesn't end with .html, then block the acces ' This is a HUGE security hole since it could permit full read access to .aspx, .config, etc. If Not uri.ToLower.EndsWith(".html") Then ' throw an error to generate a 404 Throw New ApplicationException("Extention not allowed") End If ' Map the file on the server. ' If the file doesn't exists on the server, it will throw an exception and generate a 404. Dim fullPath As String = context.Server.MapPath(uri) ' Read the actual file Dim stream As IO.StreamReader = FileIO.FileSystem.OpenTextFileReader(fullPath) ' Write the file into the response context.Response.Output.Write(stream.ReadToEnd) ' Close and Dipose the stream stream.Close() stream.Dispose() stream = Nothing Catch ex As Exception ' Set the Status Code of the response context.Response.StatusCode = 404 'Page not found ' For testing and bebugging only ! This may cause a security leak ' context.Response.Output.Write(ex.Message) Finally ' In all cases, flush and end the response context.Response.Flush() context.Response.End() End Try End Sub ' Automaticly generated by Visual Studio ReadOnly Property IsReusable() As Boolean Implements IHttpHandler.IsReusable Get Return False End Get End Property End Class Conclusion As you see, with our static files map to this handler using query string (ex.: /ISAPIDotNetHandler.ashx?fileUri=index.html) you will have the same behavior as if you ask for the uri /index.html. Finally, test this only in IIS with the html extension map to aspnet_isapi.dll. Url rewritting will work in Casini (Internal Web Server shipped with Visual Studio) but it’s not the same as with IIS since EVERY request is handle by .NET. Versions First release

    Read the article

  • Using an alternate JSON Serializer in ASP.NET Web API

    - by Rick Strahl
    The new ASP.NET Web API that Microsoft released alongside MVC 4.0 Beta last week is a great framework for building REST and AJAX APIs. I've been working with it for quite a while now and I really like the way it works and the complete set of features it provides 'in the box'. It's about time that Microsoft gets a decent API for building generic HTTP endpoints into the framework. DataContractJsonSerializer sucks As nice as Web API's overall design is one thing still sucks: The built-in JSON Serialization uses the DataContractJsonSerializer which is just too limiting for many scenarios. The biggest issues I have with it are: No support for untyped values (object, dynamic, Anonymous Types) MS AJAX style Date Formatting Ugly serialization formats for types like Dictionaries To me the most serious issue is dealing with serialization of untyped objects. I have number of applications with AJAX front ends that dynamically reformat data from business objects to fit a specific message format that certain UI components require. The most common scenario I have there are IEnumerable query results from a database with fields from the result set rearranged to fit the sometimes unconventional formats required for the UI components (like jqGrid for example). Creating custom types to fit these messages seems like overkill and projections using Linq makes this much easier to code up. Alas DataContractJsonSerializer doesn't support it. Neither does DataContractSerializer for XML output for that matter. What this means is that you can't do stuff like this in Web API out of the box:public object GetAnonymousType() { return new { name = "Rick", company = "West Wind", entered= DateTime.Now }; } Basically anything that doesn't have an explicit type DataContractJsonSerializer will not let you return. FWIW, the same is true for XmlSerializer which also doesn't work with non-typed values for serialization. The example above is obviously contrived with a hardcoded object graph, but it's not uncommon to get dynamic values returned from queries that have anonymous types for their result projections. Apparently there's a good possibility that Microsoft will ship Json.NET as part of Web API RTM release.  Scott Hanselman confirmed this as a footnote in his JSON Dates post a few days ago. I've heard several other people from Microsoft confirm that Json.NET will be included and be the default JSON serializer, but no details yet in what capacity it will show up. Let's hope it ends up as the default in the box. Meanwhile this post will show you how you can use it today with the beta and get JSON that matches what you should see in the RTM version. What about JsonValue? To be fair Web API DOES include a new JsonValue/JsonObject/JsonArray type that allow you to address some of these scenarios. JsonValue is a new type in the System.Json assembly that can be used to build up an object graph based on a dictionary. It's actually a really cool implementation of a dynamic type that allows you to create an object graph and spit it out to JSON without having to create .NET type first. JsonValue can also receive a JSON string and parse it without having to actually load it into a .NET type (which is something that's been missing in the core framework). This is really useful if you get a JSON result from an arbitrary service and you don't want to explicitly create a mapping type for the data returned. For serialization you can create an object structure on the fly and pass it back as part of an Web API action method like this:public JsonValue GetJsonValue() { dynamic json = new JsonObject(); json.name = "Rick"; json.company = "West Wind"; json.entered = DateTime.Now; dynamic address = new JsonObject(); address.street = "32 Kaiea"; address.zip = "96779"; json.address = address; dynamic phones = new JsonArray(); json.phoneNumbers = phones; dynamic phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); //var jsonString = json.ToString(); return json; } which produces the following output (formatted here for easier reading):{ name: "rick", company: "West Wind", entered: "2012-03-08T15:33:19.673-10:00", address: { street: "32 Kaiea", zip: "96779" }, phoneNumbers: [ { type: "Home", number: "808 123-1233" }, { type: "Mobile", number: "808 123-1234" }] } If you need to build a simple JSON type on the fly these types work great. But if you have an existing type - or worse a query result/list that's already formatted JsonValue et al. become a pain to work with. As far as I can see there's no way to just throw an object instance at JsonValue and have it convert into JsonValue dictionary. It's a manual process. Using alternate Serializers in Web API So, currently the default serializer in WebAPI is DataContractJsonSeriaizer and I don't like it. You may not either, but luckily you can swap the serializer fairly easily. If you'd rather use the JavaScriptSerializer built into System.Web.Extensions or Json.NET today, it's not too difficult to create a custom MediaTypeFormatter that uses these serializers and can replace or partially replace the native serializer. Here's a MediaTypeFormatter implementation using the ASP.NET JavaScriptSerializer:using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using System.IO; namespace Westwind.Web.WebApi { public class JavaScriptSerializerFormatter : MediaTypeFormatter { public JavaScriptSerializerFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type== typeof(JsonArray) ) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var ser = new JavaScriptSerializer(); string json; using (var sr = new StreamReader(stream)) { json = sr.ReadToEnd(); sr.Close(); } object val = ser.Deserialize(json,type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var ser = new JavaScriptSerializer(); var json = ser.Serialize(value); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } Formatter implementation is pretty simple: You override 4 methods to tell which types you can handle and then handle the input or output streams to create/parse the JSON data. Note that when creating output you want to take care to still allow JsonValue/JsonObject/JsonArray types to be handled by the default serializer so those objects serialize properly - if you let either JavaScriptSerializer or JSON.NET handle them they'd try to render the dictionaries which is very undesirable. If you'd rather use Json.NET here's the JSON.NET version of the formatter:// this code requires a reference to JSON.NET in your project #if true using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using Newtonsoft.Json; using System.IO; using Newtonsoft.Json.Converters; namespace Westwind.Web.WebApi { public class JsonNetFormatter : MediaTypeFormatter { public JsonNetFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type == typeof(JsonArray)) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; var sr = new StreamReader(stream); var jreader = new JsonTextReader(sr); var ser = new JsonSerializer(); ser.Converters.Add(new IsoDateTimeConverter()); object val = ser.Deserialize(jreader, type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; string json = JsonConvert.SerializeObject(value, Formatting.Indented, new JsonConverter[1] { new IsoDateTimeConverter() } ); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } #endif   One advantage of the Json.NET serializer is that you can specify a few options on how things are formatted and handled. You get null value handling and you can plug in the IsoDateTimeConverter which is nice to product proper ISO dates that I would expect any Json serializer to output these days. Hooking up the Formatters Once you've created the custom formatters you need to enable them for your Web API application. To do this use the GlobalConfiguration.Configuration object and add the formatter to the Formatters collection. Here's what this looks like hooked up from Application_Start in a Web project:protected void Application_Start(object sender, EventArgs e) { // Action based routing (used for RPC calls) RouteTable.Routes.MapHttpRoute( name: "StockApi", routeTemplate: "stocks/{action}/{symbol}", defaults: new { symbol = RouteParameter.Optional, controller = "StockApi" } ); // WebApi Configuration to hook up formatters and message handlers // optional RegisterApis(GlobalConfiguration.Configuration); } public static void RegisterApis(HttpConfiguration config) { // Add JavaScriptSerializer formatter instead - add at top to make default //config.Formatters.Insert(0, new JavaScriptSerializerFormatter()); // Add Json.net formatter - add at the top so it fires first! // This leaves the old one in place so JsonValue/JsonObject/JsonArray still are handled config.Formatters.Insert(0, new JsonNetFormatter()); } One thing to remember here is the GlobalConfiguration object which is Web API's static configuration instance. I think this thing is seriously misnamed given that GlobalConfiguration could stand for anything and so is hard to discover if you don't know what you're looking for. How about WebApiConfiguration or something more descriptive? Anyway, once you know what it is you can use the Formatters collection to insert your custom formatter. Note that I insert my formatter at the top of the list so it takes precedence over the default formatter. I also am not removing the old formatter because I still want JsonValue/JsonObject/JsonArray to be handled by the default serialization mechanism. Since they process in sequence and I exclude processing for these types JsonValue et al. still get properly serialized/deserialized. Summary Currently DataContractJsonSerializer in Web API is a pain, but at least we have the ability with relatively limited effort to replace the MediaTypeFormatter and plug in our own JSON serializer. This is useful for many scenarios - if you have existing client applications that used MVC JsonResult or ASP.NET AJAX results from ASMX AJAX services you can plug in the JavaScript serializer and get exactly the same serializer you used in the past so your results will be the same and don't potentially break clients. JSON serializers do vary a bit in how they serialize some of the more complex types (like Dictionaries and dates for example) and so if you're migrating it might be helpful to ensure your client code doesn't break when you switch to ASP.NET Web API. Going forward it looks like Microsoft is planning on plugging in Json.Net into Web API and make that the default. I think that's an awesome choice since Json.net has been around forever, is fast and easy to use and provides a ton of functionality as part of this great library. I just wish Microsoft would have figured this out sooner instead of now at the last minute integrating with it especially given that Json.Net has a similar set of lower level JSON objects JsonValue/JsonObject etc. which now will end up being duplicated by the native System.Json stuff. It's not like we don't already have enough confusion regarding which JSON serializer to use (JavaScriptSerializer, DataContractJsonSerializer, JsonValue/JsonObject/JsonArray and now Json.net). For years I've been using my own JSON serializer because the built in choices are both limited. However, with an official encorsement of Json.Net I'm happily moving on to use that in my applications. Let's see and hope Microsoft gets this right before ASP.NET Web API goes gold.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX  ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Where does ASP.NET Web API Fit?

    - by Rick Strahl
    With the pending release of ASP.NET MVC 4 and the new ASP.NET Web API, there has been a lot of discussion of where the new Web API technology fits in the ASP.NET Web stack. There are a lot of choices to build HTTP based applications available now on the stack - we've come a long way from when WebForms and Http Handlers/Modules where the only real options. Today we have WebForms, MVC, ASP.NET Web Pages, ASP.NET AJAX, WCF REST and now Web API as well as the core ASP.NET runtime to choose to build HTTP content with. Web API definitely squarely addresses the 'API' aspect - building consumable services - rather than HTML content, but even to that end there are a lot of choices you have today. So where does Web API fit, and when doesn't it? But before we get into that discussion, let's talk about what a Web API is and why we should care. What's a Web API? HTTP 'APIs' (Microsoft's new terminology for a service I guess)  are becoming increasingly more important with the rise of the many devices in use today. Most mobile devices like phones and tablets run Apps that are using data retrieved from the Web over HTTP. Desktop applications are also moving in this direction with more and more online content and synching moving into even traditional desktop applications. The pending Windows 8 release promises an app like platform for both the desktop and other devices, that also emphasizes consuming data from the Cloud. Likewise many Web browser hosted applications these days are relying on rich client functionality to create and manipulate the browser user interface, using AJAX rather than server generated HTML data to load up the user interface with data. These mobile or rich Web applications use their HTTP connection to return data rather than HTML markup in the form of JSON or XML typically. But an API can also serve other kinds of data, like images or other binary files, or even text data and HTML (although that's less common). A Web API is what feeds rich applications with data. ASP.NET Web API aims to service this particular segment of Web development by providing easy semantics to route and handle incoming requests and an easy to use platform to serve HTTP data in just about any content format you choose to create and serve from the server. But .NET already has various HTTP Platforms The .NET stack already includes a number of technologies that provide the ability to create HTTP service back ends, and it has done so since the very beginnings of the .NET platform. From raw HTTP Handlers and Modules in the core ASP.NET runtime, to high level platforms like ASP.NET MVC, Web Forms, ASP.NET AJAX and the WCF REST engine (which technically is not ASP.NET, but can integrate with it), you've always been able to handle just about any kind of HTTP request and response with ASP.NET. The beauty of the raw ASP.NET platform is that it provides you everything you need to build just about any type of HTTP application you can dream up from low level APIs/custom engines to high level HTML generation engine. ASP.NET as a core platform clearly has stood the test of time 10+ years later and all other frameworks like Web API are built on top of this ASP.NET core. However, although it's possible to create Web APIs / Services using any of the existing out of box .NET technologies, none of them have been a really nice fit for building arbitrary HTTP based APIs. Sure, you can use an HttpHandler to create just about anything, but you have to build a lot of plumbing to build something more complex like a comprehensive API that serves a variety of requests, handles multiple output formats and can easily pass data up to the server in a variety of ways. Likewise you can use ASP.NET MVC to handle routing and creating content in various formats fairly easily, but it doesn't provide a great way to automatically negotiate content types and serve various content formats directly (it's possible to do with some plumbing code of your own but not built in). Prior to Web API, Microsoft's main push for HTTP services has been WCF REST, which was always an awkward technology that had a severe personality conflict, not being clear on whether it wanted to be part of WCF or purely a separate technology. In the end it didn't do either WCF compatibility or WCF agnostic pure HTTP operation very well, which made for a very developer-unfriendly environment. Personally I didn't like any of the implementations at the time, so much so that I ended up building my own HTTP service engine (as part of the West Wind Web Toolkit), as have a few other third party tools that provided much better integration and ease of use. With the release of Web API for the first time I feel that I can finally use the tools in the box and not have to worry about creating and maintaining my own toolkit as Web API addresses just about all the features I implemented on my own and much more. ASP.NET Web API provides a better HTTP Experience ASP.NET Web API differentiates itself from the previous Microsoft in-box HTTP service solutions in that it was built from the ground up around the HTTP protocol and its messaging semantics. Unlike WCF REST or ASP.NET AJAX with ASMX, it’s a brand new platform rather than bolted on technology that is supposed to work in the context of an existing framework. The strength of the new ASP.NET Web API is that it combines the best features of the platforms that came before it, to provide a comprehensive and very usable HTTP platform. Because it's based on ASP.NET and borrows a lot of concepts from ASP.NET MVC, Web API should be immediately familiar and comfortable to most ASP.NET developers. Here are some of the features that Web API provides that I like: Strong Support for URL Routing to produce clean URLs using familiar MVC style routing semantics Content Negotiation based on Accept headers for request and response serialization Support for a host of supported output formats including JSON, XML, ATOM Strong default support for REST semantics but they are optional Easily extensible Formatter support to add new input/output types Deep support for more advanced HTTP features via HttpResponseMessage and HttpRequestMessage classes and strongly typed Enums to describe many HTTP operations Convention based design that drives you into doing the right thing for HTTP Services Very extensible, based on MVC like extensibility model of Formatters and Filters Self-hostable in non-Web applications  Testable using testing concepts similar to MVC Web API is meant to handle any kind of HTTP input and produce output and status codes using the full spectrum of HTTP functionality available in a straight forward and flexible manner. Looking at the list above you can see that a lot of functionality is very similar to ASP.NET MVC, so many ASP.NET developers should feel quite comfortable with the concepts of Web API. The Routing and core infrastructure of Web API are very similar to how MVC works providing many of the benefits of MVC, but with focus on HTTP access and manipulation in Controller methods rather than HTML generation in MVC. There’s much improved support for content negotiation based on HTTP Accept headers with the framework capable of detecting automatically what content the client is sending and requesting and serving the appropriate data format in return. This seems like such a little and obvious thing, but it's really important. Today's service backends often are used by multiple clients/applications and being able to choose the right data format for what fits best for the client is very important. While previous solutions were able to accomplish this using a variety of mixed features of WCF and ASP.NET, Web API combines all this functionality into a single robust server side HTTP framework that intrinsically understands the HTTP semantics and subtly drives you in the right direction for most operations. And when you need to customize or do something that is not built in, there are lots of hooks and overrides for most behaviors, and even many low level hook points that allow you to plug in custom functionality with relatively little effort. No Brainers for Web API There are a few scenarios that are a slam dunk for Web API. If your primary focus of an application or even a part of an application is some sort of API then Web API makes great sense. HTTP ServicesIf you're building a comprehensive HTTP API that is to be consumed over the Web, Web API is a perfect fit. You can isolate the logic in Web API and build your application as a service breaking out the logic into controllers as needed. Because the primary interface is the service there's no confusion of what should go where (MVC or API). Perfect fit. Primary AJAX BackendsIf you're building rich client Web applications that are relying heavily on AJAX callbacks to serve its data, Web API is also a slam dunk. Again because much if not most of the business logic will probably end up in your Web API service logic, there's no confusion over where logic should go and there's no duplication. In Single Page Applications (SPA), typically there's very little HTML based logic served other than bringing up a shell UI and then filling the data from the server with AJAX which means the business logic required for data retrieval and data acceptance and validation too lives in the Web API. Perfect fit. Generic HTTP EndpointsAnother good fit are generic HTTP endpoints that to serve data or handle 'utility' type functionality in typical Web applications. If you need to implement an image server, or an upload handler in the past I'd implement that as an HTTP handler. With Web API you now have a well defined place where you can implement these types of generic 'services' in a location that can easily add endpoints (via Controller methods) or separated out as more full featured APIs. Granted this could be done with MVC as well, but Web API seems a clearer and more well defined place to store generic application services. This is one thing I used to do a lot of in my own libraries and Web API addresses this nicely. Great fit. Mixed HTML and AJAX Applications: Not a clear Choice  For all the commonality that Web API and MVC share they are fundamentally different platforms that are independent of each other. A lot of people have asked when does it make sense to use MVC vs. Web API when you're dealing with typical Web application that creates HTML and also uses AJAX functionality for rich functionality. While it's easy to say that all 'service'/AJAX logic should go into a Web API and all HTML related generation into MVC, that can often result in a lot of code duplication. Also MVC supports JSON and XML result data fairly easily as well so there's some confusion where that 'trigger point' is of when you should switch to Web API vs. just implementing functionality as part of MVC controllers. Ultimately there's a tradeoff between isolation of functionality and duplication. A good rule of thumb I think works is that if a large chunk of the application's functionality serves data Web API is a good choice, but if you have a couple of small AJAX requests to serve data to a grid or autocomplete box it'd be overkill to separate out that logic into a separate Web API controller. Web API does add overhead to your application (it's yet another framework that sits on top of core ASP.NET) so it should be worth it .Keep in mind that MVC can generate HTML and JSON/XML and just about any other content easily and that functionality is not going away, so just because you Web API is there it doesn't mean you have to use it. Web API is not a full replacement for MVC obviously either since there's not the same level of support to feed HTML from Web API controllers (although you can host a RazorEngine easily enough if you really want to go that route) so if you're HTML is part of your API or application in general MVC is still a better choice either alone or in combination with Web API. I suspect (and hope) that in the future Web API's functionality will merge even closer with MVC so that you might even be able to mix functionality of both into single Controllers so that you don't have to make any trade offs, but at the moment that's not the case. Some Issues To think about Web API is similar to MVC but not the Same Although Web API looks a lot like MVC it's not the same and some common functionality of MVC behaves differently in Web API. For example, the way single POST variables are handled is different than MVC and doesn't lend itself particularly well to some AJAX scenarios with POST data. Code Duplication I already touched on this in the Mixed HTML and Web API section, but if you build an MVC application that also exposes a Web API it's quite likely that you end up duplicating a bunch of code and - potentially - infrastructure. You may have to create authentication logic both for an HTML application and for the Web API which might need something different altogether. More often than not though the same logic is used, and there's no easy way to share. If you implement an MVC ActionFilter and you want that same functionality in your Web API you'll end up creating the filter twice. AJAX Data or AJAX HTML On a recent post's comments, David made some really good points regarding the commonality of MVC and Web API's and its place. One comment that caught my eye was a little more generic, regarding data services vs. HTML services. David says: I see a lot of merit in the combination of Knockout.js, client side templates and view models, calling Web API for a responsive UI, but sometimes late at night that still leaves me wondering why I would no longer be using some of the nice tooling and features that have evolved in MVC ;-) You know what - I can totally relate to that. On the last Web based mobile app I worked on, we decided to serve HTML partials to the client via AJAX for many (but not all!) things, rather than sending down raw data to inject into the DOM on the client via templating or direct manipulation. While there are definitely more bytes on the wire, with this, the overhead ended up being actually fairly small if you keep the 'data' requests small and atomic. Performance was often made up by the lack of client side rendering of HTML. Server rendered HTML for AJAX templating gives so much better infrastructure support without having to screw around with 20 mismatched client libraries. Especially with MVC and partials it's pretty easy to break out your HTML logic into very small, atomic chunks, so it's actually easy to create small rendering islands that can be used via composition on the server, or via AJAX calls to small, tight partials that return HTML to the client. Although this is often frowned upon as to 'heavy', it worked really well in terms of developer effort as well as providing surprisingly good performance on devices. There's still plenty of jQuery and AJAX logic happening on the client but it's more manageable in small doses rather than trying to do the entire UI composition with JavaScript and/or 'not-quite-there-yet' template engines that are very difficult to debug. This is not an issue directly related to Web API of course, but something to think about especially for AJAX or SPA style applications. Summary Web API is a great new addition to the ASP.NET platform and it addresses a serious need for consolidation of a lot of half-baked HTTP service API technologies that came before it. Web API feels 'right', and hits the right combination of usability and flexibility at least for me and it's a good fit for true API scenarios. However, just because a new platform is available it doesn't meant that other tools or tech that came before it should be discarded or even upgraded to the new platform. There's nothing wrong with continuing to use MVC controller methods to handle API tasks if that's what your app is running now - there's very little to be gained by upgrading to Web API just because. But going forward Web API clearly is the way to go, when building HTTP data interfaces and it's good to see that Microsoft got this one right - it was sorely needed! Resources ASP.NET Web API AspConf Ask the Experts Session (first 5 minutes) © Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    - by Glav
    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc…) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + &lt;wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and you’ll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally…. the magic…. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right…..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and “WSDL flattening”.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + <wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and youll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally. the magic. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and WSDL flattening.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Differences Between NHibernate and Entity Framework

    - by Ricardo Peres
    Introduction NHibernate and Entity Framework are two of the most popular O/RM frameworks on the .NET world. Although they share some functionality, there are some aspects on which they are quite different. This post will describe this differences and will hopefully help you get started with the one you know less. Mind you, this is a personal selection of features to compare, it is by no way an exhaustive list. History First, a bit of history. NHibernate is an open-source project that was first ported from Java’s venerable Hibernate framework, one of the first O/RM frameworks, but nowadays it is not tied to it, for example, it has .NET specific features, and has evolved in different ways from those of its Java counterpart. Current version is 3.3, with 3.4 on the horizon. It currently targets .NET 3.5, but can be used as well in .NET 4, it only makes no use of any of its specific functionality. You can find its home page at NHForge. Entity Framework 1 came out with .NET 3.5 and is now on its second major version, despite being version 4. Code First sits on top of it and but came separately and will also continue to be released out of line with major .NET distributions. It is currently on version 4.3.1 and version 5 will be released together with .NET Framework 4.5. All versions will target the current version of .NET, at the time of their release. Its home location is located at MSDN. Architecture In NHibernate, there is a separation between the Unit of Work and the configuration and model instances. You start off by creating a Configuration object, where you specify all global NHibernate settings such as the database and dialect to use, the batch sizes, the mappings, etc, then you build an ISessionFactory from it. The ISessionFactory holds model and metadata that is tied to a particular database and to the settings that came from the Configuration object, and, there will typically be only one instance of each in a process. Finally, you create instances of ISession from the ISessionFactory, which is the NHibernate representation of the Unit of Work and Identity Map. This is a lightweight object, it basically opens and closes a database connection as required and keeps track of the entities associated with it. ISession objects are cheap to create and dispose, because all of the model complexity is stored in the ISessionFactory and Configuration objects. As for Entity Framework, the ObjectContext/DbContext holds the configuration, model and acts as the Unit of Work, holding references to all of the known entity instances. This class is therefore not lightweight as its NHibernate counterpart and it is not uncommon to see examples where an instance is cached on a field. Mappings Both NHibernate and Entity Framework (Code First) support the use of POCOs to represent entities, no base classes are required (or even possible, in the case of NHibernate). As for mapping to and from the database, NHibernate supports three types of mappings: XML-based, which have the advantage of not tying the entity classes to a particular O/RM; the XML files can be deployed as files on the file system or as embedded resources in an assembly; Attribute-based, for keeping both the entities and database details on the same place at the expense of polluting the entity classes with NHibernate-specific attributes; Strongly-typed code-based, which allows dynamic creation of the model and strongly typing it, so that if, for example, a property name changes, the mapping will also be updated. Entity Framework can use: Attribute-based (although attributes cannot express all of the available possibilities – for example, cascading); Strongly-typed code mappings. Database Support With NHibernate you can use mostly any database you want, including: SQL Server; SQL Server Compact; SQL Server Azure; Oracle; DB2; PostgreSQL; MySQL; Sybase Adaptive Server/SQL Anywhere; Firebird; SQLLite; Informix; Any through OLE DB; Any through ODBC. Out of the box, Entity Framework only supports SQL Server, but a number of providers exist, both free and commercial, for some of the most used databases, such as Oracle and MySQL. See a list here. Inheritance Strategies Both NHibernate and Entity Framework support the three canonical inheritance strategies: Table Per Type Hierarchy (Single Table Inheritance), Table Per Type (Class Table Inheritance) and Table Per Concrete Type (Concrete Table Inheritance). Associations Regarding associations, both support one to one, one to many and many to many. However, NHibernate offers far more collection types: Bags of entities or values: unordered, possibly with duplicates; Lists of entities or values: ordered, indexed by a number column; Maps of entities or values: indexed by either an entity or any value; Sets of entities or values: unordered, no duplicates; Arrays of entities or values: indexed, immutable. Querying NHibernate exposes several querying APIs: LINQ is probably the most used nowadays, and really does not need to be introduced; Hibernate Query Language (HQL) is a database-agnostic, object-oriented SQL-alike language that exists since NHibernate’s creation and still offers the most advanced querying possibilities; well suited for dynamic queries, even if using string concatenation; Criteria API is an implementation of the Query Object pattern where you create a semi-abstract conceptual representation of the query you wish to execute by means of a class model; also a good choice for dynamic querying; Query Over offers a similar API to Criteria, but using strongly-typed LINQ expressions instead of strings; for this, although more refactor-friendlier that Criteria, it is also less suited for dynamic queries; SQL, including stored procedures, can also be used; Integration with Lucene.NET indexer is available. As for Entity Framework: LINQ to Entities is fully supported, and its implementation is considered very complete; it is the API of choice for most developers; Entity-SQL, HQL’s counterpart, is also an object-oriented, database-independent querying language that can be used for dynamic queries; SQL, of course, is also supported. Caching Both NHibernate and Entity Framework, of course, feature first-level cache. NHibernate also supports a second-level cache, that can be used among multiple ISessionFactorys, even in different processes/machines: Hashtable (in-memory); SysCache (uses ASP.NET as the cache provider); SysCache2 (same as above but with support for SQL Server SQL Dependencies); Prevalence; SharedCache; Memcached; Redis; NCache; Appfabric Caching. Out of the box, Entity Framework does not have any second-level cache mechanism, however, there are some public samples that show how we can add this. ID Generators NHibernate supports different ID generation strategies, coming from the database and otherwise: Identity (for SQL Server, MySQL, and databases who support identity columns); Sequence (for Oracle, PostgreSQL, and others who support sequences); Trigger-based; HiLo; Sequence HiLo (for databases that support sequences); Several GUID flavors, both in GUID as well as in string format; Increment (for single-user uses); Assigned (must know what you’re doing); Sequence-style (either uses an actual sequence or a single-column table); Table of ids; Pooled (similar to HiLo but stores high values in a table); Native (uses whatever mechanism the current database supports, identity or sequence). Entity Framework only supports: Identity generation; GUIDs; Assigned values. Properties NHibernate supports properties of entity types (one to one or many to one), collections (one to many or many to many) as well as scalars and enumerations. It offers a mechanism for having complex property types generated from the database, which even include support for querying. It also supports properties originated from SQL formulas. Entity Framework only supports scalars, entity types and collections. Enumerations support will come in the next version. Events and Interception NHibernate has a very rich event model, that exposes more than 20 events, either for synchronous pre-execution or asynchronous post-execution, including: Pre/Post-Load; Pre/Post-Delete; Pre/Post-Insert; Pre/Post-Update; Pre/Post-Flush. It also features interception of class instancing and SQL generation. As for Entity Framework, only two events exist: ObjectMaterialized (after loading an entity from the database); SavingChanges (before saving changes, which include deleting, inserting and updating). Tracking Changes For NHibernate as well as Entity Framework, all changes are tracked by their respective Unit of Work implementation. Entities can be attached and detached to it, Entity Framework does, however, also support self-tracking entities. Optimistic Concurrency Control NHibernate supports all of the imaginable scenarios: SQL Server’s ROWVERSION; Oracle’s ORA_ROWSCN; A column containing date and time; A column containing a version number; All/dirty columns comparison. Entity Framework is more focused on Entity Framework, so it only supports: SQL Server’s ROWVERSION; Comparing all/some columns. Batching NHibernate has full support for insertion batching, but only if the ID generator in use is not database-based (for example, it cannot be used with Identity), whereas Entity Framework has no batching at all. Cascading Both support cascading for collections and associations: when an entity is deleted, their conceptual children are also deleted. NHibernate also offers the possibility to set the foreign key column on children to NULL instead of removing them. Flushing Changes NHibernate’s ISession has a FlushMode property that can have the following values: Auto: changes are sent to the database when necessary, for example, if there are dirty instances of an entity type, and a query is performed against this entity type, or if the ISession is being disposed; Commit: changes are sent when committing the current transaction; Never: changes are only sent when explicitly calling Flush(). As for Entity Framework, changes have to be explicitly sent through a call to AcceptAllChanges()/SaveChanges(). Lazy Loading NHibernate supports lazy loading for Associated entities (one to one, many to one); Collections (one to many, many to many); Scalar properties (thing of BLOBs or CLOBs). Entity Framework only supports lazy loading for: Associated entities; Collections. Generating and Updating the Database Both NHibernate and Entity Framework Code First (with the Migrations API) allow creating the database model from the mapping and updating it if the mapping changes. Extensibility As you can guess, NHibernate is far more extensible than Entity Framework. Basically, everything can be extended, from ID generation, to LINQ to SQL transformation, HQL native SQL support, custom column types, custom association collections, SQL generation, supported databases, etc. With Entity Framework your options are more limited, at least, because practically no information exists as to what can be extended/changed. It features a provider model that can be extended to support any database. Integration With Other Microsoft APIs and Tools When it comes to integration with Microsoft technologies, it will come as no surprise that Entity Framework offers the best support. For example, the following technologies are fully supported: ASP.NET (through the EntityDataSource); ASP.NET Dynamic Data; WCF Data Services; WCF RIA Services; Visual Studio (through the integrated designer). Documentation This is another point where Entity Framework is superior: NHibernate lacks, for starters, an up to date API reference synchronized with its current version. It does have a community mailing list, blogs and wikis, although not much used. Entity Framework has a number of resources on MSDN and, of course, several forums and discussion groups exist. Conclusion Like I said, this is a personal list. I may come as a surprise to some that Entity Framework is so behind NHibernate in so many aspects, but it is true that NHibernate is much older and, due to its open-source nature, is not tied to product-specific timeframes and can thus evolve much more rapidly. I do like both, and I chose whichever is best for the job I have at hands. I am looking forward to the changes in EF5 which will add significant value to an already interesting product. So, what do you think? Did I forget anything important or is there anything else worth talking about? Looking forward for your comments!

    Read the article

  • CodePlex Daily Summary for Wednesday, February 17, 2010

    CodePlex Daily Summary for Wednesday, February 17, 2010New ProjectsAcademic Success Accounting System: The system is intended to use by school teacher to set marks to students and estimate their academic success and possibilities. The client applicat...Access.PowerTools: Access PowerTools is currently a sample MS Access add-in project to try & test features of Add-in Express™ 2009 for Microsoft® Office and .net (ht...AntoonCms: AntoonCms makes it easy to maintain a simple website with it's builtin administration pages. It's developed in C# on target Framework 2.0 The CMS...ASP.NET MVC Mehr Lib: Mehr Lib makes it easier for ASP.NET MVC developers to do develop projects. It's developed in C#. This version currently include Ajax master detail...BCryptTool: Developer tool that calculates BCrypt hash codes for strings. BCrypt is an implementation of the Blowfish cipher and a computationally-expensive ha...Coronasoft Cryostasis scripting engine: A scripting engine that allows you to dynamically load plugins from just about any supported .NET language. Its written in C#. Languages supported ...Critical Point Search: Critical Point Searchcritical points: critical pointsFont Family Name Retrieval: This library helps developer to retrieve the font family name from the TTF, OTF and TTC font files, so that developer can display the font without ...jQuery Form Input Hints Plugin: Automatically display hints on input textboxes in your forms using this jQuery plugin. I wrote this code to be as simple and as easy to use as pos...Kojax: kojax projectKronRetro: KronRetro! Making a Habbo Retro just got easier! Powered by PHP & MySQL you can make a Habbo Retro site fast!MVVM Wrapper Kit: MVVM Wrapper Kit makes it easier for View Model programmers to wrap their business objects and collections while preserving change notification and...ObjectCartographer: ObjectCartographer is an object to object mapper and object factory. It's developed in C#.PE-file Reader Writer API (PERWAPI): PERWAPI is a reader writer module for .NET program executables. It has been used as back-end for progamming language compilers such as Gardens Poi...Pinger: A simple Pinger, pings an address until you press a buttonQPV: 0.1: QPV aka Que pelicula es una aplicacion que consiste crear una base de datos potente de peliculas, criticas e informacion para poder filtrar pelicul...SIMD Detector: This SIMD class helps developers to detect the types of SIMD instruction available on users' processor. It supports Intel and AMD CPUs. It is writt...StackOverflow Test Project: Following Andrew Siemer's StackOverflow Knowledge Exchange Project.WeBlog: A blogging platform built on the MVC framework The project will showcase current technologies such as MVC 2, Silverlight 4 and jQuery 1.4. Data pro...Webmedia: this is my webmedia projectWindows Azure RSS Reader: This is and online RSS reader based on the Windows Azure platformWordEditor. A Word Editor for Windows, and an extended RichTextBox control.: This is a word editor that can be used as a stand alone word processor, or added to an existing project.Домашняя Бухгалтерия: Программа для ведения домашнего бухгалтерского учета финансов. New ReleasesAccess.PowerTools: Access PowerTools Add-In Community Edition v.0.0.1: Access PowerTools Add-In Community Edition v.0.0.1 is a sample MS Access add-in project to try & test Add-in Express™ 2009 for Microsoft® Office an...Active CSS: ActiveCSS-0.1.1: revision for version 0.1ASP.NET: Microsoft Ajax Minifier 4.0: The Microsoft Ajax Minifier enables you to improve the performance of your Ajax applications by reducing the size of your Cascading Style Sheet and...ASP.NET MVC Mehr Lib: V1.0: Mehr Lib V1.0 This version currently include ajax master detail combo facilities.ASP.net Ribbon: Version 1.2: New controls : Expandable gallery Color Picker Multi color File Menu Some JS modifications. Some CSS modifications. Includes some functionna...ASP.NET Web Forms Model-View-Presenter (MVP) Contrib: WebForms MVP Contrib CTP6: This is a release of the WebForms MVP Contrib project for WebForms MVP CTP6. Release includes: WebForms MVP Contrib framework Ninject IoC containerAwesomiumDotNet: AwesomiumDotNet 1.2.1: - Added Awesomium 1.5 features: URL filtering, header rewrite rules, SetOpensExternalLinksInCallingFrame. - Numerous fixes and improvements.BCryptTool: BCryptTool v0.1: The Microsoft .NET Framework 3.5 (SP1) is needed to run this program.Buzz Dot Net: Buzz Dot Net v.1.10216: Features Parse Google Buzz feed to Objects Partial MVVM Implementation Partial OptimizationsCanvas VSDOC Intellisense: v1.0.0.0a: canvas-vsdoc.js and canvas-utils.js JavaScript intellisense for HTML5 Canvas element.CheckHeader: CheckHeader v0.8.5: The Microsoft .NET Framework 3.5 (SP1) is needed to run this program.Claymore MVP: Claymore 1.0.2.0: Changelog Added ASP.NET WebForm support via ClaymoreHttpModule class. Added xsd schema for Visual Studio Intellisense within App.config and Web....Dam Gd - URL Shortner: Dam.gd Version 1.1: This is the latest instalment in our URL shortner. It uses The Easy API http://theeasyapi.com to access data that is used for the back-end analyti...D-AMPS: D-AMPS 0.9.1: Initial version.easySMS: easySMS 1.0 Source code: easySMS 1.0 Source codeFont Family Name Retrieval: 1st Release: Version 1.0.0Free Silverlight & WPF Chart Control - Visifire: Visifire Now Supports DataBinding: Hi, Today we are releasing the much awaited DataBinding feature in Visifire 3.0.3 beta 3. Now you can Bind any DataSource at the Series level so t...GenerateTypedBamApi: Version 2.0: Changes in this release: NEW: Export functionality no longer requires Excel to be installed (uses OLE DB vs. Excel Automation; also enables usage i...Gmail Notifier 2: GmailNotifier2 1.2.1: Fixes issues #9652, #9653iTuner - The iTunes Companion: iTuner 1.1.3699: This includes the first pass of the iTuner Librarian including management of dead tracks, duplicates, and empty directories... While I promised a ...jQuery Form Input Hints Plugin: jQuery.InputHints v1.0: jQuery.InputHints v1.0 Includes Standard & minified source Demo HTML file VS2008 SolutionLibWowArmory: LibWowArmory 0.2.3 beta: LibWowArmory 0.2.3 betaThis release of the LibWowArmory source code matches the WoW Armory as of version 3.3.2. Changes since version 0.2.2:Update...Managed Extensibility Framework: MEF Preview 9: We have merged the .net 3.5 and Silverlight 3 into a single zip. The bin folder contains the binaries for .net 3.5 whereas bin\SL contains the bina...MDX Parser,Builder,DOM and OLAP visual controls with Writeback for Silverlight: Ranet.UILibrary.Olap-1.3.3.0-6571.msi: February 16, 2010 * MdxDesigner: Fix for the issue where when an element is clicked, the mouse wheel stops working until the cursor leaves and r...MEFGeneric: MEFGeneric Preview 9: MEFGeneric Preview 9 release.Mesopotamia Experiment: Mesopotamia 1.2.26: Bug Fixes - mud map - progress window - recycle app domains on robotics engine crashes( in command prompt and visual, major work) - fixed rooomba h...Microsoft Solution Framework for Business Intelligence in Media: Release 1.0: This is the public release of the Microsoft Solution Framework for Business Intelligence in Media (Release 1.0).MVVM Wrapper Kit: MVVM Wrapper Beta: A simple test project is included to get you up and running, and wrapping those business objects.nBayes - Bayesian Filtering in C#: nBayes v0.2: nBayes' indexing system is factored in such a way that you can easily replace the index with a custom implementation. This release introduces an ad...NetSqlAzMan - .NET SQL Authorization Manager: 3.6.0.5: 3.6.0.5 16-February-2010 - Fix: SqlAzManSid Class. "Equals" matches object signiture instead of IAzManSid signiture. When a real null object is pas...ObjectCartographer: ObjectCartographer Code 1.0: This is the first release and contains code to help with object to object mapping (including mapping from one object to multiple objects), object f...Office Apps: 0.8.6: Bug fix's, added Calendar.OI - Open Internet: OI HTML and .XAP files (OI offline): this is the HTML code and the XAP file. please right-click the app at http://bit.ly/openinternet and select "install openinternet application to th...PE-file Reader Writer API (PERWAPI): PERWAPI-1.1.3: Perwapi version 1.1.3 is the complete distribution package. It contains Binary files, pdb files and xml files for the PERWAPI and SymbolRW compone...Pinger: Pinger 1.0.0.0 Binary: The Latest BinaryRNA Comparative Analysis Software Tools: RNA Comparative Analysis Software Tools 2.0: RNA Comparative Analysis Software Tools Version 2.0 Note: The RNA Comparative Analysis Software Tools are provided as is, without any warranty. No...SAL- Self Artificial Learning: Artificial Learning working proof of concept: This is a working proof of concept. It includes the Dev version (in .zip format) and the consumer version (in .exe format)SharePoint Management PowerShell scripts: SharePoint 2010 PowerShell Scripts: All the SharePoint 2010 PowerShell Scripts The first file is an Excel 2010 file allowing to find quiclky and easily the new cmdlets available wi...SIMD Detector: 1st Release: Version 1.3 Supports MMX/MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4a, SSE5, 3DNow.Terminals: Terminals 1.9 Beta Release: This is a beta release so the new features being added to terminals can be tested properly. The major change in this release is that Terminals has...Text Designer Outline Text Library: 9th minor release: Added the ability to select brush, such as gradient brush or texture brush for the text body. Added CSharp library, TextDesignerCSLibrary. Manage...VivoSocial: VivoSocial 7.0.2: This release has several updated modules. See the Support Forums for more details. Since we update modules very often, we will be changing how we d...WatchersNET CKEditor™ Provider for DotNetNuke: CKEditor Provider 1.6.00: changes CKEditor Upgrade to Version 3.2 SVN 5132 File Browser: After File Upload, File will be Auto Selected File Browser: Icons are corrected ...WordEditor. A Word Editor for Windows, and an extended RichTextBox control.: WordEditor Source Code: This contains the latest solution file, with all project files included.Домашняя Бухгалтерия: Alapha Realease: Принимаются ваши предложения по дизайну и функциональности программы.Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)Image Resizer Powertoy Clone for WindowsMicrosoft SQL Server Community & SamplesASP.NETLiveUpload to FacebookMost Active ProjectsDinnerNow.netRawrBlogEngine.NETSimple SavantNB_Store - Free DotNetNuke Ecommerce Catalog Modulepatterns & practices – Enterprise LibraryPHPExcelSharpyjQuery Library for SharePoint Web ServicesFluent Validation for .NET

    Read the article

  • SQL SERVER – Securing TRUNCATE Permissions in SQL Server

    - by pinaldave
    Download the Script of this article from here. On December 11, 2010, Vinod Kumar, a Databases & BI technology evangelist from Microsoft Corporation, graced Ahmedabad by spending some time with the Community during the Community Tech Days (CTD) event. As he was running through a few demos, Vinod asked the audience one of the most fundamental and common interview questions – “What is the difference between a DELETE and TRUNCATE?“ Ahmedabad SQL Server User Group Expert Nakul Vachhrajani has come up with excellent solutions of the same. I must congratulate Nakul for this excellent solution and as a encouragement to User Group member, I am publishing the same article over here. Nakul Vachhrajani is a Software Specialist and systems development professional with Patni Computer Systems Limited. He has functional experience spanning legacy code deprecation, system design, documentation, development, implementation, testing, maintenance and support of complex systems, providing business intelligence solutions, database administration, performance tuning, optimization, product management, release engineering, process definition and implementation. He has comprehensive grasp on Database Administration, Development and Implementation with MS SQL Server and C, C++, Visual C++/C#. He has about 6 years of total experience in information technology. Nakul is an member of the Ahmedabad and Gandhinagar SQL Server User Groups, and actively contributes to the community by actively participating in multiple forums and websites like SQLAuthority.com, BeyondRelational.com, SQLServerCentral.com and many others. Please note: The opinions expressed herein are Nakul own personal opinions and do not represent his employer’s view in anyway. All data from everywhere here on Earth go through a series of  four distinct operations, identified by the words: CREATE, READ, UPDATE and DELETE, or simply, CRUD. Putting in Microsoft SQL Server terms, is the process goes like this: INSERT, SELECT, UPDATE and DELETE/TRUNCATE. Quite a few interesting responses were received and evaluated live during the session. To summarize them, the most important similarity that came out was that both DELETE and TRUNCATE participate in transactions. The major differences (not all) that came out of the exercise were: DELETE: DELETE supports a WHERE clause DELETE removes rows from a table, row-by-row Because DELETE moves row-by-row, it acquires a row-level lock Depending upon the recovery model of the database, DELETE is a fully-logged operation. Because DELETE moves row-by-row, it can fire off triggers TRUNCATE: TRUNCATE does not support a WHERE clause TRUNCATE works by directly removing the individual data pages of a table TRUNCATE directly occupies a table-level lock. (Because a lock is acquired, and because TRUNCATE can also participate in a transaction, it has to be a logged operation) TRUNCATE is, therefore, a minimally-logged operation; again, this depends upon the recovery model of the database Triggers are not fired when TRUNCATE is used (because individual row deletions are not logged) Finally, Vinod popped the big homework question that must be critically analyzed: “We know that we can restrict a DELETE operation to a particular user, but how can we restrict the TRUNCATE operation to a particular user?” After returning home and having a nice cup of coffee, I noticed that my gray cells immediately started to work. Below was the result of my research. As what is always said, the devil is in the details. Upon looking at the Permissions section for the TRUNCATE statement in Books On Line, the following jumps right out: “The minimum permission required is ALTER on table_name. TRUNCATE TABLE permissions default to the table owner, members of the sysadmin fixed server role, and the db_owner and db_ddladmin fixed database roles, and are not transferable. However, you can incorporate the TRUNCATE TABLE statement within a module, such as a stored procedure, and grant appropriate permissions to the module using the EXECUTE AS clause.“ Now, what does this mean? Unlike DELETE, one cannot directly assign permissions to a user/set of users allowing or revoking TRUNCATE rights. However, there is a way to circumvent this. It is important to recall that in Microsoft SQL Server, database engine security surrounds the concept of a “securable”, which is any object like a table, stored procedure, trigger, etc. Rights are assigned to a principal on a securable. Refer to the image below (taken from the SQL Server Books On Line). urable”, which is any object like a table, stored procedure, trigger, etc. Rights are assigned to a principal on a securable. Refer to the image below (taken from the SQL Server Books On Line). SETTING UP THE ENVIRONMENT – (01A_Truncate Table Permissions.sql) Script Provided at the end of the article. By the end of this demo, one will be able to do all the CRUD operations, except the TRUNCATE, and the other will only be able to execute the TRUNCATE. All you will need for this test is any edition of SQL Server 2008. (With minor changes, these scripts can be made to work with SQL 2005.) We begin by creating the following: 1.       A test database 2.        Two database roles: associated logins and users 3.       Switch over to the test database and create a test table. Then, add some data into it. I am using row constructors, which is new to SQL 2008. Creating the modules that will be used to enforce permissions 1.       We have already created one of the modules that we will be assigning permissions to. That module is the table: TruncatePermissionsTest 2.       We will now create two stored procedures; one is for the DELETE operation and the other for the TRUNCATE operation. Please note that for all practical purposes, the end result is the same – all data from the table TruncatePermissionsTest is removed Assigning the permissions Now comes the most important part of the demonstration – assigning permissions. A permissions matrix can be worked out as under: To apply the security rights, we use the GRANT and DENY clauses, as under: That’s it! We are now ready for our big test! THE TEST (01B_Truncate Table Test Queries.sql) Script Provided at the end of the article. I will now need two separate SSMS connections, one with the login AllowedTruncate and the other with the login RestrictedTruncate. Running the test is simple; all that’s required is to run through the script – 01B_Truncate Table Test Queries.sql. What I will demonstrate here via screen-shots is the behavior of SQL Server when logged in as the AllowedTruncate user. There are a few other combinations than what are highlighted here. I will leave the reader the right to explore the behavior of the RestrictedTruncate user and these additional scenarios, as a form of self-study. 1.       Testing SELECT permissions 2.       Testing TRUNCATE permissions (Remember, “deny by default”?) 3.       Trying to circumvent security by trying to TRUNCATE the table using the stored procedure Hence, we have now proved that a user can indeed be assigned permissions to specifically assign TRUNCATE permissions. I also hope that the above has sparked curiosity towards putting some security around the probably “destructive” operations of DELETE and TRUNCATE. I would like to wish each and every one of the readers a very happy and secure time with Microsoft SQL Server. (Please find the scripts – 01A_Truncate Table Permissions.sql and 01B_Truncate Table Test Queries.sql that have been used in this demonstration. Please note that these scripts contain purely test-level code only. These scripts must not, at any cost, be used in the reader’s production environments). 01A_Truncate Table Permissions.sql /* ***************************************************************************************************************** Developed By          : Nakul Vachhrajani Functionality         : This demo is focused on how to allow only TRUNCATE permissions to a particular user How to Use            : 1. Run through, step-by-step through the sequence till Step 08 to create a test database 2. Switch over to the "Truncate Table Test Queries.sql" and execute it step-by-step in two different SSMS windows, one where you have logged in as 'RestrictedTruncate', and the other as 'AllowedTruncate' 3. Come back to "Truncate Table Permissions.sql" 4. Execute Step 10 to cleanup! Modifications         : December 13, 2010 - NAV - Updated to add a security matrix and improve code readability when applying security December 12, 2010 - NAV - Created ***************************************************************************************************************** */ -- Step 01: Create a new test database CREATE DATABASE TruncateTestDB GO USE TruncateTestDB GO -- Step 02: Add roles and users to demonstrate the security of the Truncate operation -- 2a. Create the new roles CREATE ROLE AllowedTruncateRole; GO CREATE ROLE RestrictedTruncateRole; GO -- 2b. Create new logins CREATE LOGIN AllowedTruncate WITH PASSWORD = 'truncate@2010', CHECK_POLICY = ON GO CREATE LOGIN RestrictedTruncate WITH PASSWORD = 'truncate@2010', CHECK_POLICY = ON GO -- 2c. Create new Users using the roles and logins created aboave CREATE USER TruncateUser FOR LOGIN AllowedTruncate WITH DEFAULT_SCHEMA = dbo GO CREATE USER NoTruncateUser FOR LOGIN RestrictedTruncate WITH DEFAULT_SCHEMA = dbo GO -- 2d. Add the newly created login to the newly created role sp_addrolemember 'AllowedTruncateRole','TruncateUser' GO sp_addrolemember 'RestrictedTruncateRole','NoTruncateUser' GO -- Step 03: Change over to the test database USE TruncateTestDB GO -- Step 04: Create a test table within the test databse CREATE TABLE TruncatePermissionsTest (Id INT IDENTITY(1,1), Name NVARCHAR(50)) GO -- Step 05: Populate the required data INSERT INTO TruncatePermissionsTest VALUES (N'Delhi'), (N'Mumbai'), (N'Ahmedabad') GO -- Step 06: Encapsulate the DELETE within another module CREATE PROCEDURE proc_DeleteMyTable WITH EXECUTE AS SELF AS DELETE FROM TruncateTestDB..TruncatePermissionsTest GO -- Step 07: Encapsulate the TRUNCATE within another module CREATE PROCEDURE proc_TruncateMyTable WITH EXECUTE AS SELF AS TRUNCATE TABLE TruncateTestDB..TruncatePermissionsTest GO -- Step 08: Apply Security /* *****************************SECURITY MATRIX*************************************** =================================================================================== Object                   | Permissions |                 Login |             | AllowedTruncate   |   RestrictedTruncate |             |User:NoTruncateUser|   User:TruncateUser =================================================================================== TruncatePermissionsTest  | SELECT,     |      GRANT        |      (Default) | INSERT,     |                   | | UPDATE,     |                   | | DELETE      |                   | -------------------------+-------------+-------------------+----------------------- TruncatePermissionsTest  | ALTER       |      DENY         |      (Default) -------------------------+-------------+----*/----------------+----------------------- proc_DeleteMyTable | EXECUTE | GRANT | DENY -------------------------+-------------+-------------------+----------------------- proc_TruncateMyTable | EXECUTE | DENY | GRANT -------------------------+-------------+-------------------+----------------------- *****************************SECURITY MATRIX*************************************** */ /* Table: TruncatePermissionsTest*/ GRANT SELECT, INSERT, UPDATE, DELETE ON TruncateTestDB..TruncatePermissionsTest TO NoTruncateUser GO DENY ALTER ON TruncateTestDB..TruncatePermissionsTest TO NoTruncateUser GO /* Procedure: proc_DeleteMyTable*/ GRANT EXECUTE ON TruncateTestDB..proc_DeleteMyTable TO NoTruncateUser GO DENY EXECUTE ON TruncateTestDB..proc_DeleteMyTable TO TruncateUser GO /* Procedure: proc_TruncateMyTable*/ DENY EXECUTE ON TruncateTestDB..proc_TruncateMyTable TO NoTruncateUser GO GRANT EXECUTE ON TruncateTestDB..proc_TruncateMyTable TO TruncateUser GO -- Step 09: Test --Switch over to the "Truncate Table Test Queries.sql" and execute it step-by-step in two different SSMS windows: --    1. one where you have logged in as 'RestrictedTruncate', and --    2. the other as 'AllowedTruncate' -- Step 10: Cleanup sp_droprolemember 'AllowedTruncateRole','TruncateUser' GO sp_droprolemember 'RestrictedTruncateRole','NoTruncateUser' GO DROP USER TruncateUser GO DROP USER NoTruncateUser GO DROP LOGIN AllowedTruncate GO DROP LOGIN RestrictedTruncate GO DROP ROLE AllowedTruncateRole GO DROP ROLE RestrictedTruncateRole GO USE MASTER GO DROP DATABASE TruncateTestDB GO 01B_Truncate Table Test Queries.sql /* ***************************************************************************************************************** Developed By          : Nakul Vachhrajani Functionality         : This demo is focused on how to allow only TRUNCATE permissions to a particular user How to Use            : 1. Switch over to this from "Truncate Table Permissions.sql", Step #09 2. Execute this step-by-step in two different SSMS windows a. One where you have logged in as 'RestrictedTruncate', and b. The other as 'AllowedTruncate' 3. Return back to "Truncate Table Permissions.sql" 4. Execute Step 10 to cleanup! Modifications         : December 12, 2010 - NAV - Created ***************************************************************************************************************** */ -- Step 09A: Switch to the test database USE TruncateTestDB GO -- Step 09B: Ensure that we have valid data SELECT * FROM TruncatePermissionsTest GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Line 1 -- The SELECT permission was denied on the object 'TruncatePermissionsTest', database 'TruncateTestDB', schema 'dbo'. --Step 09C: Attempt to Truncate Data from the table without using the stored procedure TRUNCATE TABLE TruncatePermissionsTest GO -- (Expected: Following error will occur) --  Msg 1088, Level 16, State 7, Line 2 --  Cannot find the object "TruncatePermissionsTest" because it does not exist or you do not have permissions. -- Step 09D:Regenerate Test Data INSERT INTO TruncatePermissionsTest VALUES (N'London'), (N'Paris'), (N'Berlin') GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Line 1 -- The INSERT permission was denied on the object 'TruncatePermissionsTest', database 'TruncateTestDB', schema 'dbo'. --Step 09E: Attempt to Truncate Data from the table using the stored procedure EXEC proc_TruncateMyTable GO -- (Expected: Will execute successfully with 'AllowedTruncate' user, will error out as under with 'RestrictedTruncate') -- Msg 229, Level 14, State 5, Procedure proc_TruncateMyTable, Line 1 -- The EXECUTE permission was denied on the object 'proc_TruncateMyTable', database 'TruncateTestDB', schema 'dbo'. -- Step 09F:Regenerate Test Data INSERT INTO TruncatePermissionsTest VALUES (N'Madrid'), (N'Rome'), (N'Athens') GO --Step 09G: Attempt to Delete Data from the table without using the stored procedure DELETE FROM TruncatePermissionsTest GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Line 2 -- The DELETE permission was denied on the object 'TruncatePermissionsTest', database 'TruncateTestDB', schema 'dbo'. -- Step 09H:Regenerate Test Data INSERT INTO TruncatePermissionsTest VALUES (N'Spain'), (N'Italy'), (N'Greece') GO --Step 09I: Attempt to Delete Data from the table using the stored procedure EXEC proc_DeleteMyTable GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Procedure proc_DeleteMyTable, Line 1 -- The EXECUTE permission was denied on the object 'proc_DeleteMyTable', database 'TruncateTestDB', schema 'dbo'. --Step 09J: Close this SSMS window and return back to "Truncate Table Permissions.sql" Thank you Nakul to take up the challenge and prove that Ahmedabad and Gandhinagar SQL Server User Group has talent to solve difficult problems. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Pinal Dave, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Security, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

< Previous Page | 281 282 283 284 285 286 287 288 289 290 291 292  | Next Page >