Search Results

Search found 3321 results on 133 pages for 'patterns'.

Page 29/133 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • When decomposing a large function, how can I avoid the complexity from the extra subfunctions?

    - by missingno
    Say I have a large function like the following: function do_lots_of_stuff(){ { //subpart 1 ... } ... { //subpart N ... } } a common pattern is to decompose it into subfunctions function do_lots_of_stuff(){ subpart_1(...) subpart_2(...) ... subpart_N(...) } I usually find that decomposition has two main advantages: The decomposed function becomes much smaller. This can help people read it without getting lost in the details. Parameters have to be explicitly passed to the underlying subfunctions, instead of being implicitly available by just being in scope. This can help readability and modularity in some situations. However, I also find that decomposition has some disadvantages: There are no guarantees that the subfunctions "belong" to do_lots_of_stuff so there is nothing stopping someone from accidentally calling them from a wrong place. A module's complexity grows quadratically with the number of functions we add to it. (There are more possible ways for things to call each other) Therefore: Are there useful convention or coding styles that help me balance the pros and cons of function decomposition or should I just use an editor with code folding and call it a day? EDIT: This problem also applies to functional code (although in a less pressing manner). For example, in a functional setting we would have the subparts be returning values that are combined in the end and the decomposition problem of having lots of subfunctions being able to use each other is still present. We can't always assume that the problem domain will be able to be modeled on just some small simple types with just a few highly orthogonal functions. There will always be complicated algorithms or long lists of business rules that we still want to correctly be able to deal with. function do_lots_of_stuff(){ p1 = subpart_1() p2 = subpart_2() pN = subpart_N() return assembleStuff(p1, p2, ..., pN) }

    Read the article

  • doing a full permutation search and replace on a string

    - by user73307
    I'm writing an app that does something like a custom number (licence) place generator tool where if I ask for the plate "robin" it will suggest I try: r0bin rob1n r0b1n Are there any published algorithms which can do this? It has to be able to handle replacing single letters with multiples, e.g. m with rn and vise-versa and not fall over if it replaces an i with an l then comes to check the l and replaces it back to an i. The list of what gets swapped with what is going to be user input but I'm not expecting a huge list, possibly 10 pairs at most. I'll be implementing this in Ruby or Python but I should be able to convert code from any other language.

    Read the article

  • Visitor-pattern vs inheritance for rendering

    - by akaltar
    I have a game engine that currently uses inheritance to provide a generic interface to do rendering: class renderable { public: void render(); }; Each class calls the gl_* functions itself, this makes the code hard to optimize and hard to implement something like setting the quality of rendering: class sphere : public renderable { public: void render() { glDrawElements(...); } }; I was thinking about implementing a system where I would create a Renderer class that would render my objects: class sphere { void render( renderer* r ) { r->renderme( *this ); } }; class renderer { renderme( sphere& sphere ) { // magically get render resources here // magically render a sphere here } }; My main problem is where should I store the VBOs and where should I Create them when using this method? Should I even use this approach or stick to the current one, perhaps something else? PS: I already asked this question on SO but got no proper answers.

    Read the article

  • How do you proactively guard against errors of omission?

    - by Gabriel
    I'll preface this with I don't know if anyone else who's been programming as long as I have actually has this problem, but at the very least, the answer might help someone with less xp. I just stared at this code for 5 minutes, thinking I was losing my mind that it didn't work: var usedNames = new HashSet<string>(); Func<string, string> l = (s) => { for (int i = 0; ; i++) { var next = (s + i).TrimEnd('0'); if (!usedNames.Contains(next)) { return next; } } }; Finally I noticed I forgot to add the used name to the hash set. Similarly, I've spent minutes upon minutes over omitting context.SaveChanges(). I think I get so distracted by the details that I'm thinking about that some really small details become invisible to me - it's almost at the level of mental block. Are there tactics to prevent this? update: a side effect of asking this was fixing the error it would have for i 9 (Thanks!) var usedNames = new HashSet<string>(); Func<string, string> name = (s) => { string result = s; if(usedNames.Contains(s)) for (int i = 1; ; result = s + i++) if (!usedNames.Contains(result)) break; usedNames.Add(result); return result; };

    Read the article

  • How to Avoid a Busy Loop Inside a Function That Returns the Object That's Being Waited For

    - by Carl Smith
    I have a function which has the same interface as Python's input builtin, but it works in a client-server environment. When it's called, the function, which runs in the server, sends a message to the client, asking it to get some input from the user. The user enters some stuff, or dismisses the prompt, and the result is passed back to the server, which passes it to the function. The function then returns the result. The function must work like Python's input [that's the spec], so it must block until it has the result. This is all working, but it uses a busy loop, which, in practice, could easily be spinning for many minutes. Currently, the function tells the client to get the input, passing an id. The client returns the result with the id. The server puts the result in a dictionary, with the id as the key. The function basically waits for that key to exist. def input(): '''simplified example''' key = unique_key() tell_client_to_get_input(key) while key not in dictionary: pass return dictionary.pop(pin) Using a callback would be the normal way to go, but the input function must block until the result is available, so I can't see how that could work. The spec can't change, as Python will be using the new input function for stuff like help and pdb, which provide their own little REPLs. I have a lot of flexibility in terms of how everything works overall, but just can't budge on the function acting exactly like Python's. Is there any way to return the result as soon as it's available, without the busy loop?

    Read the article

  • What Design Pattern is seperating transform converters

    - by RevMoon
    For converting a Java object model into XML I am using the following design: For different types of objects (e.g. primitive types, collections, null, etc.) I define each its own converter, which acts appropriate with respect to the given type. This way it can easily extended without adding code to a huge if-else-then construct. The converters are chosen by a method which tests whether the object is convertable at all and by using a priority ordering. The priority ordering is important so let's say a List is not converted by the POJO converter, even though it is convertable as such it would be more appropriate to use the collection converter. What design pattern is that? I can only think of a similarity to the command pattern.

    Read the article

  • What is a good design pattern and terminology for decoupling output?

    - by User
    I have a program where I want to save some data record. And I want the output type to be flexible such that I could save the data record to a text file, xml file, database, push to a webservice. My take on it would be to create an interface such as DataStore with a Save() method, and the concrete subclasses such as TextFileDataStore, DatabaseDataStore, etc. What is the proper name/terminology for this type of pattern (I'm using the term "DataStore", log4net names things "appenders", .net they talk about "providers" and "persistence")? I want to come up with good class names (and method names) that fit with a convention if there is one. can you point me to a decent example, preferably in C#, C++, or java? Update Managed to find this stack overflow question, Object persistence terminology: 'repository' vs. 'store' vs. 'context' vs. 'retriever' vs. (…), which captures the terminology part of my question pretty well although there's not a decent answer yet.

    Read the article

  • Figuring out the Call chain

    - by BDotA
    Let's say I have an assemblyA that has a method which creates an instance of assemblyB and calls its MethodFoo(). Now assemblyB also creates an instance of assemblyC and calls MethodFoo(). So no matter if I start with assemblyB in the code flow or with assemlyA, at the end we are calling that MethodFoo of AssemblyC(). My question is when I am in the MethodFoo() how can I know who has called me? Has it been a call originally from assemblyA or was it from assemlyB? Is there any design pattern or a good OO way of solving this?

    Read the article

  • Create many similar classes, or just one

    - by soandos
    The goal is to create an application that has objects that can represent some operations (add, subtract, etc). All of those objects will have common functions and members, and thus will either implement an interface or inherit from an abstract class (Which would be better practice, this will be in C# if that matters?). As far as I can see, there are two different ways of organizing all of these classes. I could create an addition class, a subtraction class, etc. This has the upside of being highly modular but the difference between classes is so minimal. I could create one class, and have a member that will say what type of operation is being represented. This means lots of switch statements, and losing some modularity, in addition to being harder to maintain. Which is is better practice? Is there a better way of doing that is not listed above? If it matters, the list of functions that should be supported is long.

    Read the article

  • Tester/Doer pattern: Assume the caller conforms to the pattern or be defensive and repeat the check?

    - by Daniel Hilgarth
    Assume a simple class that implements the Tester/Doer pattern: public class FooCommandHandler : ICommandHandler { public bool CanHandle(object command) { return command is FooCommand; } public void Handle(object command) { var fooCommand = (FooCommand)command; // Do something with fooCommand } } Now, if someone doesn't conform to the pattern and calls Handle without verifying the command via CanHandle, the code in Handle throws an exception. However, depending on the actual implementation of Handle this can be a whole range of different exceptions. The following implementation would check CanHandle again in Handle and throw a descriptive exception: public void Handle(object command) { if(!CanHandle(command)) throw new TesterDoerPatternUsageViolationException("Please call CanHandle first"); // actual implementation of handling the command. } This has the advantage that the exception is very descriptive. It has the disadvantage that CanHandle is called twice for "good" clients. Is there a consensus on which variation should be used?

    Read the article

  • Avoiding null in a controller

    - by Kevin Burke
    I'm trying to work through how to write this code. def get(params): """ Fetch a user's details, or 404 """ user = User.fetch_by_id(params['id']) if not user: abort(404) # Render some template for the user... What's the best way to handle the case where the lookup fails? One principle says you should avoid returning null values from functions. These lead to mistakes and AttributeErrors etc. later on in the file. Another idea is to have fetch_by_id raise a ValueError or similar if no user exists with that id. However there's a general principle that you shouldn't use exceptions for control flow, either, which doesn't help much. What could be done better in this case?

    Read the article

  • Anemic Domain Model, Business Logic and DataMapper (PHP)

    - by sunwukung
    I've implemented a rudimentary ORM layer based on DataMapper (I don't want to use a full blown ORM like Propel/Doctrine - for anything beyond simple fetch/save ops I prefer to access the data directly layer using a SQL abstraction layer). Following the DataMapper pattern, I've endeavoured to keep all persistence operations in the Mapper - including the location of related entities. My Entities have access to their Mapper, although I try not to call Mapper logic from the Entity interface (although this would be simple enough). The result is: // get a mapper and produce an entity $ProductMapper = $di->get('product_mapper'); $Product = $ProductMapper->find('[email protected]','email'); //.. mutaute some values.. save $ProductMapper->save($Product) // uses __get to trigger relation acquisition $Manufacturer = $Product->manufacturer; I've read some articles regarding the concept of an Anemic Domain model, i.e. a Model that does not contain any "business logic". When demonstrating the sort of business logic ideally suited to a Domain Model, however, acquiring related data items is a common example. Therefore I wanted to ask this question: Is persistence logic appropriate in Domain Model objects?

    Read the article

  • Why are MVC & TDD not employed more in game architecture?

    - by secoif
    I will preface this by saying I haven't looked a huge amount of game source, nor built much in the way of games. But coming from trying to employ 'enterprise' coding practices in web apps, looking at game source code seriously hurts my head: "What is this view logic doing in with business logic? this needs refactoring... so does this, refactor, refactorrr" This worries me as I'm about to start a game project, and I'm not sure whether trying to mvc/tdd the dev process is going to hinder us or help us, as I don't see many game examples that use this or much push for better architectural practices it in the community. The following is an extract from a great article on prototyping games, though to me it seemed exactly the attitude many game devs seem to use when writing production game code: Mistake #4: Building a system, not a game ...if you ever find yourself working on something that isn’t directly moving your forward, stop right there. As programmers, we have a tendency to try to generalize our code, and make it elegant and be able to handle every situation. We find that an itch terribly hard not scratch, but we need to learn how. It took me many years to realize that it’s not about the code, it’s about the game you ship in the end. Don’t write an elegant game component system, skip the editor completely and hardwire the state in code, avoid the data-driven, self-parsing, XML craziness, and just code the damned thing. ... Just get stuff on the screen as quickly as you can. And don’t ever, ever, use the argument “if we take some extra time and do this the right way, we can reuse it in the game”. EVER. is it because games are (mostly) visually oriented so it makes sense that the code will be weighted heavily in the view, thus any benefits from moving stuff out to models/controllers, is fairly minimal, so why bother? I've heard the argument that MVC introduces a performance overhead, but this seems to me to be a premature optimisation, and that there'd more important performance issues to tackle before you worry about MVC overheads (eg render pipeline, AI algorithms, datastructure traversal, etc). Same thing regarding TDD. It's not often I see games employing test cases, but perhaps this is due to the design issues above (mixed view/business) and the fact that it's difficult to test visual components, or components that rely on probablistic results (eg operate within physics simulations). Perhaps I'm just looking at the wrong source code, but why do we not see more of these 'enterprise' practices employed in game design? Are games really so different in their requirements, or is a people/culture issue (ie game devs come from a different background and thus have different coding habits)?

    Read the article

  • How would you model an objects representing different phases of an entity life cycle?

    - by Ophir Yoktan
    I believe the scenario is common mostly in business workflows - for example: loan management the process starts with a loan application, then there's the loan offer, the 'live' loan, and maybe also finished loans. all these objects are related, and share many fields all these objects have also many fields that are unique for each entity the variety of objects maybe large, and the transformation between the may not be linear (for example: a single loan application may end up as several loans of different types) How would you model this? some options: an entity for each type, each containing the relevant fields (possibly grouping related fields as sub entities) - leads to duplication of data. an entity for each object, but instead of duplicating data, each object has a reference to it's predecessor (the loan doesn't contain the loaner details, but a reference to the loan application) - this causes coupling between the object structure, and the way it was created. if we change the loan application, it shouldn't effect the structure of the loan entity. one large entity, with fields for the whole life cycle - this can create 'mega objects' with many fields. it also doesn't work well when there's a one to many or many to many relation between the phases.

    Read the article

  • Is OOP becoming easier or harder?

    - by tunmise fasipe
    When the concepts of Object Oriented Programming were introduced to programmers years back it looks interesting and programming was cleaner. OOP was like this Stock stock = new Stock(); stock.addItem(item); stock.removeItem(item); That was easier to understand with self-descriptive name. But now OOP, with pattern like Data Transfer Objects (or Value Objects), Repository, Dependency Injection etc, has become more complex. To achieve the above you may have to create several classes (e.g. abstract, factory, DAO etc) and Implement several interfaces Note: I am not against best practices that makes Collaboration, Testing and Integration easier

    Read the article

  • Use decorator and factory together to extend objects?

    - by TheClue
    I'm new to OOP and design pattern. I've a simple app that handles the generation of Tables, Columns (that belong to Table), Rows (that belong to Column) and Values (that belong to Rows). Each of these object can have a collection of Property, which is in turn defined as an enum. They are all interfaces: I used factories to get concrete instances of these products, depending on circumnstances. Now I'm facing the problem of extending these classes. Let's say I need another product called "SpecialTable" which in turn has some special properties or new methods like 'getSomethingSpecial' or an extended set of Property. The only way is to extend/specialize all my elements (ie. build a SpecialTableFactory, a SpecialTable interface and a SpecialTableImpl concrete)? What to do if, let's say, I plan to use standard methods like addRow(Column column, String name) that doesn't need to be specialized? I don't like the idea to inherit factories and interfaces, but since SpecialTable has more methods than Table i guess it cannot share the same factory. Am I wrong? Another question: if I need to define product properties at run time (a Table that is upgraded to SpecialTable at runtime), i guess i should use a decorator. Is it possible (and how) to combine both factory and decorator design? Is it better to use a State or Strategy pattern, instead?

    Read the article

  • How Visual Studio could help to avoid duplicating code?

    - by MegaMind
    I work within a team of developers. Everyone is making their changes without carrying too much if the same thing is already implemented in the codebase. This leads to classes constantly growing and to severe duplication. I want to add line items to class definitions from which a developer could judge what this class has. Would it help? How to do it in Visual Studio? If it wouldn't help, what would be the better alternative to encourage the developers to check if something exists before implementing it?

    Read the article

  • Best practice to collect information from child objects

    - by Markus
    I'm regularly seeing the following pattern: public abstract class BaseItem { BaseItem[] children; // ... public void DoSomethingWithStuff() { StuffCollection collection = new StuffCollection(); foreach(child c : children) c.AddRequiredStuff(collection); // do something with the collection ... } public abstract void AddRequiredStuff(StuffCollection collection); } public class ConcreteItem : BaseItem { // ... public override void AddRequiredStuff(StuffCollection collection) { Stuff stuff; // ... collection.Add(stuff); } } Where I would use something like this, for better information hiding: public abstract class BaseItem { BaseItem[] children; // ... public void DoSomethingWithStuff() { StuffCollection collection = new StuffCollection(); foreach(child c : children) collection.AddRange(c.RequiredStuff()); // do something with the collection ... } public abstract StuffCollection RequiredStuff(); } public class ConcreteItem : BaseItem { // ... public override StuffCollection RequiredStuff() { StuffCollection stuffCollection; Stuff stuff; // ... stuffCollection.Add(stuff); return stuffCollection; } } What are pros and cons of each solution? For me, giving the implementation access to parent's information is some how disconcerting. On the other hand, initializing a new list, just to collect the items is a useless overhead ... What is the better design? How would it change, if DoSomethingWithStuff wouldn't be part of BaseItem but a third class? PS: there might be missing semicolons, or typos; sorry for that! The above code is not meant to be executed, but just for illustration.

    Read the article

  • Flags with deferred use

    - by Trenton Maki
    Let's say I have a system. In this system I have a number of operations I can do but all of these operations have to happen as a batch at a certain time, while calls to activate and deactivate these operations can come in at any time. To implement this, I could use flags like doOperation1 and doOperation2 but this seems like it would become difficult to maintain. Is there a design pattern, or something similar, that addresses this situation?

    Read the article

  • Client-server application design issue

    - by user2547823
    I have a collection of clients on server's side. And there are some objects that need to work with that collection - adding and removing clients, sending message to them, updating connection settings and so on. They should perform these actions simultaneously, so mutex or another synchronization primitive is required. I want to share one instance of collection between these objects, but all of them require access to private fields of collection. I hope that code sample makes it more clear[C++]: class Collection { std::vector< Client* > clients; Mutex mLock; ... } class ClientNotifier { void sendMessage() { mLock.lock(); // loop over clients and send message to each of them } } class ConnectionSettingsUpdater { void changeSettings( const std::string& name ) { mLock.lock(); // if client with this name is inside collection, change its settings } } As you can see, all these classes require direct access to Collection's private fields. Can you give me an advice about how to implement such behaviour correctly, i.e. keeping Collection's interface simple without it knowing about its users?

    Read the article

  • What is a useful pattern to maintaining an object state in a one to many relationship?

    - by ahenderson
    I am looking for a design for my application, here are the players(classes) involved. struct Transform { // Uses a matrix to transform the position. // Also acts acts as the state of a Dialog. Position transform(Position p); //other methods. }; struct Dialog { // There are multiple dialog for the user to transform the output. Transform& t; void ChangeTranformation(){t.rotate(360);} } struct Algorithm { //gives us a position based on an implementation. For example this can return points on a circle or line. Transform& t; Position m_p; Dialog& d; Position GetCurrentPosition(){ return t.transform(m_p);} //other methods. } Properties I need: Each algorithms has one dialog and each dialog can have many algorithms associated with it. When the user selects an algorithm a dialog associated with that algorithm is displayed. If the user selects a different algorithm then re-selects back the state is restored in the dialog. Basically I want a good design pattern to maintain the state of the dialog given that many algorithms use it and they can be switched back and forth. Does anyone have any suggestions? Here is a use case: Dialog1 has a single edit box to control the radius. Algorithm1 generates points on a unit circle. Algorithm2 is the same as Algorithm1. The user has selected Algorithm1 and entered 2 into the edit box. This will generate points on a circle of radius 2. The user then selects Algorithm2 and enters 10 into the edit box of Dialog1. This will generate points on a circle of radius 10. Finally Algorithm1 is selected again. The edit box of Dialog1 should show 2 and points on a circle of radius 2 should be generated.

    Read the article

  • Is it okay to have many Abstract classes in your application?

    - by JoseK
    We initially wanted to implement a Strategy pattern with varying implementations of the methods in a commmon interface. These will get picked up at runtime based on user inputs. As it's turned out, we're having Abstract classes implementing 3 - 5 common methods and only one method left for a varying implementation i.e. the Strategy. Update: By many abstract classes I mean there are 6 different high level functionalities i.e. 6 packages , and each has it's Interface + AbstractImpl + (series of Actual Impl). Is this a bad design in any way? Any negative views in terms of later extensibility - I'm preparing for a code/design review with seniors.

    Read the article

  • Where ORMs blur the lines between code and data, how do you decide what logic should be a stored procedure, and what should be coded?

    - by PhonicUK
    Take the following pseudocode: CreateInvoiceAndCalculate(ItemsAndQuantities, DispatchAddress, User); And say CreateInvoice does the following: Create a new entry in an Invoices table belonging to the specified User to be sent to the given DispatchAddress. Create a new entry in an InvoiceItems table for each of the items in ItemsAndQuantities, storing the Item, the Quantity, and the cost of the item as of now (by looking it up from an Items table) Calculate the total amount of the invoice (ex shipping and taxes) and store it in the new Invoice row. At a glace you wouldn't be able to tell if this was a method in my applications code, or a stored procedure in the database that is being exposed as a function by the ORM. And to some extent it doesn't really matter. Now technically none of this is business logic. You're not making any decisions - just performing a calculation and creating records. However some may argue that because you are performing a calculation that affects the business (the total amount to be invoiced) that this isn't something that should be done in a stored procedure and instead should be in code. So for this specific example - why would it be more appropriate to do one or the other? And where do you draw the line? Or does it even particular matter as long as it's sufficiently well documented?

    Read the article

  • Structuring Access Control In Hierarchical Object Graph

    - by SB2055
    I have a Folder entity that can be Moderated by users. Folders can contain other folders. So I may have a structure like this: Folder 1 Folder 2 Folder 3 Folder 4 I have to decide how to implement Moderation for this entity. I've come up with two options: Option 1 When the user is given moderation privileges to Folder 1, define a moderator relationship between Folder 1 and User 1. No other relationships are added to the db. To determine if the user can moderate Folder 3, I check and see if User 1 is the moderator of any parent folders. This seems to alleviate some of the complexity of handling updates / moved entities / additions under Folder 1 after the relationship has been defined, and reverting the relationship means I only have to deal with one entity. Option 2 When the user is given moderation privileges to Folder 1, define a new relationship between User 1 and Folder 1, and all child entities down to the grandest of grandchildren when the relationship is created, and if it's ever removed, iterate back down the graph to remove the relationship. If I add something under Folder 2 after this relationship has been made, I just copy all Moderators into the new Entity. But when I need to show only the top-level Folders that a user is Moderating, I need to query all folders that have a parent folder that the user does not moderate, as opposed to option 1, where I just query any items that the user is moderating. Thoughts I think it comes down to determining if users will be querying for all parent items more than they'll be querying child items... if so, then option 1 seems better. But I'm not sure. Is either approach better than the other? Why? Or is there another approach that's better than both? I'm using Entity Framework in case it matters.

    Read the article

  • Learning how to design knowledge and data flow [closed]

    - by max
    In designing software, I spend a lot of time deciding how the knowledge (algorithms / business logic) and data should be allocated between different entities; that is, which object should know what. I am asking for advice about books, articles, presentations, classes, or other resources that would help me learn how to do it better. I code primarily in Python, but my question is not really language-specific; even if some of the insights I learn don't work in Python, that's fine. I'll give a couple examples to clarify what I mean. Example 1 I want to perform some computation. As a user, I will need to provide parameters to do the computation. I can have all those parameters sent to the "main" object, which then uses them to create other objects as needed. Or I can create one "main" object, as well as several additional objects; the additional objects would then be sent to the "main" object as parameters. What factors should I consider to make this choice? Example 2 Let's say I have a few objects of type A that can perform a certain computation. The main computation often involves using an object of type B that performs some interim computation. I can either "teach" A instances what exact parameters to pass to B instances (i.e., make B "dumb"); or I can "teach" B instances to figure out what needs to be done when looking at an A instance (i.e., make B "smart"). What should I think about when I'm making this choice?

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >