Search Results

Search found 16054 results on 643 pages for 'reference architecture'.

Page 29/643 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • How to use the unit of work and repository patterns in a service oriented enviroment

    - by A. Karimi
    I've created an application framework using the unit of work and repository patterns for it's data layer. Data consumer layers such as presentation depend on the data layer design. For example a CRUD abstract form has a dependency to a repository (IRepository). This architecture works like a charm in client/server environments (Ex. a WPF application and a SQL Server). But I'm looking for a good pattern to change or reuse this architecture for a service oriented environment. Of course I have some ideas: Idea 1: The "Adapter" design pattern Keep the current architecture and create a new unit of work and repository implementation which can work with a service instead of the ORM. Data layer consumers are loosely coupled to the data layer so it's possible but the problem is about the unit of work; I have to create a context which tracks the objects state at the client side and sends the changes to the server side on calling the "Commit" (Something that I think the RIA has done for Silverlight). Here the diagram: ----------- CLIENT----------- | ------------------ SERVER ---------------------- [ UI ] -> [ UoW/Repository ] ---> [ Web Services ] -> [ UoW/Repository ] -> [DB] Idea 2: Add another layer Add another layer (let say "local services" or "data provider"), then put it between the data layer (unit of work and repository) and the data consumer layers (like UI). Then I have to rewrite the consumer classes (CRUD and other classes which are dependent to IRepository) to depend on another interface. And the diagram: ----------------- CLIENT ------------------ | ------------------- SERVER --------------------- [ UI ] -> [ Local Services/Data Provider ] ---> [ Web Services ] -> [ UoW/Repository ] -> [DB] Please note that I have the local services layer on the current architecture but it doesn't expose the data layer functionality. In another word the UI layer can communicate with both of the data and local services layers whereas the local services layer also uses the data layer. | | | | | | | | ---> | Local Services | ---> | | | UI | | | | Data | | | | | | | ----------------------------> | |

    Read the article

  • Combo/Input LOV displaying non-reference key value

    - by [email protected]
    Its a very common use-case of LOV that we want to diplay a non key value in the LOV but store the key value in the DB. I had to do the same in a sample application I was building. During implementation of this, I realized that there are multiple ways to achieve this.I am going to describe each of these below.Example : Lets take an example of our classic HR schema. I have 2 tables Employee and Department where Dno is the foreign key attribute in Employee that references Department table.I want to create a LOV for Deparment such that the List always displays Dname instead of Dno. However when I update it, it it should update the reference key Dno.To achieve this I had 3 alternative1) Approach 1 :Create a composite VO and add the attributes from Department into Employee using a join.Refer the blog http://andrejusb.blogspot.com/2009/11/defining-lov-on-reference-attribute-in.htmlPositives :1. Easy to implement and use.2. We can use this attribute directly in queries defined on new attribute i.e If i have to display this inside query panel.Negative : We have to create an additional Join on the VO.Ex:SELECT Employees.EMPLOYEE_ID,        Employees.FIRST_NAME,        Employees.LAST_NAME,        Employees.EMAIL,        Employees.PHONE_NUMBER,       Department.Dno,        Department.DnameFROM EMPLOYEES Employees, Department Department WHERE Employees.Dno = Department .Dno2) Approach 2 :

    Read the article

  • WPF: How do I get a reference to a styled window control in code behind?

    - by Brad
    I have a window defined with a style: <Window x:Class="winBorderless" x:Name="winBorderless" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Local="clr-namespace:WindowStyle" Style="{StaticResource Window_Cartesia}" WindowStartupLocation="CenterScreen" BorderThickness="1" BorderBrush="#FF9CAAC1" Margin="5" Title="[Document Title]"> and the style defined in an application level dictionary: <Style x:Key="Window_Cartesia" TargetType="{x:Type Window}"> <Setter Property="WindowStyle" Value="None"/> <Setter Property="AllowsTransparency" Value="True"/> <Setter Property="Background" Value="Transparent"/> <EventSetter Event="Loaded" Handler="Loaded"/> <EventSetter Event="PreviewKeyDown" Handler="Preview_KeyDown"/> <EventSetter Event="MouseMove" Handler="FullScreen_MouseMove"/> <Setter Property="Template"> In code behind I have a reference to the Window instance set: Win = DirectCast(sender, winBorderless) This allows access to the window properties as the EventSetters pass references to the various controls. However, it doesn't provide for access to the controls defined in the style through the window reference as they don't exist there. So, what is the best way to reference a control through code behind that is defined in the style. I'd prefer not to iterate the trees to find them but ya gotta do....

    Read the article

  • C# how to calculate hashcode from an object reference.

    - by Wayne
    Folks, here's a thorny problem for you! A part of the TickZoom system must collect instances of every type of object into a Dictionary< type. It is imperative that their equality and hash code be based on the instance of the object which means reference equality instead of value equality. The challenge is that some of the objects in the system have overridden Equals() and GetHashCode() for use as value equality and their internal values will change over time. That means that their Equals and GetHashCode are useless. How to solve this generically rather than intrusively? So far, We created a struct to wrap each object called ObjectHandle for hashing into the Dictionary. As you see below we implemented Equals() but the problem of how to calculate a hash code remains. public struct ObjectHandle : IEquatable<ObjectHandle>{ public object Object; public bool Equals(ObjectHandle other) { return object.ReferenceEquals(this.Object,other.Object); } } See? There is the method object.ReferenceEquals() which will compare reference equality without regard for any overridden Equals() implementation in the object. Now, how to calculate a matching GetHashCode() by only considering the reference without concern for any overridden GetHashCode() method? Ahh, I hope this give you an interesting puzzle. We're stuck over here. Sincerely, Wayne

    Read the article

  • How is architectural design done in an agile environment?

    - by B?????
    I have read Principles for the Agile Architect, where they defined next principles : Principle #1 The teams that code the system design the system. Principle #2 Build the simplest architecture that can possibly work. Principle #3 When in doubt, code it out. Principle #4 They build it, they test it. Principle #5 The bigger the system, the longer the runway. Principle #6 System architecture is a role collaboration. Principle #7 There is no monopoly on innovation. The paper says that most of the architecture design is done during the coding phase, and only system design before that. That is fine. So, how is the system design done? Using UML? Or a document that defines interfaces and major blocks? Maybe something else?

    Read the article

  • Need to move a debian server from i686 to x86_64 architecture

    - by user64204
    I have a debian server that I need to move from one hosting provider to another. I don't really know how the old server was setup, all I know is that it's running a Ruby on Rails application with a lot of custom libraries installed and that I should prepare myself for a painful migration. Old server: -os: debian 5.0.9 -used disk space: 3.2GB -architecture: i686 New server: -os: debian 5.0.9 -free disk space: 10GB -architecture: x86_64 As you can see the problem is that the servers are running different architectures. Q: Is there anyway I could somehow migrate the old to the new server in a few steps (or am I just dreaming I could) ? I was thinking maybe I could: -get list of packages and gems installed on old server and use for loop to install them all on the new -copy the disk content from old to new server while excluding what is architecture-specific (the problem is that I don't really know what to exclude).

    Read the article

  • Webcast: Best Practices for Speeding Virtual Infrastructure Deployment with Oracle VM

    - by Honglin Su
    We announced Oracle VM Blade Cluster Reference Configuration last month, see the blog. The new Oracle VM blade cluster reference configuration can help reduce the time to deploy virtual infrastructure by up to 98 percent when compared to multi-vendor configurations. Customers and partners have shown lots of interests. Join Oracle's experts to learn the best practices for speeding virtual infrastructure deployment with Oracle VM, register the webcast (1/25/2011) here.   Virtualization has already been widely accepted as a means to increase IT flexibility and help IT services align better with changing business needs. The flexibility of a virtualized IT infrastructure enables new applications to be rapidly deployed, capacity to be easily scaled, and IT resources to be quickly redirected. The net result is that IT can bring greater value to the business, making virtualization an obvious win from a business perspective. However, building a virtualized infrastructure typically requires assembling and integrating multiple components (e.g. servers, storage, network, virtualization, and operating systems). This infrastructure must be deployed and tested before applications can even be installed. It can take weeks or months to plan, architect, configure, troubleshoot, and deploy a virtualized infrastructure. The process is not only time-consuming, but also error-prone, making it hard to achieve a timely and profitable return on investment.  Oracle is the only vendor that can offer a fully integrated virtualization infrastructure with all of the necessary hardware and software components. The Oracle VM blade cluster reference configuration is a single-vendor solution that addresses every layer of the virtualization stack with Oracle hardware and software components, see the figure below. It enables quick and easy deployment of the virtualized infrastructure using components that have been tested together and are all supported together by Oracle. To learn more about Oracle's virtualization offerings, visit http://oracle.com/virtualization.

    Read the article

  • multiple webapps in tomcat -- what is the optimal architecture?

    - by rvdb
    I am maintaining a growing base of mainly Cocoon-2.1-based web applications [http://cocoon.apache.org/2.1/], deployed in a Tomcat servlet container [http://tomcat.apache.org/], and proxied with an Apache http server [http://httpd.apache.org/docs/2.2/]. I am conceptually struggling with the best way to deploy multiple web applications in Tomcat. Since I'm not a Java programmer and we don't have any sysadmin staff I have to figure out myself what is the most sensible way to do this. My setup has evolved through 2 scenarios and I'm considering a third for maximal separation of the distinct webapps. [1] 1 Tomcat instance, 1 Cocoon instance, multiple webapps -tomcat |_ webapps |_ webapp1 |_ webapp2 |_ webapp[n] |_ WEB-INF (with Cocoon libs) This was my first approach: just drop all web applications inside a single Cocoon webapps folder inside a single Tomcat container. This seemed to run fine, I did not encounter any memory issues. However, this poses a maintainability drawback, as some Cocoon components are subject to updates, which often affect the webapp coding. Hence, updating Cocoon becomes unwieldy: since all webapps share the same pool of Cocoon components, updating one of them would require the code in all web applications to be updated simultaneously. In order to isolate the web applications, I moved to the second scenario. [2] 1 Tomcat instance, each webapp in its dedicated Cocoon environment -tomcat |_ webapps |_ webapp1 | |_ WEB-INF (with Cocoon libs) |_ webapp1 | |_ WEB-INF (with Cocoon libs) |_ webapp[n] |_ WEB-INF (with Cocoon libs) This approach separates all webapps into their own Cocoon environment, run inside a single Tomcat container. In theory, this works fine: all webapps can be updated independently. However, this soon results in PermGenSpace errors. It seemed that I could manage the problem by increasing memory allocation for Tomcat, but I realise this isn't a structural solution, and that overloading a single Tomcat in this way is prone to future memory errors. This set me thinking about the third scenario. [3] multiple Tomcat instances, each with a single webapp in its dedicated Cocoon environment -tomcat |_ webapps |_ webapp1 |_ WEB-INF (with Cocoon libs) -tomcat |_ webapps |_ webapp2 |_ WEB-INF (with Cocoon libs) -tomcat |_ webapps |_ webapp[n] |_ WEB-INF (with Cocoon libs) I haven't tried this approach, but am thinking of the $CATALINA_BASE variable. A single Tomcat distribution can be multiply instanciated with different $CATALINA_BASE environments, each pointing to a Cocoon instance with its own webapp. I wonder whether such an approach could avoid the structural memory-related problems of approach [2], or will the same issues apply? On the other hand, this approach would complicate management of the Apache http frontend, as it will require the AJP connectors of the different Tomcat instances to be listening at different ports. Hence, Apache's worker configuration has to be updated and reloaded whenever a new webapp (in its own Tomcat instance) is added. And there seems no way to reload worker.properties without restarting the entire Apache http server. Is there perhaps another / more dynamic way of 'modularizing' multiple Tomcat-served webapps, or can one of these scenarios be refined? Any thoughts, suggestions, advice much appreciated. Ron

    Read the article

  • Communications and Oracle Application Integration Architecture (AIA)

    Dan Byrnes, Oracle Industry Strategy Vice President, explains how Oracle's AIA for Communication delivers the Communications industry's only pre-integrated, open standards suite of applications and technology. Dan will also discuss how customers are leveraging the Oracle Communications Suite to automate their end-to-end business processes.

    Read the article

  • Atom feed validator keeps showing Self reference doesn't match document location

    - by Dino
    I am creating an atom feed, but when I validate it I keep getting: Self reference doesn't match document location and the specific line that is causing the error is: <link rel="self" type="application/atom+xml" href="http://www.example.com/test.rss"/> Please can anyone advise what the error is? Ps. I noticed an up arrow just at the end of that line. (presumably something to do with that bbut not sure)

    Read the article

  • Online Multiplayer Game Architecture [on hold]

    - by Eric
    I am just starting to research online multiplayer game development and I have a high-level architectural question regarding how online multiple games function. I have server-side and client-side programming experience, and I understand how AJAX-esque transfer protocol operates. What I don't understand yet is how online multiple fits into all of that. For example, an online Tetris multiplayer game. Would both players have the entire Tetris game built out on their client-side and then get pushed "moves" from the other player via some AJAX-esque mechanism, in which case each client would have to be constantly listening via JavaScript for inbound "moves" and update the client appropriately? Or would each client build out the aesthetics and run a virtual server per game to which each client connects and thus pull and push commands in real-time via something like web sockets? I apologize if this question is too high-level and general, but I couldn't find anything online that offered this high-level of a perspective on the topic.

    Read the article

  • CPU Architecture and floating-point math

    - by Jo-Herman Haugholt
    I'm trying to wrap my head around some details about how floating point math is performed on the CPU, trying to better understand what data types to use etc. I think I have a fairly good understanding of how integer math is performed. If I've understood correctly, and disregarding SIMD, a 32-bit CPU will generally perform integer math at at least 32-bit precision etc. Is it correct that floating-point math is dependent on the presence of a FPU? And that the FPU on the x86 is 80-bit, so floating point math is performed at this precision unless using SIMD? What about ARM?

    Read the article

  • SOA Suite HealthCare Integration Architecture

    - by Nitesh Jain
    Oracle SOA Suite for HealthCare integration is an integrated, best-of-breed suite that helps HealthCare organizations rapidly design and assemble, deploy and manage, highly agile and adaptable business applications.It  will help healthcare industry to  reduce operating costs and speeds time-to-market by delivering a consistent user interface, management console and monitoring environment, as well as healthcare libraries and templates for healthcare customer projects.Oracle SOA Suite for healthcare integration is fully configurable and extensible, providing a highly flexible platform for collaboration across all healthcare domains.Healthcare message standards support:    Messaging standards - HL7, HIPAA, Custom , X12N    Exchange standards - MLLP (v1.0, v2.0), TCP/IP, File, FTP, SFTP, JMSSimplified dashboards and customized reports helps users to advanced monitoring capabilities that support end-to-end healthcare message tracking.A toolkit for rapid HIPAA 5010 upgrade and compliance provides pre-defined healthcare integration mapping for HIPAA standards that is fully customizable and extensible.MLLP-HA helps easily failover and disaster recovery which makes system running on the long time without any issue.Audit keeps track of all the system changes. Alert and notification (SMS,Email etc) helps user to take the fast action and gives tracking on the real-time.

    Read the article

  • Vue d'ensemble de l'architecture modulaire de Qt 5, un billet de Guillaume Belz

    La sortie de Qt 5 se précise de jour en jour. L'une des principales évolutions de Qt 5 est la réorganisation des différents modules. Certaines fonctionnalités sont séparées dans des modules indépendants, comme le transfert des widgets depuis QtGui vers QtWidget, ou déplacées dans des modules existants, comme l'intégration des fonctionnalités d'OpenGL depuis QtOpenGL vers QtGui. Ce billet de blog présente l'ensemble des modules de Qt 5 et les principaux changement que l'on y trouvera. Les modules de Qt 5

    Read the article

  • UDP Code client server architecture

    - by GameBuilder
    Hi I have developed a game on android.Now I want to play it on wifi or 3G. I have game packets which i want to send it form client(mobile) to server then to another client2(mobile). I don't know how to write code in Java to send the playPackets continuously to server and receive the playPacket continuously from the server to the clients. I guess i have to use two thread one for sending and one for receiving. Can someone help me with the code, or the procedure to write code for it. Thanks in advance.

    Read the article

  • EPM 11.1.2.2 Architecture: Essbase

    - by Marc Schumacher
    Since a lot of components exist to access or administer Essbase, there are also a couple of client tools available. End users typically use the Excel Add-In or SmartView nowadays. While the Excel Add-In talks to the Essbase server directly using various ports, SmartView connects to Essbase through Provider Services using HTTP protocol. The ability to communicate using a single port is one of the major advantages from SmartView over Excel Add-In. If you consider using Excel Add-In going forward, please make sure you are aware of the Statement of Direction for this component. The Administration Services Console, Integration Services Console and Essbase Studio are clients, which are mainly used by Essbase administrators or application designers. While Integration Services and Essbase Studio are used to setup Essbase applications by loading metadata or simply for data loads, Administration Services are utilized for all kind of Essbase administration. All clients are using only one or two ports to talk to their server counterparts, which makes them work through firewalls easily. Although clients for Provider Services (SmartView) and Administration Services (Administration Services Console) are only using a single port to communicate to their backend services, the backend services itself need the Essbase configured port range to talk to the Essbase server. Any communication to repository databases is done using JDBC connections. Essbase Studio and Integration Services are using different technologies to talk to the Essbase server, Integration Services uses CAPI, Essbase Studio uses JAPI. However, both are using the configured port range on the Essbase server to talk to Essbase. Connections to data sources are either based on ODBC (Integration Service, Essbase) or JDBC (Essbase Studio). As for all other components discussed previously, when setting up firewall rules, be aware of the fact that all services may need to talk to the external authentication sources, this is not only needed for Shared Services.

    Read the article

  • My Reference for Amy Lewis

    - by Denise McInerney
    The 2013 election campaign for the PASS Board of Directors is underway. There are seven qualified candidates running this year. They all offer a wealth of experience volunteering for PASS and the SQL Server community. One of these candidates, Amy Lewis, asked me to write a reference for her to include on her candidate application. I have a lot of experience working with Amy and was pleased to provide this reference: I enthusiastically support Amy Lewis as a candidate for the PASS Board of Directors. I have known and worked with Amy in various PASS' volunteer capacities for years, starting when we were both leaders of SIGs (the precursors to the Virtual Chapters.) In that time I have seen Amy grow as a leader, taking on increasing responsibility and developing her leadership skills in the process. From the Program Committee to the BI Virtual Chapter to her local user group's SQL Saturday Amy has demonstrated a capacity to organize and lead volunteers. A successful leader delivers results, and does so in a way that encourages and empowers the people she is working with; Amy embodies this leadership style. As Director for Virtual Chapters I have most recently worked with Amy in her capacity of DW/BI VC Leader. This VC is one of our largest and most active, and Amy's leadership is a key contribution to that success. I was pleased to see that Amy was also thinking about succession and prepared other volunteers to take over the chapter leadership. Amy has shown an understanding of PASS' strategic goals and has focused her volunteer efforts to help us reach those goals. For the past couple of years we have been trying to expand PASS reach and relevance to SQL communities around the world. The VCs are a key vehicle for this expansion. Amy embraced this idea and organized the VC to engage volunteers in Europe & Australia and provide content that could reach SQL professionals in those regions. A second key strategy for PASS is expanding into the data analytics space. Again Amy rose to the occasion helping to shape the program for our first Business Analytics Conference and leveraging the BI VC to promote the event. By all measures I think Amy is prepared to serve on the Board and contribute in a positive way.

    Read the article

  • Updated SOA Documents now available in ITSO Reference Library

    - by Bob Rhubart
    Nine documents within the IT Strategies from Oracle (ITSO) reference library have recently been updated. (Access to the ITSO collection is free to registered Oracle.com members -- and that membership is free.) All nine documents fall within the Service Oriented Architecture section of the ITSO collection, and cover the following topics: SOA Practitioner Guides Creating an SOA Roadmap (PDF, 54 pages, published: February 2012) The secret to successful SOA is to build a roadmap that can be successfully executed. SOA offers an opportunity to adopt an iterative technique to deliver solutions incrementally. This document offers a structured, iterative methodology to help you stay focused on business results, mitigate technology and organizational risk, and deliver successful SOA projects. A Framework for SOA Governance (PDF, 58 pages, published: February 2012) Successful SOA requires a strong governance strategy that designs-in measurement, management, and enforcement procedures. Enterprise SOA adoption introduces new assets, processes, technologies, standards, roles, etc. which require application of appropriate governance policies and procedures. This document offers a framework for defining and building a proper SOA governance model. Determining ROI of SOA through Reuse (PDF, 28 pages, published: February 2012) SOA offers the opportunity to save millions of dollars annually through reuse. Sharing common services intuitively reduces workload, increases developer productivity, and decreases maintenance costs. This document provides an approach for estimating the reuse value of the various software assets contained in a typical portfolio. Identifying and Discovering Services (PDF, 64 pages, published: March 2012) What services should we build? How can we promote the reuse of existing services? A sound approach to answer these questions is a primary measure for the success of a SOA initiative. This document describes a pragmatic approach for collecting the necessary information for identifying proper services and facilitating service reuse. Software Engineering in an SOA Environment (PDF, 66 pages, published: March 2012) Traditional software delivery methods are too narrowly focused and need to be adjusted to enable SOA. This document describes an engineering approach for delivering projects within an SOA environment. It identifies the unique software engineering challenges faced by enterprises adopting SOA and provides a framework to remove the hurdles and improve the efficiency of the SOA initiative. SOA Reference Architectures SOA Foundation (PDF, 70 pages, published: February 2012) This document describes they key tenets for SOA design, development, and execution environments. Topics include: service definition, service layering, service types, the service model, composite applications, invocation patterns, and standards. SOA Infrastructure (PDF, 86 pages, published: February 2012) Properly architected, SOA provides a robust and manageable infrastructure that enables faster solution delivery. This document describes the role of infrastructure and its capabilities. Topics include: logical architecture, deployment views, and Oracle product mapping. SOA White Papers and Data Sheets Oracle's Approach to SOA (white paper) (PDF, 14 pages, published: February 2012) Oracle has developed a pragmatic, holistic approach, based on years of experience with numerous companies to help customers successfully adopt SOA and realize measureable business benefits. This executive datasheet and whitepaper describe Oracle's proven approach to SOA. Oracle's Approach to SOA (data sheet) (PDF, 3 pages, published: March 2012) SOA adoption is complex and success is far from assured. This is why Oracle has developed a pragmatic, holistic approach, based on years of experience with numerous companies, to help customers successfully adopt SOA and realize measurable business benefits. This data sheet provides an executive overview of Oracle's proven approach to SOA.

    Read the article

  • Subsumption architecture vs. perceptual control theory

    - by Yasir G.
    I'm a new person to AI field and I have to research and compare 2 different architectures for a thesis I'm writing. Before you scream (homework thread), I've been reading on these 2 topics only to find that I'm confusing myself more.. let me first start with stating briefly what I know so far. Subsumption is based on the fact that targets of a system are different in sophistication, thus that requires them to be added as layers, each layer can suppress (modify) the command of the layers below it, and there are inhibitors to stop signals from execution lets say. PCT stresses on the fact that there are nodes to handle environmental changes (negative feedback), so the inputs coming from an environment go through a comparator node and then an action is generated by that node, HPCT or (Hierarchical PCT) is based on nesting these cycles inside each other so a small cycle to avoid crashing would be nested in a more sophisticated cycle that targets a certain location for example. My questions, am I getting this the right way? am I missing any critical understanding about these 2 models? also any idea where I can find simplified explanations for each theory (so far been struggling trying to understand the papers from Google scholar :< ) /Y

    Read the article

  • PASS Data Architecture VC presents Neil Hambly on Improve Data Quality & Integrity using Constraints

    On Tuesday June 19th 12PM noon Central, Neil Hambly will discuss "Leveraging the power of constraints to improve both data quality and performance of your databases." What are your servers really trying to tell you? Find out with new SQL Monitor 3.0, an easy-to-use tool built for no-nonsense database professionals.For effortless insights into SQL Server, download a free trial today.

    Read the article

  • UDP Code client server architecture

    - by GameBuilder
    Hi I have developed a game on android.Now I want to play it on wifi or 3G. I have game packets which i want to send it form client(mobile) to server then to another client2(mobile). I don't know how to write code in Java to send the playPackets continuously to server and receive the playPacket continuously from the server to the clients. I guess i have to use two thread one for sending and one for receiving. Can someone help me with the code, or the procedure to write code for it. Thanks in advance.

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >