Search Results

Search found 1581 results on 64 pages for 'compilation'.

Page 3/64 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Java conditional compilation: how to prevent code chunks to be compiled?

    - by khachik
    My project requires Java 1.6 for compilation and running. Now I have a requirement to make it working with Java 1.5 (from the marketing side). I want to replace method body (return type and arguments remain the same) to make it compiling with Java 1.5 without errors. Details: I have an utility class called OS which encapsulates all OS-specific things. It has a method public static void openFile(java.io.File file) throws java.io.IOException { // open the file using java.awt.Desktop ... } to open files like with double-click (start Windows command or open Mac OS X command equivalent). Since it cannot be compiled with Java 1.5, I want to exclude it during compilation and replace by another method which calls run32dll for Windows or open for Mac OS X using Runtime.exec. Question: How can I do that? Can annotations help here? Note: I use ant, and I can make two java files OS4J5.java and OS4J6.java which will contain the OS class with the desired code for Java 1.5 and 1.6 and copy one of them to OS.java before compiling (or an ugly way - replace the content of OS.java conditionally depending on java version) but I don't want to do that, if there is another way. Elaborating more: in C I could use ifdef, ifndef, in Python there is no compilation and I could check a feature using hasattr or something else, in Common Lisp I could use #+feature. Is there something similar for Java? Found this post but it doesn't seem to be helpful. Any help is greatly appreciated. kh.

    Read the article

  • Conditional compilation hackery in C# - is there a way to pull this off?

    - by Chris
    I have an internal API that I would like others to reference in their projects as a compiled DLL. When it's a standalone project that's referenced, I use conditional compilation (#if statements) to switch behavior of a key web service class depending on compilation symbols. The problem is, once an assembly is generated, it appears that it's locked into whatever the compilation symbols were when it was originally compiled - for instance, if this assembly is compiled with DEBUG and is referenced by another project, even if the other project is built as RELEASE, the assembly still acts as if it was in DEBUG as it doesn't need recompilation. That makes sense, just giving some background. Now I'm trying to work around that so I can switch the assembly's behavior by some other means, such as scanning the app/web config file for a switch. The problem is, some of the assembly's code I was switching between are attributes on methods, for example: #if PRODUCTION [SoapDocumentMethodAttribute("https://prodServer/Service_Test", RequestNamespace = "https://prodServer", ResponseNamespace = "https://prodServer")] #else [SoapDocumentMethodAttribute("https://devServer/Service_Test", RequestNamespace = "https://devServer", ResponseNamespace = "https://devServer")] #endif public string Service_Test() { // test service } Though there might be some syntactical sugar that allows me to flip between two attributes of the same type in another fashion, I don't know it. Any ideas? The alternative method would be to reference the entire project instead of the assembly, but I'd rather stick with just referencing the compiled DLL if I can. I'm also completely open to a whole new approach to solve the problem if that's what it takes.

    Read the article

  • ming 0.4.2 compilation errors on Ubuntu 12.04 when installing from source code

    - by gmuhammad
    I am trying to install ming 0.4.2 from source code and it was compilable before on Ubuntu 10.04, but now it' giving following compilation errors when I try to install using command sudo make install (libpng is already installed). /bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o img2swf img2swf.o ../src/libming.la libtool: link: gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o .libs/img2swf img2swf.o ../src/.libs/libming.so gcc -DHAVE_CONFIG_H -I. -I../src -I../src -g -O2 -Wall -DSWF_LITTLE_ENDIAN -MT png2dbl.o -MD -MP -MF .deps/png2dbl.Tpo -c -o png2dbl.o png2dbl.c png2dbl.c: In function ‘readPNG’: png2dbl.c:64:8: warning: ignoring return value of ‘fread’, declared with attribute warn_unused_result [-Wunused-result] mv -f .deps/png2dbl.Tpo .deps/png2dbl.Po /bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o png2dbl png2dbl.o ../src/libming.la libtool: link: gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o .libs/png2dbl png2dbl.o ../src/.libs/libming.so png2dbl.o: In function `readPNG': /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:69: undefined reference to `png_create_read_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:74: undefined reference to `png_create_info_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:82: undefined reference to `png_create_info_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:97: undefined reference to `png_init_io' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:98: undefined reference to `png_set_sig_bytes' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:99: undefined reference to `png_read_info' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:101: undefined reference to `png_get_IHDR' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:127: undefined reference to `png_get_valid' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:156: undefined reference to `png_read_update_info' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:158: undefined reference to `png_get_IHDR' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:162: undefined reference to `png_get_channels' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:187: undefined reference to `png_get_rowbytes' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:194: undefined reference to `png_read_image' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:128: undefined reference to `png_set_expand' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:135: undefined reference to `png_set_strip_16' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:143: undefined reference to `png_set_gray_to_rgb' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:151: undefined reference to `png_set_filler' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:125: undefined reference to `png_set_packing' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:107: undefined reference to `png_get_valid' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:117: undefined reference to `png_get_PLTE' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:78: undefined reference to `png_destroy_read_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:92: undefined reference to `png_destroy_read_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:86: undefined reference to `png_destroy_read_struct' png2dbl.o: In function `writeDBL': /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:278: undefined reference to `floor' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:280: undefined reference to `compress2' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:278: undefined reference to `floor' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:280: undefined reference to `compress2' collect2: ld returned 1 exit status make[1]: *** [png2dbl] Error 1 make[1]: Leaving directory `/home/gmuhammad/Downloads/ming-0.4.2/util' make: *** [install-recursive] Error 1

    Read the article

  • Ubuntu 12.04 patched b43 driver compilation error

    - by Zed
    I tried this How do I install this patched b43 driver? guide to install patched b43 driver on Ubuntu 12.04 with 3.2.0-31-generic kernel but I can't pass compilation phase.Here is what I did: wget http://www.orbit-lab.org/kernel/compat-wireless-3-stable/v3.1/compat-wireless-3.1.1-1.tar.bz2 cd compat-wireless-3.1.1-1/ scripts/driver-select b43 make make -C /lib/modules/3.2.0-31-generic/build M=/home/marco/compat-wireless-3.1.1-1 modules make[1]: Entering directory `/usr/src/linux-headers-3.2.0-31-generic' CC [M] /home/marco/compat-wireless-3.1.1-1/compat/main.o In file included from /home/marco/compat-wireless-3.1.1-1/include/linux/compat-2.6.29.h:5:0, from /home/marco/compat-wireless-3.1.1-1/include/linux/compat-2.6.h:24, from <command-line>:0: include/linux/netdevice.h:1153:5: warning: "IS_ENABLED" is not defined [-Wundef] include/linux/netdevice.h:1153:15: error: missing binary operator before token "(" include/linux/netdevice.h: In function ‘netdev_uses_dsa_tags’: include/linux/netdevice.h:1421:9: error: ‘struct net_device’ has no member named ‘dsa_ptr’ include/linux/netdevice.h:1422:31: error: ‘struct net_device’ has no member named ‘dsa_ptr’ include/linux/netdevice.h: In function ‘netdev_uses_trailer_tags’: include/linux/netdevice.h:1431:9: error: ‘struct net_device’ has no member named ‘dsa_ptr’ include/linux/netdevice.h:1432:35: error: ‘struct net_device’ has no member named ‘dsa_ptr’ make[3]: *** [/home/marco/compat-wireless-3.1.1-1/compat/main.o] Error 1 make[2]: *** [/home/marco/compat-wireless-3.1.1-1/compat] Error 2 make[1]: *** [_module_/home/marco/compat-wireless-3.1.1-1] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.2.0-31-generic' make: *** [modules] Error 2 To fix that error I added #include <linux/kconfig.h> to /usr/src/linux-headers-3.2.0-31-generic/include/linux/netdevice.h but now I'm getting something else make make -C /lib/modules/3.2.0-31-generic/build M=/home/marco/compat-wireless-3.1.1-1 modules make[1]: Entering directory `/usr/src/linux-headers-3.2.0-31-generic' CC [M] /home/marco/compat-wireless-3.1.1-1/compat/main.o LD [M] /home/marco/compat-wireless-3.1.1-1/compat/compat.o CC [M] /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.o In file included from /home/marco/compat-wireless-3.1.1-1/include/linux/bcma/bcma.h:9:0, from /home/marco/compat-wireless-3.1.1-1/drivers/bcma/bcma_private.h:8, from /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:8: /home/marco/compat-wireless-3.1.1-1/include/linux/ssb/ssb.h: In function ‘ssb_driver_register’: /home/marco/compat-wireless-3.1.1-1/include/linux/ssb/ssb.h:236:36: error: ‘THIS_MODULE’ undeclared (first use in this function) /home/marco/compat-wireless-3.1.1-1/include/linux/ssb/ssb.h:236:36: note: each undeclared identifier is reported only once for each function it appears in In file included from /home/marco/compat-wireless-3.1.1-1/drivers/bcma/bcma_private.h:8:0, from /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:8: /home/marco/compat-wireless-3.1.1-1/include/linux/bcma/bcma.h: In function ‘bcma_driver_register’: /home/marco/compat-wireless-3.1.1-1/include/linux/bcma/bcma.h:170:37: error: ‘THIS_MODULE’ undeclared (first use in this function) /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c: At top level: /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:12:20: error: expected declaration specifiers or ‘...’ before string constant /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:13:16: error: expected declaration specifiers or ‘...’ before string constant /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:182:1: warning: data definition has no type or storage class [enabled by default] /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:182:1: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL_GPL’ [-Wimplicit-int] /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:182:1: warning: parameter names (without types) in function declaration [enabled by default] /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:188:1: warning: data definition has no type or storage class [enabled by default] /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:188:1: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL_GPL’ [-Wimplicit-int] /home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.c:188:1: warning: parameter names (without types) in function declaration [enabled by default] make[3]: *** [/home/marco/compat-wireless-3.1.1-1/drivers/bcma/main.o] Error 1 make[2]: *** [/home/marco/compat-wireless-3.1.1-1/drivers/bcma] Error 2 make[1]: *** [_module_/home/marco/compat-wireless-3.1.1-1] Error 2 make[1]: Leaving directory `/usr/src/linux-headers-3.2.0-31-generic' make: *** [modules] Error 2 Any suggestion what to try next?

    Read the article

  • Removing all assemblies from <compilation><assemblies> in ASP.NET 4 web.config

    - by Merritt
    I removed all the 'add' elements in the compilation/assemblies element. So initially in my application's root web.config file: <compilation debug="true" targetFramework="4.0"> <assemblies> <add assembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Web.Routing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.ComponentModel.DataAnnotations, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Web.DynamicData, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Data.Linq, Version=4.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Entity, Version=4.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.Entity, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> </assemblies> </compilation> Now it looks like: <compilation debug="true" targetFramework="4.0"> <assemblies> </assemblies> </compilation> And my application still works. The project file still has all the references I removed, but this section appears to be unused during compilation (inside visual studio). What is going on?

    Read the article

  • IntelliJ with Maven compilation

    - by Mik378
    I have a project that needs Hibernate jars. I added them as dependencies in the pom.xml and Maven compiles my project well. However, in the IDE, all annotations and calls to Hibernate API are marked as unresolved (red). How could I get IntelliJ being able to resolve them ? Is there a way to use Maven when I click on Build Project ? (ctrl+F9) Also, I am confused with the concept of facets within IntelliJ. Do I need them, let's say JPA facets to enable Persistence assistant etc... or there's an option to let Maven take care about ?

    Read the article

  • FFMPEG compilation errors

    - by Nitin Sagar
    First of all i am a newbie to Ubuntu Linux and have been trying to install and compile FFMPEG on an Ubuntu machine... I am trying to compile FFMPEG on an Ubuntu machine, using the following link reference: https://ffmpeg.org/trac/ffmpeg/wiki/UbuntuCompilationGuide I have already install git packages from resource centre whatever it results in search... Whatever i am trying to clone to is showing the below error... and please note that the network is wireless and connected with full bandwidth and i am able to browse through website and not sure why its showing an error as unable to connect and connection timed out.... root@ubuntu:~# cd root@ubuntu:~# git clone --depth 1 git://github.com/mstorsjo/fdk-aac.git Cloning into 'fdk-aac'... fatal: unable to connect to github.com: github.com[0: 207.97.227.239]: errno=Connection timed out Tried these commands as well to install x264 lib: cd git clone --depth 1 git://git.videolan.org/x264 cd x264 I am doing all this as a root user. Any help and comments would be appreciated. Thanks Nitin

    Read the article

  • Samsung Galaxy S2 ROM compilation error?

    - by Bashir
    I'm running Ubuntu 12.04 X64 and have installed all the tools(Toolchain: arm-2010q1 and Samsung Galaxy S2 source as given Here) to compile a ROM. When I run make Command I'm getting this error: kernel/built-in.o: In function `cpufreq_table_show': cpu_pm.c:(.text+0x39b64): undefined reference to `cpufreq_frequency_get_table' kernel/built-in.o: In function `cpufreq_max_limit_store': cpu_pm.c:(.text+0x39cd4): undefined reference to `omap_cpufreq_max_limit' cpu_pm.c:(.text+0x39d04): undefined reference to `omap_cpufreq_max_limit_free' cpu_pm.c:(.text+0x39d24): undefined reference to `omap_cpufreq_max_limit_free' kernel/built-in.o: In function `cpufreq_min_limit_store': cpu_pm.c:(.text+0x39dd4): undefined reference to `omap_cpufreq_min_limit' cpu_pm.c:(.text+0x39e04): undefined reference to `omap_cpufreq_min_limit_free' cpu_pm.c:(.text+0x39e24): undefined reference to `omap_cpufreq_min_limit_free' make: *** [.tmp_vmlinux1] Error 1

    Read the article

  • Compilation problem [closed]

    - by Misery
    I am trying to compile a program called Triangle Mesh Generator. It is an open source code written in ANSI C. I need it to bo a callable lib so I am using a switch (#define) created by it's Author. However I get this error: /usr/lib/gcc/x86_64-linux-gnu/4.6/../../../x86_64-linux-gnu/crt1.o: In function `_start': collect2: ld returned 1 exit status make: *** [triangle] Error 1 I am not sure why such an error occurs. Worth adding is that compiling it as a stand alone program is succesful. I am using GCC on 12.04. The lines quoted above constitute the total output. What I put in the terminal is just make in the proper folder. There are no other errors, warnings, or other messages. Link to the sources I found some additional instructions. I'll get back after reading them :] EDIT: I have found some additional instructions that let me compile it. Thanks for help. I am closing question right now. Regards

    Read the article

  • How to find out exact version of iPhone SDK for conditional compilation?

    - by Jochen
    I'm looking for a macro that specified the exact version of the iPhone SDK used for compilation. This is needed because when compiling with (and only with) SDK 3.0, I need to add some additional code. __IPHONE_OS_VERSION_MIN_REQUIRED is not the right choice here, since it can be set by the user with parameter -mmacosx-version-min. For example, a user can compile with min version -mmacosx-version-min=3.0 in SDK 3.1, so a check for __IPHONE_OS_VERSION_MIN_REQUIRED == 30000 would be true, even if the user is compiling with SDK 3.1. Any help is appreciated. Regards, Jochen

    Read the article

  • Does template class/function specialization improves compilation/linker speed?

    - by Stormenet
    Suppose the following template class is heavily used in a project with mostly int as typename and linker speed is noticeably slower since the introduction of this class. template <typename T> class MyClass { void Print() { std::cout << m_tValue << std::endl;; } T m_tValue; } Will defining a class specialization benefit compilation speed? eg. void MyClass<int>::Print() { std::cout << m_tValue << std::endl; }

    Read the article

  • What types of conditions can be used for conditional compilation in C++?

    - by user1002288
    This is an exam question for C++: Which of the following statements accurately describe the condition that can be used for conditional compilation in C++? A. The condition can depend on the value of environment variables. B. The condition can depend on the value of any const variables. C. The condition can depend on the value of program variables. D. The condition can use the sizeof() operator to make decision about compiler-dependent operations based on the size of standard data type. E. The condition must evaluate to either a 0 or 1 during preprocessing. I think the answer is E. Is this correct?

    Read the article

  • Compilation of Etherpad fails in an OpenVZ VE

    - by ulf
    Hi everyone. I’m almost giving up, this will be my last try: I try to compile Etherpad on my OpenVZ server. It’s running a Debian 5.0 as the host system, in the VE I’ve got Ubuntu 10.04. I installed Etherpad in this VE with the instructions from the official Ubuntu Wiki: https://wiki.ubuntu.com/Etherpad. Everything runs fine until it comes to compilation. After calling bin/build.sh as described in the wiki the first steps are running fine. But then I’m running into a memory error: java.io.IOException: Cannot run program "cp": java.io.IOException: error=12, Cannot allocate memory Well, I understand the error message but don’t see the cause. The command free tells me that there’s plenty memory left in this VE: total used free shared buffers cached Mem: 2415236 1140872 1274364 0 0 0 -/+ buffers/cache: 1140872 1274364 Swap: 0 0 0 Beautiful. But even repeating the compilation process doesn’t bring me any further. Any help would be appreciated.

    Read the article

  • How to get warnings when compiling fx files

    - by jdv-Jan de Vaan
    When I compile DirectX shaders (.fx files), I dont see any compiler warnings unless there was an error in the effect. This happens both when using the offline FXC compiler, as well as calling SlimDx's CompileEffect (which is what we normally do). I could force warnings as errors (/WX), but if you enable that, you get an error that compilation failed, without the warning that caused the problem. So how can I output warnings for shaders that compile properly?

    Read the article

  • ASP.NET - Missing #includes cause compilation errors: Failed to map the path '...'

    - by frankadelic
    I have an ASP.NET application which features some server-side includes. For example: <!--#include virtual="/scripts.inc" --> These files are not present in my ASP.NET website project because my website starts in a virtual directory: /path-to-my-application When I choose Build Web Site, I get this error: Failed to map the path '/scripts.inc' Visual Studio cannot resolve these include files that are defined at the root directory level. They are not visible in the website project. Aside from manually commenting out the #include references, is there any way I can get the website to build? Can I force Visual Studio to ignore those errors and compile the site? Once the website is pushed out to IIS, there is no problem, because all the #include files are in place. NOTE - Web Controls are not an option for this application. Please assume #include files are a requirement. Also, I cannot move the include files since they are used by other applications.

    Read the article

  • What is default javac source mode (assert as identifier compilation)?

    - by waste
    According to Orcale's Java7 assert guide: source mode 1.3 (default) — the compiler accepts programs that use assert as an identifier, but issues warnings. In this mode, programs are not permitted to use the assert statement. source mode 1.4 — the compiler generates an error message if the program uses assert as an identifier. In this mode, programs are permitted to use the assert statement. I wrote such class: package mm; public class ClassTest { public static void main(String[] arg) { int assert = 1; System.out.println(assert); } } It should compile fine if Oracle's info right (1.3 is default source mode). But I got errors like this: $ javac -version javac 1.7.0_04 $ javac -d bin src/mm/* src\mm\ClassTest.java:5: error: as of release 1.4, 'assert' is a keyword, and may not be used as an identifier int assert = 1; ^ (use -source 1.3 or lower to use 'assert' as an identifier) src\mm\ClassTest.java:6: error: as of release 1.4, 'assert' is a keyword, and may not be used as an identifier System.out.println(assert); ^ (use -source 1.3 or lower to use 'assert' as an identifier) 2 errors I added manually -source 1.3 and it issued warnings but compiled fine. It seems that Oracle's information is wrong and 1.3 is not default source mode. Which one is it then?

    Read the article

  • How do I cross-compile my application for Ubuntu 12.04 armhf architecture on a Ubuntu 12.04 i386 host?

    - by Jonathan Cave
    I have a large application I have written. I can successfully compile the application in the following scenarios: in a native compilation for the i386 host running Ubuntu 12.04 natively on a PandaBoard running Ubuntu 12.04 (this takes a long time) using Qemu and a chroot on the host PC for the armhf PandaBoard target (this takes a very long time) I would like to cross-compile the application on the i386 host to run on a target such as the PandaBoard to complete builds in a timely fashion. So far attempts made using the arm-linux-gnueabihf tool chain in the repositories has produced binaries that do not run correctly. At this stage, I have no plans to package the software. What is the recommended way to achieve a successful cross-compile?

    Read the article

  • Comment améliorer le temps de compilation pour C/C++ ? Apple propose un système de modules pour remplacer les en-têtes

    Comment améliorer le temps de compilation pour C/C++ ? Apple propose un système de modules pour remplacer les en-têtes Un des problèmes assez décriés des langages C et C++ est le temps de compilation, qui est un peu plus long. Cela est surtout dû à l'utilisation des en-entêtes (headers). Les développeurs d'Apple viennent de proposer un document assez intéressant qui introduit un système de modules pour C et C++ afin d'améliorer le temps de compilation. À titre d'exemple, Apple cite le minuscule code source de « Hello world » en C : quatre lignes de code seulement. Pourtant, le fichier d'en-tête nécessaire pour sa compilation est 173 fois plus grand que l'application elle-m...

    Read the article

  • Visual Studio macro to read compilation errors and fix implicit conversions automatically in VB.NET

    - by eckesicle
    I am converting a large project in VB.NET that is using Option Strict Off into Option Strict On Naturally I am running into the same compilation error over and over. Strict On does not allow implicit conversion from Object to String/Integer/Double Is it possible to to access the compilation errors with a macro and automatically append .ToString() to the erroneous implicit conversion. Essentially my question is a duplicate off http://stackoverflow.com/questions/2532340/tools-to-convert-option-strict-off-code-into-option-strict-on but that question had no answers. Cheers.

    Read the article

  • GWT Compilation

    - by Zeeshan
    Hi, I am facing problem while GWT compilation. I am using ANT build file in which i run 'build' target. when execution comes to 'gwtc' target the compilation sometimes stop or somtime it compiles successfully. Can anyone please tell me what i am doing wrong ? I am using GWT2.0

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >