Search Results

Search found 2061 results on 83 pages for 'dan brown'.

Page 3/83 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes

    - by John-Brown.Evans
    JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c17_6{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c5_6{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_6{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_6{background-color:#ffffff} .c10_6{color:#1155cc;text-decoration:underline} .c1_6{text-align:center;direction:ltr} .c0_6{line-height:1.0;direction:ltr} .c16_6{color:#666666;font-size:12pt} .c18_6{color:inherit;text-decoration:inherit} .c8_6{background-color:#f3f3f3} .c2_6{direction:ltr} .c14_6{font-size:8pt} .c11_6{font-size:10pt} .c7_6{font-weight:bold} .c12_6{height:0pt} .c3_6{height:11pt} .c13_6{border-collapse:collapse} .c4_6{font-family:"Courier New"} .c9_6{font-style:italic} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue This example leads you through the creation of an Oracle database Advanced Queue and the related WebLogic server objects in order to use AQ JMS in connection with a SOA composite. If you have not already done so, I recommend you look at the previous posts in this series, as they include steps which this example builds upon. The following examples will demonstrate how to write and read from the queue from a SOA process. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we wrote and deployed BPEL composites, which enqueued and dequeued a simple XML payload. AQ JMS allows you to interoperate with database Advanced Queueing via JMS in WebLogic server and therefore take advantage of database features, while maintaining compliance with the JMS architecture. AQ JMS uses the WebLogic JMS Foreign Server framework. A full description of this functionality can be found in the following Oracle documentation Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server 11g Release 1 (10.3.6) Part Number E13738-06 7. Interoperating with Oracle AQ JMS http://docs.oracle.com/cd/E23943_01/web.1111/e13738/aq_jms.htm#CJACBCEJ For easier reference, this sample will use the same names for the objects as in the above document, except for the name of the database user, as it is possible that this user already exists in your database. We will create the following objects Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2. Create a Database User and Advanced Queue The following steps can be executed in the database client of your choice, e.g. JDeveloper or SQL Developer. The examples below use SQL*Plus. Log in to the database as a DBA user, for example SYSTEM or SYS. Create the AQJMSUSER user and grant privileges to enable the user to create AQ objects. Create Database User and Grant AQ Privileges sqlplus system/password as SYSDBA GRANT connect, resource TO aqjmsuser IDENTIFIED BY aqjmsuser; GRANT aq_user_role TO aqjmsuser; GRANT execute ON sys.dbms_aqadm TO aqjmsuser; GRANT execute ON sys.dbms_aq TO aqjmsuser; GRANT execute ON sys.dbms_aqin TO aqjmsuser; GRANT execute ON sys.dbms_aqjms TO aqjmsuser; Create the Queue Table and Advanced Queue and Start the AQ The following commands are executed as the aqjmsuser database user. Create the Queue Table connect aqjmsuser/aqjmsuser; BEGIN dbms_aqadm.create_queue_table ( queue_table = 'myQueueTable', queue_payload_type = 'sys.aq$_jms_text_message', multiple_consumers = false ); END; / Create the AQ BEGIN dbms_aqadm.create_queue ( queue_name = 'userQueue', queue_table = 'myQueueTable' ); END; / Start the AQ BEGIN dbms_aqadm.start_queue ( queue_name = 'userQueue'); END; / The above commands can be executed in a single PL/SQL block, but are shown as separate blocks in this example for ease of reference. You can verify the queue by executing the SQL command SELECT object_name, object_type FROM user_objects; which should display the following objects: OBJECT_NAME OBJECT_TYPE ------------------------------ ------------------- SYS_C0056513 INDEX SYS_LOB0000170822C00041$$ LOB SYS_LOB0000170822C00040$$ LOB SYS_LOB0000170822C00037$$ LOB AQ$_MYQUEUETABLE_T INDEX AQ$_MYQUEUETABLE_I INDEX AQ$_MYQUEUETABLE_E QUEUE AQ$_MYQUEUETABLE_F VIEW AQ$MYQUEUETABLE VIEW MYQUEUETABLE TABLE USERQUEUE QUEUE Similarly, you can view the objects in JDeveloper via a Database Connection to the AQJMSUSER. 3. Configure WebLogic Server and Add JMS Objects All these steps are executed from the WebLogic Server Administration Console. Log in as the webLogic user. Configure a WebLogic Data Source The data source is required for the database connection to the AQ created above. Navigate to domain > Services > Data Sources and press New then Generic Data Source. Use the values:Name: aqjmsuserDataSource JNDI Name: jdbc/aqjmsuserDataSource Database type: Oracle Database Driver: *Oracle’ Driver (Thin XA) for Instance connections; Versions:9.0.1 and later Connection Properties: Enter the connection information to the database containing the AQ created above and enter aqjmsuser for the User Name and Password. Press Test Configuration to verify the connection details and press Next. Target the data source to the soa server. The data source will be displayed in the list. It is a good idea to test the data source at this stage. Click on aqjmsuserDataSource, select Monitoring > Testing > soa_server1 and press Test Data Source. The result is displayed at the top of the page. Configure a JMS System Module The JMS system module is required to host the JMS foreign server for AQ resources. Navigate to Services > Messaging > JMS Modules and select New. Use the values: Name: AqJmsModule (Leave Descriptor File Name and Location in Domain empty.) Target: soa_server1 Click Finish. The other resources will be created in separate steps. The module will be displayed in the list.   Configure a JMS Foreign Server A foreign server is required in order to reference a 3rd-party JMS provider, in this case the database AQ, within a local WebLogic server JNDI tree. Navigate to Services > Messaging > JMS Modules and select (click on) AqJmsModule to configure it. Under Summary of Resources, select New then Foreign Server. Name: AqJmsForeignServer Targets: The foreign server is targeted automatically to soa_server1, based on the JMS module’s target. Press Finish to create the foreign server. The foreign server resource will be listed in the Summary of Resources for the AqJmsModule, but needs additional configuration steps. Click on AqJmsForeignServer and select Configuration > General to complete the configuration: JNDI Initial Context Factory: oracle.jms.AQjmsInitialContextFactory JNDI Connection URL: <empty> JNDI Properties Credential:<empty> Confirm JNDI Properties Credential: <empty> JNDI Properties: datasource=jdbc/aqjmsuserDataSource This is an important property. It is the JNDI name of the data source created above, which points to the AQ schema in the database and must be entered as a name=value pair, as in this example, e.g. datasource=jdbc/aqjmsuserDataSource, including the “datasource=” property name. Default Targeting Enabled: Leave this value checked. Press Save to save the configuration. At this point it is a good idea to verify that the data source was written correctly to the config file. In a terminal window, navigate to $MIDDLEWARE_HOME/user_projects/domains/soa_domain/config/jms  and open the file aqjmsmodule-jms.xml . The foreign server configuration should contain the datasource name-value pair, as follows:   <foreign-server name="AqJmsForeignServer">         <default-targeting-enabled>true</default-targeting-enabled>         <initial-context-factory>oracle.jms.AQjmsInitialContextFactory</initial-context-factory>         <jndi-property>           <key> datasource </key>           <value> jdbc/aqjmsuserDataSource </value>         </jndi-property>   </foreign-server> </weblogic-jms> Configure a JMS Foreign Server Connection Factory When creating the foreign server connection factory, you enter local and remote JNDI names. The name of the connection factory itself and the local JNDI name are arbitrary, but the remote JNDI name must match a specific format, depending on the type of queue or topic to be accessed in the database. This is very important and if the incorrect value is used, the connection to the queue will not be established and the error messages you get will not immediately reflect the cause of the error. The formats required (Remote JNDI names for AQ JMS Connection Factories) are described in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In this example, the remote JNDI name used is   XAQueueConnectionFactory  because it matches the AQ and data source created earlier, i.e. thin with AQ. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories then New.Name: AqJmsForeignServerConnectionFactory Local JNDI Name: AqJmsForeignServerConnectionFactory Note: this local JNDI name is the JNDI name which your client application, e.g. a later BPEL process, will use to access this connection factory. Remote JNDI Name: XAQueueConnectionFactory Press OK to save the configuration. Configure an AQ JMS Foreign Server Destination A foreign server destination maps the JNDI name on the foreign JNDI provider to the respective local JNDI name, allowing the foreign JNDI name to be accessed via the local server. As with the foreign server connection factory, the local JNDI name is arbitrary (but must be unique), but the remote JNDI name must conform to a specific format defined in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In our example, the remote JNDI name is Queues/USERQUEUE , because it references a queue (as opposed to a topic) with the name USERQUEUE. We will name the local JNDI name queue/USERQUEUE, which is a little confusing (note the missing “s” in “queue), but conforms better to the JNDI nomenclature in our SOA server and also allows us to differentiate between the local and remote names for demonstration purposes. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Destinations and select New.Name: AqJmsForeignDestination Local JNDI Name: queue/USERQUEUE Remote JNDI Name:Queues/USERQUEUE After saving the foreign destination configuration, this completes the JMS part of the configuration. We still need to configure the JMS adapter in order to be able to access the queue from a BPEL processt. 4. Create a JMS Adapter Connection Pool in Weblogic Server Create the Connection Pool Access to the AQ JMS queue from a BPEL or other SOA process in our example is done via a JMS adapter. To enable this, the JmsAdapter in WebLogic server needs to be configured to have a connection pool which points to the local connection factory JNDI name which was created earlier. Navigate to Deployments > Next and select (click on) the JmsAdapter. Select Configuration > Outbound Connection Pools and New. Check the radio button for oracle.tip.adapter.jms.IJmsConnectionFactory and press Next. JNDI Name: eis/aqjms/UserQueue Press Finish Expand oracle.tip.adapter.jms.IJmsConnectionFactory and click on eis/aqjms/UserQueue to configure it. The ConnectionFactoryLocation must point to the foreign server’s local connection factory name created earlier. In our example, this is AqJmsForeignServerConnectionFactory . As a reminder, this connection factory is located under JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories and the value needed here is under Local JNDI Name. Enter AqJmsForeignServerConnectionFactory  into the Property Value field for ConnectionFactoryLocation. You must then press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console.Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes. Redeploy the JmsAdapter Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button. On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the AQ JMS queue. You can verify that the JNDI name was created correctly, by navigating to Environment > Servers > soa_server1 and View JNDI Tree. Then scroll down in the JNDI Tree Structure to eis and select aqjms. This concludes the sample. In the following post, I will show you how to create a BPEL process which sends a message to this advanced queue via JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • JMS Step 7 - How to Write to an AQ JMS (Advanced Queueing JMS) Queue from a BPEL Process

    - by John-Brown.Evans
    JMS Step 7 - How to Write to an AQ JMS (Advanced Queueing JMS) Queue from a BPEL Process ol{margin:0;padding:0} .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} .c4_7{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c3_7{vertical-align:top;width:234pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_7{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c16_7{background-color:#ffffff;padding:0pt 0pt 0pt 0pt} .c0_7{height:11pt;direction:ltr} .c9_7{color:#1155cc;text-decoration:underline} .c17_7{color:inherit;text-decoration:inherit} .c5_7{direction:ltr} .c18_7{background-color:#ffff00} .c2_7{background-color:#f3f3f3} .c14_7{height:0pt} .c8_7{text-indent:36pt} .c11_7{text-align:center} .c7_7{font-style:italic} .c1_7{font-family:"Courier New"} .c13_7{line-height:1.0} .c15_7{border-collapse:collapse} .c12_7{font-weight:bold} .c10_7{font-size:8pt} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes This example demonstrates how to write a simple message to an Oracle AQ via the the WebLogic AQ JMS functionality from a BPEL process and a JMS adapter. If you have not yet reviewed the previous posts, please do so first, especially the JMS Step 6 post, as this one references objects created there. 1. Recap and Prerequisites In the previous example, we created an Oracle Advanced Queue (AQ) and some related JMS objects in WebLogic Server to be able to access it via JMS. Here are the objects which were created and their names and JNDI names: Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2 . Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will write a simple XML message to the AQ JMS queue via the JMS adapter, based on the following XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                xmlns="http://www.example.org"                targetNamespace="http://www.example.org"                elementFormDefault="qualified">  <xsd:element name="exampleElement" type="xsd:string">  </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project   JmsAdapterWriteAqJms  and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and select SOA Tier > SOA Project as its type. Name it JmsAdapterWriteAqJms . When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteAqJms too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd  and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the XSD item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Advanced Queueing AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the connection factory created earlier is located. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Produce Operation Parameters Destination Name: Wait for the list to populate. (Only foreign servers are listed here, because Oracle Advanced Queuing was selected earlier, in step 3) .         Select the foreign server destination created earlier, AqJmsForeignDestination (queue) . This will automatically populate the Destination Name field with the name of the foreign destination, queue/USERQUEUE . JNDI Name: The JNDI name to use for the JMS connection. This is the JNDI name of the connection pool created in the WebLogic Server.JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime. In our example, this is the value eis/aqjms/UserQueue Messages URL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement : string . Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow.   This completes the steps at the composite level. 3. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 4. Compile and Deploy the Composite Compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ----  Deployment finished.  ---- in the Deployment frame, if the deployment was successful. 5. Test the Composite Execute a Test Instance In a browser, log in to the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation. Navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite) and click on  JmsAdapterWriteAqJms [1.0] , then press the Test button. Enter any string into the text input field, for example “Test message from JmsAdapterWriteAqJms” then press Test Web Service. If the instance is successful, you should see the same text you entered in the Response payload frame. Monitor the Advanced Queue The test message will be written to the advanced queue created at the top of this sample. To confirm it, log in to the database as AQJMSUSER and query the MYQUEUETABLE database table. For example, from a shell window with SQL*Plus sqlplus aqjmsuser/aqjmsuser SQL> SELECT user_data FROM myqueuetable; which will display the message contents, for example Similarly, you can use the JDeveloper Database Navigator to view the contents. Use a database connection to the AQJMSUSER and in the navigator, expand Queues Tables and select MYQUEUETABLE. Select the Data tab and scroll to the USER_DATA column to view its contents. This concludes this example. The following post will be the last one in this series. In it, we will learn how to read the message we just wrote using a BPEL process and AQ JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • confusion about installing/using git; how to undo

    - by dan
    I'm very new to ubuntu so I'm sure this is a dumb question. I wanted to install some source code that was on git. Don't really know what that means, I've never used git before, but I figured it was time to learn so I first installed git. Next I tried to clone the git directory of the software I want to install. I got a message saying "the authenticity of IP:IP:IP:IP can't be established". I went ahead and ended up with another message saying warning such and such will be added to known hosts. I went ahead and it said something about hanging up on the connection. After searching the internet for awhile I realized I didn't need git to install the software but now I have it installed and have added some host to some file or another. I'm concerned I've created some security issues I need to fix. I know this is stupid but can anyone help me undo what I've done, or better understand what I've done. Did adding a git project open up my system? Beyond that can anyone tell me how git works. Everything I've found assumes I know stuff that I don't yet. Thanks. Dan

    Read the article

  • JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue

    - by John-Brown.Evans
    JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue ol{margin:0;padding:0} .c11_4{vertical-align:top;width:129.8pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c9_4{vertical-align:top;width:207pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt}.c14{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c17_4{vertical-align:top;width:129.8pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c7_4{vertical-align:top;width:130pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c19_4{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c22_4{background-color:#ffffff} .c20_4{list-style-type:disc;margin:0;padding:0} .c6_4{font-size:8pt;font-family:"Courier New"} .c24_4{color:inherit;text-decoration:inherit} .c23_4{color:#1155cc;text-decoration:underline} .c0_4{height:11pt;direction:ltr} .c10_4{font-size:10pt;font-family:"Courier New"} .c3_4{padding-left:0pt;margin-left:36pt} .c18_4{font-size:8pt} .c8_4{text-align:center} .c12_4{background-color:#ffff00} .c2_4{font-weight:bold} .c21_4{background-color:#00ff00} .c4_4{line-height:1.0} .c1_4{direction:ltr} .c15_4{background-color:#f3f3f3} .c13_4{font-family:"Courier New"} .c5_4{font-style:italic} .c16_4{border-collapse:collapse} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:bold;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:0pt} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue In this example we will create a BPEL process which will write (enqueue) a message to a JMS queue using a JMS adapter. The JMS adapter will enqueue the full XML payload to the queue. This sample will use the following WebLogic Server objects. The first two, the Connection Factory and JMS Queue, were created as part of the first blog post in this series, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g. If you haven't created those objects yet, please see that post for details on how to do so. The Connection Pool will be created as part of this example. Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue 1. Verify Connection Factory and JMS Queue As mentioned above, this example uses a WLS Connection Factory called TestConnectionFactory and a JMS queue TestJMSQueue. As these are prerequisites for this example, let us verify they exist. Log in to the WebLogic Server Administration Console. Select Services > JMS Modules > TestJMSModule You should see the following objects: If not, or if the TestJMSModule is missing, please see the abovementioned article and create these objects before continuing. 2. Create a JMS Adapter Connection Pool in WebLogic Server The BPEL process we are about to create uses a JMS adapter to write to the JMS queue. The JMS adapter is deployed to the WebLogic server and needs to be configured to include a connection pool which references the connection factory associated with the JMS queue. In the WebLogic Server Console Go to Deployments > Next and select (click on) the JmsAdapter Select Configuration > Outbound Connection Pools and expand oracle.tip.adapter.jms.IJmsConnectionFactory. This will display the list of connections configured for this adapter. For example, eis/aqjms/Queue, eis/aqjms/Topic etc. These JNDI names are actually quite confusing. We are expecting to configure a connection pool here, but the names refer to queues and topics. One would expect these to be called *ConnectionPool or *_CF or similar, but to conform to this nomenclature, we will call our entry eis/wls/TestQueue . This JNDI name is also the name we will use later, when creating a BPEL process to access this JMS queue! Select New, check the oracle.tip.adapter.jms.IJmsConnectionFactory check box and Next. Enter JNDI Name: eis/wls/TestQueue for the connection instance, then press Finish. Expand oracle.tip.adapter.jms.IJmsConnectionFactory again and select (click on) eis/wls/TestQueue The ConnectionFactoryLocation must point to the JNDI name of the connection factory associated with the JMS queue you will be writing to. In our example, this is the connection factory called TestConnectionFactory, with the JNDI name jms/TestConnectionFactory.( As a reminder, this connection factory is contained in the JMS Module called TestJMSModule, under Services > Messaging > JMS Modules > TestJMSModule which we verified at the beginning of this document. )Enter jms/TestConnectionFactory  into the Property Value field for Connection Factory Location. After entering it, you must press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console. Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes as can be seen in the following screen shot: The next step is to redeploy the JmsAdapter.Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the JMS queue. To summarize: we have created a JMS adapter connection pool connector with the JNDI name jms/TestConnectionFactory. This is the JNDI name to be accessed by a process such as a BPEL process, when using the JMS adapter to access the previously created JMS queue with the JNDI name jms/TestJMSQueue. In the following step, we will set up a BPEL process to use this JMS adapter to write to the JMS queue. 3. Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will use the connection name jbevans-lx-PS5, as that is the name of the connection pointing to my SOA PS5 installation. When using a JMS adapter from within a BPEL process, there are various configuration options, such as the operation type (consume message, produce message etc.), delivery mode and message type. One of these options is the choice of the format of the JMS message payload. This can be structured around an existing XSD, in which case the full XML element and tags are passed, or it can be opaque, meaning that the payload is sent as-is to the JMS adapter. In the case of an XSD-based message, the payload can simply be copied to the input variable of the JMS adapter. In the case of an opaque message, the JMS adapter’s input variable is of type base64binary. So the payload needs to be converted to base64 binary first. I will go into this in more detail in a later blog entry. This sample will pass a simple message to the adapter, based on the following simple XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org" targetNamespace="http://www.example.org" elementFormDefault="qualified" <xsd:element name="exampleElement" type="xsd:string"> </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project JmsAdapterWriteWithXsd and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterWriteSchema. When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteSchema too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the xsd item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Weblogic JMS AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the above JMS queue and connection factory were created. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. This example uses a connection called jbevans-lx-PS5. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created earlier. JNDI Name: The JNDI name to use for the JMS connection. This is probably the most important step in this exercise and the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) MessagesURL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string. Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow. This completes the steps at the composite level. 4. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterWriteSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. ( For some reason, while I was testing this, the JMS Adapter moved back to the left-hand swim lane again after this step. There is no harm in leaving it there, but I find it easier to follow if it is in the right-hand lane, because I kind-of think of the message coming in on the left and being routed through the right. But you can follow your personal preference here.) Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 5. Compile and Deploy the Composite We won’t go into too much detail on how to compile and deploy. In JDeveloper, compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ---- Deployment finished. ---- in the Deployment frame, if the deployment was successful. 6. Test the Composite This is the exciting part. Open two tabs in your browser and log in to the WebLogic Administration Console in one tab and the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation in the other. We will use the Console to monitor the messages being written to the queue and the EM to execute the composite. In the Console, go to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. Note the number of messages under Messages Current. In the EM, go to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterWriteSchema [1.0], then press the Test button. Under Input Arguments, enter any string into the text input field for the payload, for example Test Message then press Test Web Service. If the instance is successful you should see the same text in the Response message, “Test Message”. In the Console, refresh the Monitoring screen to confirm a new message has been written to the queue. Check the checkbox and press Show Messages. Click on the newest message and view its contents. They should include the full XML of the entered payload. 7. Troubleshooting If you get an exception similar to the following at runtime ... BINDING.JCA-12510 JCA Resource Adapter location error. Unable to locate the JCA Resource Adapter via .jca binding file element The JCA Binding Component is unable to startup the Resource Adapter specified in the element: location='eis/wls/QueueTest'. The reason for this is most likely that either 1) the Resource Adapters RAR file has not been deployed successfully to the WebLogic Application server or 2) the '' element in weblogic-ra.xml has not been set to eis/wls/QueueTest. In the last case you will have to add a new WebLogic JCA connection factory (deploy a RAR). Please correct this and then restart the Application Server at oracle.integration.platform.blocks.adapter.fw.AdapterBindingException. createJndiLookupException(AdapterBindingException.java:130) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.createJCAConnectionFactory (JCAConnectionManager.java:1387) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.newPoolObject (JCAConnectionManager.java:1285) ... then this is very likely due to an incorrect JNDI name entered for the JMS Connection in the JMS Adapter Wizard. Recheck those steps. The error message prints the name of the JNDI name used. In this example, it was incorrectly entered as eis/wls/QueueTest instead of eis/wls/TestQueue. This concludes this example. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue

    - by John-Brown.Evans
    JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c12_5{vertical-align:top;width:468pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c8_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 0pt 5pt} .c10_5{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c14_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c21_5{background-color:#ffffff} .c18_5{color:#1155cc;text-decoration:underline} .c16_5{color:#666666;font-size:12pt} .c5_5{background-color:#f3f3f3;font-weight:bold} .c19_5{color:inherit;text-decoration:inherit} .c3_5{height:11pt;text-align:center} .c11_5{font-weight:bold} .c20_5{background-color:#00ff00} .c6_5{font-style:italic} .c4_5{height:11pt} .c17_5{background-color:#ffff00} .c0_5{direction:ltr} .c7_5{font-family:"Courier New"} .c2_5{border-collapse:collapse} .c1_5{line-height:1.0} .c13_5{background-color:#f3f3f3} .c15_5{height:0pt} .c9_5{text-align:center} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} Welcome to another post in the series of blogs which demonstrates how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue Today we will create a BPEL process which will read (dequeue) the message from the JMS queue, which we enqueued in the last example. The JMS adapter will dequeue the full XML payload from the queue. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we designed and deployed a BPEL composite, which took a simple XML payload and enqueued it to the JMS queue. In this example, we will read that same message from the queue, using a JMS adapter and a BPEL process. As many of the configuration steps required to read from that queue were done in the previous samples, this one will concentrate on the new steps. A summary of the required objects is listed below. To find out how to create them please see the previous samples. They also include instructions on how to verify the objects are set up correctly. WebLogic Server Objects Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue Schema XSD File The following XSD file is used for the message format. It was created in the previous example and will be copied to the new process. stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                 xmlns="http://www.example.org"                 targetNamespace="http://www.example.org"                 elementFormDefault="qualified">   <xsd:element name="exampleElement" type="xsd:string">   </xsd:element> </xsd:schema> JMS Message After executing the previous samples, the following XML message should be in the JMS queue located at jms/TestJMSQueue: <?xml version="1.0" encoding="UTF-8" ?><exampleElement xmlns="http://www.example.org">Test Message</exampleElement> JDeveloper Connection You will need a valid Application Server Connection in JDeveloper pointing to the SOA server which the process will be deployed to. 2. Create a BPEL Composite with a JMS Adapter Partner Link In the previous example, we created a composite in JDeveloper called JmsAdapterWriteSchema. In this one, we will create a new composite called JmsAdapterReadSchema. There are probably many ways of incorporating a JMS adapter into a SOA composite for incoming messages. One way is design the process in such a way that the adapter polls for new messages and when it dequeues one, initiates a SOA or BPEL instance. This is possibly the most common use case. Other use cases include mid-flow adapters, which are activated from within the BPEL process. In this example we will use a polling adapter, because it is the most simple to set up and demonstrate. But it has one disadvantage as a demonstrative model. When a polling adapter is active, it will dequeue all messages as soon as they reach the queue. This makes it difficult to monitor messages we are writing to the queue, because they will disappear from the queue as soon as they have been enqueued. To work around this, we will shut down the composite after deploying it and restart it as required. (Another solution for this would be to pause the consumption for the queue and resume consumption again if needed. This can be done in the WLS console JMS-Modules -> queue -> Control -> Consumption -> Pause/Resume.) We will model the composite as a one-way incoming process. Usually, a BPEL process will do something useful with the message after receiving it, such as passing it to a database or file adapter, a human workflow or external web service. But we only want to demonstrate how to dequeue a JMS message using BPEL and a JMS adapter, so we won’t complicate the design with further activities. However, we do want to be able to verify that we have read the message correctly, so the BPEL process will include a small piece of embedded java code, which will print the message to standard output, so we can view it in the SOA server’s log file. Alternatively, you can view the instance in the Enterprise Manager and verify the message. The following steps are all executed in JDeveloper. Create the project in the same JDeveloper application used for the previous examples or create a new one. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterReadSchema. When prompted for the composite type, choose Empty Composite. Create a JMS Adapter Partner Link In the composite editor, drag a JMS adapter over from the Component Palette to the left-hand swim lane, under Exposed Services. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterRead Oracle Enterprise Messaging Service (OEMS): Oracle WebLogic JMS AppServer Connection: Use an application server connection pointing to the WebLogic server on which the JMS queue and connection factory mentioned under Prerequisites above are located. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Consume Message Operation Name: Consume_message Consume Operation Parameters Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created in a previous example. JNDI Name: The JNDI name to use for the JMS connection. As in the previous example, this is probably the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) Messages/Message SchemaURL: We will use the XSD file created during the previous example, in the JmsAdapterWriteSchema project to define the format for the incoming message payload and, at the same time, demonstrate how to import an existing XSD file into a JDeveloper project. Press the magnifying glass icon to search for schema files. In the Type Chooser, press the Import Schema File button. Select the magnifying glass next to URL to search for schema files. Navigate to the location of the JmsAdapterWriteSchema project > xsd and select the stringPayload.xsd file. Check the “Copy to Project” checkbox, press OK and confirm the following Localize Files popup. Now that the XSD file has been copied to the local project, it can be selected from the project’s schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string . Press Next and Finish, which will complete the JMS Adapter configuration.Save the project. Create a BPEL Component Drag a BPEL Process from the Component Palette (Service Components) to the Components section of the composite designer. Name it JmsAdapterReadSchema and select Template: Define Service Later and press OK. Wire the JMS Adapter to the BPEL Component Now wire the JMS adapter to the BPEL process, by dragging the arrow from the adapter to the BPEL process. A Transaction Properties popup will be displayed. Set the delivery mode to async.persist. This completes the steps at the composite level. 3 . Complete the BPEL Process Design Invoke the BPEL Flow via the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterReadSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterRead partner link in the left-hand swim lane. Drag a Receive activity onto the BPEL flow diagram, then drag a wire (left-hand yellow arrow) from it to the JMS adapter. This will open the Receive activity editor. Auto-generate the variable by pressing the green “+” button and check the “Create Instance” checkbox. This will result in a BPEL instance being created when a new JMS message is received. At this point it would actually be OK to compile and deploy the composite and it would pick up any messages from the JMS queue. In fact, you can do that to test it, if you like. But it is very rudimentary and would not be doing anything useful with the message. Also, you could only verify the actual message payload by looking at the instance’s flow in the Enterprise Manager. There are various other possibilities; we could pass the message to another web service, write it to a file using a file adapter or to a database via a database adapter etc. But these will all introduce unnecessary complications to our sample. So, to keep it simple, we will add a small piece of Java code to the BPEL process which will write the payload to standard output. This will be written to the server’s log file, which will be easy to monitor. Add a Java Embedding Activity First get the full name of the process’s input variable, as this will be needed for the Java code. Go to the Structure pane and expand Variables > Process > Variables. Then expand the input variable, for example, "Receive1_Consume_Message_InputVariable > body > ns2:exampleElement”, and note variable’s name and path, if they are different from this one. Drag a Java Embedding activity from the Component Palette (Oracle Extensions) to the BPEL flow, after the Receive activity, then open it to edit. Delete the example code and replace it with the following, replacing the variable parts with those in your sample, if necessary.: System.out.println("JmsAdapterReadSchema process picked up a message"); oracle.xml.parser.v2.XMLElement inputPayload =    (oracle.xml.parser.v2.XMLElement)getVariableData(                           "Receive1_Consume_Message_InputVariable",                           "body",                           "/ns2:exampleElement");   String inputString = inputPayload.getFirstChild().getNodeValue(); System.out.println("Input String is " + inputPayload.getFirstChild().getNodeValue()); Tip. If you are not sure of the exact syntax of the input variable, create an Assign activity in the BPEL process and copy the variable to another, temporary one. Then check the syntax created by the BPEL designer. This completes the BPEL process design in JDeveloper. Save, compile and deploy the process to the SOA server. 3. Test the Composite Shut Down the JmsAdapterReadSchema Composite After deploying the JmsAdapterReadSchema composite to the SOA server it is automatically activated. If there are already any messages in the queue, the adapter will begin polling them. To ease the testing process, we will deactivate the process first Log in to the Enterprise Manager (Fusion Middleware Control) and navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterReadSchema [1.0] . Press the Shut Down button to disable the composite and confirm the following popup. Monitor Messages in the JMS Queue In a separate browser window, log in to the WebLogic Server Console and navigate to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. This is the location of the JMS queue we created in an earlier sample (see the prerequisites section of this sample). Check whether there are any messages already in the queue. If so, you can dequeue them using the QueueReceive Java program created in an earlier sample. This will ensure that the queue is empty and doesn’t contain any messages in the wrong format, which would cause the JmsAdapterReadSchema to fail. Send a Test Message In the Enterprise Manager, navigate to the JmsAdapterWriteSchema created earlier, press Test and send a test message, for example “Message from JmsAdapterWriteSchema”. Confirm that the message was written correctly to the queue by verifying it via the queue monitor in the WLS Console. Monitor the SOA Server’s Output A program deployed on the SOA server will write its standard output to the terminal window in which the server was started, unless this has been redirected to somewhere else, for example to a file. If it has not been redirected, go to the terminal session in which the server was started, otherwise open and monitor the file to which it was redirected. Re-Enable the JmsAdapterReadSchema Composite In the Enterprise Manager, navigate to the JmsAdapterReadSchema composite again and press Start Up to re-enable it. This should cause the JMS adapter to dequeue the test message and the following output should be written to the server’s standard output: JmsAdapterReadSchema process picked up a message. Input String is Message from JmsAdapterWriteSchema Note that you can also monitor the payload received by the process, by navigating to the the JmsAdapterReadSchema’s Instances tab in the Enterprise Manager. Then select the latest instance and view the flow of the BPEL component. The Receive activity will contain and display the dequeued message too. 4 . Troubleshooting This sample demonstrates how to dequeue an XML JMS message using a BPEL process and no additional functionality. For example, it doesn’t contain any error handling. Therefore, any errors in the payload will result in exceptions being written to the log file or standard output. If you get any errors related to the payload, such as Message handle error ... ORABPEL-09500 ... XPath expression failed to execute. An error occurs while processing the XPath expression; the expression is /ns2:exampleElement. ... etc. check that the variable used in the Java embedding part of the process was entered correctly. Possibly follow the tip mentioned in previous section. If this doesn’t help, you can delete the Java embedding part and simply verify the message via the flow diagram in the Enterprise Manager. Or use a different method, such as writing it to a file via a file adapter. This concludes this example. In the next post, we will begin with an AQ JMS example, which uses JMS to write to an Advanced Queue stored in the database. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • SAS: add comment to lst ouput file

    - by Dan
    In SAS, How do I add comments to my .LST output file. Like adding a comment saying "This is the output for tbl_TestMacro:" right before doing a proc print? So that my output file will read: This is the output for tbl_TestMacro: Obs field1 field2 1 6 8 2 6 9 3 7 0 4 7 1 Instead of just: Obs field1 field2 1 6 8 2 6 9 3 7 0 4 7 1 Thanks, Dan

    Read the article

  • Access Router after logging into VPN

    - by Dan
    I access my linksys router through its webserver (192.168.1.1 into a web browser), but can no longer access it once I log into my work vpn. Is there a way I can still get at my router and change the settings? Or do I first have to disconnect from the VPN first? Thanks, Dan

    Read the article

  • Google Chrome Interferes with Copy and Paste in Excel

    - by Dan
    I have got a following problem: Copy (Ctrl+C) and Paste (Ctrl+V) function in Excel 2010 does not work (or acts weirdly) is I have Google Chrome opened at the same time. This issue is Excel-specific meaning that in Word or Powerpoint copy/paste works fine. It is also Chrome- and CoolNovo-specific as the copy/paste in Excel does not interfere with other internet browsers. Any suggestions? Cheers, Dan

    Read the article

  • SSL certificate: suggestions for choosing the CA [closed]

    - by dan
    Hi all. I am running a public web application. I would like to get a SSL certificate from a CA. Have you got any suggestions or a CA that you are happy of using (or the opposite)? What are the things I should be careful about? My requirements are: _ it must be recognized by all browsers (desktop and mobile) _ it must be not too expensive (up to 60$/year) Can I get something good with that money? Thanks, Dan

    Read the article

  • GNU-Screen still has only old groups for my username.

    - by Dan
    I was recently added to a group on the unix server. My active screen session has not been update to the new groups: $groups A B C D $screen -r $groups A B C Without closing my screen session is there a way for me to use my new privileges in the screen session? Or if not, is there at least a way I can save all of the different directories each of the tabs are on? Thanks, Dan

    Read the article

  • How to access Active Directory using C++Builder?

    - by Gus Brown
    I need to get a list of user names from Active Directory using C++Builder. I know I could shell out to batch file and run the csvde.exe command but surely there is a nicer way using a library or something, right? Are there any C++ libraries? (hopefully with examples?) Many thanks! -Dan

    Read the article

  • How to make a hyperlink through GridView column value?

    - by avirk
    I want here that user can see the answer under the question by selecting its heading. The question should be a hyperlink to redirect me on the page Answer.aspx. I mean to say that when user take cursor over the How to do this? it should redirect the user to the desired page. How can I do that? here is the code <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="SqlDataSource1" Width="100%" BorderStyle="None"> <Columns> <asp:BoundField DataField="QuestionHEAD" HeaderText="Question" SortExpression="QuestionHEAD" HeaderStyle-ForeColor="white" HeaderStyle-BackColor="Brown"/> <asp:BoundField DataField="Problem" HeaderText="Problem" SortExpression="Problem" HeaderStyle-ForeColor="white" HeaderStyle-BackColor="Brown" /> <asp:BoundField DataField="Forum" HeaderText="Forum" SortExpression="Forum" HeaderStyle-ForeColor="white" HeaderStyle-BackColor="Brown"/> <asp:BoundField DataField="Username" HeaderText="Asked By" SortExpression="Username" HeaderStyle-ForeColor="white" HeaderStyle-BackColor="Brown" /> </Columns> </asp:GridView> <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$ ConnectionStrings:connectionstring %>" SelectCommand="SELECT [QuestionHEAD], [Problem], [Forum], [Username] FROM [Question]"> </asp:SqlDataSource>

    Read the article

  • Oracle Australia Supports MS Sydney to Gong Ride by Chris Sainsbury

    - by user769227
    What is the Sydney to Gong Ride? The Gong Ride is a one of a kind fundraising event. You can pedal 90 km from Sydney to Wollongong on any day of the year but it's only on the first Sunday of November that you'll experience the camaraderie, fellowship, unity, safey, scenery and sense of achievement for pedalling in support of people living with MS. Well done to the 22 members of the Oracle Sydney to Gong ride on Sunday 6 November. For many, this was the first time riding over distance – officially a 90km event, by GPS about 84km. The event started in Sydney Park, Newtown. We left in a few separate groups between 6.30 and 7.30am – and finished with times between 2 hours 45 mins and 6 hours. With 10,000 riders there was a lot of congestion at the start but that soon thinned out as we left Sydney. It was a great spring day for the event but at 34 degrees it was getting pretty warm once we left the shade of the Royal National Park and carried on over the Sea Cliff bridge and down the coast road towards Wollongong. Unfortunately Dan managed to get himself a facial scrub when someone clipped his front wheel on the descent from Bald Hill lookout. No major incidents thankfully and Dan soldiered on. Most importantly everyone had a good time (even Dan) and we raised $5,800 for Multiple Sclerosis Australia. In total more than $3.7m was raised for this good cause.

    Read the article

  • Why is an Add method required for { } initialization?

    - by Dan Tao
    To use initialization syntax like this: var contacts = new ContactList { { "Dan", "dan[email protected]" }, { "Eric", "[email protected]" } }; ...my understanding is that my ContactList type would need to define an Add method that takes two string parameters: public void Add(string name, string email); What's a bit confusing to me about this is that the { } initializer syntax seems most useful when creating read-only or fixed-size collections. After all it is meant to mimic the initialization syntax for an array, right? (OK, so arrays are not read-only; but they are fixed size.) And naturally it can only be used when the collection's contents are known (at least the number of elements) at compile-time. So it would almost seem that the main requirement for using this collection initializer syntax (having an Add method and therefore a mutable collection) is at odds with the typical case in which it would be most useful. I'm sure I haven't put as much thought into this matter as the C# design team; it just seems that there could have been different rules for this syntax that would have meshed better with its typical usage scenarios. Am I way off base here? Is the desire to use the { } syntax to initialize fixed-size collections not as common as I think? What other factors might have influenced the formulation of the requirements for this syntax that I'm simply not thinking of?

    Read the article

  • Smart Help with UPK

    - by [email protected]
    A short lesson on how awesome Smart Help is. In Oracle UPK speak, there are targeted and non-targeted applications. Targeted applications are Oracle EBS, PeopleSoft, Siebel, JD Edwards, SAP and a few others. Non-targeted applications are either custom built or other third party off the shelf applications. For most targeted applications you'll see better object recognition (during recording) and also Help Integration for that application. Help integration means that someone technical modifies the help link in your application to call up the UPK content that has been created. If you have seen this presented before, this is usually where the term context sensitive help is mentioned and the Do It mode shows off. The fact that UPK builds context sensitive help for its targeted applications automatically is awesome enough, but there is a whole new world out there and it's called "custom and\or third party apps." For the purposes of Smart Help and this discussion, I'm talking about the browser based applications. How does UPK support these apps? It used to be that you had to have your vendor try to modify the Help link to point to UPK or if your company had control over the applications configuration menus, then you get someone on your team to modify this for you. But as you start to use UPK for more than one, two or three applications, the administration of this starts to become daunting. Multiple administrators, multiple player packages, multiple call points, multiple break points, help doesn't always work the same way for every application (picture the black white infomercial with an IT person trying to configure a bunch of wires or something funny like that). Introducing Smart Help! (in color of course, new IT person, probably wearing a blue shirt and smiling). Smart help eliminates the need to configure multiple browser help integration points, and adds a icon to the users browser itself. You're using your browser to read this now correct? Look up at the icons on your browser, you have the home link icon, print icon, maybe an RSS feed icon. Smart Help is icon that gets added to the users browser just like the others. When you click it, it first recognizes which application you're in and then finds the UPK created material for you and returns the best possible match, for (hold on to your seat now) both targeted and non-targeted applications (browser based applications). But wait, there's more. It does this automatically! You don't have to do anything! All you have to do is record content, UPK and Smart Help do the rest! This technology is not new. There are customers out there today that use this for as many as six applications! The real hero here is SMART MATCH. Smart match is the technology that's used to determine which application you're in and where you are when you click on Smart Help. We'll save that for a one-on-one conversation. Like most other awesome features of UPK, it ships with the product. All you have to do is turn it on. To learn more about Smart Help, Smart Match, Targeted and Non-Targeted applications, contact your UPK Sales Consultant or me directly at dan[email protected]

    Read the article

  • How to "interleave" two DataTables.

    - by Brent
    Take these two lists: List 1 Red Green Blue List 2 Brown Red Blue Purple Orange I'm looking for a way to combine these lists together to produce: List 3 Brown Red Green Blue Purple Orange I think the basic rules are these: 1) Insert on top the list any row falling before the first common row (e.g., Brown comes before the first common row, Red); 2) Insert items between rows if both lists have two items (e.g., List 1 inserts Green between Red and Blue); and 3) Insert rows on the bottom if the there's no "between-ness" found in 2 (e.g., List 2 inserts Orange at the bottom). The lists are stored in a DataTable. I'm guessing I'll have to switch between them while iterating, but I'm having a hard time figuring out a method of combining the rows. Thanks for any help. --Brent

    Read the article

  • php - regex- preg_replace - space after line-break!

    - by aSeptik
    Hi all guys! still on regex! i want learn it but i'm still crashing the head into my keybord! ;-) ok very trivial for you, i'm sure! Assuming i have this sting, the \s is where the space actualy is... \n where linebreak is.. DESCRIPTION: The quick brown fox jum`\s\n` `\s`ps over the lazy dog now, what i need to do is remove All the space after the A-Z: that i have achieved by this regex: /\s+(?![A-Z:])/m that produce this result DESCRIPTION: The quick brown fox jum ps over the lazy dog as you can see it leave the space between jum and ps how to have a result like this? DESCRIPTION: The quick brown fox jumps over the lazy dog thank's for the time!

    Read the article

  • Selective coloring on dynamic TextBlock content in WPF

    - by user326579
    For selective coloring of static content the following suggestion works fine : http://stackoverflow.com/questions/2435880/is-it-possible-to-seletively-color-a-wrapping-textblock-in-silverlight-wpf However my content will be generated at runtime. For ex. if the Content generated is : "A Quick Brown Fox" Then I need they string "Brown" to be in color Brown and "Fox" to be in color Red The Keyword-Color list is fixed and available to me at runtime. I have looked at the Advanced TextFormatting page on MSDN, but it is too complicated for me, also the sample in there does not compile :( I am looking at creating a custom control which can do this for me. Let me know if anyone has any idea regarding how to go about this. Thanks in advance.

    Read the article

  • Need help with testdisk output

    - by dan
    I had (note the past tense) an ubuntu 12.04 system with separate partitions for the base and /home directories. It started acting wonky, so I decided to do a reinstall with 12.10, intending just to do a reinstall to the base partition. After several seconds, I realize that the installer was repartitioning the drive and reinstalling, so I pulled the power cord. I'm now trying to recover as much as I can with testdisk, but it seems that testdisk is finding 100 unique partitions when I run it - they mostly tend to be HFS+ or solaris /home (which I think is just an ext4; I've never had solaris on the machine). I've pasted an abbreviated version of the testdisk output below (first ~100 lines, and then ~100 lines from the middle of the output). Is there a way to combine or recreate the partitions and then data recovery, or some other way maximize what I can recover (ideally as much of the file system as possible)? I really only care about what was in the /home directory - I'd rather not use photorec since I don't have another 2 TB HD lying around to recover to. Thanks, Dan Mon Dec 10 06:03:00 2012 Command line: TestDisk TestDisk 6.13, Data Recovery Utility, November 2011 Christophe GRENIER <[email protected]> http://www.cgsecurity.org OS: Linux, kernel 3.2.34-std312-amd64 (#2 SMP Sat Nov 17 08:06:32 UTC 2012) x86_64 Compiler: GCC 4.4 Compilation date: 2012-11-27T22:44:52 ext2fs lib: 1.42.6, ntfs lib: libntfs-3g, reiserfs lib: 0.3.1-rc8, ewf lib: none /dev/sda: LBA, HPA, LBA48, DCO support /dev/sda: size 3907029168 sectors /dev/sda: user_max 3907029168 sectors /dev/sda: native_max 3907029168 sectors Warning: can't get size for Disk /dev/mapper/control - 0 B - CHS 1 1 1, sector size=512 /dev/sr0 is not an ATA disk Hard disk list Disk /dev/sda - 2000 GB / 1863 GiB - CHS 243201 255 63, sector size=512 - WDC WD20EARS-00J2GB0, S/N:WD-WCAYY0075071, FW:80.00A80 Disk /dev/sdb - 1013 MB / 967 MiB - CHS 1014 32 61, sector size=512 - Generic Flash Disk, FW:8.07 Disk /dev/sr0 - 367 MB / 350 MiB - CHS 179470 1 1 (RO), sector size=2048 - PLDS DVD+/-RW DH-16AAS, FW:JD12 Partition table type (auto): Intel Disk /dev/sda - 2000 GB / 1863 GiB - WDC WD20EARS-00J2GB0 Partition table type: EFI GPT Analyse Disk /dev/sda - 2000 GB / 1863 GiB - CHS 243201 255 63 Current partition structure: Bad GPT partition, invalid signature. search_part() Disk /dev/sda - 2000 GB / 1863 GiB - CHS 243201 255 63 recover_EXT2: s_block_group_nr=0/14880, s_mnt_count=5/4294967295, s_blocks_per_group=32768, s_inodes_per_group=8192 recover_EXT2: s_blocksize=4096 recover_EXT2: s_blocks_count 487593984 recover_EXT2: part_size 3900751872 MS Data 2048 3900753919 3900751872 EXT4 Large file Sparse superblock, 1997 GB / 1860 GiB Linux Swap 3900755968 3907028975 6273008 SWAP2 version 1, 3211 MB / 3062 MiB Results P MS Data 2048 3900753919 3900751872 EXT4 Large file Sparse superblock, 1997 GB / 1860 GiB P Linux Swap 3900755968 3907028975 6273008 SWAP2 version 1, 3211 MB / 3062 MiB interface_write() 1 P MS Data 2048 3900753919 3900751872 2 P Linux Swap 3900755968 3907028975 6273008 search_part() Disk /dev/sda - 2000 GB / 1863 GiB - CHS 243201 255 63 recover_EXT2: s_block_group_nr=0/14880, s_mnt_count=5/4294967295, s_blocks_per_group=32768, s_inodes_per_group=8192 recover_EXT2: s_blocksize=4096 recover_EXT2: s_blocks_count 487593984 recover_EXT2: part_size 3900751872 MS Data 2048 3900753919 3900751872 EXT4 Large file Sparse superblock, 1997 GB / 1860 GiB block_group_nr 1 recover_EXT2: "e2fsck -b 32768 -B 4096 device" may be needed recover_EXT2: s_block_group_nr=1/14880, s_mnt_count=0/4294967295, s_blocks_per_group=32768, s_inodes_per_group=8192 recover_EXT2: s_blocksize=4096 recover_EXT2: s_blocks_count 487593984 recover_EXT2: part_size 3900751872 MS Data 2046 3900753917 3900751872 EXT4 Large file Sparse superblock Backup superblock, 1997 GB / 1860 GiB block_group_nr 1 recover_EXT2: "e2fsck -b 32768 -B 4096 device" may be needed recover_EXT2: s_block_group_nr=1/14880, s_mnt_count=0/4294967295, s_blocks_per_group=32768, s_inodes_per_group=8192 recover_EXT2: s_blocksize=4096 recover_EXT2: s_blocks_count 487593984 recover_EXT2: part_size 3900751872 MS Data 2048 3900753919 3900751872 EXT4 Large file Sparse superblock Backup superblock, 1997 GB / 1860 GiB block_group_nr 1 recover_EXT2: "e2fsck -b 32768 -B 4096 device" may be needed recover_EXT2: s_block_group_nr=1/14584, s_mnt_count=0/27, s_blocks_per_group=32768, s_inodes_per_group=8192 recover_EXT2: s_blocksize=4096 recover_EXT2: s_blocks_count 477915164 recover_EXT2: part_size 3823321312 MS Data 4094 3823325405 3823321312 EXT4 Large file Sparse superblock Backup superblock, 1957 GB / 1823 GiB block_group_nr 1 ....snip...... MS Data 2046 3900753917 3900751872 EXT4 Large file Sparse superblock Backup superblock, 1997 GB / 1860 GiB MS Data 2048 3900753919 3900751872 EXT4 Large file Sparse superblock, 1997 GB / 1860 GiB MS Data 4094 3823325405 3823321312 EXT4 Large file Sparse superblock Backup superblock, 1957 GB / 1823 GiB MS Data 4096 3823325407 3823321312 EXT4 Large file Sparse superblock Backup superblock, 1957 GB / 1823 GiB MS Data 7028840 7033383 4544 FAT12, 2326 KB / 2272 KiB Mac HFS 67856948 67862179 5232 HFS+ found using backup sector!, 2678 KB / 2616 KiB Mac HFS 67862176 67867407 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 67862244 67867475 5232 HFS+ found using backup sector!, 2678 KB / 2616 KiB Mac HFS 67867404 67872635 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 67867472 67872703 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 67872700 67877931 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 67937834 67948067 10234 [EasyInstall_OSX] HFS found using backup sector!, 5239 KB / 5117 KiB Mac HFS 67938012 67948155 10144 HFS+ found using backup sector!, 5193 KB / 5072 KiB Mac HFS 67948064 67958297 10234 [EasyInstall_OSX] HFS, 5239 KB / 5117 KiB Mac HFS 67948070 67958303 10234 [EasyInstall_OSX] HFS found using backup sector!, 5239 KB / 5117 KiB Mac HFS 67948152 67958295 10144 HFS+, 5193 KB / 5072 KiB Mac HFS 67958292 67968435 10144 HFS+, 5193 KB / 5072 KiB Mac HFS 67958300 67968533 10234 [EasyInstall_OSX] HFS, 5239 KB / 5117 KiB Mac HFS 67992596 67997827 5232 HFS+ found using backup sector!, 2678 KB / 2616 KiB Mac HFS 67997824 68003055 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 67997892 68003123 5232 HFS+ found using backup sector!, 2678 KB / 2616 KiB Mac HFS 68003052 68008283 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 68003120 68008351 5232 HFS+, 2678 KB / 2616 KiB Mac HFS 68008348 68013579 5232 HFS+, 2678 KB / 2616 KiB Solaris /home 84429840 123499141 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84429952 123499253 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84493136 123562437 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84493248 123562549 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84566088 123635389 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84566200 123635501 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84571232 123640533 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84571344 123640645 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84659952 123729253 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84660064 123729365 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84690504 123759805 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84690616 123759917 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84700424 123769725 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84700536 123769837 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84797720 123867021 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84797832 123867133 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84812544 123881845 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84812656 123881957 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84824552 123893853 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84824664 123893965 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84847528 123916829 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84847640 123916941 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84886840 123956141 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84886952 123956253 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84945488 124014789 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84945600 124014901 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84957992 124027293 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84958104 124027405 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84962240 124031541 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84962352 124031653 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84977168 124046469 39069302 UFS1, 20 GB / 18 GiB Solaris /home 84977280 124046581 39069302 UFS1, 20 GB / 18 GiB MS Data 174395467 178483851 4088385 ..... snip (it keeps going on for quite a while)

    Read the article

  • Oracle BI and XS Energy Drinks – Don’t Miss the Amway Presentation!

    - by Maria Forney
    Amway is a global leader in the direct sales industry with $10.9B in annual sales in more than 100 countries and territories. The company has implemented a global BI framework that provides accurate, consistent, and timely insights to support global, regional and local analytical research, business planning, performance measurement and assessment. Oracle BI EE is used by 1500 employees across Amway sales, marketing, finance, and supply chain business units as well as Amway affiliates in Europe, Russia, South Africa, Japan, Australia, Latin America, Malaysia, Vietnam, and Indonesia. Last week, I spoke with Lead Data Analyst with Amway Global Sales, Dan Arganbright, and IT Manager with Amway BI Competency Center, Mike Olson, about their upcoming presentation at Oracle OpenWorld in San Francisco. Scheduled during a prime speaking slot on Monday, October 1 at 12:15pm in Moscone West, 2007, Dan and Mike will discuss their experience building Amway’s Distributor Consulting solution, powered by Oracle BI EE. You can find more information here. As background, Amway offers people an opportunity to own their own businesses and consumers exclusive products in health and wellness, beauty and home care.  The Amway internal Sales organization is charged with consulting leadership-level Distributors to help them with data insights and ultimately grow their business. Until recently, this was a resource-intense process of gathering and formatting data. In some markets, it took over 40 hours to collect the data and produce the analysis needed for one consultation session. Amway began its global BI journey in 2006 and since then the company has migrated from having multiple technology providers and integration points to an integrated strategic vendor approach. Today, the company has standardized on Oracle technology for BI.  Amway has achieved cost savings through the retirement of redundant technology platforms. In addition, Mike’s organization has led the charge to align disparate BI organizations into a BI Competency Center.  The following diagram highlights the simplicity of the standardized architecture of Amway today. Dubbed Distributor Consulting, Amway has developed a BI solution using the Oracle technology stack to help Distributor leaders grow their businesses. The Distributor Consulting solution provides over 40 metrics for Sales staff to provide data-driven insights on the Distributors and organizations they support.  Using Oracle BI EE, Exadata, and Oracle Data Integrator, Amway provides customized and personalized business intelligence, and the Oracle BI EE dashboards were developed by the Amway Sales organization, which demonstrates business empowerment of the technology. Amway is also leveraging the power of BI to drive business growth in all of its markets.  A new set of Distributor Segmentation metrics are enabling a better understanding of distributor behaviors. A Global Scorecard that Amway developed provides key metrics at a market and global level for executive-level discussions. Product Analysis teams can now highlight repeat purchase rates, product penetration and the success of CRM campaigns. In the words of Dan and Mike, the addition of Exadata 11 months ago has been “a game changer.”  Amway has been able to dramatically reduce complexity, improve performance and increase business productivity and cost savings. For example, the number of indexes on the global data warehouse was reduced from more than 1,000 to less than 20.  Pulling data for the highest level distributors or the largest markets in the company now can be done in minutes instead of hours.  As a result, IT has shifted from performance tuning and keeping the system operational to higher-value business-focused activities. •       “The distributors that have been introduced to the BI reports have found them extremely helpful. Because they have never had this kind of information before, when they were presented with the reports, they wanted to take action immediately!”  -     Sales Development Manager in Latin America Without giving away more, the Amway case study presentation will be one of the unique customer sessions at OpenWorld this year. Speakers Dan Arganbright and Mike Olson have planned an interactive and entertaining session on Monday October 1 at 12:15pm in Moscone West, 2007. I’ll see you there!

    Read the article

  • Oracle BI and XS Energy Drinks – Don’t Miss the Amway Presentation!

    - by Michelle Kimihira
    By Maria Forney Amway is a global leader in the direct sales industry with $10.9B in annual sales in more than 100 countries and territories. The company has implemented a global BI framework that provides accurate, consistent, and timely insights to support global, regional and local analytical research, business planning, performance measurement and assessment. Oracle BI EE is used by 1500 employees across Amway sales, marketing, finance, and supply chain business units as well as Amway affiliates in Europe, Russia, South Africa, Japan, Australia, Latin America, Malaysia, Vietnam, and Indonesia. Last week, I spoke with Lead Data Analyst with Amway Global Sales, Dan Arganbright, and IT Manager with Amway BI Competency Center, Mike Olson, about their upcoming presentation at Oracle OpenWorld in San Francisco. Scheduled during a prime speaking slot on Monday, October 1 at 12:15pm in Moscone West, 2007, Dan and Mike will discuss their experience building Amway’s Distributor Consulting solution, powered by Oracle BI EE. You can find more information here. As background, Amway offers people an opportunity to own their own businesses and consumers exclusive products in health and wellness, beauty and home care.  The Amway internal Sales organization is charged with consulting leadership-level Distributors to help them with data insights and ultimately grow their business. Until recently, this was a resource-intense process of gathering and formatting data. In some markets, it took over 40 hours to collect the data and produce the analysis needed for one consultation session. Amway began its global BI journey in 2006 and since then the company has migrated from having multiple technology providers and integration points to an integrated strategic vendor approach. Today, the company has standardized on Oracle technology for BI.  Amway has achieved cost savings through the retirement of redundant technology platforms. In addition, Mike’s organization has led the charge to align disparate BI organizations into a BI Competency Center.  The following diagram highlights the simplicity of the standardized architecture of Amway today. Dubbed Distributor Consulting, Amway has developed a BI solution using the Oracle technology stack to help Distributor leaders grow their businesses. The Distributor Consulting solution provides over 40 metrics for Sales staff to provide data-driven insights on the Distributors and organizations they support.  Using Oracle BI EE, Exadata, and Oracle Data Integrator, Amway provides customized and personalized business intelligence, and the Oracle BI EE dashboards were developed by the Amway Sales organization, which demonstrates business empowerment of the technology. Amway is also leveraging the power of BI to drive business growth in all of its markets.  A new set of Distributor Segmentation metrics are enabling a better understanding of distributor behaviors. A Global Scorecard that Amway developed provides key metrics at a market and global level for executive-level discussions. Product Analysis teams can now highlight repeat purchase rates, product penetration and the success of CRM campaigns. In the words of Dan and Mike, the addition of Exadata 11 months ago has been “a game changer.”  Amway has been able to dramatically reduce complexity, improve performance and increase business productivity and cost savings. For example, the number of indexes on the global data warehouse was reduced from more than 1,000 to less than 20.  Pulling data for the highest level distributors or the largest markets in the company now can be done in minutes instead of hours.  As a result, IT has shifted from performance tuning and keeping the system operational to higher-value business-focused activities. •       “The distributors that have been introduced to the BI reports have found them extremely helpful. Because they have never had this kind of information before, when they were presented with the reports, they wanted to take action immediately!”  -     Sales Development Manager in Latin America Without giving away more, the Amway case study presentation will be one of the unique customer sessions at OpenWorld this year. Speakers Dan Arganbright and Mike Olson have planned an interactive and entertaining session on Monday October 1 at 12:15pm in Moscone West, 2007. I’ll see you there!

    Read the article

  • Registry in Windows7 - appears in powershell, but not regedit

    - by Dan
    Hi. My software is writing to the registry (HKCU:\software\classes\clsid\). The key that I'm writing isn't appearing when I go to that location in regedit. However, if I navigate to that location in powershell, then I see ONLY the entry I added, and not the other class ids that I see in regedit. It's almost as if there's two versions of the registry. I'm using Windows7 (moved recently from XP, so there's probably some weird virtualization stuff going on which I've not learnt yet! ;-)). Thanks for any help with this, Dan.

    Read the article

  • HTTP Range request rejected

    - by Dan
    I am trying to understand why my production environment might be disallowing HTTP RANGE requests. I have a pool of W2K8x64/IIS7 servers behind a pair of Netscaler 9000s. I compose the following request in Fiddler: http://myorigin.example.com/file.flv User-Agent: Fiddler Host: myorigin.example.com Range: bytes=40000-60000 The response looks like: HTTP/1.1 200 OK Cache-Control: public Content-Type: video/x-flv Expires: Thu, 24 Jun 2010 18:23:53 GMT Last-Modified: Sat, 11 Apr 2009 00:16:14 GMT Accept-Ranges: none ETag: f9d5c718-e148-4225-9ca6-d1f91a2a3c08-_633749805744270000 Server: Microsoft-IIS/7.0 Edge-Control: max-age=2592000 X-Powered-By: ASP.NET Date: Tue, 25 May 2010 18:23:53 GMT Content-Length: 443668 "Accept-Ranges: none" tells me that the range request was rejected, but I am not sure where/why as IIS7 accepts Range by default. Could the 'scalers be shooting it down? Thanks, Dan

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >