Search Results

Search found 220 results on 9 pages for 'enumerable'.

Page 3/9 | < Previous Page | 1 2 3 4 5 6 7 8 9  | Next Page >

  • Why do I get null objects in a many-to-many bag?

    - by Jim Geurts
    I have a bag defined for a many-to-many list: <class name="Author" table="Authors"> <id name="Id" column="AuthorId"> <generator class="identity" /> </id> <property name="Name" /> <bag name="Books" table="Author_Book_Map" where="IsDeleted=0" fetch="join"> <key column="AuthorId" /> <many-to-many class="Book" column="BookId" where="IsDeleted=0" /> </bag> </class> If I return all author objects using something like the following, I will get what initially appeared to be duplicate Author records: Session.Query<Author>().List<Author>() The extra author objects are created when an author is mapped to Book objects that have IsDeleted = 1 and IsDeleted = 0. Rather than creating one Author object with an enumerable that contains only the books with IsDeleted = 0, it will create two author objects. The first author object has a Books enumerable that contains books with IsDeleted = 0. The second author object will contain an enumerable of null book objects. Similarly, if an object only has one book map, and that map points to a book with IsDeleted = 1, then an author object is returned with a Books collection having one null object. I'm thinking part of the problem stems from the map table objects linking to rows that satisfy the where condition on the bag object but do not meet the many-to-many where condition. This is happening with NHibernate version 3.0.0.4980. Is this a configuration issue or something else?

    Read the article

  • WPF Binding Path=/ not working?

    - by Mark
    I've set up my DataContext like this: <Window.DataContext> <c:DownloadManager /> </Window.DataContext> Where DownloadManager is Enumerable<DownloadItem>. Then I set my DataGrid like this: <DataGrid Name="dataGrid1" ItemsSource="{Binding Path=/}" ... So that it should list all the DownloadItems, right? So I should be able to set my columns like: <DataGridTextColumn Binding="{Binding Path=Uri, Mode=OneWay}" Where Uri is a property of the DownloadItem. But it doesn't seem to like this. In the visual property editor, it doesn't recognize Uri is a valid property, so I'm guessing I'm doing something wrong. It was working before, when I had the data grid binding to Values, but then I took that enumerable out of the DownloadManager and made itself enumerable. How do I fix this? PS: By "doesn't work" I mean it doesn't list any items. I've added some to the constructor of the DM, so it shouldn't be empty.

    Read the article

  • Imperative vs. LINQ Performance on WP7

    - by Bil Simser
    Jesse Liberty had a nice post presenting the concepts around imperative, LINQ and fluent programming to populate a listbox. Check out the post as it’s a great example of some foundational things every .NET programmer should know. I was more interested in what the IL code that would be generated from imperative vs. LINQ was like and what the performance numbers are and how they differ. The code at the instruction level is interesting but not surprising. The imperative example with it’s creating lists and loops weighs in at about 60 instructions. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void ImperativeMethod() cil managed 2: { 3: .maxstack 3 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.List`1<int32> inLoop, 7: [2] int32 n, 8: [3] class [mscorlib]System.Collections.Generic.IEnumerator`1<int32> CS$5$0000, 9: [4] bool CS$4$0001) 10: L_0000: nop 11: L_0001: ldc.i4.1 12: L_0002: ldc.i4.s 50 13: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 14: L_0009: stloc.0 15: L_000a: newobj instance void [mscorlib]System.Collections.Generic.List`1<int32>::.ctor() 16: L_000f: stloc.1 17: L_0010: nop 18: L_0011: ldloc.0 19: L_0012: callvirt instance class [mscorlib]System.Collections.Generic.IEnumerator`1<!0> [mscorlib]System.Collections.Generic.IEnumerable`1<int32>::GetEnumerator() 20: L_0017: stloc.3 21: L_0018: br.s L_003a 22: L_001a: ldloc.3 23: L_001b: callvirt instance !0 [mscorlib]System.Collections.Generic.IEnumerator`1<int32>::get_Current() 24: L_0020: stloc.2 25: L_0021: nop 26: L_0022: ldloc.2 27: L_0023: ldc.i4.5 28: L_0024: cgt 29: L_0026: ldc.i4.0 30: L_0027: ceq 31: L_0029: stloc.s CS$4$0001 32: L_002b: ldloc.s CS$4$0001 33: L_002d: brtrue.s L_0039 34: L_002f: ldloc.1 35: L_0030: ldloc.2 36: L_0031: ldloc.2 37: L_0032: mul 38: L_0033: callvirt instance void [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0) 39: L_0038: nop 40: L_0039: nop 41: L_003a: ldloc.3 42: L_003b: callvirt instance bool [mscorlib]System.Collections.IEnumerator::MoveNext() 43: L_0040: stloc.s CS$4$0001 44: L_0042: ldloc.s CS$4$0001 45: L_0044: brtrue.s L_001a 46: L_0046: leave.s L_005a 47: L_0048: ldloc.3 48: L_0049: ldnull 49: L_004a: ceq 50: L_004c: stloc.s CS$4$0001 51: L_004e: ldloc.s CS$4$0001 52: L_0050: brtrue.s L_0059 53: L_0052: ldloc.3 54: L_0053: callvirt instance void [mscorlib]System.IDisposable::Dispose() 55: L_0058: nop 56: L_0059: endfinally 57: L_005a: nop 58: L_005b: ldarg.0 59: L_005c: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB1 60: L_0061: ldloc.1 61: L_0062: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 62: L_0067: nop 63: L_0068: ret 64: .try L_0018 to L_0048 finally handler L_0048 to L_005a 65: } 66:   67: Compare that to the IL generated for the LINQ version which has about half of the instructions and just gets the job done, no fluff. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void LINQMethod() cil managed 2: { 3: .maxstack 4 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> queryResult) 7: L_0000: nop 8: L_0001: ldc.i4.1 9: L_0002: ldc.i4.s 50 10: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 11: L_0009: stloc.0 12: L_000a: ldloc.0 13: L_000b: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 14: L_0010: brtrue.s L_0025 15: L_0012: ldnull 16: L_0013: ldftn bool PerfTest.MainPage::<LINQProgramming>b__4(int32) 17: L_0019: newobj instance void [System.Core]System.Func`2<int32, bool>::.ctor(object, native int) 18: L_001e: stsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 19: L_0023: br.s L_0025 20: L_0025: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 21: L_002a: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0> [System.Core]System.Linq.Enumerable::Where<int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, bool>) 22: L_002f: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 23: L_0034: brtrue.s L_0049 24: L_0036: ldnull 25: L_0037: ldftn int32 PerfTest.MainPage::<LINQProgramming>b__5(int32) 26: L_003d: newobj instance void [System.Core]System.Func`2<int32, int32>::.ctor(object, native int) 27: L_0042: stsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 28: L_0047: br.s L_0049 29: L_0049: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 30: L_004e: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!1> [System.Core]System.Linq.Enumerable::Select<int32, int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, !!1>) 31: L_0053: stloc.1 32: L_0054: ldarg.0 33: L_0055: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB2 34: L_005a: ldloc.1 35: L_005b: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 36: L_0060: nop 37: L_0061: ret 38: } Again, not surprising here but a good indicator that you should consider using LINQ where possible. In fact if you have ReSharper installed you’ll see a squiggly (technical term) in the imperative code that says “Hey Dude, I can convert this to LINQ if you want to be c00L!” (or something like that, it’s the 2010 geek version of Clippy). What about the fluent version? As Jon correctly pointed out in the comments, when you compare the IL for the LINQ code and the IL for the fluent code it’s the same. LINQ and the fluent interface are just syntactical sugar so you decide what you’re most comfortable with. At the end of the day they’re both the same. Now onto the numbers. Again I expected the imperative version to be better performing than the LINQ version (before I saw the IL that was generated). Call it womanly instinct. A gut feel. Whatever. Some of the numbers are interesting though. For Jesse’s example of 50 items, the numbers were interesting. The imperative sample clocked in at 7ms while the LINQ version completed in 4. As the number of items went up, the elapsed time didn’t necessarily climb exponentially. At 500 items they were pretty much the same and the results were similar up to about 50,000 items. After that I tried 500,000 items where the gap widened but not by much (2.2 seconds for imperative, 2.3 for LINQ). It wasn’t until I tried 5,000,000 items where things were noticeable. Imperative filled the list in 20 seconds while LINQ took 8 seconds longer (although personally I wouldn’t suggest you put 5 million items in a list unless you want your users showing up at your door with torches and pitchforks). Here’s the table with the full results. Method/Items 50 500 5,000 50,000 500,000 5,000,000 Imperative 7ms 7ms 38ms 223ms 2230ms 20974ms LINQ/Fluent 4ms 6ms 41ms 240ms 2310ms 28731ms Like I said, at the end of the day it’s not a huge difference and you really don’t want your users waiting around for 30 seconds on a mobile device filling lists. In fact if Windows Phone 7 detects you’re taking more than 10 seconds to do any one thing, it considers the app hung and shuts it down. The results here are for Windows Phone 7 but frankly they're the same for desktop and web apps so feel free to apply it generally. From a programming perspective, choose what you like. Some LINQ statements can get pretty hairy so I usually fall back with my simple mind and write it imperatively. If you really want to impress your friends, write it old school then let ReSharper do the hard work for! Happy programming!

    Read the article

  • How to remove the last character from Stringbuilder

    - by hmloo
    We usually use StringBuilder to append string in loops and make a string of each data separated by a delimiter. but you always end up with an extra delimiter at the end. This code sample shows how to remove the last delimiter from a StringBuilder. using System; using System.Collections.Generic; using System.Text; using System.Linq; class Program { static void Main() { var list =Enumerable.Range(0, 10).ToArray(); StringBuilder sb = new StringBuilder(); foreach(var item in list) { sb.Append(item).Append(","); } sb.Length--;//Just reduce the length of StringBuilder, it's so easy Console.WriteLine(sb); } } //Output : 0,1,2,3,4,5,6,7,8,9 Alternatively,  we can use string.Join for the same results, please refer to blow code sample. using System; using System.Collections.Generic; using System.Text; using System.Linq; class Program { static void Main() { var list = Enumerable.Range(0, 10).Select(n => n.ToString()).ToArray(); string str = string.Join(",", list); Console.WriteLine(str); } }

    Read the article

  • linq where clause and count result in null exception.

    - by nestling
    The code below works unless p.School.SchoolName turns out to be null, in which case it results in a NullReferenceException. if (ExistingUsers.Where(p => p.StudentID == item.StaffID && p.School.SchoolName == item.SchoolID).Count() > 0) { // Do stuff. } ExistingUsers is a list of users: public List<User> ExistingUsers; Here is the relevant portion of the stacktrace: System.NullReferenceException: Object reference not set to an instance of an object. at System.Linq.Enumerable.WhereListIterator1.MoveNext() at System.Linq.Enumerable.Count[TSource](IEnumerable1 source) How should I handle this where clause? Thanks very much in advance.

    Read the article

  • Passing a 'var' into another method

    - by Danny
    Hi, I am probably totally missing the point here but.... How can I pass a 'var' into another method? (I am using linq to load XML into an Enumerable list of objects). I have differernt object types (with different fields), but the final step of my process is the same regardless of which object is being used. XNamespace xmlns = ScehmaName; var result = from e in XElement.Load(XMLDocumentLocation).Elements(xmlns + ElementName) select new Object1 { Field1 = (string)e.Element(xmlns + "field1"), Field2 = (string)e.Element(xmlns + "field2") }; var result2 = Enumerable.Distinct(result); This code will vary for the different type of XML files that will be processed. But I then want to iterate though the code to check for various issues: foreach (var w in result2) { if (w.CheckIT()) { //do something } } What I would love is the final step to be in a method in the base class, and I can pass the 'var' varible into it from each child class.

    Read the article

  • IGrouping and Casting in Linq

    - by FiveTools
    I have the following query: var groupCats = from g in groups group g by g.Value into grouped select new { GroupCategory = grouped.Key, Categories = GetCategories(grouped.Key, child) }; This works fine. In the anonymous type returned GroupCategory is a string, and Categories are an Enumerable - what is the proper way to declare this instead of using 'var'? I tried: IGrouping<string,string> groupCats = from g in groups group g by g.Value into grouped select new { GroupCategory = grouped.Key, Categories = GetCategories(grouped.Key, child) }; and IGrouping<string,Enumerable<string>> groupCats = from g in groups group g by g.Value into grouped select new { GroupCategory = grouped.Key, Categories = GetCategories(grouped.Key, child) }; In both instances I get: Cannot implicity convert type....An explicit conversion exists (are you missing a cast) How do I cast this?

    Read the article

  • Does AsEnumerable() cache all result (LINQ)

    - by Akshay
    When we call a query operator on a sequence, a sequence-specific operator gets called. I mean if i call Where<>() operator on IEnumerable<>, the operator that will be called will be defined in Enumerable class and if it's called on IQueryable<>, the one defined in Queryable class will be called. Consider the operator Reverse, defined in the Enumerable class. If i want to call it on Iqueryable<> then I must use the AsEnumerable<>() operator to first convert it into IEnumerable<>. db.Countries.OrderBy(cntry=>cntry.CountryName).AsEnumerable().Reverse() But the Reverse operator got to have all records at the same time so that it can reverse them. In the above code do all the records get loaded in memory first and then the Reverse() operator is reversing it ?

    Read the article

  • How to rewrite the following?(C#3.0)

    - by Newbie
    I am trying to write the following double sum_res = 0.0; double yhat = 0; double res = 0; int n = 0; for(int i=0;i<x.Count;i++) { yhat = inter + (slp*x[i]); res = yhat - y[i]; n++; } using lambda but somehow not able to get it work(compile time error) Enumerable.Range(0, x.Count).Select(i => { yhat = inter + (slp * x[i]); res = yhat - y[i]; sum_res += res * res; n++; }); Error: The type arguments for method 'System.Linq.Enumerable.Select(System.Collections.Generic.IEnumerable, System.Func)' cannot be inferred from the usage. Try specifying the type arguments explicitly. Help needed. Thanks

    Read the article

  • c# - best way to initialize an array of reference type object

    - by lidong
    I wonder if there is better way to initialize an array of reference type object, like this. Queue<int>[] queues = new Queue<int>[10]; for (int i = 0; i < queues.Length; i++) { queues[i] = new Queue<int>(); } I tried Enumerable.Repeat, but all elements in the array refer to same instance, Queue<int>[] queues = Enumerable.Repeat(new Queue<int>(), 10).ToArray(); I also tried Array.ForEach, but it doesn't work without ref keyword: Queue<int>[] queues = Array.ForEach(queues, queue => queue = new Queue<int>()); any other idea?

    Read the article

  • Virtual Brown Bag Recap: FancyHands, CanCan, 1KB XMas Tree, YouTube Yuks

    - by Brian Schroer
    At this week's Virtual Brown Bag meeting: Claudio has some one-month Evernote premium accounts to give away Claudio & George talked about FancyHands, the 4-hour work week, and paying people to do the stuff you don't want to JB shared more Ruby gems: cancan and open and talked about insert and other Ruby Enumerable functions We looked at the winner of the 1KB JavaScript Christmas contest and some fun YouTube videos For detailed notes, links, and the video recording, go to the VBB wiki page: https://sites.google.com/site/vbbwiki/main_page/2010-12-23

    Read the article

  • How do I tell the cases when it's worth to use LINQ?

    - by Lijo
    Many things in LINQ can be accomplished without the library. But for some scenarios, LINQ is most appropriate. Examples are: SELECT - http://stackoverflow.com/questions/11883262/wrapping-list-items-inside-div-in-a-repeater SelectMany, Contains - http://stackoverflow.com/questions/11778979/better-code-pattern-for-checking-existence-of-value Enumerable.Range - http://stackoverflow.com/questions/11780128/scalable-c-sharp-code-for-creating-array-from-config-file WHERE http://stackoverflow.com/questions/13171850/trim-string-if-a-string-ends-with-a-specific-word What factors to take into account when deciding between LINQ and regular .Net language elements?

    Read the article

  • Ninject.ActivationException: Error activating IMainLicense

    - by Stefan Karlsson
    Im don't know fully how Ninject works thats wye i ask this question here to figure out whats wrong. If i create a empty constructor in ClaimsSecurityService it gets hit. This is my error: Error activating IMainLicense No matching bindings are available, and the type is not self-bindable. Activation path: 3) Injection of dependency IMainLicense into parameter mainLicenses of constructor of type ClaimsSecurityService 2) Injection of dependency ISecurityService into parameter securityService of constructor of type AccountController 1) Request for AccountController Stack: Ninject.KernelBase.Resolve(IRequest request) +474 Ninject.Planning.Targets.Target`1.GetValue(Type service, IContext parent) +153 Ninject.Planning.Targets.Target`1.ResolveWithin(IContext parent) +747 Ninject.Activation.Providers.StandardProvider.GetValue(IContext context, ITarget target) +269 Ninject.Activation.Providers.<>c__DisplayClass4.<Create>b__2(ITarget target) +69 System.Linq.WhereSelectArrayIterator`2.MoveNext() +66 System.Linq.Buffer`1..ctor(IEnumerable`1 source) +216 System.Linq.Enumerable.ToArray(IEnumerable`1 source) +77 Ninject.Activation.Providers.StandardProvider.Create(IContext context) +847 Ninject.Activation.Context.ResolveInternal(Object scope) +218 Ninject.Activation.Context.Resolve() +277 Ninject.<>c__DisplayClass15.<Resolve>b__f(IBinding binding) +86 System.Linq.WhereSelectEnumerableIterator`2.MoveNext() +145 System.Linq.Enumerable.SingleOrDefault(IEnumerable`1 source) +4059897 Ninject.Planning.Targets.Target`1.GetValue(Type service, IContext parent) +169 Ninject.Planning.Targets.Target`1.ResolveWithin(IContext parent) +747 Ninject.Activation.Providers.StandardProvider.GetValue(IContext context, ITarget target) +269 Ninject.Activation.Providers.<>c__DisplayClass4.<Create>b__2(ITarget target) +69 System.Linq.WhereSelectArrayIterator`2.MoveNext() +66 System.Linq.Buffer`1..ctor(IEnumerable`1 source) +216 System.Linq.Enumerable.ToArray(IEnumerable`1 source) +77 Ninject.Activation.Providers.StandardProvider.Create(IContext context) +847 Ninject.Activation.Context.ResolveInternal(Object scope) +218 Ninject.Activation.Context.Resolve() +277 Ninject.<>c__DisplayClass15.<Resolve>b__f(IBinding binding) +86 System.Linq.WhereSelectEnumerableIterator`2.MoveNext() +145 System.Linq.Enumerable.SingleOrDefault(IEnumerable`1 source) +4059897 Ninject.Web.Mvc.NinjectDependencyResolver.GetService(Type serviceType) +145 System.Web.Mvc.DefaultControllerActivator.Create(RequestContext requestContext, Type controllerType) +87 [InvalidOperationException: An error occurred when trying to create a controller of type 'Successful.Struct.Web.Controllers.AccountController'. Make sure that the controller has a parameterless public constructor.] System.Web.Mvc.DefaultControllerActivator.Create(RequestContext requestContext, Type controllerType) +247 System.Web.Mvc.DefaultControllerFactory.GetControllerInstance(RequestContext requestContext, Type controllerType) +438 System.Web.Mvc.DefaultControllerFactory.CreateController(RequestContext requestContext, String controllerName) +257 System.Web.Mvc.MvcHandler.ProcessRequestInit(HttpContextBase httpContext, IController& controller, IControllerFactory& factory) +326 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContextBase httpContext, AsyncCallback callback, Object state) +157 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContext httpContext, AsyncCallback callback, Object state) +88 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.BeginProcessRequest(HttpContext context, AsyncCallback cb, Object extraData) +50 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +301 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 Account controller: public class AccountController : Controller { private readonly ISecurityService _securityService; public AccountController(ISecurityService securityService) { _securityService = securityService; } // // GET: /Account/Login [AllowAnonymous] public ActionResult Login(string returnUrl) { ViewBag.ReturnUrl = returnUrl; return View(); } } NinjectWebCommon: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Http; using System.Web.Http.Dependencies; using Microsoft.Web.Infrastructure.DynamicModuleHelper; using Ninject; using Ninject.Extensions.Conventions; using Ninject.Parameters; using Ninject.Syntax; using Ninject.Web.Common; using Successful.Struct.Web; [assembly: WebActivator.PreApplicationStartMethod(typeof(NinjectWebCommon), "Start")] [assembly: WebActivator.ApplicationShutdownMethodAttribute(typeof(NinjectWebCommon), "Stop")] namespace Successful.Struct.Web { public static class NinjectWebCommon { private static readonly Bootstrapper Bootstrapper = new Bootstrapper(); /// <summary> /// Starts the application /// </summary> public static void Start() { DynamicModuleUtility.RegisterModule(typeof(OnePerRequestHttpModule)); DynamicModuleUtility.RegisterModule(typeof(NinjectHttpModule)); Bootstrapper.Initialize(CreateKernel); } /// <summary> /// Stops the application. /// </summary> public static void Stop() { Bootstrapper.ShutDown(); } /// <summary> /// Creates the kernel that will manage your application. /// </summary> /// <returns>The created kernel.</returns> private static IKernel CreateKernel() { var kernel = new StandardKernel(); kernel.Bind<Func<IKernel>>().ToMethod(ctx => () => new Bootstrapper().Kernel); kernel.Bind<IHttpModule>().To<HttpApplicationInitializationHttpModule>(); kernel.Load("Successful*.dll"); kernel.Bind(x => x.FromAssembliesMatching("Successful*.dll") .SelectAllClasses() .BindAllInterfaces() ); GlobalConfiguration.Configuration.DependencyResolver = new NinjectResolver(kernel); RegisterServices(kernel); return kernel; } /// <summary> /// Load your modules or register your services here! /// </summary> /// <param name="kernel">The kernel.</param> private static void RegisterServices(IKernel kernel) { } } public class NinjectResolver : NinjectScope, IDependencyResolver { private readonly IKernel _kernel; public NinjectResolver(IKernel kernel) : base(kernel) { _kernel = kernel; } public IDependencyScope BeginScope() { return new NinjectScope(_kernel.BeginBlock()); } } public class NinjectScope : IDependencyScope { protected IResolutionRoot ResolutionRoot; public NinjectScope(IResolutionRoot kernel) { ResolutionRoot = kernel; } public object GetService(Type serviceType) { var request = ResolutionRoot.CreateRequest(serviceType, null, new Parameter[0], true, true); return ResolutionRoot.Resolve(request).SingleOrDefault(); } public IEnumerable<object> GetServices(Type serviceType) { var request = ResolutionRoot.CreateRequest(serviceType, null, new Parameter[0], true, true); return ResolutionRoot.Resolve(request).ToList(); } public void Dispose() { var disposable = (IDisposable)ResolutionRoot; if (disposable != null) disposable.Dispose(); ResolutionRoot = null; } } } ClaimsSecurityService: public class ClaimsSecurityService : ISecurityService { private const string AscClaimsIdType = "http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider"; private const string SuccessfulStructWebNamespace = "Successful.Struct.Web"; private readonly IMainLicense _mainLicenses; private readonly ICompany _companys; private readonly IAuthTokenService _authService; [Inject] public IApplicationContext ApplicationContext { get; set; } [Inject] public ILogger<LocationService> Logger { get; set; } public ClaimsSecurityService(IMainLicense mainLicenses, ICompany companys, IAuthTokenService authService) { _mainLicenses = mainLicenses; _companys = companys; _authService = authService; } }

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Programação paralela no .NET Framework 4 – Parte II

    - by anobre
    Olá pessoal, tudo bem? Este post é uma continuação da série iniciada neste outro post, sobre programação paralela. Meu objetivo hoje é apresentar o PLINQ, algo que poderá ser utilizado imediatamente nos projetos de vocês. Parallel LINQ (PLINQ) PLINQ nada mais é que uma implementação de programação paralela ao nosso famoso LINQ, através de métodos de extensão. O LINQ foi lançado com a versão 3.0 na plataforma .NET, apresentando uma maneira muito mais fácil e segura de manipular coleções IEnumerable ou IEnumerable<T>. O que veremos hoje é a “alteração” do LINQ to Objects, que é direcionado a coleções de objetos em memória. A principal diferença entre o LINQ to Objects “normal” e o paralelo é que na segunda opção o processamento é realizado tentando utilizar todos os recursos disponíveis para tal, obtendo uma melhora significante de performance. CUIDADO: Nem todas as operações ficam mais rápidas utilizando recursos de paralelismo. Não deixe de ler a seção “Performance” abaixo. ParallelEnumerable Tudo que a gente precisa para este post está organizado na classe ParallelEnumerable. Esta classe contém os métodos que iremos utilizar neste post, e muito mais: AsParallel AsSequential AsOrdered AsUnordered WithCancellation WithDegreeOfParallelism WithMergeOptions WithExecutionMode ForAll … O exemplo mais básico de como executar um código PLINQ é utilizando o métodos AsParallel, como o exemplo: var source = Enumerable.Range(1, 10000); var evenNums = from num in source.AsParallel() where Compute(num) > 0 select num; Algo tão interessante quanto esta facilidade é que o PLINQ não executa sempre de forma paralela. Dependendo da situação e da análise de alguns itens no cenário de execução, talvez seja mais adequado executar o código de forma sequencial – e nativamente o próprio PLINQ faz esta escolha.  É possível forçar a execução para sempre utilizar o paralelismo, caso seja necessário. Utilize o método WithExecutionMode no seu código PLINQ. Um teste muito simples onde podemos visualizar a diferença é demonstrado abaixo: static void Main(string[] args) { IEnumerable<int> numbers = Enumerable.Range(1, 1000); IEnumerable<int> results = from n in numbers.AsParallel() where IsDivisibleByFive(n) select n; Stopwatch sw = Stopwatch.StartNew(); IList<int> resultsList = results.ToList(); Console.WriteLine("{0} itens", resultsList.Count()); sw.Stop(); Console.WriteLine("Tempo de execução: {0} ms", sw.ElapsedMilliseconds); Console.WriteLine("Fim..."); Console.ReadKey(true); } static bool IsDivisibleByFive(int i) { Thread.SpinWait(2000000); return i % 5 == 0; }   Basta remover o AsParallel da instrução LINQ que você terá uma noção prática da diferença de performance. 1. Instrução utilizando AsParallel   2. Instrução sem utilizar paralelismo Performance Apesar de todos os benefícios, não podemos utilizar PLINQ sem conhecer todos os seus detalhes. Lembre-se de fazer as perguntas básicas: Eu tenho trabalho suficiente que justifique utilizar paralelismo? Mesmo com o overhead do PLINQ, vamos ter algum benefício? Por este motivo, visite este link e conheça todos os aspectos, antes de utilizar os recursos disponíveis. Conclusão Utilizar recursos de paralelismo é ótimo, aumenta a performance, utiliza o investimento realizado em hardware – tudo isso sem custo de produtividade. Porém, não podemos usufruir de qualquer tipo de tecnologia sem conhece-la a fundo antes. Portanto, faça bom uso, mas não esqueça de manter o conhecimento a frente da empolgação. Abraços.

    Read the article

  • How to define template directives (from an API perspective)?

    - by Ralph
    Preface I'm writing a template language (don't bother trying to talk me out of it), and in it, there are two kinds of user-extensible nodes. TemplateTags and TemplateDirectives. A TemplateTag closely relates to an HTML tag -- it might look something like div(class="green") { "content" } And it'll be rendered as <div class="green">content</div> i.e., it takes a bunch of attributes, plus some content, and spits out some HTML. TemplateDirectives are a little more complicated. They can be things like for loops, ifs, includes, and other such things. They look a lot like a TemplateTag, but they need to be processed differently. For example, @for($i in $items) { div(class="green") { $i } } Would loop over $items and output the content with the variable $i substituted in each time. So.... I'm trying to decide on a way to define these directives now. Template Tags The TemplateTags are pretty easy to write. They look something like this: [TemplateTag] static string div(string content = null, object attrs = null) { return HtmlTag("div", content, attrs); } Where content gets the stuff between the curly braces (pre-rendered if there are variables in it and such), and attrs is either a Dictionary<string,object> of attributes, or an anonymous type used like a dictionary. It just returns the HTML which gets plunked into its place. Simple! You can write tags in basically 1 line. Template Directives The way I've defined them now looks like this: [TemplateDirective] static string @for(string @params, string content) { var tokens = Regex.Split(@params, @"\sin\s").Select(s => s.Trim()).ToArray(); string itemName = tokens[0].Substring(1); string enumName = tokens[1].Substring(1); var enumerable = data[enumName] as IEnumerable; var sb = new StringBuilder(); var template = new Template(content); foreach (var item in enumerable) { var templateVars = new Dictionary<string, object>(data) { { itemName, item } }; sb.Append(template.Render(templateVars)); } return sb.ToString(); } (Working example). Basically, the stuff between the ( and ) is not split into arguments automatically (like the template tags do), and the content isn't pre-rendered either. The reason it isn't pre-rendered is because you might want to add or remove some template variables or something first. In this case, we add the $i variable to the template variables, var templateVars = new Dictionary<string, object>(data) { { itemName, item } }; And then render the content manually, sb.Append(template.Render(templateVars)); Question I'm wondering if this is the best approach to defining custom Template Directives. I want to make it as easy as possible. What if the user doesn't know how to render templates, or doesn't know that he's supposed to? Maybe I should pass in a Template instance pre-filled with the content instead? Or maybe only let him tamper w/ the template variables, and then automatically render the content at the end? OTOH, for things like "if" if the condition fails, then the template wouldn't need to be rendered at all. So there's a lot of flexibility I need to allow in here. Thoughts?

    Read the article

  • asp.net mvc custom model binder

    - by mike
    pleas help guys, my custom model binder which has been working perfectly has starting giving me errors details below An item with the same key has already been added. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.ArgumentException: An item with the same key has already been added. Source Error: Line 31: { Line 32: string key = bindingContext.ModelName; Line 33: var doc = base.BindModel(controllerContext, bindingContext) as Document; Line 34: Line 35: // DoBasicValidation(bindingContext, doc); Source File: C:\Users\Bich Vu\Documents\Visual Studio 2008\Projects\PitchPortal\PitchPortal.Web\Binders\DocumentModelBinder.cs Line: 33 Stack Trace: [ArgumentException: An item with the same key has already been added.] System.ThrowHelper.ThrowArgumentException(ExceptionResource resource) +51 System.Collections.Generic.Dictionary2.Insert(TKey key, TValue value, Boolean add) +7462172 System.Linq.Enumerable.ToDictionary(IEnumerable1 source, Func2 keySelector, Func2 elementSelector, IEqualityComparer1 comparer) +270 System.Linq.Enumerable.ToDictionary(IEnumerable1 source, Func2 keySelector, IEqualityComparer1 comparer) +102 System.Web.Mvc.ModelBindingContext.get_PropertyMetadata() +157 System.Web.Mvc.DefaultModelBinder.BindProperty(ControllerContext controllerContext, ModelBindingContext bindingContext, PropertyDescriptor propertyDescriptor) +158 System.Web.Mvc.DefaultModelBinder.BindProperties(ControllerContext controllerContext, ModelBindingContext bindingContext) +90 System.Web.Mvc.DefaultModelBinder.BindComplexElementalModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Object model) +50 System.Web.Mvc.DefaultModelBinder.BindComplexModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +1048 System.Web.Mvc.DefaultModelBinder.BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +280 PitchPortal.Web.Binders.documentModelBinder.BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) in C:\Users\Bich Vu\Documents\Visual Studio 2008\Projects\PitchPortal\PitchPortal.Web\Binders\DocumentModelBinder.cs:33 System.Web.Mvc.ControllerActionInvoker.GetParameterValue(ControllerContext controllerContext, ParameterDescriptor parameterDescriptor) +257 System.Web.Mvc.ControllerActionInvoker.GetParameterValues(ControllerContext controllerContext, ActionDescriptor actionDescriptor) +109 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +314 System.Web.Mvc.Controller.ExecuteCore() +105 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +39 System.Web.Mvc.ControllerBase.System.Web.Mvc.IController.Execute(RequestContext requestContext) +7 System.Web.Mvc.<c_DisplayClass8.b_4() +34 System.Web.Mvc.Async.<c_DisplayClass1.b_0() +21 System.Web.Mvc.Async.<c_DisplayClass81.b_7(IAsyncResult _) +12 System.Web.Mvc.Async.WrappedAsyncResult1.End() +59 System.Web.Mvc.MvcHandler.EndProcessRequest(IAsyncResult asyncResult) +44 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.EndProcessRequest(IAsyncResult result) +7 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +8677678 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 any ideas guys? Thanks

    Read the article

  • asp.net mvc custom model binder

    - by mike
    pleas help guys, my custom model binder which has been working perfectly has starting giving me errors details below An item with the same key has already been added. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.ArgumentException: An item with the same key has already been added. Source Error: Line 31: { Line 32: string key = bindingContext.ModelName; Line 33: var doc = base.BindModel(controllerContext, bindingContext) as Document; Line 34: Line 35: // DoBasicValidation(bindingContext, doc); Source File: C:\Users\Bich Vu\Documents\Visual Studio 2008\Projects\PitchPortal\PitchPortal.Web\Binders\DocumentModelBinder.cs Line: 33 Stack Trace: [ArgumentException: An item with the same key has already been added.] System.ThrowHelper.ThrowArgumentException(ExceptionResource resource) +51 System.Collections.Generic.Dictionary2.Insert(TKey key, TValue value, Boolean add) +7462172 System.Linq.Enumerable.ToDictionary(IEnumerable1 source, Func2 keySelector, Func2 elementSelector, IEqualityComparer1 comparer) +270 System.Linq.Enumerable.ToDictionary(IEnumerable1 source, Func2 keySelector, IEqualityComparer1 comparer) +102 System.Web.Mvc.ModelBindingContext.get_PropertyMetadata() +157 System.Web.Mvc.DefaultModelBinder.BindProperty(ControllerContext controllerContext, ModelBindingContext bindingContext, PropertyDescriptor propertyDescriptor) +158 System.Web.Mvc.DefaultModelBinder.BindProperties(ControllerContext controllerContext, ModelBindingContext bindingContext) +90 System.Web.Mvc.DefaultModelBinder.BindComplexElementalModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Object model) +50 System.Web.Mvc.DefaultModelBinder.BindComplexModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +1048 System.Web.Mvc.DefaultModelBinder.BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +280 PitchPortal.Web.Binders.documentModelBinder.BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) in C:\Users\Bich Vu\Documents\Visual Studio 2008\Projects\PitchPortal\PitchPortal.Web\Binders\DocumentModelBinder.cs:33 System.Web.Mvc.ControllerActionInvoker.GetParameterValue(ControllerContext controllerContext, ParameterDescriptor parameterDescriptor) +257 System.Web.Mvc.ControllerActionInvoker.GetParameterValues(ControllerContext controllerContext, ActionDescriptor actionDescriptor) +109 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +314 System.Web.Mvc.Controller.ExecuteCore() +105 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +39 System.Web.Mvc.ControllerBase.System.Web.Mvc.IController.Execute(RequestContext requestContext) +7 System.Web.Mvc.<c_DisplayClass8.b_4() +34 System.Web.Mvc.Async.<c_DisplayClass1.b_0() +21 System.Web.Mvc.Async.<c__DisplayClass81.<BeginSynchronous>b__7(IAsyncResult _) +12 System.Web.Mvc.Async.WrappedAsyncResult1.End() +59 System.Web.Mvc.MvcHandler.EndProcessRequest(IAsyncResult asyncResult) +44 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.EndProcessRequest(IAsyncResult result) +7 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +8677678 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 any ideas guys? Thanks

    Read the article

  • Pair-wise iteration in C# or sliding window enumerator

    - by f3lix
    If I have an IEnumerable like: string[] items = new string[] { "a", "b", "c", "d" }; I would like to loop thru all the pairs of consecutive items (sliding window of size 2). Which would be ("a","b"), ("b", "c"), ("c", "d") My solution was is this public static IEnumerable<Pair<T, T>> Pairs(IEnumerable<T> enumerable) { IEnumerator<T> e = enumerable.GetEnumerator(); e.MoveNext(); T current = e.Current; while ( e.MoveNext() ) { T next = e.Current; yield return new Pair<T, T>(current, next); current = next; } } // used like this : foreach (Pair<String,String> pair in IterTools<String>.Pairs(items)) { System.Out.PrintLine("{0}, {1}", pair.First, pair.Second) } When I wrote this code, I wondered if there are already functions in the .NET framework that do the same thing and do it not just for pairs but for any size tuples. IMHO there should be a nice way to do this kind of sliding window operations. I use C# 2.0 and I can imagine that with C# 3.0 (w/ LINQ) there are more (and nicer) ways to do this, but I'm primarily interested in C# 2.0 solutions. Though, I will also appreciate C# 3.0 solutions.

    Read the article

  • How to select a rectangle from List<Rectangle[]> with Linq

    - by dboarman
    I have a list of DrawObject[]. Each DrawObject has a Rectangle property. Here is my event: List<Canvas.DrawObject[]> matrix; void Control_MouseMove ( object sender, MouseEventArgs e ) { IEnumerable<Canvas.DrawObject> tile = Enumerable.Range( 0, matrix.Capacity - 1) .Where(row => Enumerable.Range(0, matrix[row].Length -1) .Where(column => this[column, row].Rectangle.Contains(e.Location))) .????; } I am not sure exactly what my final select command should be in place of the "????". Also, I was getting an error: cannot convert IEnumerable to bool. I've read several questions about performing a linq query on a list of arrays, but I can't quite get what is going wrong with this. Any help? Edit Apologies for not being clear in my intentions with the implementation. I intend to select the DrawObject that currently contains the mouse location.

    Read the article

  • What is the name of this geometrical function?

    - by Spike
    In a two dimentional integer space, you have two points, A and B. This function returns an enumeration of the points in the quadrilateral subset bounded by A and B. A = {1,1} B = {2,3} Fn(A,B) = {{1,1},{1,2},{1,3},{2,1},{2,2},{2,3}} I can implement it in a few lines of LINQ. private void UnknownFunction(Point to, Point from, List<Point> list) { var vectorX = Enumerable.Range(Math.Min(to.X, from.X), Math.Abs(to.X - from.Y) + 1); var vectorY = Enumerable.Range(Math.Min(to.Y, from.Y), Math.Abs(to.Y - from.Y) + 1); foreach (var x in vectorX) foreach (var y in vectorY) list.Add(new Point(x, y)); } I'm fairly sure that this is a standard mathematical operation, but I can't think what it is. Feel free to tell me that it's one line of code in your language of choice. Or to give me a cunning implementation with lambdas or some such. But mostly I just want to know what it's called. It's driving me nuts. It feels a little like a convolution, but it's been too long since I was at school for me to be sure.

    Read the article

  • Multi-level shop, xml or sql. best practice?

    - by danrichardson
    Hello, i have a general "best practice" question regarding building a multi-level shop, which i hope doesn't get marked down/deleted as i personally think it's quite a good "subjective" question. I am a developer in charge (in most part) of maintaining and evolving a cms system and associated front-end functionality. Over the past half year i have developed a multiple level shop system so that an infinite level of categories may exist down into a product level and all works fine. However over the last week or so i have questioned by own methods in front-end development and the best way to show the multi-level data structure. I currently use a sql server database (2000) and pull out all the shop levels and then process them into an enumerable typed list with child enumerable typed lists, so that all levels are sorted. This in my head seems quite process heavy, but we're not talking about thousands of rows, generally only 1-500 rows maybe. I have been toying with the idea recently of storing the structure in an XML document (as well as the database) and then sending last modified headers when serving/requesting the document for, which would then be processed as/when nessecary with an xsl(t) document - which would be processed server side. This is quite a handy, reusable method of storing the data but does it have more overheads in the fact im opening and closing files? And also the xml will require a bit of processing to pull out blocks of xml if for instance i wanted to show two level mid way through the tree for a side menu. I use the above method for sitemap purposes so there is currently already code i have built which does what i require, but unsure what the best process is to go about. Maybe a hybrid method which pulls out the data, sorts it and then makes an xml document/stream (XDocument/XmlDocument) for xsl processing is a good way? - This is the way i currently make the cms work for the shop. So really (and thanks for sticking with me on this), i am just wandering which methods other people use or recommend as being the best/most logical way of doing things. Thanks Dan

    Read the article

  • Why is Delphi unable to infer the type for a parameter TEnumerable<T>?

    - by deepc
    Consider the following declaration of a generic utility class in Delphi 2010: TEnumerableUtils = class public class function InferenceTest<T>(Param: T): T; class function Count<T>(Enumerable: TEnumerable<T>): Integer; overload; class function Count<T>(Enumerable: TEnumerable<T>; Filter: TPredicate<T>): Integer; overload; end; Somehow the compiler type inference seems to have problems here: var I: Integer; L: TList<Integer>; begin TEnumerableUtils.InferenceTest(I); // no problem here TEnumerableUtils.Count(L); // does not compile: E2250 There is no overloaded version of 'Count' that can be called with these arguments TEnumerableUtils.Count<Integer>(L); // compiles fine end; The first call works as expected and T is correctly inferred as Integer. The second call does not work, unless I also add <Integer -- then it works, as can be seen in the third call. Am I doing something wrong or is the type inference in Delphi just not supporting this (I don't think it is a problem in Java which is why expected it to work in Delphi, too).

    Read the article

  • Constructing a WeakReference<T> throws COMException

    - by ChaseMedallion
    The following code: IDisposable d = ... new WeakReference<IDisposable>(d); Has started throwing the following exception on SOME machines. What could cause this? System.Runtime.InteropServices.COMException: Unspecified error (Exception from HRESULT: 0x80004005 (E_FAIL)) EDIT: the machines that experience the error are running Windows Server 2008 R2. Windows Server 2012 and desktop machines running windows 7 work fine. (this is true, but I now think a different issue is the relevant difference... see below). EDIT: as an additional note, this occurred right after updating our codebase to Entity Framework 6.1.1.-beta1. In the above code, The IDisposable is a class which wraps an EF DbContext. EDIT: why the votes to close? EDIT: the stack trace of the failure ends at the WeakReference<T> constructor called in the above code: at System.WeakReference`1..ctor(T target, Boolean trackResurrection) // from here on down it's code we wrote/simple LINQ. None of this code has changed recently; // we just upgraded to EF6 and saw this failure start happening at Core.Data.EntityFrameworkDataContext.RegisterDependentDisposable(IDisposable child) at Core.Data.ServiceFactory.GetConstructorParameter[TService](Type parameterType) at System.Linq.Enumerable.WhereSelectListIterator`2.MoveNext() at System.Linq.Buffer`1..ctor(IEnumerable`1 source) at System.Linq.Enumerable.ToArray[TSource](IEnumerable`1 source) at Core.Data.ServiceFactory.CreateService[TService]() at MVC controller action method EDIT: it turns out that the machines having issues with this were running AppDynamics. Uninstalling that seems to have removed the issue.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9  | Next Page >