Search Results

Search found 8557 results on 343 pages for 'infinite loop'.

Page 305/343 | < Previous Page | 301 302 303 304 305 306 307 308 309 310 311 312  | Next Page >

  • Python cannot go over internet network

    - by user1642826
    I am currently trying to work with python networking and I have reached a bit of a road block. I am not able to network with any computer but localhost, which is kind-of useless with what networking is concerned. I have tried on my local network, from one computer to another, and I have tried over the internet, both fail. The only time I can make it work is if (when running on the server's computer) it's ip is set as 'localhost' or '192.168.2.129' (computers ip). I have spent hours going over opening ports with my isp and have gotten nowhere, so I decided to try this forum. I have my windows firewall down and I have included some pictures of important screen shots. I have no idea what the problem is and this has spanned almost a year of calls to my isp. The computer, modem, and router have all been replaced in that time. Screen shots: import socket import threading import socketserver class ThreadedTCPRequestHandler(socketserver.BaseRequestHandler): def handle(self): data = self.request.recv(1024) cur_thread = threading.current_thread() response = "{}: {}".format(cur_thread.name, data) self.request.sendall(b'worked') class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): pass def client(ip, port, message): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((ip, port)) try: sock.sendall(message) response = sock.recv(1024) print("Received: {}".format(response)) finally: sock.close() if __name__ == "__main__": # Port 0 means to select an arbitrary unused port HOST, PORT = "192.168.2.129", 9000 server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler) ip, port = server.server_address # Start a thread with the server -- that thread will then start one # more thread for each request server_thread = threading.Thread(target=server.serve_forever) # Exit the server thread when the main thread terminates server_thread.daemon = True server_thread.start() print("Server loop running in thread:", server_thread.name) ip = '12.34.56.789' print(ip, port) client(ip, port, b'Hello World 1') client(ip, port, b'Hello World 2') client(ip, port, b'Hello World 3') server.shutdown() I do not know where the error is occurring. I get this error: Traceback (most recent call last): File "C:\Users\Dr.Frev\Desktop\serverTest.py", line 43, in <module> client(ip, port, b'Hello World 1') File "C:\Users\Dr.Frev\Desktop\serverTest.py", line 18, in client sock.connect((ip, port)) socket.error: [Errno 10061] No connection could be made because the target machine actively refused it Any help will be greatly appreciated. *if this isn't a proper forum for this, could someone direct me to a more appropriate one.

    Read the article

  • Iterate through all form fields within a specified DIV tag.

    - by user344255
    I need to be able to iterate through all the form fields within a specified DIV tag. Basically, any given DIV tag can have multiple form fields (which is easy enough to parse through), but it can also any number of tables or even additional DIV tags (adding additional levels of hierarchical layering). I've written a basic function that goes through each of the direct descendants of the parent node (in this case, the DIV tag) and it clears out its value. This part works fine. The problem is getting it to parse children when children (grandchildren) of their own. It winds up getting caught up in an infinite loop. In this case, I need be able to find all the form fields within DIV tag "panSomePanel", which will include some direct children (txtTextField1), but also some grandchildren who are within nested TABLE objects and/or nested DIV tags (radRadioButton, DESC_txtTextArea). Here is a sample DIV and its contents: <DIV id="panSomePanel"> <INPUT name="txtTextField1" type="text" id="txtTextField1" size="10"/><BR><BR> <TABLE id="tblRadioButtons" border="0"> <TR> <TD> <INPUT id="radRadioButton_0" type="radio" name="radRadioButton" value="1" /><LABEL for="radRadioButton_0">Value 1</LABEL> </TD> <TD> <INPUT id="radRadioButton_5" type="radio" name="radRadioButton" value="23" /><LABEL for="radRadioButton_5">Value 23</LABEL> </TD> </TR> <TR> <TD> <INPUT id="radRadioButton_1" type="radio" name="radRadioButton" value="2" /><LABEL for="radRadioButton_1">Value 2</LABEL> </TD> <TD> <INPUT id="radRadioButton_6" type="radio" name="radRadioButton" value="24" /><LABEL for="radRadioButton_6">Value 24</LABEL> </TD> </TR> <TR> <TD> <INPUT id="radRadioButton_2" type="radio" name="radRadioButton" value="3" /><LABEL for="radRadioButton_2">Value 3</LABEL> </TD> <TD> <INPUT id="radRadioButton_7" type="radio" name="radRadioButton" value="25" /><LABEL for="radRadioButton_7">Value 25</LABEL> </TD> </TR> <TR> <TD> <INPUT id="radRadioButton_3" type="radio" name="radRadioButton" value="21" /><LABEL for="radRadioButton_3">Value 21</LABEL> </TD> <TD> <INPUT id="radRadioButton_8" type="radio" name="radRadioButton" value="4" /><LABEL for="radRadioButton_8">Value 4</LABEL> </TD> </TR> <TR> <TD> <INPUT id="radRadioButton_4" type="radio" name="radRadioButton" value="22" /><LABEL for="radRadioButton_4">Value 22</LABEL> </TD> </TR> </TABLE> <DIV id="panAnotherPanel"><BR> <TABLE cellpadding="0" cellspacing="0" border="0" style="display:inline;vertical-align:top;"> <TR> <TD valign="top"> <TEXTAREA name="DESC:txtTextArea" rows="3" cols="48" id="DESC_txtTextArea"></TEXTAREA>&nbsp; </TD> <TD valign="top"><SPAN id="DESC_lblCharCount" style="font-size:8pt;"></SPAN> </TD> </TR> </TABLE> </DIV> </DIV> Here is the function I've written: function clearChildren(node) { var child; if (node.childNodes.length > 0) { child= node.firstChild; } while(child) { if (child.type == "text") { alert(child.id); child.value = ""; } else if (child.type == "checkbox") { child.checked = false; } else if (child.type == "radio") { alert(child.id); child.checked = false; } else if (child.type == "textarea") { child.innerText = ""; } //alert(child.childNodes.length); if (child.childNodes.length > 0) { var grandchild = child.firstChild; while (grandchild) { clearChildren(grandchild); } grandchild = grandchild.nextSibling; } child = child.nextSibling; } }

    Read the article

  • New hire expectations... (Am I being unreasonable?)

    - by user295841
    I work for a very small custom software shop. We currently consist me and my boss. My boss is an old FoxPro DOS developer and OOP makes him uncomfortable. He is planning on taking a back seat in the next few years to hopefully enjoy a “partial retirement”. I will be taking over the day to day operations and we are now desperately looking for more help. We tried Monster.com, Dice.com, and others a few years ago when we started our search. We had no success. We have tried outsourcing overseas (total disaster), hiring kids right out of college (mostly a disaster but that’s where I came from), interns (good for them, not so good for us) and hiring laid off “experienced” developers (there was a reason they were laid off). I have heard hiring practices discussed on podcasts, blogs, etc... and have tried a few. The “Fizz Buzz” test was a good one. One kid looked physically ill before he finally gave up. I think my problem is that I have grown so much as a developer since I started here that I now have a high standard. I hear/read very intelligent people podcasts and blogs and I know that there are lots of people out there that can do the job. I don’t want to settle for less than a “good” developer. Perhaps my expectations are unreasonable. I expect any good developer (entry level or experienced) to be billable (at least paying their own wage) in under one month. I expect any good developer to be able to be productive (at least dangerous) in any language or technology with only a few days of research/training. I expect any good developer to be able to take a project from initial customer request to completion with little or no help from others. Am I being unreasonable? What constitutes a valuable developer? What should be expected of an entry level developer? What should be expected of an experienced developer? I realize that everyone is different but there has to be some sort of expectations standard, right? I have been giving the test project below to potential canidates to weed them out. Good idea? Too much? Too little? Please let me know what you think. Thanks. Project ID: T00001 Description: Order Entry System Deadline: 1 Week Scope The scope of this project is to develop a fully function order entry system. Screen/Form design must be user friendly and promote efficient data entry and modification. User experience (Navigation, Screen/Form layouts, Look and Feel…) is at the developer’s discretion. System may be developed using any technologies that conform to the technical and system requirements. Deliverables Complete source code Database setup instructions (Scripts or restorable backup) Application installation instructions (Installer or installation procedure) Any necessary documentation Technical Requirements Server Platform – Windows XP / Windows Server 2003 / SBS Client Platform – Windows XP Web Browser (If applicable) – IE 8 Database – At developer’s discretion (Must be a relational SQL database.) Language – At developer’s discretion All data must be normalized. (+) All data must maintain referential integrity. (++) All data must be indexed for optimal performance. System must handle concurrency. System Requirements Customer Maintenance Customer records must have unique ID. Customer data will include Name, Address, Phone, etc. User must be able to perform all CRUD (Create, Read, Update, and Delete) operations on the Customer table. User must be able to enter a specific Customer ID to edit. User must be able to pull up a sortable/queryable search grid/utility to find a customer to edit. Validation must be performed prior to database commit. Customer record cannot be deleted if the customer has an order in the system. (++) Inventory Maintenance Part records must have unique ID. Part data will include Description, Price, UOM (Unit of Measure), etc. User must be able to perform all CRUD operations on the part table. User must be able to enter a specific Part ID to edit. User must be able to pull up a sortable/queryable search grid/utility to find a part to edit. Validation must be performed prior to database commit. Part record cannot be deleted if the part has been used in an order. (++) Order Entry Order records must have a unique auto-incrementing key (Order Number). Order data must be split into a header/detail structure. (+) Order can contain an infinite number of detail records. Order header data will include Order Number, Customer ID (++), Order Date, Order Status (Open/Closed), etc. Order detail data will include Part Number (++), Quantity, Price, etc. User must be able to perform all CRUD operations on the order tables. User must be able to enter a specific Order Number to edit. User must be able to pull up a sortable/queryable search grid/utility to find an order to edit. User must be able to print an order form from within the order entry form. Validation must be performed prior to database commit. Reports Customer Listing – All Customers in the system. Inventory Listing – All parts in the system. Open Order Listing – All open orders in system. Customer Order Listing – All orders for specific customer. All reports must include sorts and filter functions where applicable. Ex. Customer Listing by range of Customer IDs. Open Order Listing by date range.

    Read the article

  • spring mvc forward to jsp

    - by jerluc
    I currently have my web.xml configured to catch 404s and send them to my spring controller which will perform a search given the original URL request. The functionality is all there as far as the catch and search go, however the trouble begins to arise when I try to return a view. <bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver" p:order="1"> <property name="mediaTypes"> <map> <entry key="json" value="application/json" /> <entry key="jsp" value="text/html" /> </map> </property> <property name="defaultContentType" value="application/json" /> <property name="favorPathExtension" value="true" /> <property name="viewResolvers"> <list> <bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="prefix" value="/WEB-INF/jsp/" /> <property name="suffix" value="" /> </bean> </list> </property> <property name="defaultViews"> <list> <bean class="org.springframework.web.servlet.view.json.MappingJacksonJsonView" /> </list> </property> <property name="ignoreAcceptHeader" value="true" /> </bean> This is a snippet from my MVC config file. The problem lies in resolving the view's path to the /WEB-INF/jsp/ directory. Using a logger in my JBoss setup, I can see that when I test this search controller by going to a non-existent page, the following occurs: Server can't find the request Request is sent to 404 error page (in this case my search controller) Search controller performs search Search controller returns view name (for this illustration, we'll assume test.jsp is returned) Based off of server logger, I can see that org.springframework.web.servlet.view.JstlView is initialized once my search controller returns the view name (so I can assume it is being picked up correctly by the InternalResourceViewResolver) Server attempts to return content to browser resulting in a 404! A couple things confuse me about this: I'm not 100% sure why this isn't resolving when test.jsp clearly exists under the /WEB-INF/jsp/ directory. Even if there was some other problem, why would this result in a 404? Shouldn't a 404 error page that results in another 404 theoretically create an infinite loop? Thanks for any help or pointers! Controller class [incomplete]: @Controller public class SiteMapController { //-------------------------------------------------------------------------------------- @Autowired(required=true) private SearchService search; @Autowired(required=true) private CatalogService catalog; //-------------------------------------------------------------------------------------- @RequestMapping(value = "/sitemap", method = RequestMethod.GET) public String sitemap (HttpServletRequest request, HttpServletResponse response) { String forwardPath = ""; try { long startTime = System.nanoTime() / 1000000; String pathQuery = (String) request.getAttribute("javax.servlet.error.request_uri"); Scanner pathScanner = new Scanner(pathQuery).useDelimiter("\\/"); String context = pathScanner.next(); List<ProductLightDTO> results = new ArrayList<ProductLightDTO>(); StringBuilder query = new StringBuilder(); String currentValue; while (pathScanner.hasNext()) { currentValue = pathScanner.next().toLowerCase(); System.out.println(currentValue); if (query.length() > 0) query.append(" AND "); if (currentValue.contains("-")) { query.append("\""); query.append(currentValue.replace("-", " ")); query.append("\""); } else { query.append(currentValue + "*"); } } //results.addAll(this.doSearch(query.toString())); System.out.println("Request: " + pathQuery); System.out.println("Built Query:" + query.toString()); //System.out.println("Result size: " + results.size()); long totalTime = (System.nanoTime() / 1000000) - startTime; System.out.println("Total TTP: " + totalTime + "ms"); if (results == null || results.size() == 0) { forwardPath = "home.jsp"; } else if (results.size() == 1) { forwardPath = "product.jsp"; } else { forwardPath = "category.jsp"; } } catch (Exception ex) { System.err.println(ex); } System.out.println("Returning view: " + forwardPath); return forwardPath; } }

    Read the article

  • seeking help with Chrome & Safari not rendering my table stretched to fit its contents...help?

    - by oompa_l
    I have an element on this web page I'm developing where I need my text to conform to the width of an image above it - whose width will always be different - think of captions. I have found numerous references to using a 1px table to force this width sizing behaviour. I am having problems, though with Safari and Chrome "seeing" this instruction - the text ends up as a marginally sized text box sitting behind the image. The problem, as I see it, has to do with the text and images sitting in div's nested within the table. I need the images to sit in a div because of some jquery script I'm using called cycle, which turns a group of images into a slideshow. The problem may have something to do with the script as well. In any case, I have tried a seeming infinite number of combination of floating left and clearing left on all all the divs, changing their positions and widths...nothing works. Anyone have any clues about how to broach this one? EDIT 1: ok, should I be editing my post or responding with answers? here's the url to see the problem I am having - http://friedmanstudios.ca/webdev/test8.html and the code: <div id="content" class="boxes"> <table> <tr> <td > <div id="imageFrame"> <a href="#" class="img" title="_MG_9786_fmt.jpeg"> <img src="images/_MG_9786_fmt.jpeg"/> </a> <a href="#" class="img" title="IMG_5169_fmt.jpeg"> <img src="indesign export/GFA-TEARSHEETS-100526-01-web-images/IMG_5169_fmt.jpeg"/> </a> <a href="#" class="img" title="IMG_5175_fmt.jpeg"> <img src="indesign export/GFA-TEARSHEETS-100526-01-web-images/IMG_5175_fmt.jpeg"/> </a> <a href="#" class="img" title="aerial_fmt.jpeg" width=""> <img src="indesign export/GFA-TEARSHEETS-100526-01-web-images/aerial_fmt.jpeg"/> </a> </div> <div id="cycleCtrl"> <div id="prev" class="pager"><a href="#">< Prev</a> </div> <div id="next" class="pager"><a href="#">Next ></a></div> <div id="pagerNav" class="pager"></div> </div> <div id="descController"> <img src="images/arrow.gif" name="arrow" width="5" height="10" id="arrow" /> <span id="projectName">Toronto Centre for the Arts </span> <br /> <div id="desc"> In the past eight years... </div> </div></td> <td width="90%"><!--push col 1 back--></td> </tr> </table> and the styles: #content { position: absolute; top: 250px; left: 275px; float: left; clear: both; } content table { float: left; width: 1px; } imageFrame { position: relative; float: left; clear: left; width: inherit; } desc { position: relative; clear: left; float: left; } descController { position:relative; padding-top:5px; padding-bottom:10px; clear: left; float: left; } descController div { height:0; overflow:hidden; -webkit-transition:all .5s ease; -moz-transition:all .5s ease; -o-transition:all .5s ease; transition:all .5s ease; padding-top:10px; margin-top: 10px; word-spacing: 0em; line-height: 16px; font-size: 12px; position: relative; float: left; clear: left; }

    Read the article

  • Parallelism in .NET – Part 1, Decomposition

    - by Reed
    The first step in designing any parallelized system is Decomposition.  Decomposition is nothing more than taking a problem space and breaking it into discrete parts.  When we want to work in parallel, we need to have at least two separate things that we are trying to run.  We do this by taking our problem and decomposing it into parts. There are two common abstractions that are useful when discussing parallel decomposition: Data Decomposition and Task Decomposition.  These two abstractions allow us to think about our problem in a way that helps leads us to correct decision making in terms of the algorithms we’ll use to parallelize our routine. To start, I will make a couple of minor points. I’d like to stress that Decomposition has nothing to do with specific algorithms or techniques.  It’s about how you approach and think about the problem, not how you solve the problem using a specific tool, technique, or library.  Decomposing the problem is about constructing the appropriate mental model: once this is done, you can choose the appropriate design and tools, which is a subject for future posts. Decomposition, being unrelated to tools or specific techniques, is not specific to .NET in any way.  This should be the first step to parallelizing a problem, and is valid using any framework, language, or toolset.  However, this gives us a starting point – without a proper understanding of decomposition, it is difficult to understand the proper usage of specific classes and tools within the .NET framework. Data Decomposition is often the simpler abstraction to use when trying to parallelize a routine.  In order to decompose our problem domain by data, we take our entire set of data and break it into smaller, discrete portions, or chunks.  We then work on each chunk in the data set in parallel. This is particularly useful if we can process each element of data independently of the rest of the data.  In a situation like this, there are some wonderfully simple techniques we can use to take advantage of our data.  By decomposing our domain by data, we can very simply parallelize our routines.  In general, we, as developers, should be always searching for data that can be decomposed. Finding data to decompose if fairly simple, in many instances.  Data decomposition is typically used with collections of data.  Any time you have a collection of items, and you’re going to perform work on or with each of the items, you potentially have a situation where parallelism can be exploited.  This is fairly easy to do in practice: look for iteration statements in your code, such as for and foreach. Granted, every for loop is not a candidate to be parallelized.  If the collection is being modified as it’s iterated, or the processing of elements depends on other elements, the iteration block may need to be processed in serial.  However, if this is not the case, data decomposition may be possible. Let’s look at one example of how we might use data decomposition.  Suppose we were working with an image, and we were applying a simple contrast stretching filter.  When we go to apply the filter, once we know the minimum and maximum values, we can apply this to each pixel independently of the other pixels.  This means that we can easily decompose this problem based off data – we will do the same operation, in parallel, on individual chunks of data (each pixel). Task Decomposition, on the other hand, is focused on the individual tasks that need to be performed instead of focusing on the data.  In order to decompose our problem domain by tasks, we need to think about our algorithm in terms of discrete operations, or tasks, which can then later be parallelized. Task decomposition, in practice, can be a bit more tricky than data decomposition.  Here, we need to look at what our algorithm actually does, and how it performs its actions.  Once we have all of the basic steps taken into account, we can try to analyze them and determine whether there are any constraints in terms of shared data or ordering.  There are no simple things to look for in terms of finding tasks we can decompose for parallelism; every algorithm is unique in terms of its tasks, so every algorithm will have unique opportunities for task decomposition. For example, say we want our software to perform some customized actions on startup, prior to showing our main screen.  Perhaps we want to check for proper licensing, notify the user if the license is not valid, and also check for updates to the program.  Once we verify the license, and that there are no updates, we’ll start normally.  In this case, we can decompose this problem into tasks – we have a few tasks, but there are at least two discrete, independent tasks (check licensing, check for updates) which we can perform in parallel.  Once those are completed, we will continue on with our other tasks. One final note – Data Decomposition and Task Decomposition are not mutually exclusive.  Often, you’ll mix the two approaches while trying to parallelize a single routine.  It’s possible to decompose your problem based off data, then further decompose the processing of each element of data based on tasks.  This just provides a framework for thinking about our algorithms, and for discussing the problem.

    Read the article

  • WPF ListView as a DataGrid – Part 3

    - by psheriff
    I have had a lot of great feedback on the blog post about turning the ListView into a DataGrid by creating GridViewColumn objects on the fly. So, in the last 2 parts, I showed a couple of different methods for accomplishing this. Let’s now look at one more and that is use Reflection to extract the properties from a Product, Customer, or Employee object to create the columns. Yes, Reflection is a slower approach, but you could create the columns one time then cache the View object for re-use. Another potential drawback is you may have columns in your object that you do not wish to display on your ListView. But, just because so many people asked, here is how to accomplish this using Reflection.   Figure 1: Use Reflection to create GridViewColumns. Using Reflection to gather property names is actually quite simple. First you need to pass any type (Product, Customer, Employee, etc.) to a method like I did in my last two blog posts on this subject. Below is the method that I created in the WPFListViewCommon class that now uses reflection. C#public static GridView CreateGridViewColumns(Type anyType){  // Create the GridView  GridView gv = new GridView();  GridViewColumn gvc;   // Get the public properties.  PropertyInfo[] propInfo =          anyType.GetProperties(BindingFlags.Public |                                BindingFlags.Instance);   foreach (PropertyInfo item in propInfo)  {    gvc = new GridViewColumn();    gvc.DisplayMemberBinding = new Binding(item.Name);    gvc.Header = item.Name;    gvc.Width = Double.NaN;    gv.Columns.Add(gvc);  }   return gv;} VB.NETPublic Shared Function CreateGridViewColumns( _  ByVal anyType As Type) As GridView  ' Create the GridView   Dim gv As New GridView()  Dim gvc As GridViewColumn   ' Get the public properties.   Dim propInfo As PropertyInfo() = _    anyType.GetProperties(BindingFlags.Public Or _                          BindingFlags.Instance)   For Each item As PropertyInfo In propInfo    gvc = New GridViewColumn()    gvc.DisplayMemberBinding = New Binding(item.Name)    gvc.Header = item.Name    gvc.Width = [Double].NaN    gv.Columns.Add(gvc)  Next   Return gvEnd Function The key to using Relection is using the GetProperties method on the type you pass in. When you pass in a Product object as Type, you can now use the GetProperties method and specify, via flags, which properties you wish to return. In the code that I wrote, I am just retrieving the Public properties and only those that are Instance properties. I do not want any static/Shared properties or private properties. GetProperties returns an array of PropertyInfo objects. You can loop through this array and build your GridViewColumn objects by reading the Name property from the PropertyInfo object. Build the Product Screen To populate the ListView shown in Figure 1, you might write code like the following: C#private void CollectionSample(){  Product prod = new Product();   // Setup the GridView Columns  lstData.View =      WPFListViewCommon.CreateGridViewColumns(typeOf(Product));  lstData.DataContext = prod.GetProducts();} VB.NETPrivate Sub CollectionSample()  Dim prod As New Product()   ' Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns( _       GetType(Product))  lstData.DataContext = prod.GetProducts()End Sub All you need to do now is to pass in a Type object from your Product class that you can get by using the typeOf() function in C# or the GetType() function in VB. That’s all there is to it! Summary There are so many different ways to approach the same problem in programming. That is what makes programming so much fun! In this blog post I showed you how to create ListView columns on the fly using Reflection. This gives you a lot of flexibility without having to write extra code as was done previously. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "WPF ListView as a DataGrid – Part 3" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".  

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • “Being Agile” Means No Documentation, Right?

    - by jesschadwick
    Ask most software professionals what Agile is and they’ll probably start talking about flexibility and delivering what the customer wants.  Some may even mention the word “iterations”.  But inevitably, they’ll say at some point that it means less or even no documentation.  After all, doesn’t creating, updating, and circulating painstakingly comprehensive documentation that everyone and their mother have officially signed off on go against the very core of Agile?  Of course it does!  But really, they’re missing the point! Read The Agile Manifesto. (No, seriously - read it now. It’s short. I’ll wait.)  It’s essentially a list of values.  More specifically, it’s a right-side/left-side weighted list of values:  “Value this over that”. Many people seem to get the impression that this is really a “good vs. bad” list and that those values on the right side are evil and should essentially be tossed on the floor.  This leads to the conclusion that in order to be Agile we must throw away our fancy expensive tools, document as little as possible, and scoff at the idea of a project plan.  This conclusion is quite convenient because it essentially means “less work, more productivity!” (particularly in regards to the documentation and project planning).  I couldn’t disagree with this conclusion more. My interpretation of the Manifesto targets “over” as the operative word.  It’s not just a list of right vs. wrong or good vs. bad.  It’s a list of priorities.  In other words, none of the concepts on the list should be removed from your development lifecycle – they are all important… just not equally important.  This is not a unique interpretation, in fact it says so right at the end of the manifesto! So, the next time your team sits down to tackle that big new project, don’t make the first order of business to outlaw all meetings, documentation, and project plans.  Instead, collaborate with both your team and the business members involved (you do have business members sitting in the room, directly involved in the project planning, right?) and determine the bare minimum that will allow all of you to work and communicate in the best way possible.  This often means that you can pick and choose which parts of the Agile methodologies and process work for your particular project and end up with an amalgamation of Waterfall, Agile, XP, SCRUM and whatever other methodologies the members of your team have been exposed to (my favorite is “SCRUMerfall”). The biggest implication of this is that there is no one way to implement Agile.  There is no checklist with which you can tick off boxes and confidently conclude that, “Yep, we’re Agile™!”  In fact, depending on your business and the members of your team, moving to Agile full-bore may actually be ill-advised.  Such a drastic change just ends up taking everyone out of their comfort zone which they inevitably fall back into by the end of the project.  This often results in frustration to the point that Agile is abandoned altogether because “we just need to ship something!”  Needless to say, this is far more devastating to a project. Instead, I offer this approach: keep it simple and take it slow.  If your business members or customers are only involved at the beginning phases and nowhere to be seen until the project is delivered, invite them to your daily meetings; encourage them to keep up to speed on what’s going on on a daily basis and provide feedback.  If your current process is heavy on the documentation, try to reduce it as opposed to eliminating it outright.  If you need a “TPS Change Request” signed in triplicate with a 5-day “cooling off period” before a change is implemented, try a simple bug tracking system!  Tighten the feedback loop! Finally, at the end of every “iteration” (whatever that means to you, as long as it’s relatively frequent), take as much time as you can spare (even if it’s an hour or so) and perform some kind of retrospective.  Learn from your mistakes.  Figure out what’s working for you and what’s not, then fix it.  Before you know it you’ve got a handful of iterations and/or projects under your belt and you sit down with your team to realize that, “Hey, this is working - we’re pretty Agile!”  After all, Agile is a Zen journey.  It’s a destination that you aim for, not force, and even if you never reach true “enlightenment” that doesn’t mean your team can’t be exponentially better off from merely taking the journey.

    Read the article

  • ASP.NET MVC 3: Razor’s @: and <text> syntax

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (today) In today’s post I’m going to discuss two useful syntactical features of the new Razor view-engine – the @: and <text> syntax support. Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post.  Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a list of products: When run, it generates output like:   One of the techniques that Razor uses to implicitly identify when a code block ends is to look for tag/element content to denote the beginning of a content region.  For example, in the code snippet above Razor automatically treated the inner <li></li> block within our foreach loop as an HTML content block because it saw the opening <li> tag sequence and knew that it couldn’t be valid C#.  This particular technique – using tags to identify content blocks within code – is one of the key ingredients that makes Razor so clean and productive with scenarios involving HTML creation. Using @: to explicitly indicate the start of content Not all content container blocks start with a tag element tag, though, and there are scenarios where the Razor parser can’t implicitly detect a content block. Razor addresses this by enabling you to explicitly indicate the beginning of a line of content by using the @: character sequence within a code block.  The @: sequence indicates that the line of content that follows should be treated as a content block: As a more practical example, the below snippet demonstrates how we could output a “(Out of Stock!)” message next to our product name if the product is out of stock: Because I am not wrapping the (Out of Stock!) message in an HTML tag element, Razor can’t implicitly determine that the content within the @if block is the start of a content block.  We are using the @: character sequence to explicitly indicate that this line within our code block should be treated as content. Using Code Nuggets within @: content blocks In addition to outputting static content, you can also have code nuggets embedded within a content block that is initiated using a @: character sequence.  For example, we have two @: sequences in the code snippet below: Notice how within the second @: sequence we are emitting the number of units left within the content block (e.g. - “(Only 3 left!”). We are doing this by embedding a @p.UnitsInStock code nugget within the line of content. Multiple Lines of Content Razor makes it easy to have multiple lines of content wrapped in an HTML element.  For example, below the inner content of our @if container is wrapped in an HTML <p> element – which will cause Razor to treat it as content: For scenarios where the multiple lines of content are not wrapped by an outer HTML element, you can use multiple @: sequences: Alternatively, Razor also allows you to use a <text> element to explicitly identify content: The <text> tag is an element that is treated specially by Razor. It causes Razor to interpret the inner contents of the <text> block as content, and to not render the containing <text> tag element (meaning only the inner contents of the <text> element will be rendered – the tag itself will not).  This makes it convenient when you want to render multi-line content blocks that are not wrapped by an HTML element.  The <text> element can also optionally be used to denote single-lines of content, if you prefer it to the more concise @: sequence: The above code will render the same output as the @: version we looked at earlier.  Razor will automatically omit the <text> wrapping element from the output and just render the content within it.  Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s smart detection of <tag> elements to identify the beginning of content regions is one of the reasons that the Razor approach works so well with HTML generation scenarios, and it enables you to avoid having to explicitly mark the beginning/ending of content regions in about 95% of if/else and foreach scenarios. Razor’s @: and <text> syntax can then be used for scenarios where you want to avoid using an HTML element within a code container block, and need to more explicitly denote a content region. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Ubuntu 14.04:LTS , HPLIP loses USB connection to HP laserjet

    - by Gareth
    This is my first post, so please let me know if i have inadvertanly broken any rules. Problem There seems to be a problem with HPLIP and USB connections in ubuntu 14.04LTS. After upgrading i managed to get the printing to work but today it has broken. Initial Issue (Solved) After upgrading to unbutntu 14.04 LTS my printer lHP LaserJet 1018 stopped printing (code=12) Looking through the Forumsthere are several issues with printitng and HPLIP so I was able to troubleshoot this. The steps I took were : Reran HPdoctor Ran hp-check Un-installed and installed the latest version of HPLIP (3.14.4) Checked the USB connections lsusb and lsusb-v Re-ran hpcheck Removed the printer from HPLIP Re-ran hpcheck Manually configued HPLIP to the printer hp-setup-g <xxx:yyy> And this worked HPLIP was able to see the printer in the USB , test page printed and was happily working for a few weeks. Current Issue Printer Not working However today my wife complains the printer is not working and checking see that although HPLIP has the same error code and did not seem to be able to see the printer although running lsusb could see the printer. Initially thought this may be due to usb given a new bus/device after being turned on and off and went to repeat the steps above at the moment still seeing an error in that the HPLIP is complaining that it cannot see the device **error: Device not found. Please make sure your printer is properly connected and powered-on.** current Observations lsusb output ## Bus 002 Device 007: ID 03f0:4117 Hewlett-Packard LaserJet 1018 sudo hp-check output *> "duan@duan-Lenovo-B550:~$ sudo hp-check [sudo] password for duan: Saving output in log file: /home/duan/hp-check.log HP Linux Imaging and Printing System (ver. 3.14.4) Dependency/Version Check Utility ver. 15.1 Copyright (c) 2001-13 Hewlett-Packard Development Company, LP This software comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to distribute it under certain conditions. See COPYING file for more details. Note: hp-check can be run in three modes: 1. Compile-time check mode (-c or --compile): Use this mode before compiling the HPLIP supplied tarball (.tar.gz or .run) to determine if the proper dependencies are installed to successfully compile HPLIP. Run-time check mode (-r or --run): Use this mode to determine if a distro supplied package (.deb, .rpm, etc) or an already built HPLIP supplied tarball has the proper dependencies installed to successfully run. Both compile- and run-time check mode (-b or --both) (Default): This mode will check both of the above cases (both compile- and run-time dependencies). Full Output output of hp-setup -g 002:007 window box "device not found please make sure your printer is properly connected and powered on" duan@duan-Lenovo-B550:~$ sudo hp-setup -g 002:007 [sudo] password for duan: > HP Linux Imaging and Printing System (ver. 3.14.4) Printer/Fax Setup > Utility ver. 9.0 > > Copyright (c) 2001-13 Hewlett-Packard Development Company, LP This > software comes with ABSOLUTELY NO WARRANTY. This is free software, and > you are welcome to distribute it under certain conditions. See COPYING > file for more details. > > hp-setup[18461]: debug: param=002:007 hp-setup[18461]: debug: > selected_device_name=None Fontconfig error: > "/etc/fonts/conf.d/65-khmer.conf", line 14: out of memory Fontconfig > error: "/etc/fonts/conf.d/65-khmer.conf", line 23: out of memory > Fontconfig error: "/etc/fonts/conf.d/65-khmer.conf", line 32: out of > memory hp-setup[18461]: debug: Sys.argv=['/usr/bin/hp-setup', '-g', > '002:007'] printer_name=None param=002:007 jd_port=1 device_uri=None > remove=False Searching for device... hp-setup[18461]: debug: Trying > USB with bus=002 dev=007... hp-setup[18461]: debug: Not found. > hp-setup[18461]: debug: Trying serial number 002:007 hp-setup[18461]: > debug: Probing bus: usb hp-setup[18461]: debug: Probing bus: par > error: Device not found. Please make sure your printer is properly > connected and powered-on. hp-setup[18461]: debug: Starting GUI loop. .. USB lead Works with the Windows 7 laptop Printer Works with windows 7 laptop Questions Is this a Bug with HPLIP or an issue with laptop/printer? Supplementary question if it is a bug what information is needed and where should it be sent ? Any suggestions on how to get the printer to work correctly with Ubuntu 14.04LTS/HPLIP 13.4.3 so that it stays working ?

    Read the article

  • Using Oracle ADF Data Visualization Tools (DVT) Line Graphs to Display Weather Information

    - by Christian David Straub
    OverviewA guest post by Jeanne Waldman.I have a simple JDeveloper Fusion application that retrieves weather data. I wanted to compare the week's temperatures of different locations in a graph. I decided to check out the dvt:lineGraph component, and it took me a few minutes to add it to my jspx page and supply it with data.Drag and Drop the dvt:lineGraph onto your pageI opened my .jspx page in design modeIn the Component Palette, I selected ADF Data Visualization.Then I dragged 'Line' onto my page.A dialog popped up giving me options of the type of line graph. I chose the default.A lineGraph displayed with some default data. Hook up your weather dataNow I wanted to hook up my own data. I browsed the tagdoc, and I found the tabularData attribute.Attribute: tabularDataType: java.util.ListTagDoc:Specifies a list of data that the graph uses to create a grid and populate itself. The List consists of a three-member Object array for each data value to be passed to the graph. The members of each array must be organized as follows: The first member (index 0) is the column label, in the grid, of the data value. This is generally a String. If the graph has a time axis, then this should be a Java Date. Column labels typically identify groups in the graph. The second member (index 1) is the row label, in the grid, of the data value. This is generally a String. Row labels appear as series labels in the graph (usually in the legend). The third member (index 2) is the data value, which is usually a Double.The first member is the column label of the data value. This would be the day of the week.The second member is the row label of the data value. This would be the location name.The third member is the data value, usually a Double. This would be the temperature. I already had all this information, I just needed to put it in a List with a three-member Object array for each data value.   /**    * This is used for the lineGraph to show the data for each location.    */   public List<Object[]> getTabularData()   {      List<Object[]> tabularData = new ArrayList<Object []>();      List<WeatherForecast> weatherForecastList = getWeatherForecastList();      // loop through the list and build up the tabular data. Then cache it.      for(WeatherForecast wf : weatherForecastList)      {        List<ForecastDay> forecastDayList = wf.getForecastDayList();        String location = wf.getLocation();        for (ForecastDay fday : forecastDayList)        {          String day = fday.getPrettyDate();          String highTemp = fday.getHighF();          tabularData.add(new Object[]{day, location, Double.valueOf(highTemp)});        }             }      return tabularData;    }  Now I bound the lineGraph to this method by setting tabularData to#{weatherForAllLocationsBean.tabularData}weatherForAllLocationsBean is my bean that is defined in faces-config.xml. Adding a barGraphIn about 30 seconds, I added a barGraph with the same data. I dragged and dropped a bar graph onto the page, used the same tabularData as I did in the line graph. The page looks like this:  ConclusionI was very happy how fast it was to hook up my weather data to these graphs. They look great, and they have built in functionality. For instance, I can hide/show a location by clicking on the name of the location in the legend.

    Read the article

  • RK4 Bouncing a Ball

    - by Jonathan Dickinson
    I am trying to wrap my head around RK4. I decided to do the most basic 'ball with gravity that bounces' simulation. I have implemented the following integrator given Glenn Fiedler's tutorial: /// <summary> /// Represents physics state. /// </summary> public struct State { // Also used internally as derivative. // S: Position // D: Velocity. /// <summary> /// Gets or sets the Position. /// </summary> public Vector2 X; // S: Position // D: Acceleration. /// <summary> /// Gets or sets the Velocity. /// </summary> public Vector2 V; } /// <summary> /// Calculates the force given the specified state. /// </summary> /// <param name="state">The state.</param> /// <param name="t">The time.</param> /// <param name="acceleration">The value that should be updated with the acceleration.</param> public delegate void EulerIntegrator(ref State state, float t, ref Vector2 acceleration); /// <summary> /// Represents the RK4 Integrator. /// </summary> public static class RK4 { private const float OneSixth = 1.0f / 6.0f; private static void Evaluate(EulerIntegrator integrator, ref State initial, float t, float dt, ref State derivative, ref State output) { var state = new State(); // These are a premature optimization. I like premature optimization. // So let's not concentrate on that. state.X.X = initial.X.X + derivative.X.X * dt; state.X.Y = initial.X.Y + derivative.X.Y * dt; state.V.X = initial.V.X + derivative.V.X * dt; state.V.Y = initial.V.Y + derivative.V.Y * dt; output = new State(); output.X.X = state.V.X; output.X.Y = state.V.Y; integrator(ref state, t + dt, ref output.V); } /// <summary> /// Performs RK4 integration over the specified state. /// </summary> /// <param name="eulerIntegrator">The euler integrator.</param> /// <param name="state">The state.</param> /// <param name="t">The t.</param> /// <param name="dt">The dt.</param> public static void Integrate(EulerIntegrator eulerIntegrator, ref State state, float t, float dt) { var a = new State(); var b = new State(); var c = new State(); var d = new State(); Evaluate(eulerIntegrator, ref state, t, 0.0f, ref a, ref a); Evaluate(eulerIntegrator, ref state, t + dt * 0.5f, dt * 0.5f, ref a, ref b); Evaluate(eulerIntegrator, ref state, t + dt * 0.5f, dt * 0.5f, ref b, ref c); Evaluate(eulerIntegrator, ref state, t + dt, dt, ref c, ref d); a.X.X = OneSixth * (a.X.X + 2.0f * (b.X.X + c.X.X) + d.X.X); a.X.Y = OneSixth * (a.X.Y + 2.0f * (b.X.Y + c.X.Y) + d.X.Y); a.V.X = OneSixth * (a.V.X + 2.0f * (b.V.X + c.V.X) + d.V.X); a.V.Y = OneSixth * (a.V.Y + 2.0f * (b.V.Y + c.V.Y) + d.V.Y); state.X.X = state.X.X + a.X.X * dt; state.X.Y = state.X.Y + a.X.Y * dt; state.V.X = state.V.X + a.V.X * dt; state.V.Y = state.V.Y + a.V.Y * dt; } } After reading over the tutorial I noticed a few things that just seemed 'out' to me. Notably how the entire simulation revolves around t at 0 and state at 0 - considering that we are working out a curve over the duration it seems logical that RK4 wouldn't be able to handle this simple scenario. Never-the-less I forged on and wrote a very simple Euler integrator: static void Integrator(ref State state, float t, ref Vector2 acceleration) { if (state.X.Y > 100 && state.V.Y > 0) { // Bounce vertically. acceleration.Y = -state.V.Y * t; } else { acceleration.Y = 9.8f; } } I then ran the code against a simple fixed-time step loop and this is what I got: 0.05 0.20 0.44 0.78 1.23 1.76 ... 74.53 78.40 82.37 86.44 90.60 94.86 99.23 103.05 105.45 106.94 107.86 108.42 108.76 108.96 109.08 109.15 109.19 109.21 109.23 109.23 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 109.24 ... As I said, I was expecting it to break - however I am unsure of how to fix it. I am currently looking into keeping the previous state and time, and working from that - although at the same time I assume that will defeat the purpose of RK4. How would I get this simulation to print the expected results?

    Read the article

  • Part 14: Execute a PowerShell script

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application With PowerShell you can add powerful scripting to your build to for example execute a deployment. If you want more information on PowerShell, please refer to http://technet.microsoft.com/en-us/library/aa973757.aspx For this example we will create a simple PowerShell script that prints “Hello world!”. To create the script, create a new text file and name it “HelloWorld.ps1”. Add to the contents of the script: Write-Host “Hello World!” To test the script do the following: Open the command prompt To run the script you must change the execution policy. To do this execute in the command prompt: powershell set-executionpolicy remotesigned Now go to the directory where you have saved the PowerShell script Execute the following command powershell .\HelloWorld.ps1 In this example I use a relative path, but when the path to the PowerShell script contains spaces, you need to change the syntax to powershell "& '<full path to script>' " for example: powershell "& ‘C:\sources\Build Customization\SolutionToBuild\PowerShell Scripts\HellloWorld.ps1’ " In this blog post, I create a new solution and that solution includes also this PowerShell script. I want to create an argument on the Build Process Template that holds the path to the PowerShell script. In the Build Process Template I will add an InvokeProcess activity to execute the PowerShell command. This InvokeProcess activity needs the location of the script as an argument for the PowerShell command. Since you don’t know the full path at the build server of this script, you can either specify in the argument the relative path of the script, but it is hard to find out what the relative path is. I prefer to specify the location of the script in source control and then convert that server path to a local path. To do this conversion you can use the ConvertWorkspaceItem activity. So to complete the task, open the Build Process Template CustomTemplate.xaml that we created in earlier parts, follow the following steps Add a new argument called “DeploymentScript” and set the appropriate settings in the metadata. See Part 2: Add arguments and variables  for more information. Scroll down beneath the TryCatch activity called “Try Compile, Test, and Associate Changesets and Work Items” Add a new If activity and set the condition to "Not String.IsNullOrEmpty(DeploymentScript)" to ensure it will only run when the argument is passed. Add in the Then branch of the If activity a new Sequence activity and rename it to “Start deployment” Click on the activity and add a new variable called DeploymentScriptFilename (scoped to the “Start deployment” Sequence Add a ConvertWorkspaceItem activity on the “Start deployment” Sequence Add a InvokeProcess activity beneath the ConvertWorkspaceItem activity in the “Start deployment” Sequence Click on the ConvertWorkspaceItem activity and change the properties DisplayName = Convert deployment script filename Input = DeploymentScript Result = DeploymentScriptFilename Workspace = Workspace Click on the InvokeProcess activity and change the properties Arguments = String.Format(" ""& '{0}' "" ", DeploymentScriptFilename) DisplayName = Execute deployment script FileName = "PowerShell" To see results from the powershell command drop a WriteBuildMessage activity on the "Handle Standard Output" and pass the stdOutput variable to the Message property. Do the same for a WriteBuildError activity on the "Handle Error Output" To publish it, check in the Build Process Template This leads to the following result We now go to the build definition that depends on the template and set the path of the deployment script to the server path to the HelloWorld.ps1. (If you want to see the result of the PowerShell script, change the Logging verbosity to Detailed or Diagnostic). Save and run the build. A lot of the deployment scripts you have will have some kind of arguments (like username / password or environment variables) that you want to define in the Build Definition. To make the PowerShell configurable, you can follow the following steps. Create a new script and give it the name "HelloWho.ps1". In the contents of the file add the following lines: param (         $person     ) $message = [System.String]::Format(“Hello {0}!", $person) Write-Host $message When you now run the script on the command prompt, you will see the following So lets change the Build Process Template to accept one parameter for the deployment script. You can of course make it configurable to add a for-loop that reads through a collection of parameters but that is out of scope of this blog post. Add a new Argument called DeploymentScriptParameter In the InvokeProcess activity where the PowerShell command is executed, modify the Arguments property to String.Format(" ""& '{0}' '{1}' "" ", DeploymentScriptFilename, DeploymentScriptParameter) Check in the Build Process Template Now modify the build definition and set the Parameter of the deployment to any value and run the build. You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • Identity Management Monday at Oracle OpenWorld

    - by Tanu Sood
    What a great start to Oracle OpenWorld! Did you catch Larry Ellison’s keynote last evening? As expected, it was a packed house and the keynote received a tremendous response both from the live audience as well as the online community as evidenced by the frequent spontaneous applause in house and the twitter buzz. Here’s but a sampling of some of the tweets that flowed in: @paulvallee: I freaking love that #oracle has been born again in it's interest in core tech #oow (so good for #pythian) @rwang0: MyPOV: #oracle just leapfrogged the competition on the tech front across the board. All they need is the content delivery network #oow12 @roh1: LJE more astute & engaging this year. Nice announcements this year with 12c the MTDB sounding real good. #oow12 @brooke: Cool to see @larryellison interrupted multiple times by applause from the audience. Great speaker. #OOW And there’s lot more to come this week. Identity Management sessions kick-off today. Here’s a quick preview of what’s in store for you today for Identity Management: CON9405: Trends in Identity Management 10:45 a.m. – 11:45 a.m., Moscone West 3003 Hear directly from subject matter experts from Kaiser Permanente and SuperValu who would share the stage with Amit Jasuja, Senior Vice President, Oracle Identity Management and Security, to discuss how the latest advances in Identity Management that made it in Oracle Identity Management 11g Release 2 are helping customers address emerging requirements for securely enabling cloud, social and mobile environments. CON9492: Simplifying your Identity Management Implementation 3:15 p.m. – 4:15 p.m., Moscone West 3008 Implementation experts from British Telecom, Kaiser Permanente and UPMC participate in a panel to discuss best practices, key strategies and lessons learned based on their own experiences. Attendees will hear first-hand what they can do to streamline and simplify their identity management implementation framework for a quick return-on-investment and maximum efficiency. This session will also explore the architectural simplifications of Oracle Identity Governance 11gR2, focusing on how these enhancements simply deployments. CON9444: Modernized and Complete Access Management 4:45 p.m. – 5:45 p.m., Moscone West 3008 We have come a long way from the days of web single sign-on addressing the core business requirements. Today, as technology and business evolves, organizations are seeking new capabilities like federation, token services, fine grained authorizations, web fraud prevention and strong authentication. This session will explore the emerging requirements for access management, what a complete solution is like, complemented with real-world customer case studies from ETS, Kaiser Permanente and TURKCELL and product demonstrations. HOL10478: Complete Access Management Monday, October 1, 1:45 p.m. – 2:45 p.m., Marriott Marquis - Salon 1/2 And, get your hands on technology today. Register and attend the Hands-On-Lab session that demonstrates Oracle’s complete and scalable access management solution, which includes single sign-on, authorization, federation, and integration with social identity providers. Further, the session shows how to securely extend identity services to mobile applications and devices—all while leveraging a common set of policies and a single instance. Product Demonstrations The latest technology in Identity Management is also being showcased in the Exhibition Hall so do find some time to visit our product demonstrations there. Experts will be at hand to answer any questions. DEMOS LOCATION EXHIBITION HALL HOURS Access Management: Complete and Scalable Access Management Moscone South, Right - S-218 Monday, October 1 9:30 a.m.–6:00 p.m. 9:30 a.m.–10:45 a.m. (Dedicated Hours) Tuesday, October 2 9:45 a.m.–6:00 p.m. 2:15 p.m.–2:45 p.m. (Dedicated Hours) Wednesday, October 3 9:45 a.m.–4:00 p.m. 2:15 p.m.–3:30 p.m. (Dedicated Hours) Access Management: Federating and Leveraging Social Identities Moscone South, Right - S-220 Access Management: Mobile Access Management Moscone South, Right - S-219 Access Management: Real-Time Authorizations Moscone South, Right - S-217 Access Management: Secure SOA and Web Services Security Moscone South, Right - S-223 Identity Governance: Modern Administration and Tooling Moscone South, Right - S-210 Identity Management Monitoring with Oracle Enterprise Manager Moscone South, Right - S-212 Oracle Directory Services Plus: Performant, Cloud-Ready Moscone South, Right - S-222 Oracle Identity Management: Closed-Loop Access Certification Moscone South, Right - S-221 We recommend you keep the Focus on Identity Management document handy. And don’t forget, if you are not on site, you can catch all the keynotes LIVE from the comfort of your desk on YouTube.com/Oracle. Keep the conversation going on @oracleidm. Use #OOW and #IDM and get engaged today. Photo Courtesy: @OracleOpenWorld

    Read the article

  • Running Jetty under Windows Azure Using RoleEntryPoint in a Worker Role

    - by Shawn Cicoria
    This post is built upon the work of Mario Kosmiskas and David C. Chou’s prior postings – from here: http://blogs.msdn.com/b/mariok/archive/2011/01/05/deploying-java-applications-in-azure.aspx  http://blogs.msdn.com/b/dachou/archive/2010/03/21/run-java-with-jetty-in-windows-azure.aspx As Mario points out in his post, when you need to have more control over the process that starts, it generally is better left to a RoleEntryPoint capability that as of now, requires the use of a CLR based assembly that is deployed as part of the package to Azure. There were things I liked especially about Mario’s post – specifically, the ability to pull down the JRE and Jetty runtimes at role startup and instantiate the process using the extracted bits.  The way Mario initialized the java process (and Jetty) was to take advantage of a role startup task configured as part of the service definition.  This is a great quick way to kick off processes or tasks prior to your role entry point.  However, if you need access to service configuration values or role events, that’s where RoleEntryPoint comes in.  For this PoC sample I moved the logic for retrieving the bits for the jre and jetty to the worker roles OnStart – in addition to moving the process kickoff to the OnStart method.  The Run method at this point is there to loop and just report the status of the java process. Beyond just making things more parameterized, both Mario’s and David’s articles still form the essence of the approach. The solution that accompanies this post provides all the necessary .NET based Visual Studio project.  In addition, you’ll need: 1. Jetty 7 runtime http://www.eclipse.org/jetty/downloads.php 2. JRE http://www.oracle.com/technetwork/java/javase/downloads/index.html Once you have these the first step is to create archives (zips) of the distributions.  For this PoC, the structure of the archive requires that the root of the archive looks as follows: JRE6.zip jetty---.zip Upload the contents to a storage container (block blob), and for this example I used /archives as the location.  The service configuration has several settings that allow, which is the advantage of using RoleEntryPoint, the ability to provide these things via native configuration support from Azure in a worker role. Storage Explorer You can use development storage for testing this out – the zipped version of the solution is configured for development storage.  When you’re ready to deploy, you update the two settings – 1 for diagnostics and the other for the storage container where the /archives are going to be stored. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="HostedJetty" osFamily="2" osVersion="*"> <Role name="JettyWorker"> <Instances count="1" /> <ConfigurationSettings> <!--<Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="DefaultEndpointsProtocol=https;AccountName=<accountName>;AccountKey=<accountKey>" />--> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="JettyArchive" value="jetty-distribution-7.3.0.v20110203b.zip" /> <Setting name="StartRole" value="true" /> <Setting name="BlobContainer" value="archives" /> <Setting name="JreArchive" value="jre6.zip" /> <!--<Setting name="StorageCredentials" value="DefaultEndpointsProtocol=https;AccountName=<accountName>;AccountKey=<accountKey>"/>--> <Setting name="StorageCredentials" value="UseDevelopmentStorage=true" />   For interacting with Storage you can use several tools – one tool that I like is from the Windows Azure CAT team located here: http://appfabriccat.com/2011/02/exploring-windows-azure-storage-apis-by-building-a-storage-explorer-application/  and shown in the prior picture At runtime, during role initialization and startup, Azure will call into your RoleEntryPoint.  At that time the code will do a dynamic pull of the 2 archives and extract – using the Sharp Zip Lib <link> as Mario had demonstrated in his sample.  The only different here is the use of CLR code vs. PowerShell (which is really CLR, but that’s another discussion). At this point, once the 2 zips are extracted, the Role’s file system looks as follows: Worker Role approot From there, the OnStart method (which also does the download and unzip using a simple StorageHelper class) kicks off the Java path and now you have Java! Task Manager Jetty Sample Page A couple of things I’m working on to enhance this is to extract the jre and jetty bits not to the appRoot but to a resource location defined as part of the service definition. ServiceDefinition.csdef <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="HostedJetty" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="JettyWorker"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> <Endpoints> <InputEndpoint name="JettyPort" protocol="tcp" port="80" localPort="8080" /> </Endpoints> <LocalResources> <LocalStorage name="Archives" cleanOnRoleRecycle="false" sizeInMB="100" /> </LocalResources>   As the concept matures a bit, being able to update dynamically the content or jar files as part of a running java solution is something that is possible through continued enhancement of this simple model. The Visual Studio 2010 Solution is located here: HostingJavaSln_NDA.zip

    Read the article

  • Connection Pooling is Busted

    - by MightyZot
    A few weeks ago we started getting complaints about performance in an application that has performed very well for many years.  The application is a n-tier application that uses ADODB with the SQLOLEDB provider to talk to a SQL Server database.  Our object model is written in such a way that each public method validates security before performing requested actions, so there is a significant number of queries executed to get information about file cabinets, retrieve images, create workflows, etc.  (PaperWise is a document management and workflow system.)  A common factor for these customers is that they have remote offices connected via MPLS networks. Naturally, the first thing we looked at was the query performance in SQL Profiler.  All of the queries were executing within expected timeframes, most of them were so fast that the duration in SQL Profiler was zero.  After getting nowhere with SQL Profiler, the situation was escalated to me.  I decided to take a peek with Process Monitor.  Procmon revealed some “gaps” in the TCP/IP traffic.  There were notable delays between send and receive pairs.  The send and receive pairs themselves were quite snappy, but quite often there was a notable delay between a receive and the next send.  You might expect some delay because, presumably, the application is doing some thinking in-between the pairs.  But, comparing the procmon data at the remote locations with the procmon data for workstations on the local network showed that the remote workstations were significantly delayed.  Procmon also showed a high number of disconnects. Wireshark traces showed that connections to the database were taking between 75ms and 150ms.  Not only that, but connections to a file share containing images were taking 2 seconds!  So, I asked about a trust.  Sure enough there was a trust between two domains and the file share was on the second domain.  Joining a remote workstation to the domain hosting the share containing images alleviated the time delay in accessing the file share.  Removing the trust had no affect on the connections to the database. Microsoft Network Monitor includes filters that parse TDS packets.  TDS is the protocol that SQL Server uses to communicate.  There is a certificate exchange and some SSL that occurs during authentication.  All of this was evident in the network traffic.  After staring at the network traffic for a while, and examining packets, I decided to call it a night.  On the way home that night, something about the traffic kept nagging at me.  Then it dawned on me…at the beginning of the dance of packets between the client and the server all was well.  Connection pooling was working and I could see multiple queries getting executed on the same connection and ethereal port.  After a particular query, connecting to two different servers, I noticed that ADODB and SQLOLEDB started making repeated connections to the database on different ethereal ports.  SQL Server would execute a single query and respond on a port, then open a new port and execute the next query.  Connection pooling appeared to be broken. The next morning I wrote a test to confirm my hypothesis.  Turns out that the sequence causing the connection nastiness goes something like this: Make a connection to the database. Open a result set that returns enough records to require multiple roundtrips to the server. For each result, query for some other data in the database (this will open a new implicit connection.) Close the inner result set and repeat for every item in the original result set. Close the original connection. Provided that the first result set returns enough data to require multiple roundtrips to the server, ADODB and SQLOLEDB will start making new connections to the database for each query executed in the loop.  Originally, I thought this might be due to Microsoft’s denial of service (ddos) attack protection.  After turning those features off to no avail, I eventually thought to switch my queries to client-side cursors instead of server-side cursors.  Server-side cursors are the default, by the way.  Voila!  After switching to client-side cursors, the disconnects were gone and the above sequence yielded two connections as expected. While the real problem is the amount of time it takes to make connections over these MPLS networks (100ms on average), switching to client-side cursors made the problem go away.  Believe it or not, this is actually documented by Microsoft, and rather difficult to find.  (At least it was while we were trying to troubleshoot the problem!)  So, if you’re noticing performance issues on slower networks, or networks with slower switching, take a look at the traffic in a tool like Microsoft Network Monitor.  If you notice a high number of disconnects, and you’re using fire-hose or server-side cursors, then try switching to client-side cursors and you may see the problem go away. Most likely, Microsoft believes this to be appropriate behavior, because ADODB can’t guarantee that all of the data has been retrieved when you execute the inner queries.  I’m not convinced, though, because the problem remains even after replacing all of the implicit connections with explicit connections and closing those connections in-between each of the inner queries.  In that case, there doesn’t seem to be a reason why ADODB can’t use a single connection from the connection pool to make the additional queries, bringing the total number of connections to two.  Instead ADO appears to make an assumption about the state of the connection. I’ve reported the behavior to Microsoft and am awaiting to hear from the appropriate team, so that I can demonstrate the problem.  Maybe they can explain to us why this is appropriate behavior.  :)

    Read the article

  • ASP.NET Web API and Simple Value Parameters from POSTed data

    - by Rick Strahl
    In testing out various features of Web API I've found a few oddities in the way that the serialization is handled. These are probably not super common but they may throw you for a loop. Here's what I found. Simple Parameters from Xml or JSON Content Web API makes it very easy to create action methods that accept parameters that are automatically parsed from XML or JSON request bodies. For example, you can send a JavaScript JSON object to the server and Web API happily deserializes it for you. This works just fine:public string ReturnAlbumInfo(Album album) { return album.AlbumName + " (" + album.YearReleased.ToString() + ")"; } However, if you have methods that accept simple parameter types like strings, dates, number etc., those methods don't receive their parameters from XML or JSON body by default and you may end up with failures. Take the following two very simple methods:public string ReturnString(string message) { return message; } public HttpResponseMessage ReturnDateTime(DateTime time) { return Request.CreateResponse<DateTime>(HttpStatusCode.OK, time); } The first one accepts a string and if called with a JSON string from the client like this:var client = new HttpClient(); var result = client.PostAsJsonAsync<string>(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, "Hello World").Result; which results in a trace like this: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 13Expect: 100-continueConnection: Keep-Alive "Hello World" produces… wait for it: null. Sending a date in the same fashion:var client = new HttpClient(); var result = client.PostAsJsonAsync<DateTime>(http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime, new DateTime(2012, 1, 1)).Result; results in this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 30Expect: 100-continueConnection: Keep-Alive "\/Date(1325412000000-1000)\/" (yes still the ugly MS AJAX date, yuk! This will supposedly change by RTM with Json.net used for client serialization) produces an error response: The parameters dictionary contains a null entry for parameter 'time' of non-nullable type 'System.DateTime' for method 'System.Net.Http.HttpResponseMessage ReturnDateTime(System.DateTime)' in 'AspNetWebApi.Controllers.AlbumApiController'. An optional parameter must be a reference type, a nullable type, or be declared as an optional parameter. Basically any simple parameters are not parsed properly resulting in null being sent to the method. For the string the call doesn't fail, but for the non-nullable date it produces an error because the method can't handle a null value. This behavior is a bit unexpected to say the least, but there's a simple solution to make this work using an explicit [FromBody] attribute:public string ReturnString([FromBody] string message) andpublic HttpResponseMessage ReturnDateTime([FromBody] DateTime time) which explicitly instructs Web API to read the value from the body. UrlEncoded Form Variable Parsing Another similar issue I ran into is with POST Form Variable binding. Web API can retrieve parameters from the QueryString and Route Values but it doesn't explicitly map parameters from POST values either. Taking our same ReturnString function from earlier and posting a message POST variable like this:var formVars = new Dictionary<string,string>(); formVars.Add("message", "Some Value"); var content = new FormUrlEncodedContent(formVars); var client = new HttpClient(); var result = client.PostAsync(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, content).Result; which produces this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/x-www-form-urlencodedHost: rasxpsContent-Length: 18Expect: 100-continue message=Some+Value When calling ReturnString:public string ReturnString(string message) { return message; } unfortunately it does not map the message value to the message parameter. This sort of mapping unfortunately is not available in Web API. Web API does support binding to form variables but only as part of model binding, which binds object properties to the POST variables. Sending the same message as in the previous example you can use the following code to pick up POST variable data:public string ReturnMessageModel(MessageModel model) { return model.Message; } public class MessageModel { public string Message { get; set; }} Note that the model is bound and the message form variable is mapped to the Message property as would other variables to properties if there were more. This works but it's not very dynamic. There's no real easy way to retrieve form variables (or query string values for that matter) in Web API's Request object as far as I can discern. Well only if you consider this easy:public string ReturnString() { var formData = Request.Content.ReadAsAsync<FormDataCollection>().Result; return formData.Get("message"); } Oddly FormDataCollection does not allow for indexers to work so you have to use the .Get() method which is rather odd. If you're running under IIS/Cassini you can always resort to the old and trusty HttpContext access for request data:public string ReturnString() { return HttpContext.Current.Request.Form["message"]; } which works fine and is easier. It's kind of a bummer that HttpRequestMessage doesn't expose some sort of raw Request object that has access to dynamic data - given that it's meant to serve as a generic REST/HTTP API that seems like a crucial missing piece. I don't see any way to read query string values either. To me personally HttpContext works, since I don't see myself using self-hosted code much.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • WebLogic Server JMS WLST Script – Who is Connected To My Server

    - by james.bayer
    Ever want to know who was connected to your WebLogic Server instance for troubleshooting?  An email exchange about this topic and JMS came up this week, and I’ve heard it come up once or twice before too.  Sometimes it’s interesting or helpful to know the list of JMS clients (IP Addresses, JMS Destinations, message counts) that are connected to a particular JMS server.  This can be helpful for troubleshooting.  Tom Barnes from the WebLogic Server JMS team provided some helpful advice: The JMS connection runtime mbean has “getHostAddress”, which returns the host address of the connecting client JVM as a string.  A connection runtime can contain session runtimes, which in turn can contain consumer runtimes.  The consumer runtime, in turn has a “getDestinationName” and “getMemberDestinationName”.  I think that this means you could write a WLST script, for example, to dump all consumers, their destinations, plus their parent session’s parent connection’s host addresses.    Note that the client runtime mbeans (connection, session, and consumer) won’t necessarily be hosted on the same JVM as a destination that’s in the same cluster (client messages route from their connection host to their ultimate destination in the same cluster). Writing the Script So armed with this information, I decided to take the challenge and see if I could write a WLST script to do this.  It’s always helpful to have the WebLogic Server MBean Reference handy for activities like this.  This one is focused on JMS Consumers and I only took a subset of the information available, but it could be modified easily to do Producers.  I haven’t tried this on a more complex environment, but it works in my simple sandbox case, so it should give you the general idea. # Better to use Secure Config File approach for login as shown here http://buttso.blogspot.com/2011/02/using-secure-config-files-with-weblogic.html connect('weblogic','welcome1','t3://localhost:7001')   # Navigate to the Server Runtime and get the Server Name serverRuntime() serverName = cmo.getName()   # Multiple JMS Servers could be hosted by a single WLS server cd('JMSRuntime/' + serverName + '.jms' ) jmsServers=cmo.getJMSServers()   # Find the list of all JMSServers for this server namesOfJMSServers = '' for jmsServer in jmsServers: namesOfJMSServers = jmsServer.getName() + ' '   # Count the number of connections jmsConnections=cmo.getConnections() print str(len(jmsConnections)) + ' JMS Connections found for ' + serverName + ' with JMSServers ' + namesOfJMSServers   # Recurse the MBean tree for each connection and pull out some information about consumers for jmsConnection in jmsConnections: try: print 'JMS Connection:' print ' Host Address = ' + jmsConnection.getHostAddress() print ' ClientID = ' + str( jmsConnection.getClientID() ) print ' Sessions Current = ' + str( jmsConnection.getSessionsCurrentCount() ) jmsSessions = jmsConnection.getSessions() for jmsSession in jmsSessions: jmsConsumers = jmsSession.getConsumers() for jmsConsumer in jmsConsumers: print ' Consumer:' print ' Name = ' + jmsConsumer.getName() print ' Messages Received = ' + str(jmsConsumer.getMessagesReceivedCount()) print ' Member Destination Name = ' + jmsConsumer.getMemberDestinationName() except: print 'Error retrieving JMS Consumer Information' dumpStack() # Cleanup disconnect() exit() Example Output I expect the output to look something like this and loop through all the connections, this is just the first one: 1 JMS Connections found for AdminServer with JMSServers myJMSServer JMS Connection:   Host Address = 127.0.0.1   ClientID = None   Sessions Current = 16    Consumer:      Name = consumer40      Messages Received = 1      Member Destination Name = myJMSModule!myQueue Notice that it has the IP Address of the client.  There are 16 Sessions open because I’m using an MDB, which defaults to 16 connections, so this matches what I expect.  Let’s see what the full output actually looks like: D:\Oracle\fmw11gr1ps3\user_projects\domains\offline_domain>java weblogic.WLST d:\temp\jms.py   Initializing WebLogic Scripting Tool (WLST) ...   Welcome to WebLogic Server Administration Scripting Shell   Type help() for help on available commands   Connecting to t3://localhost:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'offline_domain'.   Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.   Location changed to serverRuntime tree. This is a read-only tree with ServerRuntimeMBean as the root. For more help, use help(serverRuntime)   1 JMS Connections found for AdminServer with JMSServers myJMSServer JMS Connection: Host Address = 127.0.0.1 ClientID = None Sessions Current = 16 Consumer: Name = consumer40 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer34 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer37 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer16 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer46 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer49 Messages Received = 2 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer43 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer55 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer25 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer22 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer19 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer52 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer31 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer58 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer28 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Consumer: Name = consumer61 Messages Received = 1 Member Destination Name = myJMSModule!myQueue Disconnected from weblogic server: AdminServer     Exiting WebLogic Scripting Tool. Thanks to Tom Barnes for the hints and the inspiration to write this up. Image of telephone switchboard courtesy of http://www.JoeTourist.net/ JoeTourist InfoSystems

    Read the article

  • Optimizing collision engine bottleneck

    - by Vittorio Romeo
    Foreword: I'm aware that optimizing this bottleneck is not a necessity - the engine is already very fast. I, however, for fun and educational purposes, would love to find a way to make the engine even faster. I'm creating a general-purpose C++ 2D collision detection/response engine, with an emphasis on flexibility and speed. Here's a very basic diagram of its architecture: Basically, the main class is World, which owns (manages memory) of a ResolverBase*, a SpatialBase* and a vector<Body*>. SpatialBase is a pure virtual class which deals with broad-phase collision detection. ResolverBase is a pure virtual class which deals with collision resolution. The bodies communicate to the World::SpatialBase* with SpatialInfo objects, owned by the bodies themselves. There currenly is one spatial class: Grid : SpatialBase, which is a basic fixed 2D grid. It has it's own info class, GridInfo : SpatialInfo. Here's how its architecture looks: The Grid class owns a 2D array of Cell*. The Cell class contains two collection of (not owned) Body*: a vector<Body*> which contains all the bodies that are in the cell, and a map<int, vector<Body*>> which contains all the bodies that are in the cell, divided in groups. Bodies, in fact, have a groupId int that is used for collision groups. GridInfo objects also contain non-owning pointers to the cells the body is in. As I previously said, the engine is based on groups. Body::getGroups() returns a vector<int> of all the groups the body is part of. Body::getGroupsToCheck() returns a vector<int> of all the groups the body has to check collision against. Bodies can occupy more than a single cell. GridInfo always stores non-owning pointers to the occupied cells. After the bodies move, collision detection happens. We assume that all bodies are axis-aligned bounding boxes. How broad-phase collision detection works: Part 1: spatial info update For each Body body: Top-leftmost occupied cell and bottom-rightmost occupied cells are calculated. If they differ from the previous cells, body.gridInfo.cells is cleared, and filled with all the cells the body occupies (2D for loop from the top-leftmost cell to the bottom-rightmost cell). body is now guaranteed to know what cells it occupies. For a performance boost, it stores a pointer to every map<int, vector<Body*>> of every cell it occupies where the int is a group of body->getGroupsToCheck(). These pointers get stored in gridInfo->queries, which is simply a vector<map<int, vector<Body*>>*>. body is now guaranteed to have a pointer to every vector<Body*> of bodies of groups it needs to check collision against. These pointers are stored in gridInfo->queries. Part 2: actual collision checks For each Body body: body clears and fills a vector<Body*> bodiesToCheck, which contains all the bodies it needs to check against. Duplicates are avoided (bodies can belong to more than one group) by checking if bodiesToCheck already contains the body we're trying to add. const vector<Body*>& GridInfo::getBodiesToCheck() { bodiesToCheck.clear(); for(const auto& q : queries) for(const auto& b : *q) if(!contains(bodiesToCheck, b)) bodiesToCheck.push_back(b); return bodiesToCheck; } The GridInfo::getBodiesToCheck() method IS THE BOTTLENECK. The bodiesToCheck vector must be filled for every body update because bodies could have moved meanwhile. It also needs to prevent duplicate collision checks. The contains function simply checks if the vector already contains a body with std::find. Collision is checked and resolved for every body in bodiesToCheck. That's it. So, I've been trying to optimize this broad-phase collision detection for quite a while now. Every time I try something else than the current architecture/setup, something doesn't go as planned or I make assumption about the simulation that later are proven to be false. My question is: how can I optimize the broad-phase of my collision engine maintaining the grouped bodies approach? Is there some kind of magic C++ optimization that can be applied here? Can the architecture be redesigned in order to allow for more performance? Actual implementation: SSVSCollsion Body.h, Body.cpp World.h, World.cpp Grid.h, Grid.cpp Cell.h, Cell.cpp GridInfo.h, GridInfo.cpp

    Read the article

  • Do Not Optimize Without Measuring

    - by Alois Kraus
    Recently I had to do some performance work which included reading a lot of code. It is fascinating with what ideas people come up to solve a problem. Especially when there is no problem. When you look at other peoples code you will not be able to tell if it is well performing or not by reading it. You need to execute it with some sort of tracing or even better under a profiler. The first rule of the performance club is not to think and then to optimize but to measure, think and then optimize. The second rule is to do this do this in a loop to prevent slipping in bad things for too long into your code base. If you skip for some reason the measure step and optimize directly it is like changing the wave function in quantum mechanics. This has no observable effect in our world since it does represent only a probability distribution of all possible values. In quantum mechanics you need to let the wave function collapse to a single value. A collapsed wave function has therefore not many but one distinct value. This is what we physicists call a measurement. If you optimize your application without measuring it you are just changing the probability distribution of your potential performance values. Which performance your application actually has is still unknown. You only know that it will be within a specific range with a certain probability. As usual there are unlikely values within your distribution like a startup time of 20 minutes which should only happen once in 100 000 years. 100 000 years are a very short time when the first customer tries your heavily distributed networking application to run over a slow WIFI network… What is the point of this? Every programmer/architect has a mental performance model in his head. A model has always a set of explicit preconditions and a lot more implicit assumptions baked into it. When the model is good it will help you to think of good designs but it can also be the source of problems. In real world systems not all assumptions of your performance model (implicit or explicit) hold true any longer. The only way to connect your performance model and the real world is to measure it. In the WIFI example the model did assume a low latency high bandwidth LAN connection. If this assumption becomes wrong the system did have a drastic change in startup time. Lets look at a example. Lets assume we want to cache some expensive UI resource like fonts objects. For this undertaking we do create a Cache class with the UI themes we want to support. Since Fonts are expensive objects we do create it on demand the first time the theme is requested. A simple example of a Theme cache might look like this: using System; using System.Collections.Generic; using System.Drawing; struct Theme { public Color Color; public Font Font; } static class ThemeCache { static Dictionary<string, Theme> _Cache = new Dictionary<string, Theme> { {"Default", new Theme { Color = Color.AliceBlue }}, {"Theme12", new Theme { Color = Color.Aqua }}, }; public static Theme Get(string theme) { Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } return cached; } } class Program { static void Main(string[] args) { Theme item = ThemeCache.Get("Theme12"); item = ThemeCache.Get("Theme12"); } } This cache does create font objects only once since on first retrieve of the Theme object the font is added to the Theme object. When we let the application run it should print “Creating new font” only once. Right? Wrong! The vigilant readers have spotted the issue already. The creator of this cache class wanted to get maximum performance. So he decided that the Theme object should be a value type (struct) to not put too much pressure on the garbage collector. The code Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } does work with a copy of the value stored in the dictionary. This means we do mutate a copy of the Theme object and return it to our caller. But the original Theme object in the dictionary will have always null for the Font field! The solution is to change the declaration of struct Theme to class Theme or to update the theme object in the dictionary. Our cache as it is currently is actually a non caching cache. The funny thing was that I found out with a profiler by looking at which objects where finalized. I found way too many font objects to be finalized. After a bit debugging I found the allocation source for Font objects was this cache. Since this cache was there for years it means that the cache was never needed since I found no perf issue due to the creation of font objects. the cache was never profiled if it did bring any performance gain. to make the cache beneficial it needs to be accessed much more often. That was the story of the non caching cache. Next time I will write something something about measuring.

    Read the article

  • openGL migration from SFML to glut, vertices arrays or display lists are not displayed

    - by user3714670
    Due to using quad buffered stereo 3D (which i have not included yet), i need to migrate my openGL program from a SFML window to a glut window. With SFML my vertices and display list were properly displayed, now with glut my window is blank white (or another color depending on the way i clear it). Here is the code to initialise the window : int type; int stereoMode = 0; if ( stereoMode == 0 ) type = GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH; else type = GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | GLUT_STEREO; glutInitDisplayMode(type); int argc = 0; char *argv = ""; glewExperimental = GL_TRUE; glutInit(&argc, &argv); bool fullscreen = false; glutInitWindowSize(width,height); int win = glutCreateWindow(title.c_str()); glutSetWindow(win); assert(win != 0); if ( fullscreen ) { glutFullScreen(); width = glutGet(GLUT_SCREEN_WIDTH); height = glutGet(GLUT_SCREEN_HEIGHT); } GLenum err = glewInit(); if (GLEW_OK != err) { fprintf(stderr, "Error: %s\n", glewGetErrorString(err)); } glutDisplayFunc(loop_function); This is the only code i had to change for now, but here is the code i used with sfml and displayed my objects in the loop, if i change the value of glClearColor, the window's background does change color : glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glClearColor(255.0f, 255.0f, 255.0f, 0.0f); glLoadIdentity(); sf::Time elapsed_time = clock.getElapsedTime(); clock.restart(); camera->animate(elapsed_time.asMilliseconds()); camera->look(); for (auto i = objects->cbegin(); i != objects->cend(); ++i) (*i)->draw(camera); glutSwapBuffers(); Is there any other changes i should have done switching to glut ? that would be great if someone could enlighten me on the subject. In addition to that, i found out that adding too many objects (that were well handled before with SFML), openGL gives error 1285: out of memory. Maybe this is related. EDIT : Here is the code i use to draw each object, maybe it is the problem : GLuint LightID = glGetUniformLocation(this->shaderProgram, "LightPosition_worldspace"); if(LightID ==-1) cout << "LightID not found ..." << endl; GLuint MaterialAmbientID = glGetUniformLocation(this->shaderProgram, "MaterialAmbient"); if(LightID ==-1) cout << "LightID not found ..." << endl; GLuint MaterialSpecularID = glGetUniformLocation(this->shaderProgram, "MaterialSpecular"); if(LightID ==-1) cout << "LightID not found ..." << endl; glm::vec3 lightPos = glm::vec3(0,150,150); glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z); glUniform3f(MaterialAmbientID, MaterialAmbient.x, MaterialAmbient.y, MaterialAmbient.z); glUniform3f(MaterialSpecularID, MaterialSpecular.x, MaterialSpecular.y, MaterialSpecular.z); // Get a handle for our "myTextureSampler" uniform GLuint TextureID = glGetUniformLocation(shaderProgram, "myTextureSampler"); if(!TextureID) cout << "TextureID not found ..." << endl; glActiveTexture(GL_TEXTURE0); sf::Texture::bind(texture); glUniform1i(TextureID, 0); // 2nd attribute buffer : UVs GLuint vertexUVID = glGetAttribLocation(shaderProgram, "color"); if(vertexUVID==-1) cout << "vertexUVID not found ..." << endl; glEnableVertexAttribArray(vertexUVID); glBindBuffer(GL_ARRAY_BUFFER, color_array_buffer); glVertexAttribPointer(vertexUVID, 2, GL_FLOAT, GL_FALSE, 0, 0); GLuint vertexNormal_modelspaceID = glGetAttribLocation(shaderProgram, "normal"); if(!vertexNormal_modelspaceID) cout << "vertexNormal_modelspaceID not found ..." << endl; glEnableVertexAttribArray(vertexNormal_modelspaceID); glBindBuffer(GL_ARRAY_BUFFER, normal_array_buffer); glVertexAttribPointer(vertexNormal_modelspaceID, 3, GL_FLOAT, GL_FALSE, 0, 0 ); GLint posAttrib; posAttrib = glGetAttribLocation(shaderProgram, "position"); if(!posAttrib) cout << "posAttrib not found ..." << endl; glEnableVertexAttribArray(posAttrib); glBindBuffer(GL_ARRAY_BUFFER, position_array_buffer); glVertexAttribPointer(posAttrib, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elements_array_buffer); glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0); GLuint error; while ((error = glGetError()) != GL_NO_ERROR) { cerr << "OpenGL error: " << error << endl; } disableShaders();

    Read the article

  • Maintaining packages with code - Adding a property expression programmatically

    Every now and then I've come across scenarios where I need to update a lot of packages all in the same way. The usual scenario revolves around a group of packages all having been built off the same package template, and something needs to updated to keep up with new requirements, a new logging standard for example.You'd probably start by updating your template package, but then you need to address all your existing packages. Often this can run into the hundreds of packages and clearly that's not a job anyone wants to do by hand. I normally solve the problem by writing a simple console application that looks for files and patches any package it finds, and it is an example of this I'd thought I'd tidy up a bit and publish here. This sample will look at the package and find any top level Execute SQL Tasks, and change the SQL Statement property to use an expression. It is very simplistic working on top level tasks only, so nothing inside a Sequence Container or Loop will be checked but obviously the code could be extended for this if required. The code that actually sets the expression is shown below, the rest is just wrapper code to find the package and to find the task. /// <summary> /// The CreationName of the Tasks to target, e.g. Execute SQL Task /// </summary> private const string TargetTaskCreationName = "Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask.ExecuteSQLTask, Microsoft.SqlServer.SQLTask, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; /// <summary> /// The name of the task property to target. /// </summary> private const string TargetPropertyName = "SqlStatementSource"; /// <summary> /// The property expression to set. /// </summary> private const string ExpressionToSet = "@[User::SQLQueryVariable]"; .... // Check if the task matches our target task type if (taskHost.CreationName == TargetTaskCreationName) { // Check for the target property if (taskHost.Properties.Contains(TargetPropertyName)) { // Get the property, check for an expression and set expression if not found DtsProperty property = taskHost.Properties[TargetPropertyName]; if (string.IsNullOrEmpty(property.GetExpression(taskHost))) { property.SetExpression(taskHost, ExpressionToSet); changeCount++; } } } This is a console application, so to specify which packages you want to target you have three options: Find all packages in the current folder, the default behaviour if no arguments are specified TaskExpressionPatcher.exe .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find all packages in a specified folder, pass the folder as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\ .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find a specific package, pass the file path as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\Package.dtsx The code was written against SQL Server 2005, but just change the reference to Microsoft.SQLServer.ManagedDTS to be the SQL Server 2008 version and it will work fine. If you get an error Microsoft.SqlServer.Dts.Runtime.DtsRuntimeException: The package failed to load due to error 0xC0011008… then check that the package is from the correct version of SSIS compared to the referenced assemblies, 2005 vs 2008 in other words. Download Sample Project TaskExpressionPatcher.zip (6 KB)

    Read the article

  • Integration with Multiple Versions of BizTalk HL7 Accelerator Schemas

    - by Paul Petrov
    Microsoft BizTalk Accelerator for HL7 comes with multiple versions of the HL7 implementation. One of the typical integration tasks is to receive one format and transmit another. For example, system A works HL7 v2.4 messages, system B with v2.3, and system C with v2.2. The system A is exchanging messages with B and C. The logical solution is to create schemas in separate namespaces for each system and assign maps on send ports. Schematic diagram of the messaging solution is shown below:   Nothing is complex about that conceptually. On the implementation level things can get nasty though because of the elaborate nature of HL7 schemas and sheer amount of message types involved. If trying to implement maps directly in BizTalk Map Editor one would quickly get buried by thousands of links between subfields of HL7 segments. Since task is repetitive because HL7 segments are reused between message types it's natural to take advantage of such modular structure and reduce amount of work through reuse. Here's where it makes sense to switch from visual map editor to old plain XSLT. The implementation is done in three steps. First, create XSL templates to map from segments of one version to another. This can be done using BizTalk Map Editor subsequently copying and modifying generated XSL code to create one xsl:template per segment. Group all segments for format mapping in one XSL file (we call it SegmentTemplates.xsl). Here's how template for the PID segment (Patient Identification) would look like this: <xsl:template name="PID"> <PID_PatientIdentification> <xsl:if test="PID_PatientIdentification/PID_1_SetIdPatientId"> <PID_1_SetIdPid> <xsl:value-of select="PID_PatientIdentification/PID_1_SetIdPatientId/text()" /> </PID_1_SetIdPid> </xsl:if> <xsl:for-each select="PID_PatientIdentification/PID_2_PatientIdExternalId"> <PID_2_PatientId> <xsl:if test="CX_0_Id"> <CX_0_Id> <xsl:value-of select="CX_0_Id/text()" /> </CX_0_Id> </xsl:if> <xsl:if test="CX_1_CheckDigit"> <CX_1_CheckDigitSt> <xsl:value-of select="CX_1_CheckDigit/text()" /> </CX_1_CheckDigitSt> </xsl:if> <xsl:if test="CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed"> <CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed> <xsl:value-of select="CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed/text()" /> </CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed> . . . // skipped for brevity This is the most tedious and time consuming part. Templates can be created for only those segments that are used in message interchange. Once this is done the rest goes much easier. The next step is to create message type specific XSL that references (imports) segment templates XSL file. Inside this file simple call segment templates in appropriate places. For example, beginning of the mapping XSL for ADT_A01 message would look like this:   <xsl:import href="SegmentTemplates_23_to_24.xslt" />  <xsl:output omit-xml-declaration="yes" method="xml" version="1.0" />   <xsl:template match="/">    <xsl:apply-templates select="s0:ADT_A01_23_GLO_DEF" />  </xsl:template>   <xsl:template match="s0:ADT_A01_23_GLO_DEF">    <ns0:ADT_A01_24_GLO_DEF>      <xsl:call-template name="EVN" />      <xsl:call-template name="PID" />      <xsl:for-each select="PD1_PatientDemographic">        <xsl:call-template name="PD1" />      </xsl:for-each>      <xsl:call-template name="PV1" />      <xsl:for-each select="PV2_PatientVisitAdditionalInformation">        <xsl:call-template name="PV2" />      </xsl:for-each> This code simply calls segment template directly for required singular elements and in for-each loop for optional/repeating elements. And lastly, create BizTalk map (btm) that references message type specific XSL. It is essentially empty map with Custom XSL Path set to appropriate XSL: In the end, you will end up with one segment templates file that is referenced by many message type specific XSL files which in turn used by BizTalk maps. Once all segment maps are created they are widely reusable and all the rest work is very simple and clean.

    Read the article

  • Oracle Social Network Developer Challenge Winners

    - by kellsey.ruppel
    Originally posted by Jake Kuramoto on The Apps Lab blog. Now that OpenWorld 2012 has wrapped, I have time to tell you all about what happened. Maybe you recall that Noel (@noelportugal) and I were running a modified hackathon during the show, the Oracle Social Network Developer Challenge. Without further ado, congratulations to Dimitri Gielis (@dgielis) and Martin Giffy D’Souza (@martindsouza) on their winning entry, an integration between Oracle APEX and Oracle Social Network that integrates feedback and bug submission with Oracle Social Network Conversations, allowing developers, end-users and project leaders to view and discuss the feedback on their APEX applications from within Oracle Social Network. Update: Bob Rhubart of OTN (@brhubart) interviewed Dimitri and Martin right after their big win. Money quote from Dimitri when asked what he’d buy with the $500 in Amazon gift cards, “Oracle Social Network.” Nice one. In their own words: In the developers perspective it’s important to get feedback soon, so after a first iteration and end-users start to test, they can give feedback of the application. Previously it stopped there, and it was up to the developer to communicate further with email, phone etc. With OSN every feedback and communication gets logged and other people can see the discussion immediately as well. For the end users perspective he can now communicate in a more efficient way to not only the developers, but also between themselves. Maybe many end-users (in different locations) would like to change some behaviour, by using OSN they can see the entry somebody put in with a screenshot and they can just start to chat about it. Some key technical end users can have lighten the tasks of the development team by looking at the feedback first and start to communicate with their peers. For the project manager he has now the ability to really see what communication has taken place in certain areas and can make decisions on that. Later, if things come up again, he can always go back in OSN and see what was said at that moment in time. Integrating OSN in the APEX applications enhances the user experience, makes the lives of the developers easier and gives a better overview to project managers. Incidentally, you may already know Dimitri and Martin, since both are Oracle Ace Directors. I ran into Martin at the Ace Director briefings Friday before the conference started, and at that point, he wasn’t sure he’d have time to enter the Challenge. After some coaxing, he and Dimitri agreed to give it a go and banged out their entry on Tuesday night, or more accurately, very early Wednesday morning, the day of the Challenge judging. I think they said it took them about four hours of hardcore coding to get it done, very much like a traditional hackathon, which is essentially a code sprint from idea to finished product. Here are some screenshots of the workflow they built. #gallery-1 { margin: auto; } #gallery-1 .gallery-item { float: left; margin-top: 10px; text-align: center; width: 33%; } #gallery-1 img { border: 2px solid #cfcfcf; } #gallery-1 .gallery-caption { margin-left: 0; } I love this idea, i.e. closing the loop between web developers and users, a very common pain point, and so did our judges. Speaking of, special thanks to our panel of three judges: Reggie Bradford (@reggiebradford), serial entrepreneur, founder of Vitrue and SVP of Cloud Product Development at Oracle Robert Hipps (@roberthipps), VP of Development for Oracle Social Network and my former boss Roland Smart (@rsmartx), VP of Social Marketing and the brains behind the Oracle Social Developer Community Finally, thanks to everyone who made this possible, including: The three other teams from HarQen (@harqen), TEAM Informatics (@teaminformatics) and Fishbowl Solutions (@fishbowle20) featuring Friend of the ‘Lab John Sim (@jrsim_uix), who finished and presented entries. I’ll be posting the details of their work this week. The one guy who finished an entry, but couldn’t make the judging, Bex Huff (@bex). Bex rallied from a hospitalization due to an allergic reaction during the show; he’s fine, don’t worry. I’ll post details of his work next week, too. The 40-plus people who registered to compete in the Challenge. Noel for all his hard work, sample code, and flying monkey target, more on that to come. The Oracle Social Network development team for supporting this event. Everyone in legal and the beta program office for their help. And finally, the Oracle Technology Network (@oracletechnet) for hosting the event and providing countless hours of operational and moral support. Sorry if I’ve missed some people, since this was a huge team effort. This event was a big success, and we plan to do similar events in the future. Stay tuned to this channel for more. 

    Read the article

< Previous Page | 301 302 303 304 305 306 307 308 309 310 311 312  | Next Page >