Search Results

Search found 16473 results on 659 pages for 'game logic'.

Page 309/659 | < Previous Page | 305 306 307 308 309 310 311 312 313 314 315 316  | Next Page >

  • Problem with Ogre::Camera lookAt function when target is directly below.

    - by PigBen
    I am trying to make a class which controls a camera. It's pretty basic right now, it looks like this: class HoveringCameraController { public: void init(Ogre::Camera & camera, AnimatedBody & target, Ogre::Real height); void update(Ogre::Real time_delta); private: Ogre::Camera * camera_; AnimatedBody * target_; Ogre::Real height_; }; HoveringCameraController.cpp void HoveringCameraController::init(Ogre::Camera & camera, AnimatedBody & target, Ogre::Real height) { camera_ = &camera; target_ = &target; height_ = height; update(0.0); } void HoveringCameraController::update(Ogre::Real time_delta) { auto position = target_->getPosition(); position.y += height_; camera_->setPosition(position); camera_->lookAt(target_->getPosition()); } AnimatedBody is just a class that encapsulates an entity, it's animations and a scene node. The getPosition function is simply forwarded to it's scene node. What I want(for now) is for the camera to simply follow the AnimatedBody overhead at the distance given(the height parameter), and look down at it. It follows the object around, but it doesn't look straight down, it's tilted quite a bit in the positive Z direction. Does anybody have any idea why it would do that? If I change this line: position.y += height_; to this: position.x += height_; or this: position.z += height_; it does exactly what I would expect. It follows the object from the side or front, and looks directly at it.

    Read the article

  • Black Screen: How to set Projection/View Matrix

    - by Lisa
    I have a Windows Phone 8 C#/XAML with DirectX component project. I'm rendering some particles, but each particle is a rectangle versus a square (as I've set the vertices to be positions equally offset from each other). I used an Identity matrix in the view and projection matrix. I decided to add the windows aspect ratio to prevent the rectangles. But now I get a black screen. None of the particles are rendered now. I don't know what's wrong with my matrices. Can anyone see the problem? These are the default matrices in Microsoft's project example. View Matrix: XMVECTOR eye = XMVectorSet(0.0f, 0.7f, 1.5f, 0.0f); XMVECTOR at = XMVectorSet(0.0f, -0.1f, 0.0f, 0.0f); XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); XMStoreFloat4x4(&m_constantBufferData.view, XMMatrixTranspose(XMMatrixLookAtRH(eye, at, up))); Projection Matrix: void CubeRenderer::CreateWindowSizeDependentResources() { Direct3DBase::CreateWindowSizeDependentResources(); float aspectRatio = m_windowBounds.Width / m_windowBounds.Height; float fovAngleY = 70.0f * XM_PI / 180.0f; if (aspectRatio < 1.0f) { fovAngleY /= aspectRatio; } XMStoreFloat4x4(&m_constantBufferData.projection, XMMatrixTranspose(XMMatrixPerspectiveFovRH(fovAngleY, aspectRatio, 0.01f, 100.0f))); } I've tried modifying them to use cocos2dx's WP8 example. XMMATRIX identityMatrix = XMMatrixIdentity(); float fovy = 60.0f; float aspect = m_windowBounds.Width / m_windowBounds.Height; float zNear = 0.1f; float zFar = 100.0f; float xmin, xmax, ymin, ymax; ymax = zNear * tanf(fovy * XM_PI / 360); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; XMMATRIX tmpMatrix = XMMatrixPerspectiveOffCenterRH(xmin, xmax, ymin, ymax, zNear, zFar); XMMATRIX projectionMatrix = XMMatrixMultiply(tmpMatrix, identityMatrix); // View Matrix float fEyeX = m_windowBounds.Width * 0.5f; float fEyeY = m_windowBounds.Height * 0.5f; float fEyeZ = m_windowBounds.Height / 1.1566f; float fLookAtX = m_windowBounds.Width * 0.5f; float fLookAtY = m_windowBounds.Height * 0.5f; float fLookAtZ = 0.0f; float fUpX = 0.0f; float fUpY = 1.0f; float fUpZ = 0.0f; XMMATRIX tmpMatrix2 = XMMatrixLookAtRH(XMVectorSet(fEyeX,fEyeY,fEyeZ,0.f), XMVectorSet(fLookAtX,fLookAtY,fLookAtZ,0.f), XMVectorSet(fUpX,fUpY,fUpZ,0.f)); XMMATRIX viewMatrix = XMMatrixMultiply(tmpMatrix2, identityMatrix); XMStoreFloat4x4(&m_constantBufferData.view, viewMatrix); Vertex Shader cbuffer ModelViewProjectionConstantBuffer : register(b0) { //matrix model; matrix view; matrix projection; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; PixelInputType main(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; //===================================== // TODO: ADDED for testing input.position.z = 0.0f; //===================================== // Calculate the position of the vertex against the world, view, and projection matrices. //output.position = mul(input.position, model); output.position = mul(input.position, view); output.position = mul(output.position, projection); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Store the particle color for the pixel shader. output.color = input.color; return output; } Before I render the shader, I set the view/projection matrices into the constant buffer void ParticleRenderer::SetShaderParameters() { ViewProjectionConstantBuffer* dataPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; DX::ThrowIfFailed(m_d3dContext->Map(m_constantBuffer.Get(), 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource)); dataPtr = (ViewProjectionConstantBuffer*)mappedResource.pData; dataPtr->view = m_constantBufferData.view; dataPtr->projection = m_constantBufferData.projection; m_d3dContext->Unmap(m_constantBuffer.Get(), 0); // Now set the constant buffer in the vertex shader with the updated values. m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf() ); // Set shader texture resource in the pixel shader. m_d3dContext->PSSetShaderResources(0, 1, &m_textureView); } Nothing, black screen... I tried so many different look at, eye, and up vectors. I tried transposing the matrices. I've set the particle center position to always be (0, 0, 0), I tried different positions too, just to make sure they're not being rendered offscreen.

    Read the article

  • WIn API Basic Paint program

    - by Tom Burman
    Just trying to learn a bit of Win API. Im trying to make a basic drawing app, a bit like MS Paint. For the time being im trying to get one function to work which is, when you left click and drag the mouse around the screen a line is drawn behind the mouse. Heres what i have so far, but for some reason: 1) the line starts drawing straight away rather then waiting for the left click 2) the line isn't solid its very dotty. case WM_MOUSEMOVE: { if(MK_LBUTTON){ hdc = GetDC(hwnd); hPen = CreatePen(PS_SOLID,5,RGB(0, 0, 255)); SelectObject(hdc, hPen); int x = LOWORD(lParam); int y = HIWORD(lParam); MoveToEx(hdc,x,y,NULL); LineTo(hdc, LOWORD(lParam), HIWORD(lParam)); ReleaseDC(hwnd,hdc); } else break; } } Thanks for any help!

    Read the article

  • OpenGL ES Loading

    - by kuroutadori
    I want to know what is the norm of loading rendering code. Take a button. When the application is loaded, a texture is loaded which has the image of the button on it. When the button is tapped, it then adds a loader into a queue, which is loaded on render thread. It then loads up an array buffer with vertexes and tex coords when render is called. It then adds to a render tree. Then it renders. the render function looks like this void render() { update(); mBaseRenderer->render(); } update() is when the queue is checked to see if anything needs loading. mBaseRenderer->render() is the render tree. What I am asking then is, should I even have the update() there at all and instead have everything preloaded before it renders? If I can have it loaded when need, for instance when there is tap, then how can it be done (My current code causes an dequeueing buffer error (Unknown error: -75) which I assume is to do with OpenGL ES and the context)?

    Read the article

  • Vertex Array Object (OpenGL)

    - by Shin
    I've just started out with OpenGL I still haven't really understood what Vertex Array Objects are and how they can be employed. If Vertex Buffer Object are used to store vertex data (such as their positions and texture coordinates) and the VAOs only contain status flags, where can they be used? What's their purpose? As far as I understood from the (very incomplete and unclear) GL Wiki, VAOs are used to set the flags/status for every vertex, following the order described in the Element Array Buffer, but the wiki was really ambiguous about it and I'm not really sure about what VAOs really do and how I could employ them.

    Read the article

  • Collision detection code style

    - by Marian Ivanov
    Not only there are two useful broad-phase algorithms and a lot of useful narrowphase algorithms, there are also multiple code styles. Arrays vs. calling Make an array of broadphase checks, then filter them with narrowphase checks, then resolve them. function resolveCollisions(thingyStructure * a,thingyStructure * b,int index){ possibleCollisions = getPossibleCollisions(b,a->get(index)); for(i=0; i<possibleCollitionsNumber; i++){ if(narrowphase(possibleCollisions[i],a[index])) { collisions->push(possibleCollisions[i]); }; }; for(i=0; i<collitionsNumber; i++){ //CODE FOR RESOLUTION }; }; Make the broadphase call the narrowphase, and the narrowphase call the resolution function resolveCollisions(thingyStructure * a,thingyStructure * b,int index){ broadphase(b,a->get(index)); }; function broadphase(thingy * with, thingy * what){ while(blah){ //blahcode narrowphase(what,collidingThing); }; }; Events vs. in-the-loop Fire an event. This abstracts the check away, but it's trickier to make an equal interaction. a[index] -> collisionEvent(eventdata); //much later int collisionEvent(eventdata){ //resolution gets here } Resolve the collision inside the loop. This glues narrowphase and resolution into one layer. if(narrowphase(possibleCollisions[i],a[index])) { //CODE GOES HERE }; The questions are: Which of the first two is better, and how am I supposed to make a zero-sum Newtonian interaction under B1.

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • Can't get sprite to rotate correctly?

    - by rphello101
    I'm attempting to play with graphics using Java/Slick 2d. I'm trying to get my sprite to rotate to wherever the mouse is on the screen and then move accordingly. I figured the best way to do this was to keep track of the angle the sprite is at since I have to multiply the cosine/sine of the angle by the move speed in order to get the sprite to go "forwards" even if it is, say, facing 45 degrees in quadrant 3. However, before I even worry about that, I'm having trouble even getting my sprite to rotate in the first place. Preliminary console tests showed that this code worked, but when applied to the sprite, it just kind twitches. Anyone know what's wrong? int mX = Mouse.getX(); int mY = HEIGHT - Mouse.getY(); int pX = sprite.x; int pY = sprite.y; int tempY, tempX; double mAng, pAng = sprite.angle; double angRotate=0; if(mX!=pX){ tempY=pY-mY; tempX=mX-pX; mAng = Math.toDegrees(Math.atan2(Math.abs((tempY)),Math.abs((tempX)))); if(mAng==0 && mX<=pX) mAng=180; } else{ if(mY>pY) mAng=270; else mAng=90; } //Calculations if(mX<pX&&mY<pY){ //If in Q2 mAng = 180-mAng; } if(mX<pX&&mY>pY){ //If in Q3 mAng = 180+mAng; } if(mX>pX&&mY>pY){ //If in Q4 mAng = 360-mAng; } angRotate = mAng-pAng; sprite.angle = mAng; sprite.image.setRotation((float)angRotate);

    Read the article

  • Zelda-style Top-down RPG. Storing data for each tile type

    - by Delerat
    I'm creating a Zelda-style RPG using Tiled, C#, and MonoGame. When my code parses the .tmx file, it will get a number to associate with each tile type based off of their position in the tile sheet. If I ever need to change my sprite sheet, this number will change for many of the tiles. How can I guarantee that when I parse my .tmx file, I will be able to know exactly what tile type I'm getting so that I can associate the proper data with it(transparency, animated, collision, etc.)?

    Read the article

  • Manipulating Perlin Noise

    - by Numeri
    I've been learning about Procedurally Generated Content lately (in particular, Perlin noise). Perlin noise works great for making things like landscapes, height maps, and stuff like that. But now I am trying to generate structures more like mountain ranges (in 2D, as 3D would be way over my head right now) or underground veins of ores. I can't manage to manipulate Perlin Noise to do this. Making a cut off point (i.e. using only the tops of the 'mountains' of a heightmap) wouldn't work, because I would get lumps of mountains/veins. Any suggestions? Thanks, Numeri

    Read the article

  • 2d Ice movement

    - by Jeremy Clarkson
    I am building an top-down 2d RPG like zelda. I have been trying to implement ice sliding. I have a tile with the slide property. I thought it would be easy to get working. I figured that I would read the slide property, and move the character forward until the slide property no longer exists. So I tried a loop but all it did was stop at the first tile in an infinite loop. I then took the loop out and tried taking direct control of the character to move him along the slide path but I couldn't get it to move. Is there an easy way to do an ice sliding tile based movement in libgdx. I looked for a tutorial but none exist.

    Read the article

  • isometric background that covers the viewport [on hold]

    - by Richard
    The background image should cover the viewport. The technique I use now is a loop with an innerloop that draws diamond shaped images on a canvas element, but it looks like a rotated square. This is a nice example: ,that covers the whole viewport. I have heard something about clickthrough maps, but what more ways are there that are most efficient with mobile devices and javascript? Any advice in grid design out there?.

    Read the article

  • Matrix.CreateBillboard centre rotation problem

    - by Chris88
    I'm having an issue with Matrix.CreateBillboard and a textured Quad where the center axis seems to be positioned incorrectly to the quad object which is rotating around a center point: Using: BasicEffect quadEffect; Drawing the quad shape: Left = Vector3.Cross(Normal, Up); Vector3 uppercenter = (Up * height / 2) + origin; LowerLeft = uppercenter + (Left * width / 2); LowerRight = uppercenter - (Left * width / 2); UpperLeft = LowerLeft - (Up * height); UpperRight = LowerRight - (Up * height); Where height and width are float values passed in (it draws a square) Draw method: quadEffect.View = camera.view; quadEffect.Projection = camera.projection; quadEffect.World = Matrix.CreateBillboard(Origin, camera.cameraPosition, Vector3.Up, camera.cameraDirection); GraphicsDevice.BlendState = BlendState.Additive; foreach (EffectPass pass in quadEffect.CurrentTechnique.Passes) { pass.Apply(); GraphicsDevice.DrawUserIndexedPrimitives <VertexPositionNormalTexture>( PrimitiveType.TriangleList, Vertices, 0, 4, Indexes, 0, 2); } GraphicsDevice.BlendState = BlendState.Opaque; In the screenshots below i draw the image at Vector3(32f, 0f, 32f) The screenshots below show you the position of the quad in relation to the red cross. The red cross shows where it should be drawn http://i.imgur.com/YwRYj.jpg http://i.imgur.com/ZtoHL.jpg It rotates around the red cross position

    Read the article

  • How to use the float value from Noise function in voxel terrain?

    - by therealjohn
    Im using Unity, although this question is not really specific to that engine. Im also using an asset from the store called Coherent Noise. It has some neat noise functionality built it. I am using those functions to produce some noise values. I am getting a value between 0 and 1 (floats). I have an array of blocks (for minecraft like voxel terrain) and I am confused on how to use this float value for terrain? Do I do something like <= 0 == Solid block etc etc? I am confused on how to use the floating values that the noise functions produce to use for height values of an array of say a height of 16. Thanks for any guidance.

    Read the article

  • ScreenManagement how do I had different controls?

    - by DiasFrancisco
    I saw a question here using DataTemplates with WPF for ScreenManagement, I was curious and I gave it a try I think the ideia is amazing and very clean. Though I'm new to WPF and I read a lot of times that almost everything should be made in XAML and very little should be "coded behind". My questions resolves about using the datatemplate ideia, WHERE should the code that calls the transitions be? where should I define which commands are avaiable in which screens. For example: [ScreenA] Commands: Pressing B - Goes to state B Pressing ESC - Exits [ScreenB] Commands: Pressing A - Goes to state A Pressing SPACE - Exits where do I define the keyEventHandlers? and where do I call the next screen? I'm doing this as an hobby for learning and "if you are learning, better learn it right" :) Thank you for your time.

    Read the article

  • Isometric algorithm producing tiles in wrong draw order

    - by David
    I've been toying with isometric and I just cant get the tiles to be in the right order. I'm probably missing something obvious and I just can't see it. Even at the risk of looking stupid, here's my code: for (int i = 0; i < Tile.MapSize; i++) { for (int j = 0; j < Tile.MapSize; j++) { spriteBatch.Draw( Tile.TileSetTexture, new Rectangle( (-j * Tile.TileWidth / 2) + (i * Tile.TileWidth / 2), (i * (Tile.TileHeight - 9) / 2) - (-j * (Tile.TileHeight - 9) / 2), Tile.TileWidth, Tile.TileHeight), Tile.GetSourceRectangle(tileID), Color.White, 0.0f, new Vector2(-350, -60), SpriteEffects.None, 1.0f); } } And here's what I end up with: messed up map Yep, bit of an issue. If anyone could help, I'd appreciate it.

    Read the article

  • 2D Rectangle Collision Response with Multiple Rectangles

    - by Justin Skiles
    Similar to: Collision rectangle response I have a level made up of tiles where the edges of the level are made up of collidable rectangles. The player's collision box is represented by a rectangle as well. The player can move in 8 directions. The player's velocity is equal in X and Y directions and constant. Each update, I am checking the player's collision against all tiles that are a certain distance away. When the player collides with a rectangle, I am finding the intersection depth and resolving along the most shallow axis followed by the other axis. This resolution happens for both axes simultaneously. See below for two examples of situations where I am having trouble. Moving up-left against the left wall In the scenario below, the player is colliding with two tiles. The tile intersection depth is equal on both axes for the top tile and more shallow in the X axis for the middle tile. Because the player is moving up the wall, the player should slide in an upward direction along the wall. This works properly as long as the rectangle with the more shallow depth is evaluated first. If the equal intersection depth rectangle is evaluated first, there is a chance the player becomes stuck. Moving up-left against the top wall Here is an identical scenario with the exception that the collision is with the top wall. The same problem occurs at the corners when intersection depth is equal for both axes. I guess my overall question is: How can I ensure that collision response occurs on tiles that have non-equal intersection depth before tiles that have equal intersection depth in order to get around the weirdness that occurs at these corners. Sean's answer in the linked question was good, but his solution required having different velocity components in a certain direction. My situation has equal velocities, so there's no good way to tell which direction to resolve at corners. I hope I have made my explanation clear.

    Read the article

  • 3D terrain map with Hexagon Grids (XNA)

    - by Rob
    I'm working on a hobby project (I'm a web/backend developer by day) and I want to create a 3D Tile (terrain) engine. I'm using XNA, but I can use MonoGame, OpenGL, or straight DirectX, so the answer does not have to be XNA specific. I'm more looking for some high level advice on how to approach this problem. I know about creating height maps and such, there are thousands of references out there on the net for that, this is a bit more specific. I'm more concerned with is the approach to get a 3D hexagon tile grid out of my terrain (since the terrain, and all 3d objects, are basically triangles). The first approach I thought about is to basically draw the triangles on the screen in the following order (blue numbers) to give me the triangles for terrain (black triangles) and then make hexes out of the triangles (red hex). http://screencast.com/t/ebrH2g5V This approach seems complicated to me since i'm basically having to draw 4 different types of triangles. The next approach I thought of was to use the existing triangles like I did for a square grid and get my hexes from 6 triangles as follows http://screencast.com/t/w9b7qKzVJtb8 This seems like the easier approach to me since there are only 2 types of triangles (i would have to play with the heights and widths to get a "perfect" hexagon, but the idea is the same. So I'm looking for: 1) Any suggestions on which approach I should take, and why. 2) How would I translate mouse position to a hexagon grid position (especially when moving the camera around), for example in the second image if the mouse pointer were the green circle, how would I determine to highlight that hexagon and then translating that into grid coordinates (assuming it is 0,0)? 3) Any references, articles, books, etc - to get me going in the right direction. Note: I've done hex grid's and mouse-grid coordinate conversion before in 2d. looking for some pointers on how to do the same in 3d. The result I would like to achieve is something similar to the following: http :// www. youtube .com / watch?v=Ri92YkyC3fw (sorry about the youtube link, but it will only let me post 2 links in this post... same rep problem i mention below...) Thanks for any help! P.S. Sorry for not posting the images inline, I apparently don't have enough rep on this stack exchange site.

    Read the article

  • Octree subdivision problem

    - by ChaosDev
    Im creating octree manually and want function for effectively divide all nodes and their subnodes - For example - I press button and subnodes divided - press again - all subnodes divided again. Must be like - 1 - 8 - 64. The problem is - i dont understand how organize recursive loops for that. OctreeNode in my unoptimized implementation contain pointers to subnodes(childs),parent,extra vector(contains dublicates of child),generation info and lots of information for drawing. class gOctreeNode { //necessary fields gOctreeNode* FrontBottomLeftNode; gOctreeNode* FrontBottomRightNode; gOctreeNode* FrontTopLeftNode; gOctreeNode* FrontTopRightNode; gOctreeNode* BackBottomLeftNode; gOctreeNode* BackBottomRightNode; gOctreeNode* BackTopLeftNode; gOctreeNode* BackTopRightNode; gOctreeNode* mParentNode; std::vector<gOctreeNode*> m_ChildsVector; UINT mGeneration; bool mSplitted; bool isSplitted(){return m_Splitted;} .... //unnecessary fields }; DivideNode of Octree class fill these fields, set mSplitted to true, and prepare for correctly drawing. Octree contains basic nodes(m_nodes). Basic node can be divided, but now I want recursivly divide already divided basic node with 8 subnodes. So I write this function. void DivideAllChildCells(int ix,int ih,int id) { std::vector<gOctreeNode*> nlist; std::vector<gOctreeNode*> dlist; int index = (ix * m_Height * m_Depth) + (ih * m_Depth) + (id * 1);//get index of specified node gOctreeNode* baseNode = m_nodes[index].get(); nlist.push_back(baseNode->FrontTopLeftNode); nlist.push_back(baseNode->FrontTopRightNode); nlist.push_back(baseNode->FrontBottomLeftNode); nlist.push_back(baseNode->FrontBottomRightNode); nlist.push_back(baseNode->BackBottomLeftNode); nlist.push_back(baseNode->BackBottomRightNode); nlist.push_back(baseNode->BackTopLeftNode); nlist.push_back(baseNode->BackTopRightNode); bool cont = true; UINT d = 0;//additional recursive loop param (?) UINT g = 0;//additional recursive loop param (?) LoopNodes(d,g,nlist,dlist); //Divide resulting nodes for(UINT i = 0; i < dlist.size(); i++) { DivideNode(dlist[i]); } } And now, back to the main question,I present LoopNodes, which must do all work for giving dlist nodes for splitting. void LoopNodes(UINT& od,UINT& og,std::vector<gOctreeNode*>& nlist,std::vector<gOctreeNode*>& dnodes) { //od++;//recursion depth bool f = false; //pass through childs for(UINT i = 0; i < 8; i++) { if(nlist[i]->isSplitted())//if node splitted and have childs { //pass forward through tree for(UINT j = 0; j < 8; j++) { nlist[j] = nlist[j]->m_ChildsVector[j];//set pointers to these childs } LoopNodes(od,og,nlist,dnodes); } else //if no childs { //add to split vector dnodes.push_back(nlist[i]); } } } This version of loop nodes works correctly for 2(or 1?) generations after - this will not divide neightbours nodes, only some corners. I need correct algorithm. Screenshot All I need - is correct version of LoopNodes, which can add all nodes for DivideNode.

    Read the article

  • Setting the values of a struct array from JS to GLSL

    - by mikidelux
    I've been trying to make a structure that will contain all the lights of my WebGL app, and I'm having troubles setting up it's values from JS. The structure is as follows: struct Light { vec4 position; vec4 ambient; vec4 diffuse; vec4 specular; vec3 spotDirection; float spotCutOff; float constantAttenuation; float linearAttenuation; float quadraticAttenuation; float spotExponent; float spotLightCosCutOff; }; uniform Light lights[numLights]; After testing LOTS of things I made it work but I'm not happy with the code I wrote: program.uniform.lights = []; program.uniform.lights.push({ position: "", diffuse: "", specular: "", ambient: "", spotDirection: "", spotCutOff: "", constantAttenuation: "", linearAttenuation: "", quadraticAttenuation: "", spotExponent: "", spotLightCosCutOff: "" }); program.uniform.lights[0].position = gl.getUniformLocation(program, "lights[0].position"); program.uniform.lights[0].diffuse = gl.getUniformLocation(program, "lights[0].diffuse"); program.uniform.lights[0].specular = gl.getUniformLocation(program, "lights[0].specular"); program.uniform.lights[0].ambient = gl.getUniformLocation(program, "lights[0].ambient"); ... and so on I'm sorry for making you look at this code, I know it's horrible but I can't find a better way. Is there a standard or recommended way of doing this properly? Can anyone enlighten me?

    Read the article

  • How do I increase moving speed of body?

    - by Siddharth
    How to move ball speedily on the screen using box2d in libGDX? package com.badlogic.box2ddemo; import com.badlogic.gdx.ApplicationListener; import com.badlogic.gdx.Gdx; import com.badlogic.gdx.graphics.GL10; import com.badlogic.gdx.graphics.Texture; import com.badlogic.gdx.graphics.g2d.Sprite; import com.badlogic.gdx.graphics.g2d.SpriteBatch; import com.badlogic.gdx.graphics.g2d.TextureRegion; import com.badlogic.gdx.math.Matrix4; import com.badlogic.gdx.math.Vector2; import com.badlogic.gdx.physics.box2d.Body; import com.badlogic.gdx.physics.box2d.BodyDef; import com.badlogic.gdx.physics.box2d.BodyDef.BodyType; import com.badlogic.gdx.physics.box2d.Box2DDebugRenderer; import com.badlogic.gdx.physics.box2d.CircleShape; import com.badlogic.gdx.physics.box2d.Fixture; import com.badlogic.gdx.physics.box2d.FixtureDef; import com.badlogic.gdx.physics.box2d.PolygonShape; import com.badlogic.gdx.physics.box2d.World; public class Box2DDemo implements ApplicationListener { private SpriteBatch batch; private TextureRegion texture; private World world; private Body groundDownBody, groundUpBody, groundLeftBody, groundRightBody, ballBody; private BodyDef groundBodyDef1, groundBodyDef2, groundBodyDef3, groundBodyDef4, ballBodyDef; private PolygonShape groundDownPoly, groundUpPoly, groundLeftPoly, groundRightPoly; private CircleShape ballPoly; private Sprite sprite; private FixtureDef fixtureDef; private Vector2 ballPosition; private Box2DDebugRenderer renderer; Vector2 vector2; @Override public void create() { texture = new TextureRegion(new Texture( Gdx.files.internal("img/red_ring.png"))); sprite = new Sprite(texture); sprite.setOrigin(sprite.getWidth() / 2, sprite.getHeight() / 2); batch = new SpriteBatch(); world = new World(new Vector2(0.0f, 0.0f), false); groundBodyDef1 = new BodyDef(); groundBodyDef1.type = BodyType.StaticBody; groundBodyDef1.position.x = 0.0f; groundBodyDef1.position.y = 0.0f; groundDownBody = world.createBody(groundBodyDef1); groundBodyDef2 = new BodyDef(); groundBodyDef2.type = BodyType.StaticBody; groundBodyDef2.position.x = 0f; groundBodyDef2.position.y = Gdx.graphics.getHeight(); groundUpBody = world.createBody(groundBodyDef2); groundBodyDef3 = new BodyDef(); groundBodyDef3.type = BodyType.StaticBody; groundBodyDef3.position.x = 0f; groundBodyDef3.position.y = 0f; groundLeftBody = world.createBody(groundBodyDef3); groundBodyDef4 = new BodyDef(); groundBodyDef4.type = BodyType.StaticBody; groundBodyDef4.position.x = Gdx.graphics.getWidth(); groundBodyDef4.position.y = 0f; groundRightBody = world.createBody(groundBodyDef4); groundDownPoly = new PolygonShape(); groundDownPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.density = 0f; fixtureDef.restitution = 1f; fixtureDef.friction = 0f; fixtureDef.shape = groundDownPoly; fixtureDef.filter.groupIndex = 0; groundDownBody.createFixture(fixtureDef); groundUpPoly = new PolygonShape(); groundUpPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundUpPoly; fixtureDef.filter.groupIndex = 0; groundUpBody.createFixture(fixtureDef); groundLeftPoly = new PolygonShape(); groundLeftPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundLeftPoly; fixtureDef.filter.groupIndex = 0; groundLeftBody.createFixture(fixtureDef); groundRightPoly = new PolygonShape(); groundRightPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundRightPoly; fixtureDef.filter.groupIndex = 0; groundRightBody.createFixture(fixtureDef); ballPoly = new CircleShape(); ballPoly.setRadius(16f); fixtureDef = new FixtureDef(); fixtureDef.shape = ballPoly; fixtureDef.density = 1f; fixtureDef.friction = 1f; fixtureDef.restitution = 1f; ballBodyDef = new BodyDef(); ballBodyDef.type = BodyType.DynamicBody; ballBodyDef.position.x = (int) 200; ballBodyDef.position.y = (int) 200; ballBody = world.createBody(ballBodyDef); ballBody.setLinearVelocity(200f, 200f); // ballBody.applyLinearImpulse(new Vector2(250f, 250f), // ballBody.getLocalCenter()); ballBody.createFixture(fixtureDef); renderer = new Box2DDebugRenderer(true, false, false); } @Override public void dispose() { ballPoly.dispose(); groundLeftPoly.dispose(); groundUpPoly.dispose(); groundDownPoly.dispose(); groundRightPoly.dispose(); world.destroyBody(ballBody); world.dispose(); } @Override public void pause() { } @Override public void render() { world.step(1f/30f, 3, 3); Gdx.gl.glClearColor(1f, 1f, 1f, 1f); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); batch.begin(); vector2 = ballBody.getLinearVelocity(); System.out.println("X=" + vector2.x + " Y=" + vector2.y); ballPosition = ballBody.getPosition(); renderer.render(world,batch.getProjectionMatrix()); // int preX = (int) (vector2.x / Math.abs(vector2.x)); // int preY = (int) (vector2.y / Math.abs(vector2.y)); // // if (Math.abs(vector2.x) == 0.0f) // ballBody1.setLinearVelocity(1.4142137f, vector2.y); // else if (Math.abs(vector2.x) < 1.4142137f) // ballBody1.setLinearVelocity(preX * 5, vector2.y); // // if (Math.abs(vector2.y) == 0.0f) // ballBody1.setLinearVelocity(vector2.x, 1.4142137f); // else if (Math.abs(vector2.y) < 1.4142137f) // ballBody1.setLinearVelocity(vector2.x, preY * 5); batch.draw(sprite, (ballPosition.x - (texture.getRegionWidth() / 2)), (ballPosition.y - (texture.getRegionHeight() / 2))); batch.end(); } @Override public void resize(int arg0, int arg1) { } @Override public void resume() { } } I implement above code but I can not achieve higher moving speed of the ball

    Read the article

  • why is this rails association loading individually after an eager load?

    - by codeman73
    I'm trying to avoid the N+1 queries problem with eager loading, but it's not working. The associated models are still being loaded individually. Here are the relevant ActiveRecords and their relationships: class Player < ActiveRecord::Base has_one :tableau end Class Tableau < ActiveRecord::Base belongs_to :player has_many :tableau_cards has_many :deck_cards, :through => :tableau_cards end Class TableauCard < ActiveRecord::Base belongs_to :tableau belongs_to :deck_card, :include => :card end class DeckCard < ActiveRecord::Base belongs_to :card has_many :tableaus, :through => :tableau_cards end class Card < ActiveRecord::Base has_many :deck_cards end and the query I'm using is inside this method of Player: def tableau_contains(card_id) self.tableau.tableau_cards = TableauCard.find :all, :include => [ {:deck_card => (:card)}], :conditions => ['tableau_cards.tableau_id = ?', self.tableau.id] contains = false for tableau_card in self.tableau.tableau_cards # my logic here, looking at attributes of the Card model, with # tableau_card.deck_card.card; # individual loads of related Card models related to tableau_card are done here end return contains end Does it have to do with scope? This tableau_contains method is down a few method calls in a larger loop, where I originally tried doing the eager loading because there are several places where these same objects are looped through and examined. Then I eventually tried the code as it is above, with the load just before the loop, and I'm still seeing the individual SELECT queries for Card inside the tableau_cards loop in the log. I can see the eager-loading query with the IN clause just before the tableau_cards loop as well. EDIT: additional info below with the larger, outer loop Here's the larger loop. It is inside an observer on after_save def after_save(pa) @game = Game.find(turn.game_id, :include => :goals) @game.players = Player.find :all, :include => [ {:tableau => (:tableau_cards)}, :player_goals ], :conditions => ['players.game_id =?', @game.id] for player in @game.players player.tableau.tableau_cards = TableauCard.find :all, :include => [ {:deck_card => (:card)}], :conditions => ['tableau_cards.tableau_id = ?', player.tableau.id] if(player.tableau_contains(card)) ... end end end

    Read the article

  • OUYA and Unity set up problems

    - by Atkobeau
    I'm having trouble with the Unity / OUYA plugin. I'm using Unity 4 with the latest update on a Windows 7 machine. When I open the starter kit and try to compile the plugin I get the following error: Picked up _JAVA_OPTIONS: -Xmx512M And if I try to Build and Run I get this error: Error building Player: ArgumentException: Illegal characters in path. I'm stumped, I've gone through lots of forum posts here and on stackoverflow and I can't seem to resolve it. My environment variables look like this: PATH - C:\Users\dave\Documents\adt-bundle-windows-x86_64-20130219\sdk\tools; C:\Users\dave\Documents\adt-bundle-windows-x86_64-20130219\sdk\platform-tools\ JAVA_HOME - C:\Program Files (x86)\Java\jdk1.6.0_45\ Everything in the OUYA Panel is white Any ideas?

    Read the article

  • Box2d world width and height ratio with screen width and height

    - by Sujith
    I have view, for example GameView which extends SurfaceView . I have integrated Box2D physics in GameView. I have two widths , GameView width, height and Box2D physics world width ,height. I need to get the position of box2d world with the GameView co-ordinates. For example, Total width of screen = 240 Total height of screen = 320 Screen points needed to be mapped onto box2d co-ordinates (x,y) = 127, 139 For this i need to get the max width and height of the Box2d physics world. Is there is any way to get the max width and height of Box2d world. or Can i limit the width and height of box2d world within the screen resolution.

    Read the article

  • Texture errors in CubeMap

    - by shade4159
    I am trying to apply this texture as a cubemap. This is my result: Clearly I am doing something with my texture coordinates, but I cannot for the life of me figure out what. I don't even see a pattern to the texture fragments. They just seem like a jumble of different faces. Can anyone shed some light on this? Vertex shader: #version 400 in vec4 vPosition; in vec3 inTexCoord; smooth out vec3 texCoord; uniform mat4 projMatrix; void main() { texCoord = inTexCoord; gl_Position = projMatrix * vPosition; } My fragment shader: #version 400 smooth in vec3 texCoord; out vec4 fColor; uniform samplerCube textures void main() { fColor = texture(textures,texCoord); } Vertices of cube: point4 worldVerts[8] = { vec4( 15, 15, 15, 1 ), vec4( -15, 15, 15, 1 ), vec4( -15, 15, -15, 1 ), vec4( 15, 15, -15, 1 ), vec4( -15, -15, 15, 1 ), vec4( 15, -15, 15, 1 ), vec4( 15, -15, -15, 1 ), vec4( -15, -15, -15, 1 ) }; Cube rendering: void worldCube(point4* verts, int& Index, point4* points, vec3* texVerts) { quadInv( verts[0], verts[1], verts[2], verts[3], 1, Index, points, texVerts); quadInv( verts[6], verts[3], verts[2], verts[7], 2, Index, points, texVerts); quadInv( verts[4], verts[5], verts[6], verts[7], 3, Index, points, texVerts); quadInv( verts[4], verts[1], verts[0], verts[5], 4, Index, points, texVerts); quadInv( verts[5], verts[0], verts[3], verts[6], 5, Index, points, texVerts); quadInv( verts[4], verts[7], verts[2], verts[1], 6, Index, points, texVerts); } Backface function (since this is the inside of the cube): void quadInv( const point4& a, const point4& b, const point4& c, const point4& d , int& Index, point4* points, vec3* texVerts) { quad( a, d, c, b, Index, points, texVerts, a.to_3(), b.to_3(), c.to_3(), d.to_3()); } And the quad drawing function: void quad( const point4& a, const point4& b, const point4& c, const point4& d, int& Index, point4* points, vec3* texVerts, const vec3& tex_a, const vec3& tex_b, const vec3& tex_c, const vec3& tex_d) { texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_b.normalized(); points[Index] = b; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_d.normalized(); points[Index] = d; Index++; } Edit: I forgot to mention, in the image, the camera is pointed directly at the back face of the cube. You can kind of see the diagonals leading out of the corners, if you squint.

    Read the article

< Previous Page | 305 306 307 308 309 310 311 312 313 314 315 316  | Next Page >