Search Results

Search found 55061 results on 2203 pages for 'application cache'.

Page 323/2203 | < Previous Page | 319 320 321 322 323 324 325 326 327 328 329 330  | Next Page >

  • How to get application context path in spring-ws?

    - by Dhaliwal
    I am using Spring-WS to create a webservice. In my project, I have created a Helper class to reads sample response and request xml file which are located in my /src/main/resource folder. When I am unit-testing my webservice application 'locally', I use the System.getProperty("user.dir") to get the application context folder. The following is a method that I created in the Helper class to help me retrieve the file that I am interested in my resource folder. public static File getFileFromResources(String filename) { System.out.println("Getting file from resource folder"); File request = null; String curDir = System.getProperty("user.dir"); String contextpath = "C:\\src\\main\\resources\\"; request = new File(curDir + contextpath + filename); return request; } However, after 'publishing' the compiled WAR file to the ../webapps folder to the Apache Tomcat directory, I realise that System.getProperty("user.dir") no longer returns my application context path. Instead, it is returning the Apache Tomcat root directory as shown C:\Program Files\Apache Software Foundation\Tomcat 6.0\src\main\resources\SampleClientFile I cant seem to find any information about getting the root folder of my webservice. I have seen examples on Spring web application where I can retrieve the context path by using the following : request.getSession().getServletContext().getContextPath() But in this case, I am using a Spring web application where there is a servlet context in the request. But the Spring-WS, my entry point is an endpoint. How can I get the context path of my webservice application. I am expecting a context path of something like C:\Program Files\Apache Software Foundation\Tomcat 6.0\webapps\clientWebService\WEB-INF\classes Could someone suggest a way to achieve this?

    Read the article

  • ASP.Net: Is it possible to cache the js-proxies generated by scriptmanager?

    - by AndreasKnudsen
    We have the following code: <asp:ScriptManager runat="server"> ... <Services> <asp:ServiceReference Path="~/JSONServices/ProfileService.svc" /> </Services> ... This results in a Javascript proxy found in /JSONServices/ProfileService.svc/js. This Javascript has content expiry set to the same time it was called (so it is never cached on the client). Is it possible to have the clients cache these proxies for some time?

    Read the article

  • How do I prevent qFatal() from aborting the application?

    - by Dave
    My Qt application uses Q_ASSERT_X, which calls qFatal(), which (by default) aborts the application. That's great for the application, but I'd like to suppress that behavior when unit testing the application. (I'm using the Google Test Framework.) I have by unit tests in a separate project, statically linking to the class I'm testing. The documentation for qFatal() reads: Calls the message handler with the fatal message msg. If no message handler has been installed, the message is printed to stderr. Under Windows, the message is sent to the debugger. If you are using the default message handler this function will abort on Unix systems to create a core dump. On Windows, for debug builds, this function will report a _CRT_ERROR enabling you to connect a debugger to the application. ... To supress the output at runtime, install your own message handler with qInstallMsgHandler(). So here's my main.cpp file: #include <gtest/gtest.h> #include <QApplication> void testMessageOutput(QtMsgType type, const char *msg) { switch (type) { case QtDebugMsg: fprintf(stderr, "Debug: %s\n", msg); break; case QtWarningMsg: fprintf(stderr, "Warning: %s\n", msg); break; case QtCriticalMsg: fprintf(stderr, "Critical: %s\n", msg); break; case QtFatalMsg: fprintf(stderr, "My Fatal: %s\n", msg); break; } } int main(int argc, char **argv) { qInstallMsgHandler(testMessageOutput); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } But my application is still stopping at the assert. I can tell that my custom handler is being called, because the output when running my tests is: My Fatal: ASSERT failure in MyClass::doSomething: "doSomething()", file myclass.cpp, line 21 The program has unexpectedly finished. What can I do so that my tests keep running even when an assert fails?

    Read the article

  • Cache an FTP connection via session variables for use via AJAX?

    - by Chad Johnson
    I'm working on a Ruby web Application that uses the Net::FTP library. One part of it allows users to interact with an FTP site via AJAX. When the user does something, and AJAX call is made, and then Ruby reconnects to the FTP server, performs an action, and outputs information. Every time the AJAX call is made, Ruby has to reconnect to the FTP server, and that's slow. Is there a way I could cache this FTP connection? I've tried caching in the session hash, but "We're sorry, but something went wrong" is displayed, and a TCP dump is outputted in my logs whenever I attempt to store it in the session hash. I haven't tried memcache yet. Any suggestions?

    Read the article

  • Scalability 101: How can I design a scalable web application using PHP?

    - by Legend
    I am building a web-application and have a couple of quick questions. From what I learnt, one should not worry about scalability when initially building the app and should only start worrying when the traffic increases. However, this being my first web-application, I am not quite sure if I should take an approach where I design things in an ad-hoc manner and later "fix" them. I have been reading stories about how people start off with an app that gets millions of users in a week or two. Not that I will face the same situation but I can't help but wonder, how do these people do it? Currently, I bought a shared hosting account on Lunarpages and that got me started in building and testing the application. However, I am interested in learning how to build the same application in a scalable-manner using the cloud, for instance, Amazon's EC2. From my understanding, I can see a couple of components: There is a load balancer that first receives requests and then decides where to route each request This request is then handled by a server replica that then processes the request and updates (if required) the database and sends back the response to the client If a similar request comes in, then a caching mechanism like memcached kicks into picture and returns objects from the cache A blackbox that handles database replication Specifically, I am trying to do the following: Setting up a load balancer (my homework revealed that HAProxy is one such load balancer) Setting up replication so that databases can be synchronized Using memcached Configuring Apache to work with multiple web servers Partitioning application to use Amazon EC2 and Amazon S3 (my application is something that will need great deal of storage) Finally, how can I avoid burning myself when using Amazon services? Because this is just a learning phase, I can probably do with 2-3 servers with a simple load balancer and replication but until I want to avoid paying loads of money accidentally. I am able to find resources on individual topics but am unable to find something that starts off from the big picture. Can someone please help me get started?

    Read the article

  • Is it possible to evaluate a JSP only once per session, and cache it after that?

    - by Bears will eat you
    My site has a nav menu that is dynamically built as a separate JSP, and included in most pages via <jsp:include />. The contents and styling of the menu are determined by which pages the user does and doesn't have access to. The set of accessible pages is retrieved from the database when a user logs in, and not during the course of a session. So, there's really no need to re-evaluate the nav menu code every time the user requests a page. Is there an easy way to generate the markup from the JSP only once per session, and cache/reuse it during the session?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Using Open MQ as an Oracle CEP Event Source

    - by seth.white
    I helped an Oracle CEP customer recently who wanted to use Open MQ has an event source for their Oracle CEP application.  In this case, the Oracle CEP application was being used to provide monitoring for an electronic commerce website, however, the steps for configuring Open MQ are entirely independent of the application logic. I thought I would list the configuration steps in a blog post in case they might help others in the future. Note that although the Oracle CEP documentation states that only WebLogic and Tibco JMS are "officially" supported, any JMS implementation that provides a Java client should work with Oracle CEP. The first step is to add an adapter to the application's EPN. This can be done in the usual way, using the Eclipse IDE. The end result is something like the following bit of configuration in the application's Spring application context. Note that the provider attribute value of 'jms-inbound' specifies that the out-of-the-box JMS adapter is being used. <wlevs:adapter id="helloworldAdapter" provider="jms-inbound"> </wlevs:adapter>   Next, configure the inbound adapter so that it can connect to Open MQ in the Oracle CEP configuration file (config.xml). The snippet below provides an example of what this configuration should look like. The exact values specified for jndi-provider-url, jndi-factory, connection-jndi-name, destination-jndi-name elements will depend on your Open MQ configuration.  For example , if the name of your Open MQ topic destination is 'ElectronicCommerceTopic', then you would specify that as the destination-jndi-name.  The name of your Open MQ connection factory goes in the connection-jndi-name element. In my simple example, I also specify in event-type element so that the out-of-the-box JMS adapter will attempt to automatically convert incoming messages to events of type HelloWorldEvent. In a more complex application, one would configure a custom converter on the JMS adapter to convert from messages to events.  The Oracle CEP 11.1.3 documentation describes how to do this.   <jms-adapter> <name>helloworldAdapter</name> <event-type>HelloWorldEvent</event-type> <jndi-provider-url>file:///C:/Temp</jndi-provider-url> <jndi-factory>com.sun.jndi.fscontext.RefFSContextFactory</jndi-factory> <connection-jndi-name>YourJMSConnectionFactoryName</connection-jndi-name> <destination-jndi-name>YourJMSDestinationName</destination-jndi-name> </jms-adapter>   Finally, one needs to package the client-side Open MQ jars so that the classes that they contain are available to the Oracle CEP runtime. The recommended way for doing this in the Oracle CEP 11.1.3 release is to package the classes as a library module or simply place them in the application bundle.  The advantage of deploying the classes as a library module is that they are available to any application that wants to connect to Open MQ. In my case, I packaged the classes in my application bundle. A best practice when you want to include additional jars in your application bundle is to create a 'lib' directory in your Eclipse project and then copy the required jars into that directory.  Then, use the support that Eclipse provides to add the jars to the bundle classpath (which makes the classes part of your application in the same way that regular application classes are), and export all of the classes from your application bundle so that they are available to the Oracle CEP server runtime.  The screenshot below Illustrates how this is done in Eclipse.  The bundle classpath contains two Open MQ jars and all packages in the jars are exported.     Finally, import the javax.jms and javax.naming packages into the application module as these are needed by the Open MQ classes. The screenshot below shows the complete list of package imports for my sample application.       Once you have completed these steps, you should be able to build and deploy your application and begin receiving inbound messages from Open MQ. Technorati Tags: CEP,JMS,Adapter,Open MQ,Eclipse .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 }

    Read the article

  • Best tool to understand source

    - by cache
    I have a source code for a project. I am working on porting it to another device as the current source code is for a linux environment. I am having some error on the newly ported code. So i was thinking it would be best to once again understand the whole source code and this will help me localise the errors. Now the problem is that i tried using 'gdb' for linux to debug the code but it does not help. So is there any tool that I can use to trace the program line by line ? By doing so i can understand the program flow. Please Help !

    Read the article

  • Win7 Bluescreen: IRQ_NOT_LESS_OR_EQUAL | athrxusb.sys

    - by wretrOvian
    Hi I'd left my system on last night, and found the bluescreen in the morning. This has been happening occasionally, over the past few days. Details: ================================================== Dump File : 022710-18236-01.dmp Crash Time : 2/27/2010 8:46:44 AM Bug Check String : DRIVER_IRQL_NOT_LESS_OR_EQUAL Bug Check Code : 0x000000d1 Parameter 1 : 00000000`00001001 Parameter 2 : 00000000`00000002 Parameter 3 : 00000000`00000000 Parameter 4 : fffff880`06b5c0e1 Caused By Driver : athrxusb.sys Caused By Address : athrxusb.sys+760e1 File Description : Product Name : Company : File Version : Processor : x64 Computer Name : Full Path : C:\Windows\minidump\022710-18236-01.dmp Processors Count : 2 Major Version : 15 Minor Version : 7600 ================================================== HiJackThis ("[...]" indicates removed text; full log posted to pastebin): Logfile of Trend Micro HijackThis v2.0.2 Scan saved at 8:49:15 AM, on 2/27/2010 Platform: Unknown Windows (WinNT 6.01.3504) MSIE: Internet Explorer v8.00 (8.00.7600.16385) Boot mode: Normal Running processes: C:\Windows\DAODx.exe C:\Program Files (x86)\ASUS\EPU\EPU.exe C:\Program Files\ASUS\TurboV\TurboV.exe C:\Program Files (x86)\PowerISO\PWRISOVM.EXE C:\Program Files (x86)\OpenOffice.org 3\program\soffice.exe C:\Program Files (x86)\OpenOffice.org 3\program\soffice.bin D:\Downloads\HijackThis.exe C:\Program Files (x86)\uTorrent\uTorrent.exe R1 - HKCU\Software\Microsoft\Internet Explorer\[...] [...] O2 - BHO: Java(tm) Plug-In 2 SSV Helper - {DBC80044-A445-435b-BC74-9C25C1C588A9} - C:\Program Files (x86)\Java\jre6\bin\jp2ssv.dll O4 - HKLM\..\Run: [HDAudDeck] C:\Program Files (x86)\VIA\VIAudioi\VDeck\VDeck.exe -r O4 - HKLM\..\Run: [StartCCC] "C:\Program Files (x86)\ATI Technologies\ATI.ACE\Core-Static\CLIStart.exe" MSRun O4 - HKLM\..\Run: [TurboV] "C:\Program Files\ASUS\TurboV\TurboV.exe" O4 - HKLM\..\Run: [PWRISOVM.EXE] C:\Program Files (x86)\PowerISO\PWRISOVM.EXE O4 - HKLM\..\Run: [googletalk] C:\Program Files (x86)\Google\Google Talk\googletalk.exe /autostart O4 - HKLM\..\Run: [AdobeCS4ServiceManager] "C:\Program Files (x86)\Common Files\Adobe\CS4ServiceManager\CS4ServiceManager.exe" -launchedbylogin O4 - HKCU\..\Run: [uTorrent] "C:\Program Files (x86)\uTorrent\uTorrent.exe" O4 - HKUS\S-1-5-19\..\Run: [Sidebar] %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun (User 'LOCAL SERVICE') O4 - HKUS\S-1-5-19\..\RunOnce: [mctadmin] C:\Windows\System32\mctadmin.exe (User 'LOCAL SERVICE') O4 - HKUS\S-1-5-20\..\Run: [Sidebar] %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun (User 'NETWORK SERVICE') O4 - HKUS\S-1-5-20\..\RunOnce: [mctadmin] C:\Windows\System32\mctadmin.exe (User 'NETWORK SERVICE') O4 - Startup: OpenOffice.org 3.1.lnk = C:\Program Files (x86)\OpenOffice.org 3\program\quickstart.exe O13 - Gopher Prefix: O23 - Service: @%SystemRoot%\system32\Alg.exe,-112 (ALG) - Unknown owner - C:\Windows\System32\alg.exe (file missing) O23 - Service: AMD External Events Utility - Unknown owner - C:\Windows\system32\atiesrxx.exe (file missing) O23 - Service: ASUS System Control Service (AsSysCtrlService) - Unknown owner - C:\Program Files (x86)\ASUS\AsSysCtrlService\1.00.02\AsSysCtrlService.exe O23 - Service: DeviceVM Meta Data Export Service (DvmMDES) - DeviceVM - C:\ASUS.SYS\config\DVMExportService.exe O23 - Service: @%SystemRoot%\system32\efssvc.dll,-100 (EFS) - Unknown owner - C:\Windows\System32\lsass.exe (file missing) O23 - Service: ESET HTTP Server (EhttpSrv) - ESET - C:\Program Files\ESET\ESET NOD32 Antivirus\EHttpSrv.exe O23 - Service: ESET Service (ekrn) - ESET - C:\Program Files\ESET\ESET NOD32 Antivirus\x86\ekrn.exe O23 - Service: @%systemroot%\system32\fxsresm.dll,-118 (Fax) - Unknown owner - C:\Windows\system32\fxssvc.exe (file missing) O23 - Service: FLEXnet Licensing Service - Acresso Software Inc. - C:\Program Files (x86)\Common Files\Macrovision Shared\FLEXnet Publisher\FNPLicensingService.exe O23 - Service: FLEXnet Licensing Service 64 - Acresso Software Inc. - C:\Program Files\Common Files\Macrovision Shared\FLEXnet Publisher\FNPLicensingService64.exe O23 - Service: InstallDriver Table Manager (IDriverT) - Macrovision Corporation - C:\Program Files (x86)\Common Files\InstallShield\Driver\11\Intel 32\IDriverT.exe O23 - Service: @keyiso.dll,-100 (KeyIso) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @comres.dll,-2797 (MSDTC) - Unknown owner - C:\Windows\System32\msdtc.exe (file missing) O23 - Service: @%SystemRoot%\System32\netlogon.dll,-102 (Netlogon) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%systemroot%\system32\psbase.dll,-300 (ProtectedStorage) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: Protexis Licensing V2 (PSI_SVC_2) - Protexis Inc. - c:\Program Files (x86)\Common Files\Protexis\License Service\PsiService_2.exe O23 - Service: @%systemroot%\system32\Locator.exe,-2 (RpcLocator) - Unknown owner - C:\Windows\system32\locator.exe (file missing) O23 - Service: @%SystemRoot%\system32\samsrv.dll,-1 (SamSs) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%SystemRoot%\system32\snmptrap.exe,-3 (SNMPTRAP) - Unknown owner - C:\Windows\System32\snmptrap.exe (file missing) O23 - Service: @%systemroot%\system32\spoolsv.exe,-1 (Spooler) - Unknown owner - C:\Windows\System32\spoolsv.exe (file missing) O23 - Service: @%SystemRoot%\system32\sppsvc.exe,-101 (sppsvc) - Unknown owner - C:\Windows\system32\sppsvc.exe (file missing) O23 - Service: Steam Client Service - Valve Corporation - C:\Program Files (x86)\Common Files\Steam\SteamService.exe O23 - Service: @%SystemRoot%\system32\ui0detect.exe,-101 (UI0Detect) - Unknown owner - C:\Windows\system32\UI0Detect.exe (file missing) O23 - Service: @%SystemRoot%\system32\vaultsvc.dll,-1003 (VaultSvc) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%SystemRoot%\system32\vds.exe,-100 (vds) - Unknown owner - C:\Windows\System32\vds.exe (file missing) O23 - Service: @%systemroot%\system32\vssvc.exe,-102 (VSS) - Unknown owner - C:\Windows\system32\vssvc.exe (file missing) O23 - Service: @%systemroot%\system32\wbengine.exe,-104 (wbengine) - Unknown owner - C:\Windows\system32\wbengine.exe (file missing) O23 - Service: @%Systemroot%\system32\wbem\wmiapsrv.exe,-110 (wmiApSrv) - Unknown owner - C:\Windows\system32\wbem\WmiApSrv.exe (file missing) O23 - Service: @%PROGRAMFILES%\Windows Media Player\wmpnetwk.exe,-101 (WMPNetworkSvc) - Unknown owner - C:\Program Files (x86)\Windows Media Player\wmpnetwk.exe (file missing) -- End of file - 6800 bytes CPU-Z ("[...]" indicates removed text; see full log posted to pastebin): CPU-Z TXT Report ------------------------------------------------------------------------- Binaries ------------------------------------------------------------------------- CPU-Z version 1.53.1 Processors ------------------------------------------------------------------------- Number of processors 1 Number of threads 2 APICs ------------------------------------------------------------------------- Processor 0 -- Core 0 -- Thread 0 0 -- Core 1 -- Thread 0 1 Processors Information ------------------------------------------------------------------------- Processor 1 ID = 0 Number of cores 2 (max 2) Number of threads 2 (max 2) Name AMD Phenom II X2 550 Codename Callisto Specification AMD Phenom(tm) II X2 550 Processor Package Socket AM3 (938) CPUID F.4.2 Extended CPUID 10.4 Brand ID 29 Core Stepping RB-C2 Technology 45 nm Core Speed 3110.7 MHz Multiplier x FSB 15.5 x 200.7 MHz HT Link speed 2006.9 MHz Instructions sets MMX (+), 3DNow! (+), SSE, SSE2, SSE3, SSE4A, x86-64, AMD-V L1 Data cache 2 x 64 KBytes, 2-way set associative, 64-byte line size L1 Instruction cache 2 x 64 KBytes, 2-way set associative, 64-byte line size L2 cache 2 x 512 KBytes, 16-way set associative, 64-byte line size L3 cache 6 MBytes, 48-way set associative, 64-byte line size FID/VID Control yes Min FID 4.0x P-State FID 0xF - VID 0x10 P-State FID 0x8 - VID 0x18 P-State FID 0x3 - VID 0x20 P-State FID 0x100 - VID 0x2C Package Type 0x1 Model 50 String 1 0x7 String 2 0x6 Page 0x0 TDP Limit 79 Watts TDC Limit 66 Amps Attached device PCI device at bus 0, device 24, function 0 Attached device PCI device at bus 0, device 24, function 1 Attached device PCI device at bus 0, device 24, function 2 Attached device PCI device at bus 0, device 24, function 3 Attached device PCI device at bus 0, device 24, function 4 Thread dumps ------------------------------------------------------------------------- CPU Thread 0 APIC ID 0 Topology Processor ID 0, Core ID 0, Thread ID 0 Type 0200400Ah Max CPUID level 00000005h Max CPUID ext. level 8000001Bh Cache descriptor Level 1, I, 64 KB, 1 thread(s) Cache descriptor Level 1, D, 64 KB, 1 thread(s) Cache descriptor Level 2, U, 512 KB, 1 thread(s) Cache descriptor Level 3, U, 6 MB, 2 thread(s) CPUID 0x00000000 0x00000005 0x68747541 0x444D4163 0x69746E65 0x00000001 0x00100F42 0x00020800 0x00802009 0x178BFBFF 0x00000002 0x00000000 0x00000000 0x00000000 0x00000000 0x00000003 0x00000000 0x00000000 0x00000000 0x00000000 0x00000004 0x00000000 0x00000000 0x00000000 0x00000000 0x00000005 0x00000040 0x00000040 0x00000003 0x00000000 [...] CPU Thread 1 APIC ID 1 Topology Processor ID 0, Core ID 1, Thread ID 0 Type 0200400Ah Max CPUID level 00000005h Max CPUID ext. level 8000001Bh Cache descriptor Level 1, I, 64 KB, 1 thread(s) Cache descriptor Level 1, D, 64 KB, 1 thread(s) Cache descriptor Level 2, U, 512 KB, 1 thread(s) Cache descriptor Level 3, U, 6 MB, 2 thread(s) CPUID 0x00000000 0x00000005 0x68747541 0x444D4163 0x69746E65 0x00000001 0x00100F42 0x01020800 0x00802009 0x178BFBFF 0x00000002 0x00000000 0x00000000 0x00000000 0x00000000 0x00000003 0x00000000 0x00000000 0x00000000 0x00000000 0x00000004 0x00000000 0x00000000 0x00000000 0x00000000 0x00000005 0x00000040 0x00000040 0x00000003 0x00000000 [...] Chipset ------------------------------------------------------------------------- Northbridge AMD 790GX rev. 00 Southbridge ATI SB750 rev. 00 Memory Type DDR3 Memory Size 4096 MBytes Channels Dual, (Unganged) Memory Frequency 669.0 MHz (3:10) CAS# latency (CL) 9.0 RAS# to CAS# delay (tRCD) 9 RAS# Precharge (tRP) 9 Cycle Time (tRAS) 24 Bank Cycle Time (tRC) 33 Command Rate (CR) 1T Uncore Frequency 2006.9 MHz Memory SPD ------------------------------------------------------------------------- DIMM # 1 SMBus address 0x50 Memory type DDR3 Module format UDIMM Manufacturer (ID) G.Skill (7F7F7F7FCD000000) Size 2048 MBytes Max bandwidth PC3-10700 (667 MHz) Part number F3-10600CL9-2GBNT Number of banks 8 Nominal Voltage 1.50 Volts EPP no XMP no JEDEC timings table CL-tRCD-tRP-tRAS-tRC @ frequency JEDEC #1 6.0-6-6-17-23 @ 457 MHz JEDEC #2 7.0-7-7-20-27 @ 533 MHz JEDEC #3 8.0-8-8-22-31 @ 609 MHz JEDEC #4 9.0-9-9-25-34 @ 685 MHz DIMM # 2 SMBus address 0x51 Memory type DDR3 Module format UDIMM Manufacturer (ID) G.Skill (7F7F7F7FCD000000) Size 2048 MBytes Max bandwidth PC3-10700 (667 MHz) Part number F3-10600CL9-2GBNT Number of banks 8 Nominal Voltage 1.50 Volts EPP no XMP no JEDEC timings table CL-tRCD-tRP-tRAS-tRC @ frequency JEDEC #1 6.0-6-6-17-23 @ 457 MHz JEDEC #2 7.0-7-7-20-27 @ 533 MHz JEDEC #3 8.0-8-8-22-31 @ 609 MHz JEDEC #4 9.0-9-9-25-34 @ 685 MHz DIMM # 1 SPD registers [...] DIMM # 2 SPD registers [...] Monitoring ------------------------------------------------------------------------- Mainboard Model M4A78T-E (0x000001F7 - 0x00A955E4) LPCIO ------------------------------------------------------------------------- LPCIO Vendor ITE LPCIO Model IT8720 LPCIO Vendor ID 0x90 LPCIO Chip ID 0x8720 LPCIO Revision ID 0x2 Config Mode I/O address 0x2E Config Mode LDN 0x4 Config Mode registers [...] Register space LPC, base address = 0x0290 Hardware Monitors ------------------------------------------------------------------------- Hardware monitor ITE IT87 Voltage 1 1.62 Volts [0x65] (VIN1) Voltage 2 1.15 Volts [0x48] (CPU VCORE) Voltage 3 5.03 Volts [0xBB] (+5V) Voltage 8 3.34 Volts [0xD1] (VBAT) Temperature 0 39°C (102°F) [0x27] (TMPIN0) Temperature 1 43°C (109°F) [0x2B] (TMPIN1) Fan 0 3096 RPM [0xDA] (FANIN0) Register space LPC, base address = 0x0290 [...] Hardware monitor AMD SB6xx/7xx Voltage 0 1.37 Volts [0x1D2] (CPU VCore) Voltage 1 3.50 Volts [0x27B] (CPU IO) Voltage 2 12.68 Volts [0x282] (+12V) Hardware monitor AMD Phenom II X2 550 Power 0 89.10 W (Processor) Temperature 0 35°C (94°F) [0x115] (Core #0) Temperature 1 35°C (94°F) [0x115] (Core #1)

    Read the article

  • Stop squid caching 302 and 307 with deny_info

    - by 0xception
    TLDR: 302, 307 and Error pages are being cached. Need to force a refresh of the content. Long version: I've setup a very minimal squid instance running on a gateway which shouldn't not cache ANYTHING but needs to be solely used as a domain based web filter. I'm using another application which redirects un-authenticated users to the proxy which then uses the deny_info option redirects any non-whitelisted request to the login page. After the user has authenticated the firewall rule gets placed so they no longer get sent to the proxy. The problem is that when a user hits a website (xkcd.com) they are unauthenticated so they get redirected via the firewall: iptables -A unknown-user -t nat -p tcp --dport 80 -j REDIRECT --to-port 39135 to the proxy at this point squid redirects the user to the login page using a 302 (i've also tried 307, and i've also make sure the headers are set to no-cache and/or no-store for Cache-Control and Pragma). Then when the user logs into the system they get firewall rule which no longer directs them to the squid proxy. But if they go to xkcd.com again they will have the original redirection page cached and will once again get the login page. Any idea how to force these redirects to NOT be cached by the browser? Perhaps this is a problem w/ the browsers and not squid, but not sure how to get around it. Full squid config below. # # Recommended minimum configuration: # acl manager proto cache_object acl localhost src 127.0.0.1/32 ::1 acl to_localhost dst 127.0.0.0/8 0.0.0.0/32 ::1 acl localnet src 192.168.182.0/23 # RFC1918 possible internal network acl localnet src fc00::/7 # RFC 4193 local private network range acl localnet src fe80::/10 # RFC 4291 link-local (directly plugged) machines acl https port 443 acl http port 80 acl CONNECT method CONNECT # # Disable Cache # cache deny all via off negative_ttl 0 seconds refresh_all_ims on #error_default_language en # Allow manager access only from localhost http_access allow manager localhost http_access deny manager # Deny access to anything other then http http_access deny !http # Deny CONNECT to other than secure SSL ports http_access deny CONNECT !https visible_hostname gate.ovatn.net # Disable memory pooling memory_pools off # Never use neigh cache objects for cgi-bin scripts hierarchy_stoplist cgi-bin ? # # URL rewrite Test Settings # #acl whitelist dstdomain "/etc/squid/domains-pre.lst" #url_rewrite_program /usr/lib/squid/redirector #url_rewrite_access allow !whitelist #url_rewrite_children 5 startup=0 idle=1 concurrency=0 #http_access allow all # # Deny Info Error Test # acl whitelist dstdomain "/etc/squid/domains-pre.lst" deny_info http://login.domain.com/ whitelist #deny_info ERR_ACCESS_DENIED whitelist http_access deny !whitelist http_access allow whitelist http_port 39135 transparent ## Debug Values access_log /var/log/squid/access-pre.log cache_log /var/log/squid/cache-pre.log # Production Values #access_log /dev/null #cache_log /dev/null # Set PID file pid_filename /var/run/gatekeeper-pre.pid SOLUTION: I believe I might have found a solution to this. After days and days trying to figure it out, only through a random stumble I found client_persistent_connections off server_persistent_connections off This did the trick. So it wasn't so much cache as it was a single persistent connection messing things up. W000T!

    Read the article

  • Need Varnish configuration advice

    - by Patrick
    Hello fellows, I need some advice here for default.vcl. Here's the rules: Only cache pages with urls that contains '/c/', the rest will pass Set the cache expiry to 3 hours Only cache and serve from cache if cookie 'abc' and cookie 'xyz' is empty Thank you!

    Read the article

  • Need Varnish configuration advise

    - by Patrick
    Hello fellows, I need some advise here for default.vcl. Here's the rules: 1) Only cache pages with urls that contains '/c/', the rest will pass 2) Set the cache expiry to 3 hours 3) Only cache and server from cache if cookie 'abc' and cookie 'xyz' is empty Thank you!

    Read the article

  • Solaris: Is it OK to disable font services?

    - by cjavapro
    Is it OK to disable these services? # svcs -l '*font*' fmri svc:/application/font/stfsloader:default name Standard Type Services Framework (STSF) Font Server loader enabled true state online next_state none state_time Sun May 30 17:58:14 2010 restarter svc:/network/inetd:default fmri svc:/application/font/fc-cache:default name FontConfig Cache Builder enabled true state online next_state none state_time Sun May 30 17:58:15 2010 logfile /var/svc/log/application-font-fc-cache:default.log restarter svc:/system/svc/restarter:default dependency require_all/none svc:/system/filesystem/local (online) dependency require_all/refresh file://localhost/etc/fonts/fonts.conf (online) dependency require_all/none file://localhost/usr/bin/fc-cache (online) #

    Read the article

  • Preventing 304 Not Modified Requests with nginx

    - by ustun
    I am running nginx, and have the following block for expiration: expires 52w; However when I use Google Chrome Developer Tools to observe network traffic, some of the assets are loaded from cache (200-from cache) while most of the assets are making a request to the server (304 Not Modified). I want to load all assets from cache without communicating with the server if possible. (200-from cache) What would be the required change in my nginx configuration?

    Read the article

  • memory leak error when using an iterator

    - by Adnane Jaafari
    please i'm having this error if any one can explain it : while using an iterator in my methode public void createDemandeP() { if (demandep.getDateDebut().after(demandep.getDateFin())) { FacesContext .getCurrentInstance() .addMessage( null, new FacesMessage(FacesMessage.SEVERITY_WARN, "Attention aux dates", "la date de debut doit être avant la date de fin!")); } else if (demandep.getDateDebut().before(demandep.getDateFin())) { List<DemandeP> list = new ArrayList<DemandeP>(); list.addAll(chaletService.getChaletBylibelle(chaletChoisi).get(0) .getListDemandesP()); Iterator<DemandeP> it = list.iterator(); DemandeP d = it.next(); while (it.hasNext()) { if ((d.getDateDebut().compareTo(demandep.getDateDebut()) == 0) || (d.getDateFin().compareTo(demandep.getDateDebut()) == 0) || (d.getDateFin().compareTo(demandep.getDateFin()) == 0) || (d.getDateDebut().compareTo(demandep.getDateDebut()) == 0) || (d.getDateDebut().before(demandep.getDateDebut()) && d .getDateFin().after(demandep.getDateFin())) || (d.getDateDebut().before(demandep.getDateFin()) && d .getDateDebut().after(demandep.getDateDebut())) || (d.getDateFin().after(demandep.getDateDebut()) && d .getDateFin().before(demandep.getDateFin()))) { FacesContext.getCurrentInstance().getMessageList().clear(); FacesContext .getCurrentInstance() .addMessage( null, new FacesMessage( FacesMessage.SEVERITY_FATAL, "Periode Ou chalet indisponicle ", "Veillez choisir une autre marge de date !")); } } } else { demandep.setEtat("En traitement"); DateFormat dateFormat = new SimpleDateFormat("dd/MM/yyyy"); Date date = new Date(); try { demandep.setDateDemande(dateFormat.parse(dateFormat .format(date))); } catch (ParseException e) { System.out.println("errooor date"); e.printStackTrace(); } nameUser = auth.getName(); // System.out.println(nameUser); adherent = utilisateurService.findAdherentByNom(nameUser).get(0); demandep.setUtilisateur(adherent); // System.out.println(chaletService.getChaletBylibelle(chaletChoisi).get(0).getLibelle()); demandep.setChalet(chaletService.getChaletBylibelle(chaletChoisi) .get(0)); demandep.setNouvelleDemande(true); demandePService.ajouterDemandeP(demandep); } } oct. 23, 2013 7:19:30 PM org.apache.catalina.core.StandardContext reload INFO: Le rechargement du contexte [/ONICLFINAL] a démarré oct. 23, 2013 7:19:30 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:31 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:32 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:32 PM org.apache.catalina.core.ApplicationContext log INFO: Closing Spring root WebApplicationContext oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesJdbc SEVERE: The web application [/ONICLFINAL] registered the JDBC driver [com.mysql.jdbc.Driver] b but failed to unregister it when the web application was stopped. To prevent a memory leak, the JDBC Driver has been forcibly unregistered. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesThreads SEVERE: The web application [/ONICLFINAL] appears to have started a thread named [MySQL Statement Cancellation Timer] but has failed to stop it. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesThreads SE VERE: The web application [/ONICLFINAL] is still processing a request that has yet to finish. This is very likely to create a memory leak. You can control the time allowed for requests to finish by using the unloadDelay attribute of the standard Context implementation. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Hibernate Sessions registered for deferred close]) and a value of type [java.util.HashMap] (value [{org.hibernate.impl.SessionFactoryImpl@f6e256=[SessionImpl(PersistenceContext[entityKeys=[EntityKey[bo.DemandeP#1], EntityKey[bo.Utilisateur#3], EntityKey[bo.Chalet#1], EntityKey[bo.Role#2], EntityKey[bo.DemandeP#2]],collectionKeys=[CollectionKey[bo.Role.ListeUsers#2], CollectionKey[bo.Chalet.listPeriodes#1], CollectionKey[bo.Utilisateur.demandes#3], CollectionKey[bo.Utilisateur.demandesP#3], CollectionKey[bo.Chalet.listDemandesP#1]]];ActionQueue[insertions=[] updates=[] deletions=[] collectionCreations=[] collectionRemovals=[] collectionUpdates=[]])]}]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Request attributes]) and a value of type [org.springframework.web.context.request.ServletRequestAttributes] (value [org.apache.catalina.connector.RequestFacade@17f3488]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@51f78b]) and a value of type [org.springframework.security.core.context.SecurityContextImpl] (value [org.springframework.security.core.context.SecurityContextImpl@8e463c8b: Authentication: org.springframework.security.authentication.UsernamePasswordAuthenticationToken@8e463c8b: Principal: org.springframework.security.core.userdetails.User@311aa119: Username: maatouf; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true; credentialsNonExpired: true; AccountNonLocked: true; Granted Authorities: ROLE_ADHER; Credentials: [PROTECTED]; Authenticated: true; Details: org.springframework.security.web.authentication.WebAuthenticationDetails@ffff4c9c: RemoteIpAddress: 0:0:0:0:0:0:0:1; SessionId: 14CD5D4E8E0E3AEB0367AB7115038FED; Granted Authorities: ROLE_ADHER]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@152e9b7]) and a value of type [net.sf.cglib.proxy.Callback[]] (value [[Lnet.sf.cglib.proxy.Callback;@6e1f4c]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [javax.faces.context.FacesContext$1] (value [javax.faces.context.FacesContext$1@9ecc6d]) and a value of type [com.sun.faces.context.FacesContextImpl] (value [com.sun.faces.context.FacesContextImpl@1c8bbed]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@1a9e75f]) and a value of type [com.sun.faces.context.FacesContextImpl] (value [com.sun.faces.context.FacesContextImpl@1c8bbed]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Locale context]) and a value of type [org.springframework.context.i18n.SimpleLocaleContext] (value [fr_FR]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [com.sun.faces.application.ApplicationAssociate$1] (value [com.sun.faces.application.ApplicationAssociate$1@195266b]) and a value of type [com.sun.faces.application.ApplicationAssociate] (value [com.sun.faces.application.ApplicationAssociate@10d595c]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:33 PM org.apache.catalina.loader.WebappClassLoader validateJarFile INFO: validateJarFile(D:\newWorkSpace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\ONICLF INAL\WEB-INF\lib\servlet-api-2.5.jar) - jar not loaded. See Servlet Spec 2.3, section 9.7.2. Offending class: javax/servlet/Servlet.class oct. 23, 2013 7:19:33 PM org.apache.catalina.core.ApplicationContext log

    Read the article

  • MVVM Binding Orthogonal Aspects in Views e.g. Application Settings

    - by chibacity
    I have an application which I am developing using WPF\Prism\MVVM. All is going well and I have some pleasing MVVM implementations. However, in some of my views I would like to be able to bind application settings e.g. when a user reloads an application, the checkbox for auto-scrolling a grid should be checked in the state it was last time the user used the application. My view needs to bind to something that holds the "auto-scroll" setting state. I could put this on the view-model, but applications settings are orthogonal to the purpose of the view-model. The "auto-scroll" setting is controlling an aspect of the view. This setting is just an example. There will be quite a number of them and splattering my view-models with properties to represent application settings (so I can bind them) feels decidedly yucky. One view-model per view seems to be de rigeuer... What is best\usual practice here? Splatter my view-models with application settings? Have multiple view-models per view so settings can be represented in their own right? Split views so that controls can bind to an ApplicationSettingsViewModel? = too many views? Something else? Edit 1 To add a little more context, I am developing a UI with a tabbed interface. Each tab will host a single widget and there a variety of widgets. Each widget is a Prism composition of individual views. Some views are common amongst widgets e.g. a file picker view. Whilst each widget is composed of several views, as a whole, conceptually a widget has a single set of user settings e.g. last file selected, auto-scroll enabled, etc. These need to be persisted and retrieved\applied when the application starts again, and the widget views are created. My question is focused on the fact that conceptually a widget has a single set of user settings which is at right-angles to the fact that a widget consists of many views. Each view in the widget has it's own view-model (which works nicely and logically) but if I stick to a one view-model per view, I would have to splatter each view-model with user settings appropriate to it. This doesn't sound right ?!?

    Read the article

  • c# : simulate memory leaks..

    - by dotnet-practitioner
    Hi, I would like to write the following code in c#. a) small console application that simulates memory leak. b) small console application that would invoke the above application and release it right away simulating managing memory leak problem.. In other words the (b) application would continuously call and release application (a) to simulate how the "rebellious" memory leak application is being contained with out addressing the root cause which is application (a). Some sample code for application (a) and (b) would be very helpful. Thanks

    Read the article

  • What would cause ANY .NET application to crash immediately... except a project I create and Debug in

    - by blak3r
    My software recently got deployed to a customer who said that the application was crashing immediately after it started. After some initial debugging, the customer provided me remote access to one of the computers which was unable to run the application. I found that the crash wasn't specific to my application. Any application which depended on the .NET framework crashed immediately. Conveniently, Visual Studio 2008 was installed so I created a quick hello world application on it and clicked Debug. The application worked fine. But, then when I tried to execute the generated binaries in the /bin/Debug/HelloWorld.exe directory outside of visual studio it crashed. List of things i've tried (UPDATED): I checked that "Everyone" has Read&Execute permissions for c:\Windows. To test that the problem was with the .NET Framework (and not my application), I attempted to download Paint .NET on to the computers. The setup frontend crashed in the same manner. Performed a repair of the .NET framework as outlined in http://support.microsoft.com/kb/908077 (Boy was this fun and time consuming). No luck. Installed .NET 3.5 SP1 (before it just had .NET 3.5) Note: my application targets 2.0 so I did this more as a long shot... but i learned in the process that .NET 3.5 SP1 also updates the underlying frameworks. Ran Aaron Stebner's .NET Setup Verification Tool. This tool indicated that .NET was successfully installed. (I forget if i checked all the versions but at least 2.0 worked). Tested some mini hello world applications which were targeted for .NET 2.0 and .NET 3.5 and both crashed in the same way. Tried launching .NET apps via windbg cmd line. Doing this did allow me invoke my simple hello world applications. So, simple .NET hello world works when invoked by windbg or by launching via debug in visual studio... but doesn't if i try to execute it standalone. I created a dump file using WinDbg. It wasn't all that revealing to me. FAULTING_IP: mscorwks!PEImage::GetEntryPointToken+21 79f4ff9d f6401010 test byte ptr [eax+10h],10h EXCEPTION_RECORD: 0012f710 -- (.exr 0x12f710) ExceptionAddress: 79f4ff9d (mscorwks!PEImage::GetEntryPointToken+0x00000021) ExceptionCode: c0000005 (Access violation) ExceptionFlags: 00000000 NumberParameters: 2 Parameter[0]: 00000000 Parameter[1]: 00000010 Attempt to read from address 00000010 FAULTING_THREAD: 00000b44 PROCESS_NAME: MyProcess.exe ERROR_CODE: (NTSTATUS) 0x80000003 - {EXCEPTION} Breakpoint A breakpoint has been reached. EXCEPTION_CODE: (HRESULT) 0x80000003 (2147483651) - One or more arguments are invalid DETOURED_IMAGE: 1 NTGLOBALFLAG: 0 APPLICATION_VERIFIER_FLAGS: 0 MANAGED_STACK: !dumpstack -EE OS Thread Id: 0xb44 (0) Current frame: ChildEBP RetAddr Caller,Callee EXCEPTION_OBJECT: !pe cb10b4 Exception object: 00cb10b4 Exception type: System.ExecutionEngineException Message: <none> InnerException: <none> StackTrace (generated): <none> StackTraceString: <none> HResult: 80131506 MANAGED_OBJECT_NAME: System.ExecutionEngineException CONTEXT: 0012f72c -- (.cxr 0x12f72c) eax=00000000 ebx=00000000 ecx=00000000 edx=0000000e esi=001a1490 edi=00000001 eip=79f4ff9d esp=0012f9f8 ebp=0012fa1c iopl=0 nv up ei pl zr na pe nc cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246 mscorwks!PEImage::GetEntryPointToken+0x21: 79f4ff9d f6401010 test byte ptr [eax+10h],10h ds:0023:00000010=?? Resetting default scope READ_ADDRESS: 00000010 FOLLOWUP_IP: mscorwks!PEImage::GetEntryPointToken+21 79f4ff9d f6401010 test byte ptr [eax+10h],10h BUGCHECK_STR: APPLICATION_FAULT_NULL_CLASS_PTR_DEREFERENCE_SHUTDOWN PRIMARY_PROBLEM_CLASS: NULL_CLASS_PTR_DEREFERENCE_SHUTDOWN DEFAULT_BUCKET_ID: NULL_CLASS_PTR_DEREFERENCE_SHUTDOWN LAST_CONTROL_TRANSFER: from 79ef02b5 to 79f4ff9d STACK_TEXT: 79f4ff9d mscorwks!PEImage::GetEntryPointToken+0x21 79ef02b5 mscorwks!PEFile::GetEntryPointToken+0xa0 79eefeaf mscorwks!SystemDomain::ExecuteMainMethod+0xd4 79fb9793 mscorwks!ExecuteEXE+0x59 79fb96df mscorwks!_CorExeMain+0x15c 7900b1b3 mscoree!_CorExeMain+0x2c 7c817077 kernel32!BaseProcessStart+0x23 SYMBOL_STACK_INDEX: 0 SYMBOL_NAME: mscorwks!PEImage::GetEntryPointToken+21 FOLLOWUP_NAME: MachineOwner MODULE_NAME: mscorwks IMAGE_NAME: mscorwks.dll DEBUG_FLR_IMAGE_TIMESTAMP: 471ef729 STACK_COMMAND: .cxr 0012F72C ; kb ; dds 12f9f8 ; kb FAILURE_BUCKET_ID: NULL_CLASS_PTR_DEREFERENCE_SHUTDOWN_80000003_mscorwks.dll!PEImage::GetEntryPointToken BUCKET_ID: APPLICATION_FAULT_NULL_CLASS_PTR_DEREFERENCE_SHUTDOWN_DETOURED_mscorwks!PEImage::GetEntryPointToken+21 WATSON_STAGEONE_URL: http://watson.microsoft.com/StageOne/MyProcess_exe/2_4_4_39/4a8a192c/unknown/0_0_0_0/bbbbbbb4/80000003/00000000.htm?Retriage=1 Followup: MachineOwner Edit 1:The event log details for this error say it's a .NET Runtime version 2.0.50727.3053 - Fatal Execution Engine Error (7A097706)(80131506). Edit 2 (10-7-09): This issue is still active. Edit 3 (3-29-10): This update is to let everyone know that I never did successfully solve the problem. The customer who's machine this was on lost interest in solving it and just reimaged the machine :(. Thanks for all the contributions though.

    Read the article

  • How to flush DNS cache in Windows Mobile programmatically?

    - by Bounded
    Hello, My windows mobile application (written in C# with the compact framework) needs to know if a particular machine is active or not. To achieve this goal, I thought to use a ping mechanism. I tried to use the Ping class implemented in the opennetcf framework (the System.Net.NetworkInformation.Ping class for the .NET Framework is not part of the compact framework). Because I give to the Ping.Send function a host name, it first tries to resolve this host name and to retrieve an IP address. But i observe the following problem : If the first dns resolution fails (because the network is down at this moment), and if the application tries immediately again to send the ping, it fails too, even if the network is note down anymore. I check with a famous network protocol analyzer and i saw that only the requests concerning the first dns resolution are sent. The requests concerning the dns resolution of the second ping are not sent. Why is the second dns request not sent ? Is there any dns cache mechanism on such Windows Mobile devices ? If yes, can this mechanism beeing flushed programmatically ? EDIT : I gave up finding a solution to this DNS flush. I chose to ping an IP adress instead of a name machine. The problem of pinging an hard coded adress IP is that we have to be 100% sure that this IP will not change. The gateway IP can be used because it's always reachable (if it does not, it means the network is down).

    Read the article

  • Building Extensions Using E-Business Suite SDK for Java

    - by Sara Woodhull
    We’ve just released Version 2.0.1 of Oracle E-Business Suite SDK for Java.  This new version has several great enhancements added after I wrote about the first version of the SDK in 2010.  In addition to the AppsDataSource and Java Authentication and Authorization Service (JAAS) features that are in the first version, the Oracle E-Business Suite SDK for Java now provides: Session management APIs, so you can share session information with Oracle E-Business Suite Setup script for UNIX/Linux for AppsDataSource and JAAS on Oracle WebLogic Server APIs for Message Dictionary, User Profiles, and NLS Javadoc for the APIs (included with the patch) Enhanced documentation included with Note 974949.1 These features can be used with either Release 11i or Release 12.  References AppsDataSource, Java Authentication and Authorization Service, and Utilities for Oracle E-Business Suite (Note 974949.1) FAQ for Integration of Oracle E-Business Suite and Oracle Application Development Framework (ADF) Applications (Doc ID 1296491.1) What's new in those references? Note 974949.1 is the place to look for the latest information as we come out with new versions of the SDK.  The patch number changes for each release.  Version 2.0.1 is contained in Patch 13882058, which is for both Release 11i and Release 12.  Note 974949.1 includes the following topics: Applying the latest patch Using Oracle E-Business Suite Data Sources Oracle E-Business Suite Implementation of Java Authentication and Authorization Service (JAAS) Utilities Error loggingSession management  Message Dictionary User profiles Navigation to External Applications Java EE Session Management Tutorial For those of you using the SDK with Oracle ADF, besides some Oracle ADF-specific documentation in Note 974949.1, we also updated the ADF Integration FAQ as well. EBS SDK for Java Use Cases The uses of the Oracle E-Business Suite SDK for Java fall into two general scenarios for integrating external applications with Oracle E-Business Suite: Application sharing a session with Oracle E-Business Suite Independent application (not shared session) With an independent application, the external application accesses Oracle E-Business  Suite data and server-side APIs, but it has a completely separate user interface. The external application may also launch pages from the Oracle E-Business Suite home page, but after the initial launch there is no further communication with the Oracle E-Business Suite user interface. Shared session integration means that the external application uses an Oracle E-Business Suite session (ICX session), shares session context information with Oracle E-Business Suite, and accesses Oracle E-Business Suite data. The external application may also launch pages from the Oracle E-Business Suite home page, or regions or pages from the external application may be embedded as regions within Oracle Application Framework pages. Both shared session applications and independent applications use the AppsDataSource feature of the Oracle E-Business Suite SDK for Java. Independent applications may also use the Java Authentication and Authorization (JAAS) and logging features of the SDK. Applications that are sharing the Oracle E-Business Suite session use the session management feature (instead of the JAAS feature), and they may also use the logging, profiles, and Message Dictionary features of the SDK.  The session management APIs allow you to create, retrieve, validate and cancel an Oracle E-Business Suite session (ICX session) from your external application.  Session information and context can travel back and forth between Oracle E-Business Suite and your application, allowing you to share session context information across applications. Note: Generally you would use the Java Authentication and Authorization (JAAS) feature of the SDK or the session management feature, but not both together. Send us your feedback Since the Oracle E-Business Suite SDK for Java is still pretty new, we’d like to know about who is using it and what you are trying to do with it.  We’d like to get this type of information: customer name and brief use case configuration and technologies (Oracle WebLogic Server or OC4J, plain Java, ADF, SOA Suite, and so on) project status (proof of concept, development, production) any other feedback you have about the SDK You can send me your feedback directly at Sara dot Woodhull at Oracle dot com, or you can leave it in the comments below.  Please keep in mind that we cannot answer support questions, so if you are having specific issues, please log a service request with Oracle Support. Happy coding! Related Articles New Whitepaper: Extending E-Business Suite 12.1.3 using Oracle Application Express To Customize or Not to Customize? New Whitepaper: Upgrading your Customizations to Oracle E-Business Suite Release 12 ATG Live Webcast: Upgrading your EBS 11i Customizations to Release 12

    Read the article

  • List of available whitepapers as at 04 May 2010

    - by Anthony Shorten
    The following table lists the whitepapers available, from My Oracle Support, for any Oracle Utilities Application Framework based product: KB Id Document Title Contents 559880.1 ConfigLab Design Guidelines Whitepaper outlining how to design and implement a ConfigLab solution. 560367.1 Technical Best Practices for Oracle Utilities Application Framework Based Products Whitepaper summarizing common technical best practices used by partners, implementation teams and customers.  560382.1 Performance Troubleshooting Guideline Series A set of whitepapers on tracking performance at each tier in the framework. The individual whitepapers are as follows: Concepts - General Concepts and Performance Troublehooting processes Client Troubleshooting - General troubleshooting of the browser client with common issues and resolutions. Network Troubleshooting - General troubleshooting of the network with common issues and resolutions. Web Application Server Troubleshooting - General troubleshooting of the Web Application Server with common issues and resolutions. Server Troubleshooting - General troubleshooting of the Operating system with common issues and resolutions. Database Troubleshooting - General troubleshooting of the database with common issues and resolutions. Batch Troubleshooting - General troubleshooting of the background processing component of the product with common issues and resolutions. 560401.1 Software Configuration Management Series  A set of whitepapers on how to manage customization (code and data) using the tools provided with the framework. The individual whitepapers are as follows: Concepts - General concepts and introduction. Environment Management - Principles and techniques for creating and managing environments. Version Management - Integration of Version control and version management of configuration items.  Release Management - Packaging configuration items into a release.  Distribution - Distribution and installation of  releases across environments  Change Management - Generic change management processes for product implementations. Status Accounting -Status reporting techniques using product facilities.  Defect Management -Generic defect management processes for product implementations. Implementing Single Fixes - Discussion on the single fix architecture and how to use it in an implementation. Implementing Service Packs - Discussion on the service packs and how to use them in an implementation. Implementing Upgrades - Discussion on the the upgrade process and common techniques for minimizing the impact of upgrades. 773473.1 Oracle Utilities Application Framework Security Overview Whitepaper summarizing the security facilities in the framework. Updated for OUAF 4.0.1 774783.1 LDAP Integration for Oracle Utilities Application Framework based products Whitepaper summarizing how to integrate an external LDAP based security repository with the framework.  789060.1 Oracle Utilities Application Framework Integration Overview Whitepaper summarizing all the various common integration techniques used with the product (with case studies). 799912.1 Single Sign On Integration for Oracle Utilities Application Framework based products Whitepaper outlining a generic process for integrating an SSO product with the framework. 807068.1 Oracle Utilities Application Framework Architecture Guidelines This whitepaper outlines the different variations of architecture that can be considered. Each variation will include advice on configuration and other considerations. 836362.1 Batch Best Practices for Oracle Utilities Application Framework based products This whitepaper oulines the common and best practices implemented by sites all over the world. Updated for OUAF 4.0.1 856854.1 Technical Best Practices V1 Addendum  Addendum to Technical Best Practices for Oracle Utilities Application Framework Based Products containing only V1.x specific advice. 942074.1 XAI Best Practices This whitepaper outlines the common integration tasks and best practices for the Web Services Integration provided by the Oracle Utilities Application Framework. Updated for OUAF 4.0.1 970785.1 Oracle Identity Manager Integration Overview This whitepaper outlines the principals of the prebuilt intergration between Oracle Utilities Application Framework Based Products and Orade Identity Manager used to provision user and user group secuity information 1068958.1 Production Environment Configuration Guidelines (New!) Whitepaper outlining common production level settings for the products

    Read the article

  • Oracle and Partners release CAMP specification for PaaS Management

    - by macoracle
    Cloud Application Management for Platforms The public release of the Cloud Application Management for Platforms (CAMP) specification, an initial draft of what is expected to become an industry standard self service interface specification for Platform as a Service (PaaS) management, represents a significant milestone in cloud standards development. Created by several players in the emerging cloud industry, including Oracle, the specification is being submitted to the OASIS standards organization (draft charter) where it will be finalized in an open development process. CAMP is targeted at application developers and deployers for self service management of their application on a Platform-as-a-Service cloud. It is closely aligned with the application development process where applications are typically developed in an Application Development Environment (ADE) and then deployed into a private or public platform cloud. CAMP standardizes the model behind an application’s dependencies on platform components and provides a standardized format for moving applications between the ADE and the cloud, and if and when desirable, between clouds. Once an application is deployed, CAMP provides users with a standardized self service interface to the PaaS offering, allowing the cloud consumer to manage the lifecycle of the application on that platform and the use of the underlying platform services. The CAMP interface includes a RESTful binding of the CAMP model onto the standard HTTP protocol, using JSON as the encoding for the model resources. The model for CAMP includes resources that represent the Application, its Components and any Platform Components that they depend on. It's important PaaS Cloud consumers understand that for a PaaS cloud, these are the abstractions that the user would prefer to work with, not Virtual Machines and the various resources such as compute power, storage and networking. PaaS cloud consumers would also not like to become system administrators for the infrastructure that is hosting their applications and component services. CAMP works on this more abstract level, and yet still accommodates platforms that are built using an underlying infrastructure cloud. With CAMP, it is up to the cloud provider whether or not this underlying infrastructure is exposed to the consumer. One major challenge addressed by the CAMP specification is that of ensuring that application deployment on a new platform is as seamless and error free as possible. This becomes even more difficult when the application may have been developed for a different platform and is now moving to a new one. In CAMP this is accomplished by matching the requirements of the application and its components to the specific capabilities of the underlying platform. This needs to be done regardless of whether there are existing pools of virtualized platform resources (such as a database pool) which are provisioned(on the basis of a schema for example), or whether the platform component is really just a set of virtual machines drawn from an infrastructure pool. The interoperability between platform clouds that CAMP offers means that a CAMP client such as an ADE can target multiple clouds with a single common interface. Applications can even be spread across multiple platform clouds and then managed without needing to create a specialized adapter to manage the components running in each cloud. The development of CAMP has been an effort by a small set of companies, but there are significant advantages to this approach. For example, the way that each of these companies creates their platforms is different enough, to ensure that CAMP can cover a wide range of actual deployments. CAMP is now entering the next phase of development under the guidance of an open standards organization, OASIS, which will likely broaden it’s capabilities. We hope is to keep it concise and minimal, however, to ease implementation and adoption. Over time there will be many different types of platform components that applications can use and which need management. CAMP at this point only includes one example of this (in an appendix) – DataBase as a Service. I am looking forward to the start of the CAMP Technical Committee in OASIS and will do my best to ensure a successful development process. Hope to see you there.

    Read the article

  • What techniques would you use for a next generation java web application?

    - by jakob
    I'm working at a site similar to Foursquare and Yelp, with approximately 100000 unique requests each week that generates content, growing steadily. We are currently using: Seam as Java web framework. MySQL as DB Hibernate as ORM Hibernate Search as Index EhCache for Caching. Since our site is slowly growing out of the current setup and has a lot of legacy code, it is time for us to start thinking about a major refactoring/changing setup. Web framework We are not ready to change the language but we are leaning towards Spring Web Framework, since: Seam is no more. Almost all of us have worked with Spring and liked it. DB and ORM We have done a little research and we are thinking about MongoDB. Index Do we need to have a separate Index if we use MongoDB? Cache ? So my question is basically: If you take Spring Web Framework and MongoDB into consideration, how would a good setup be for a web application that is growing and handles a lot of logged in users generating input and performing searches?

    Read the article

  • EPM 11.1.2.2 Architecture: Financial Performance Management Applications

    - by Marc Schumacher
     Financial Management can be accessed either by a browser based client or by SmartView. Starting from release 11.1.2.2, the Financial Management Windows client does not longer access the Financial Management Consolidation server. All tasks that require an on line connection (e.g. load and extract tasks) can only be done using the web interface. Any client connection initiated by a browser or SmartView is send to the Oracle HTTP server (OHS) first. Based on the path given (e.g. hfmadf, hfmofficeprovider) in the URL, OHS makes a decision to forward this request either to the new Financial Management web application based on the Oracle Application Development Framework (ADF) or to the .NET based application serving SmartView retrievals running on Internet Information Server (IIS). Any requests send to the ADF web interface that need to be processed by the Financial Management application server are send to the IIS using HTTP protocol and will be forwarded further using DCOM to the Financial Management application server. SmartView requests, which are processes by IIS in first row, are forwarded to the Financial Management application server using DCOM as well. The Financial Management Application Server uses OLE DB database connections via native database clients to talk to the Financial Management database schema. Communication between the Financial Management DME Listener, which handles requests from EPMA, and the Financial Management application server is based on DCOM.  Unlike most other components Essbase Analytics Link (EAL) does not have an end user interface. The only user interface is a plug-in for the Essbase Administration Services console, which is used for administration purposes only. End users interact with a Transparent or Replicated Partition that is created in Essbase and populated with data by EAL. The Analytics Link Server deployed on WebLogic communicates through HTTP protocol with the Analytics Link Financial Management Connector that is deployed in IIS on the Financial Management web server. Analytics Link Server interacts with the Data Synchronisation server using the EAL API. The Data Synchronization server acts as a target of a Transparent or Replicated Partition in Essbase and uses a native database client to connect to the Financial Management database. Analytics Link Server uses JDBC to connect to relational repository databases and Essbase JAPI to connect to Essbase.  As most Oracle EPM System products, browser based clients and SmartView can be used to access Planning. The Java based Planning web application is deployed on WebLogic, which is configured behind an Oracle HTTP Server (OHS). Communication between Planning and the Planning RMI Registry Service is done using Java Remote Message Invocation (RMI). Planning uses JDBC to access relational repository databases and talks to Essbase using the CAPI. Be aware of the fact that beside the Planning System database a dedicated database schema is needed for each application that is set up within Planning.  As Planning, Profitability and Cost Management (HPCM) has a pretty simple architecture. Beside the browser based clients and SmartView, a web service consumer can be used as a client too. All clients access the Java based web application deployed on WebLogic through Oracle HHTP Server (OHS). Communication between Profitability and Cost Management and EPMA Web Server is done using HTTP protocol. JDBC is used to access the relational repository databases as well as data sources. Essbase JAPI is utilized to talk to Essbase.  For Strategic Finance, two clients exist, SmartView and a Windows client. While SmartView communicates through the web layer to the Strategic Finance Server, Strategic Finance Windows client makes a direct connection to the Strategic Finance Server using RPC calls. Connections from Strategic Finance Web as well as from Strategic Finance Web Services to the Strategic Finance Server are made using RPC calls too. The Strategic Finance Server uses its own file based data store. JDBC is used to connect to the EPM System Registry from web and application layer.  Disclosure Management has three kinds of clients. While the browser based client and SmartView interact with the Disclosure Management web application directly through Oracle HTTP Server (OHS), Taxonomy Designer does not connect to the Disclosure Management server. Communication to relational repository databases is done via JDBC, to connect to Essbase the Essbase JAPI is utilized.

    Read the article

< Previous Page | 319 320 321 322 323 324 325 326 327 328 329 330  | Next Page >