Search Results

Search found 128328 results on 5134 pages for 'entity framework code first'.

Page 333/5134 | < Previous Page | 329 330 331 332 333 334 335 336 337 338 339 340  | Next Page >

  • SQL Server CE rollback does not undo delete.

    - by INTPnerd
    I am using SQL Server CE 3.5 and C# with the .NET Compact Framework 3.5. In my code I am inserting a row, then starting a transaction, then deleting that row from a table, and then doing a rollback on that transaction. But this does not undo the deletion. Why not? Here is my code: SqlCeConnection conn = ConnectionSingleton.Instance; conn.Open(); UsersTable table = new UsersTable(); table.DeleteAll(); MessageBox.Show("user count in beginning after delete: " + table.CountAll()); table.Insert( new User(){Id = 0, IsManager = true, Pwd = "1234", Username = "Me"}); MessageBox.Show("user count after insert: " + table.CountAll()); SqlCeTransaction transaction = conn.BeginTransaction(); table.DeleteAll(); transaction.Rollback(); transaction.Dispose(); MessageBox.Show("user count after rollback delete all: " + table.CountAll()); The messages indicate that everything works as expected until the very end where the table has a count of 0 indicating the rollback did not undo the deletion.

    Read the article

  • SqlCeResultSet Problem

    - by Vlad
    Hello, I have a SmartDevice project (.NetCF 2.0) configured to be tested on the USA Windows Mobile 5.0 Pocket PC R2 Emulator. My project uses SqlCe 3.0. Understanding that a SmartDevice project is "more carefull" with the device's memory I am using SqlCeResultSets. The result sets are strongly typed, autogenerated by Visual Studio 2008 using the custom tool MSResultSetGenerator. The problem I am facing is that the result set does not recognize any column names. The autogenerated code for the fields does not work. In the client code I am using InfoResultSet rs = new InfoResultSet(); rs.Open(); rs.ReadFirst(); string myFormattedDate = rs.MyDateColumn.ToString("dd/MM/yyyy"); When the execution on the emulator reaches the rs.MyDateColumn the application throws an System.IndexOutOfRangeException. Investigating the stack trace at System.Data.SqlServerCe.FieldNameLookup.GetOrdinal() at System.Data.SqlServerCe.SqlCeDataReader.GetOrdinal() I've tested the GetOrdinal method (in my autogenerated class that inherits SqlCeResultSet): this.GetOrdinal("MyDateColumn"); // throws an exception this.GetName(1); // returns "MyDateColumn" this.GetOrdinal(this.GetName(1)); //throws an exception :) [edit added] The table exists and it's filled with data. Using typed DataSets works like a charm. Regenerating the SqlCeResultSet does not solve the issue, the problem remains. The problem basically is that I am not able to access a column by it's name. The data can be accessed trough this.GetDateTime(1)using the column ordinal. The application fails executing this.GetOrdinal("MyDateColumn"). Also I have updated Visual Studio 2008 to Service Pack 1. Additionaly I am developing the project on a virtual machine with Windows XP SP 2, but in my opinion if the medium is virtual or not should have no effect on the developing. Am I doing something wrong or am I missing something? Thank you.

    Read the article

  • Apache redirection problem!!!!

    - by vikas
    Hi guys, I am setting up a pre-built website built in php. The site was actually hosted on the linux server. Now I am trying to set it up on a Window machine with WAMP server. In this website almost every page request passes through a particular file called redirect(which is basically a php file without extension). Now the problem is that when I inspected the configuration(httpd.conf, apache.conf,.htaccess, vhost.conf etc) of the apache server on the linux machine, I nowhere found the redirect rules for doing so. Neither mod_rewrite nor mod_alias rules for this redirection were found there. But is still redirects the request properly. I also noticed that Zend Framework library is there in the exact same directory where the redirect file is. This library is included in the include_path in php.ini. However, the web site is still not developed using Zend MVC and I have seen NO proof of ZEND being used there. So I am really confused how this redirection is working there? I am unable to set up this on window machine without rewrite rules of mod_rewrite or mod_alias. Do you guys know any alternative of both the said modules for redirection? I know the site is really weird, but i have to set it up. :) Thanks in advance for your help.

    Read the article

  • How to collect and inject all beans of a given type in Spring XML configuration

    - by GrzegorzOledzki
    One of the strongest accents of the Spring framework is the Dependency Injection concept. I understand one of the advices behind that is to separate general high-level mechanism from low-level details (as announced by Dependency Inversion Principle). Technically, that boils down to having a bean implementation to know as little as possible about a bean being injected as a dependency, e.g. public class PrintOutBean { private LogicBean logicBean; public void action() { System.out.println(logicBean.humanReadableDetails()); } //... } <bean class="PrintOutBean"> <property name="loginBean" ref="ShoppingCartBean"/> </bean> But what if I wanted to a have a high-level mechanism operating on multiple dependent beans? public class MenuManagementBean { private Collection<Option> options; public void printOut() { for (Option option:options) { // do something for option } //... } } I know one solution would be to use @Autowired annotation in the singleton bean, that is... @Autowired private Collection<Option> options; But doesn't it violate the separation principle? Why do I have to specify what dependents to take in the very same place I use them (i.e. MenuManagementBean class in my example)? Is there a way to inject collections of beans in the XML configuration like this (without any annotation in the MMB class)? <bean class="MenuManagementBean"> <property name="options"> <xxx:autowire by-type="MyOptionImpl"/> </property> </bean>

    Read the article

  • Can I write a .NETCF Partial Class to extend System.Windows.Forms.UserControl?

    - by eidylon
    Okay... I'm writing a .NET CF (VBNET 2008 3.5 SP1) application, which has one master form, and it dynamically loads specific UserControls based on menu click, in a sort of framework idea. There are certain methods and properties these controls all need to work within the app. Right now I am doing this as an Interface, but this is aggravating as all get up, because some of the methods are optional, and yet I MUST implement them by the nature of interfaces. I would prefer to use inheritance, so that I can have certain code be inherited with overridability, but if I write a class which inherits System.Windows.Forms.UserControl and then inherit my control from that, it squiggles, and tells me that UserControls MUST inherit directly from System.Windows.Forms.UserControl. (Talk about a design flaw!) So next I thought, well, let me use a partial class to extend System.Windows.Forms.UserControl, but when I do that, even though it all seems to compile fine, none of my new properties/methods show up on my controls. Is there any way I can use partial classes to 'extend' System.Windows.Forms.UserControl? For example, can anyone give me a code sample of a partial class which simply adds a MyCount As Integer readonly property to the System.Windows.Forms.UserControl class? If I can just see how to get this going, I can take it from there and add the rest of my functionality. Thanks in advance! I've been searching google, but can't find anything that seems to work for UserControl extension on .NET CF. And the Interface method is driving me crazy as even a small change means updating ALL the controls whether they need to 'override' the method or not.

    Read the article

  • What's the best way to communicate the purpose of a string parameter in a public API?

    - by Dave
    According to the guidance published in New Recommendations for Using Strings in Microsoft .NET 2.0, the data in a string may exhibit one of the following types of behavior: A non-linguistic identifier, where bytes match exactly. A non-linguistic identifier, where case is irrelevant, especially a piece of data stored in most Microsoft Windows system services. Culturally-agnostic data, which still is linguistically relevant. Data that requires local linguistic customs. Given that, I'd like to know the best way to communicate which behavior is expected of a string parameter in a public API. I wasn't able to find an answer in the Framework Design Guidelines. Consider the following methods: f(string this_is_a_linguistic_string) g(string this_is_a_symbolic_identifier_so_use_ordinal_compares) Is variable naming and XML documentation the best I can do? Could I use attributes in some way to mark the requirements of the string? Now consider the following case: h(Dictionary<string, object> dictionary) Note that the dictionary instance is created by the caller. How do I communicate that the callee expects the IEqualityComparer<string> object held by the dictionary to perform, for example, a case-insensitive ordinal comparison?

    Read the article

  • Programmatically setup a PEAP connection in Windows Mobile

    - by tomlog
    I have been working on this for a few days and this is doing my head in: Our application is built using the .NET Compact Framework 2.0 and running on Windows Mobile 5 & 6 devices. We can set the WLAN connection of the device programmatically using the Wireless Zero Config functions (described here: msdn.microsoft.com/en-us/library/ms894771.aspx), most notably the WZCSetInterface function which we pinvoke from our application. This works fine for WEP and WPA-PSK connections. In a recent effort to add support for WPA2 networks we decided to modify the code. We have successfully added support for WPA2 which uses a certificate for the 802.1x authentication by setting the correct registry settings before calling WZCSetInterface. Now we want to do the same for WPA2 using PEAP (MS-CHAPv2) authentication. When manually creating such a connection in Windows Mobile the user will be prompted to enter the domain/user/password details. In our application we will have those details stored locally and want to do this all programmatically without any user intervention. So I thought going along the same route as the certificate authentication, setting the correct registry entries before calling WZCSetInterface. The registry settings we set are: \HKCU\Comm\EAP\Config\[ssid name] Enable8021x = 1 (DWORD) LastAuthSuccessful = 1 (DWORD) EapTypeId = 25 (DWORD) Identity = "domain\username" (string) Password = binary blob containing the password that is encrypted using the CryptProtectData function (described here: msdn.microsoft.com/en-us/library/ms938309.aspx) But when these settings are set and I call WZCSetInterface with the correct parameters, it still prompts me with the User Logon dialog asking for the domain/username/password. Has anyone got an idea what I need to do to prevent the password dialog from appearing and connect straight away with the settings stored in the registry?

    Read the article

  • How do I get my Windows Forms application to use a custom main function and get access to the Applic

    - by burble
    Hi Folks I am trying to use a Main () function in a class to control the program flow in my vb .net Windows Forms application. I have added a splash screen component and a login screen, and customised my main sdi form. I have set the startup form to be my main function in the Application Page of the Project Designer, and everything seems to work fine(ish). However, I would like to use: Me.MinimumSplashScreenDisplayTime = 5000 to ensure that the splash screen is visible, but it is not recognised by the system unless I tick the Enable Application Framework check box on the Project Designer. If I do this, on startup the program ignores the login and splash screens and all my customisation and just displays a default Form1, even though I have also specified my splash screen in the AF dropdown list. Of course, there are alternative ways to delay a splash screen, such as putting the thread temporarily to sleep (which didn't seem to work), but I suspect that there are other things in the AF that I may want to use. Any suggestions on how I can get round this please, and get a sensible means of controlling program flow? Any thoughts on the best overall structure for organising program flow would also be helpful too. I am concerned both about going down a Microsoft or an alternative custom route that may cause me problems later, as the application becomes more complex. Thankses.

    Read the article

  • Need some advice on MVC separation..

    - by Zenph
    I should note I am using Zend Framework. Although this shouldn't affect the concrete answer, it does mean there are several places I can implement my following method (action helper, controller etc). The issue is I have buildOptions() and parseOptions() method which takes $_GET/$_POST variables based on a 'tag' and builds rules which are then used in a select query. An example would be ?modelSort=id&modelOrder=asc The 'model' in the above obviously relates to the particular model, and it used as a 'tag' so that I can for example also have model2Sort and model2Order so there is no conflict between parameters. However, the trouble I am having now is where should these methods go? They are generally dealing with request params. I have been reading a lot about fat model, thin controller. Should this be in an abstract model. My thinking was that if it were, I would do something like: (note, I know I wouldn't call directly like this. Method would be used by child classes) $abstractModel-buildOptions($params); Where 'params' could be anything, like the request parameters $_GET or $_POST: $abstractModel-buildOptions($_GET); Now from what I can see the model is not inherintly dealing with request variables but rather parameters passed to the method. Advice? Where does this method belong? Model, Controller? Specifically on Zend, should it be an action helper, plugin, within an abstract model? Appreciate any advice.

    Read the article

  • PHP-How to choose XML section based on an attribute?

    - by Vincent
    All, I have a config xml file in the following format: <?xml version="1.0"?> <configdata> <development> <siteTitle>You are doing Development</siteTitle> </development> <test extends="development"> <siteTitle>You are doing Testing</siteTitle> </test> <production extends="development"> <siteTitle>You are in Production</siteTitle> </production> </configdata> To read this config file to apply environment settings, currently I am using, the following code in index.php file: $appEnvironment = "production"; $config = new Zend_Config_Xml('/config/settings.xml', $appEnvironment ); To deploy this code on multiple environments, as user has to change index.php file. Instead of doing that, is it possible to maintain an attribute in the xml file, "say active=true". Based on which the Zend_Config_Xml will know which section of the xml file settings to read? Thanks

    Read the article

  • Replacing mysql user authentication with openid

    - by David
    So, I'm working with a really old system which uses a person's mysql database credentials to authenticate to a web site (the database was originally only accessed from the command line, but is now accessed from a php frontend). Because of some internal reasons (and to preserve the user's history), I have to leave the old authentication intact. I've been charged with adding openid authentication to this system. Somehow I need to be able to retrieve a users mysql username and password upon logging into the site through openid (using the Zend framework, by the way). I've thought of simply requiring registration at the first login, where the user must provide their mysql credentials, but I'd rather not store the password plain text. I've also considered blanking everyone's mysql passwords, and just setting the user's mysql username manually (rather than having the user provide this, since they could provide any username). This is turning into a security nightmare. Does anyone have any suggestions for alternatives? This is running on a Linux server, by the way. Also, I can't use mysql pluggable authentication because the mysql version is 5.0 (pluggable authentication requires mysql 5.5), and no, I can't update it.

    Read the article

  • Zend Metadata Cache in file

    - by Matthieu
    I set up a metadata cache in Zend Framework because a lot of DESCRIBE queries were executed and it affected the performances. $frontendOptions = array ('automatic_serialization' => true); $backendOptions = array ('cache_dir' => CACHE_PATH . '/db-tables-metadata'); $cache = Zend_Cache::factory( 'Core', 'File', $frontendOptions, $backendOptions ); Zend_Db_Table::setDefaultMetadataCache($cache); I can indeed see the cache files created, and the website works great. However, when I launch unit tests, or a script of the same application that perform DB queries, I end up with an error because Zend couldn't read the cache files. This is because in the website, the cache files are created by the www user, and when I run phpunit or a script, it tries to read them with my user and it fails. Do you see any solution to that? I have some quickfix ideas but I'm looking for a good/stable solution. And I'd rather avoid running phpunit or the scripts as www if possible (for practical reasons).

    Read the article

  • Error when installing Lync Server, "Installing OcsCore.msi(Feature_LocalMgmtStore)...failure code 1603"

    - by Trikks
    Im battling to install Lync Server in a test environment and are at the "Install Local Configuration Store" step. The prerequisites seems alright but bombs when installing the OcsCore.msi ... Checking prerequisite SqlNativeClient...prerequisite satisfied. Checking prerequisite SqlBackcompat...prerequisite satisfied. Checking prerequisite UcmaRedist...prerequisite satisfied. Installing OcsCore.msi(Feature_LocalMgmtStore)...failure code 1603 Error returned while installing OcsCore.msi(Feature_LocalMgmtStore), code 1603. Please consult log at C:\Users\Administrator.HAWC\AppData\Local\Temp\1\Add-OcsCore.msi-Feature_LocalMgmtStore-[2012_07_08][12_00_27].log The logfile doesn't really help me either, this is the end of it Property(S): Privileged = 1 Property(S): USERNAME = Windows User Property(S): DATABASE = C:\Windows\Installer\9525f.msi Property(S): OriginalDatabase = C:\ProgramData\Microsoft\Lync Server\Deployment\cache\4.0.7577.0\setup\OcsCore.msi Property(S): UILevel = 2 Property(S): Preselected = 1 Property(S): ACTION = INSTALL Property(S): WIX_ACCOUNT_LOCALSYSTEM = NT AUTHORITY\SYSTEM Property(S): WIX_ACCOUNT_LOCALSERVICE = NT AUTHORITY\LOCAL SERVICE Property(S): WIX_ACCOUNT_NETWORKSERVICE = NT AUTHORITY\NETWORK SERVICE Property(S): WIX_ACCOUNT_ADMINISTRATORS = BUILTIN\Administrators Property(S): WIX_ACCOUNT_USERS = BUILTIN\Users Property(S): WIX_ACCOUNT_GUESTS = BUILTIN\Guests Property(S): ROOTDRIVE = C:\ Property(S): CostingComplete = 1 Property(S): OutOfDiskSpace = 0 Property(S): OutOfNoRbDiskSpace = 0 Property(S): PrimaryVolumeSpaceAvailable = 0 Property(S): PrimaryVolumeSpaceRequired = 0 Property(S): PrimaryVolumeSpaceRemaining = 0 Property(S): INSTALLLEVEL = 1 Property(S): SOURCEDIR = C:\ProgramData\Microsoft\Lync Server\Deployment\cache\4.0.7577.0\setup\ Property(S): SourcedirProduct = {9521B708-9D80-46A3-9E58-A74ACF4E343E} === Logging stopped: 2012-07-08 12:01:46 === MSI (s) (98:F8) [12:01:46:354]: Note: 1: 1729 MSI (s) (98:F8) [12:01:46:354]: Product: Microsoft Lync Server 2010, Core Components -- Configuration failed. MSI (s) (98:F8) [12:01:46:354]: Windows Installer reconfigured the product. Product Name: Microsoft Lync Server 2010, Core Components. Product Version: 4.0.7577.0. Product Language: 1033. Manufacturer: Microsoft Corporation. Reconfiguration success or error status: 1603. MSI (s) (98:F8) [12:01:46:356]: Deferring clean up of packages/files, if any exist MSI (s) (98:F8) [12:01:46:356]: MainEngineThread is returning 1603 MSI (s) (98:84) [12:01:46:362]: RESTART MANAGER: Session closed. MSI (s) (98:84) [12:01:46:362]: No System Restore sequence number for this installation. MSI (s) (98:84) [12:01:46:363]: User policy value 'DisableRollback' is 0 MSI (s) (98:84) [12:01:46:363]: Machine policy value 'DisableRollback' is 0 MSI (s) (98:84) [12:01:46:363]: Incrementing counter to disable shutdown. Counter after increment: 0 MSI (s) (98:84) [12:01:46:364]: Note: 1: 1402 2: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Installer\Rollback\Scripts 3: 2 MSI (s) (98:84) [12:01:46:364]: Note: 1: 1402 2: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Installer\Rollback\Scripts 3: 2 MSI (s) (98:84) [12:01:46:364]: Decrementing counter to disable shutdown. If counter >= 0, shutdown will be denied. Counter after decrement: -1 MSI (s) (98:84) [12:01:46:364]: Restoring environment variables MSI (s) (98:84) [12:01:46:373]: Destroying RemoteAPI object. MSI (s) (98:D4) [12:01:46:373]: Custom Action Manager thread ending. MSI (c) (20:64) [12:01:46:379]: Decrementing counter to disable shutdown. If counter >= 0, shutdown will be denied. Counter after decrement: -1 MSI (c) (20:64) [12:01:46:380]: MainEngineThread is returning 1603 === Verbose logging stopped: 2012-07-08 12:01:46 === Any advice where to start in this? Thanks

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • SQLExpress service unable to start Error code 17053

    - by Chris Sobolewski
    A user was instructed by their software support to upgrade a program and install SQLExpress as part of the installation process. Since that time, the service has been able to start, citing error 17053, which appears to be an authentication issue. Here is the error log: 2011-01-11 13:17:45.50 Server Microsoft SQL Server 2005 - 9.00.3042.00 (Intel X86) Feb 9 2007 22:47:07 Copyright (c) 1988-2005 Microsoft Corporation Express Edition on Windows NT 5.1 (Build 2600: Service Pack 2) 2011-01-11 13:17:45.50 Server (c) 2005 Microsoft Corporation. 2011-01-11 13:17:45.50 Server All rights reserved. 2011-01-11 13:17:45.50 Server Server process ID is 3332. 2011-01-11 13:17:45.50 Server Authentication mode is WINDOWS-ONLY. 2011-01-11 13:17:45.50 Server Logging SQL Server messages in file 'c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG'. 2011-01-11 13:17:45.52 Server This instance of SQL Server last reported using a process ID of 2332 at 11/10/2010 2:15:24 PM (local) 11/10/2010 7:15:24 PM (UTC). This is an informational message only; no user action is required. 2011-01-11 13:17:45.52 Server Error: 17053, Severity: 16, State: 1. 2011-01-11 13:17:45.52 Server UpdateUptimeRegKey: Operating system error 5(Access is denied.) encountered. 2011-01-11 13:17:45.52 Server Registry startup parameters: 2011-01-11 13:17:45.52 Server -d c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\master.mdf 2011-01-11 13:17:45.52 Server -e c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG 2011-01-11 13:17:45.52 Server -l c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\mastlog.ldf 2011-01-11 13:17:45.52 Server Error: 17113, Severity: 16, State: 1. 2011-01-11 13:17:45.52 Server Error 3(The system cannot find the path specified.) occurred while opening file 'c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\master.mdf' to obtain configuration information at startup. An invalid startup option might have caused the error. Verify your startup options, and correct or remove them if necessary. 2011-01-11 13:17:45.52 Server Error: 17053, Severity: 16, State: 1. 2011-01-11 13:17:45.52 Server UpdateUptimeRegKey: Operating system error 5(Access is denied.) encountered. 4 Server Error: 17053, Severity: 16, State: 1. 2011-01-11 13:08:21.34 Server UpdateUptimeRegKey: Operating system error 5(Access is denied.) encountered. 12:47:20.85 spid5s SQL Trace ID 1 was started by login "sa". 2011-01-11 12:47:20.90 spid5s Starting up database 'mssqlsystemresource'. 2011-01-11 12:47:20.93 spid5s The resource database build version is 9.00.3042. This is an informational message only. No user action is required. 2011-01-11 12:47:21.21 spid5s Error: 15466, Severity: 16, State: 1. 2011-01-11 12:47:21.21 spid5s An error occurred during decryption. 2011-01-11 12:47:21.38 spid8s Starting up database 'model'. 2011-01-11 12:47:21.38 Server Error: 17182, Severity: 16, State: 1. 2011-01-11 12:47:21.38 Server TDSSNIClient initialization failed with error 0x5, status code 0x90. 2011-01-11 12:47:21.38 Server Error: 17182, Severity: 16, State: 1. 2011-01-11 12:47:21.38 Server TDSSNIClient initialization failed with error 0x5, status code 0x1. 2011-01-11 12:47:21.38 Server Error: 17826, Severity: 18, State: 3. 2011-01-11 12:47:21.38 Server Could not start the network library because of an internal error in the network library. To determine the cause, review the errors immediately preceding this one in the error log. 2011-01-11 12:47:21.38 Server Error: 17120, Severity: 16, State: 1. 2011-01-11 12:47:21.38 Server SQL Server could not spawn FRunCM thread. Check the SQL Server error log and the Windows event logs for information about possible related problems. One lead I had was to change the SQL logon account from "Network Service" to "Local System". Unfortunately, that is resulting in the error message The Security ID Structure is Invalid [0x80070539] Any help either uninstalling or getting SQLExpress running would be fantastic.

    Read the article

  • Build-time dependency resolving coming to Entity Framework. Now, how about those BI tools too?

    - by jamiet
    Three months ago I wrote a blog post entitled Some thoughts on Visual Studio database references and how they should be used for SQL Server BI where I shared some thoughts on a feature available to database developers in Visual Studio 2010 that I would love to see added to SQL Server Integration Services (SSIS), Analysis Services (SSAS) and Reporting Services (SSRS). In there I said: Over the past few weeks I have been making heavy use of the Database tools in Visual Studio 2010 and one of the features that has most impressed me has been database references.   Database references allow you to have stored procedures in your database project that refer to objects (tables, views, stored procedures etc…) that exist in other database projects and hence when you build your database project it is able to resolve those references.   It occurred to me that similar functionality would be incredibly useful for SQL Server Integration Services(SSIS), Analysis Services (SSAS) & Reporting Services (SSRS) projects. After all reports, packages and data source views are rife with references to database objects – why shouldn’t we be able to have design-time dependency checking in our BI projects the same way that database and .Net developers do? In that blog post I shared links to three Connect submissions where I requested this feature be added to SSIS, SSAS & SSRS. In addition I also submitted a request that the feature be extended to .Net projects so that any reference to a database object in a .Net assembly can be resolved at build time. That Connect submission is at [Entity FX] Use database references to constrain the EDM and overnight it received this comment from Microsoft: We have been working on this feature for a while and and will be available soon This is really good news - it improves the Microsoft developer ecosystem by ensuring invalid references to database references get caught at build time (ideally as part of a Continuous integration build) rather than run time. [Hopefully it might nip this code-first nonsense in the bud too (Ooo...way to incite flame comments :) ) ]. If you want to see this feature in action then check out a video from Teched Europe last month entitled SQL Server Developer Tools Code-named "Juneau" where it is demo'd by Lance Delano and Tim Laverty.   The point of this blog post though is not just to draw attention to this forthcoming feature for .Net developers, it is to ask you to petition Microsoft to get this feature added to SSIS/SSAS/SSRS too. After all, we already know (from the video above) that the feature is coming to this new code-name Juneau development environment plus we also know that Juneau will be the development environment for SSIS/SSAS/SSRS as well - is it really much of a stretch to expect the BI tools to have access to this great feature too? I don't think so and if you agree with me then I urge you to vote and add a comment to the Connection submissions that are requesting this feature. They are at: [SSAS] Declare Object Dependancies [SSRS] Declare Object Dependancies [SSIS] Declare Object Dependancies (Update, Apparently someone at Microsoft has deemed it necassary to set this to private and I am not able to change it back even though I submitted it. You can still vote on the other two though.) Let's close that SQL Developer Gap!   @Jamiet    

    Read the article

  • Vim: Context sensitive code completion for PHP

    - by eddy147
    Vim gives me too much options when I use code completion. In a class, and type $class- it gives me about a zillion options, so not only from the class itself but also from php, all globals ever created, in short: a mess. I only want to have the options from the class itself (or the parent subtype class it extends from), so context or scope sensitive code completion, just like Netbeans for example. How can I do that? My current configuration is this: I am using ctags, and created 1 ctags file for our (big) application in the root. This is the .ctags file I used to create the ctags file: -R -h ".php" --exclude=.svn --languages=+PHP,-JavaScript --tag-relative=yes --regex-PHP=/abstract\s+class\s+([^ ]+)/\1/c/ --regex-PHP=/interface\s+([^ ]+)/\1/c/ --regex-PHP=/(public\s+|static\s+|protected\s+|private\s+)\$([^ \t=]+)/\2/p/ --regex-PHP=/const\s+([^ \t=]+)/\1/d/ --regex-PHP=/final\s+(public\s+|static\s+|abstract\s+|protected\s+|private\s+)function\s+\&?\s*([^ (]+)/\2/f/ --PHP-kinds=+cdf --fields=+iaS This is the .vimrc file: " autocomplete funcs and identifiers for languages autocmd FileType php set omnifunc=phpcomplete#CompletePHP autocmd FileType python set omnifunc=pythoncomplete#Complete autocmd FileType javascript set omnifunc=javascriptcomplete#CompleteJS autocmd FileType html set omnifunc=htmlcomplete#CompleteTags autocmd FileType css set omnifunc=csscomplete#CompleteCSS autocmd FileType xml set omnifunc=xmlcomplete#CompleteTags autocmd FileType php set omnifunc=phpcomplete#CompletePHP autocmd FileType c set omnifunc=ccomplete#Complete " exuberant ctags " the magic is the ';' at end. it will make vim tags file search go up from current directory until it finds one. set tags=projectrootdir/tags; map <F8> :!ctags " TagList " :tag getUser => Jump to getUser method " :tn (or tnext) => go to next search result " :tp (or tprev) => to to previous search result " :ts (or tselect) => List the current tags " => Go back to last tag location " +Left click => Go to definition of a method " More info: " http://vimdoc.sourceforge.net/htmldoc/tagsrch.html (official documentation) " http://www.vim.org/tips/tip.php?tip_id=94 (a vim tip) let Tlist_Ctags_Cmd = "~/bin/ctags" let Tlist_WinWidth = 50 map <F4> :TlistToggle<cr> "see http://vim.wikia.com/wiki/Make_Vim_completion_popup_menu_work_just_like_in_an_IDE " will change the 'completeopt' option so that Vim's popup menu doesn't select the first completion item, but rather just inserts the longest common text of all matches :set completeopt=longest,menuone " will change the behavior of the <Enter> key when the popup menu is visible. In that case the Enter key will simply select the highlighted menu item, just as <C-Y> does :inoremap <expr> <CR> pumvisible() ? "\<C-y>" : "\<C-g>u\<CR>" " inoremap <expr> <C-n> pumvisible() ? '<C-n>' : \ '<C-n><C-r>=pumvisible() ? "\<lt>Down>" : ""<CR>' inoremap <expr> <M-,> pumvisible() ? '<C-n>' : \ '<C-x><C-o><C-n><C-p><C-r>=pumvisible() ? "\<lt>Down>" : ""<CR>'

    Read the article

  • Python bindings for C++ code using OpenCV giving segmentation fault

    - by lightalchemist
    I'm trying to write a python wrapper for some C++ code that make use of OpenCV but I'm having difficulties returning the result, which is a OpenCV C++ Mat object, to the python interpreter. I've looked at OpenCV's source and found the file cv2.cpp which has conversions functions to perform conversions to and fro between PyObject* and OpenCV's Mat. I made use of those conversions functions but got a segmentation fault when I tried to use them. I basically need some suggestions/sample code/online references on how to interface python and C++ code that make use of OpenCV, specifically with the ability to return OpenCV's C++ Mat to the python interpreter or perhaps suggestions on how/where to start investigating the cause of the segmentation fault. Currently I'm using Boost Python to wrap the code. Thanks in advance to any replies. The relevant code: // This is the function that is giving the segmentation fault. PyObject* ABC::doSomething(PyObject* image) { Mat m; pyopencv_to(image, m); // This line gives segmentation fault. // Some code to create cppObj from CPP library that uses OpenCV cv::Mat processedImage = cppObj->align(m); return pyopencv_from(processedImage); } The conversion functions taken from OpenCV's source follows. The conversion code gives segmentation fault at the commented line with "if (!PyArray_Check(o)) ...". static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true) { if(!o || o == Py_None) { if( !m.data ) m.allocator = &g_numpyAllocator; return true; } if( !PyArray_Check(o) ) // Segmentation fault inside PyArray_Check(o) { failmsg("%s is not a numpy array", name); return false; } int typenum = PyArray_TYPE(o); int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S : typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S : typenum == NPY_INT || typenum == NPY_LONG ? CV_32S : typenum == NPY_FLOAT ? CV_32F : typenum == NPY_DOUBLE ? CV_64F : -1; if( type < 0 ) { failmsg("%s data type = %d is not supported", name, typenum); return false; } int ndims = PyArray_NDIM(o); if(ndims >= CV_MAX_DIM) { failmsg("%s dimensionality (=%d) is too high", name, ndims); return false; } int size[CV_MAX_DIM+1]; size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type); const npy_intp* _sizes = PyArray_DIMS(o); const npy_intp* _strides = PyArray_STRIDES(o); bool transposed = false; for(int i = 0; i < ndims; i++) { size[i] = (int)_sizes[i]; step[i] = (size_t)_strides[i]; } if( ndims == 0 || step[ndims-1] > elemsize ) { size[ndims] = 1; step[ndims] = elemsize; ndims++; } if( ndims >= 2 && step[0] < step[1] ) { std::swap(size[0], size[1]); std::swap(step[0], step[1]); transposed = true; } if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] ) { ndims--; type |= CV_MAKETYPE(0, size[2]); } if( ndims > 2 && !allowND ) { failmsg("%s has more than 2 dimensions", name); return false; } m = Mat(ndims, size, type, PyArray_DATA(o), step); if( m.data ) { m.refcount = refcountFromPyObject(o); m.addref(); // protect the original numpy array from deallocation // (since Mat destructor will decrement the reference counter) }; m.allocator = &g_numpyAllocator; if( transposed ) { Mat tmp; tmp.allocator = &g_numpyAllocator; transpose(m, tmp); m = tmp; } return true; } static PyObject* pyopencv_from(const Mat& m) { if( !m.data ) Py_RETURN_NONE; Mat temp, *p = (Mat*)&m; if(!p->refcount || p->allocator != &g_numpyAllocator) { temp.allocator = &g_numpyAllocator; m.copyTo(temp); p = &temp; } p->addref(); return pyObjectFromRefcount(p->refcount); } My python test program: import pysomemodule # My python wrapped library. import cv2 def main(): myobj = pysomemodule.ABC("faces.train") # Create python object. This works. image = cv2.imread('61.jpg') processedImage = myobj.doSomething(image) cv2.imshow("test", processedImage) cv2.waitKey() if __name__ == "__main__": main()

    Read the article

  • IOC Container Handling State Params in Non-Default Constructor

    - by Mystagogue
    For the purpose of this discussion, there are two kinds of parameters an object constructor might take: state dependency or service dependency. Supplying a service dependency with an IOC container is easy: DI takes over. But in contrast, state dependencies are usually only known to the client. That is, the object requestor. It turns out that having a client supply the state params through an IOC Container is quite painful. I will show several different ways to do this, all of which have big problems, and ask the community if there is another option I'm missing. Let's begin: Before I added an IOC container to my project code, I started with a class like this: class Foobar { //parameters are state dependencies, not service dependencies public Foobar(string alpha, int omega){...}; //...other stuff } I decide to add a Logger service depdendency to the Foobar class, which perhaps I'll provide through DI: class Foobar { public Foobar(string alpha, int omega, ILogger log){...}; //...other stuff } But then I'm also told I need to make class Foobar itself "swappable." That is, I'm required to service-locate a Foobar instance. I add a new interface into the mix: class Foobar : IFoobar { public Foobar(string alpha, int omega, ILogger log){...}; //...other stuff } When I make the service locator call, it will DI the ILogger service dependency for me. Unfortunately the same is not true of the state dependencies Alpha and Omega. Some containers offer a syntax to address this: //Unity 2.0 pseudo-ish code: myContainer.Resolve<IFoobar>( new parameterOverride[] { {"alpha", "one"}, {"omega",2} } ); I like the feature, but I don't like that it is untyped and not evident to the developer what parameters must be passed (via intellisense, etc). So I look at another solution: //This is a "boiler plate" heavy approach! class Foobar : IFoobar { public Foobar (string alpha, int omega){...}; //...stuff } class FoobarFactory : IFoobarFactory { public IFoobar IFoobarFactory.Create(string alpha, int omega){ return new Foobar(alpha, omega); } } //fetch it... myContainer.Resolve<IFoobarFactory>().Create("one", 2); The above solves the type-safety and intellisense problem, but it (1) forced class Foobar to fetch an ILogger through a service locator rather than DI and (2) it requires me to make a bunch of boiler-plate (XXXFactory, IXXXFactory) for all varieties of Foobar implementations I might use. Should I decide to go with a pure service locator approach, it may not be a problem. But I still can't stand all the boiler-plate needed to make this work. So then I try this: //code named "concrete creator" class Foobar : IFoobar { public Foobar(string alpha, int omega, ILogger log){...}; static IFoobar Create(string alpha, int omega){ //unity 2.0 pseudo-ish code. Assume a common //service locator, or singleton holds the container... return Container.Resolve<IFoobar>( new parameterOverride[] {{"alpha", alpha},{"omega", omega} } ); } //Get my instance: Foobar.Create("alpha",2); I actually don't mind that I'm using the concrete "Foobar" class to create an IFoobar. It represents a base concept that I don't expect to change in my code. I also don't mind the lack of type-safety in the static "Create", because it is now encapsulated. My intellisense is working too! Any concrete instance made this way will ignore the supplied state params if they don't apply (a Unity 2.0 behavior). Perhaps a different concrete implementation "FooFoobar" might have a formal arg name mismatch, but I'm still pretty happy with it. But the big problem with this approach is that it only works effectively with Unity 2.0 (a mismatched parameter in Structure Map will throw an exception). So it is good only if I stay with Unity. The problem is, I'm beginning to like Structure Map a lot more. So now I go onto yet another option: class Foobar : IFoobar, IFoobarInit { public Foobar(ILogger log){...}; public IFoobar IFoobarInit.Initialize(string alpha, int omega){ this.alpha = alpha; this.omega = omega; return this; } } //now create it... IFoobar foo = myContainer.resolve<IFoobarInit>().Initialize("one", 2) Now with this I've got a somewhat nice compromise with the other approaches: (1) My arguments are type-safe / intellisense aware (2) I have a choice of fetching the ILogger via DI (shown above) or service locator, (3) there is no need to make one or more seperate concrete FoobarFactory classes (contrast with the verbose "boiler-plate" example code earlier), and (4) it reasonably upholds the principle "make interfaces easy to use correctly, and hard to use incorrectly." At least it arguably is no worse than the alternatives previously discussed. One acceptance barrier yet remains: I also want to apply "design by contract." Every sample I presented was intentionally favoring constructor injection (for state dependencies) because I want to preserve "invariant" support as most commonly practiced. Namely, the invariant is established when the constructor completes. In the sample above, the invarient is not established when object construction completes. As long as I'm doing home-grown "design by contract" I could just tell developers not to test the invariant until the Initialize(...) method is called. But more to the point, when .net 4.0 comes out I want to use its "code contract" support for design by contract. From what I read, it will not be compatible with this last approach. Curses! Of course it also occurs to me that my entire philosophy is off. Perhaps I'd be told that conjuring a Foobar : IFoobar via a service locator implies that it is a service - and services only have other service dependencies, they don't have state dependencies (such as the Alpha and Omega of these examples). I'm open to listening to such philosophical matters as well, but I'd also like to know what semi-authorative reference to read that would steer me down that thought path. So now I turn it to the community. What approach should I consider that I havn't yet? Must I really believe I've exhausted my options?

    Read the article

  • bug in my jquery code while trying replace html elements with own values

    - by loviji
    I today ask a question, about using Jquery, replace html elements with own values. link text And I use answer, and get a problem. function replaceWithValues not works same in all cases.I call this function two times: 1. btnAddParam click 2. btnCancelEdit click $("#btnAddParam").click(function() { var lastRow = $('#mainTable tr:last'); var rowState = $("#mainTable tr:last>td:first"); replaceWithValues(lastRow, rowState); var htmlToAppend = "<tr bgcolor='#B0B0B0' ><td class='textField' er='editable'><input value='' type='text' /></td><td><textarea cols='40' rows='3' ></textarea></td><td>" + initSelectType(currentID) + "</td><td><input id='txt" + currentID + "3' type='text' class='measureUnit' /></td><td><input type='checkbox' /></td><td></td></tr>"; $("#mainTable").append(htmlToAppend); }); //buttonCancelEdit located in end of row $('#mainTable input:button').unbind().live('click', function() { var row = $(this).closest('tr'); var rowState = $(this).closest('tr').find("td:first"); replaceWithValues(row, rowState); $(this).remove(); }); //do row editable -- replaceWithElements $('#mainTable tr').unbind().live('click', function() { if ($(this).find("td:first").attr("er") == "readable") { var rowState = $(this).closest('tr').find("td:first"); replaceWithElements($(this), rowState); } }); function replaceWithValues(row, er) { if (er.attr("er") == "editable") { var inputElements = $('td > input:text', row); inputElements.each(function() { var value = $(this).val(); $(this).replaceWith(value); }); er.attr("er", "readable"); } } function replaceWithElements(row, er) { if (er.attr("er") == "readable") { var tdinit = $("<td>").attr("er", "editable").addClass("textField"); $('.textField', row).each(function() { var element = tdinit.append($("<input type='text' value="+$.trim($(this).text())+" />")); $(this).empty().replaceWith(element); }); row.find("td:last").append("<input type='button'/>"); //$('.selectField') ... //$('.textAreaField') ... } } $("#btnAddParam").click() function works well. it call function replaceWithValues. I call $('#mainTable tr').unbind().live('click', function() { } to do row editable, and it creates a button in the end of row. After user can click this button and call function $('#mainTable input:button').unbind().live('click', function() {}. and this function call function replaceWithValues. but in this case it doesn't work.

    Read the article

  • Parser generator for JavaME

    - by Anders K.
    First: I have looked at this SO question but unfortunately there is no mention of JavaME I am looking for a parser/lexer generator that produces code that can run on the Blackberry and its (obnoxious) JavaME. E.g. at first I thought I could use ANTLR however it seems the run-time library is not compatible with JavaME TIA

    Read the article

  • code style for private methods in c#

    - by illdev
    I just found out, that it seems a common pattern to user UpperFirstLetterPascalCase() for private methods. I for myself, find this completely inconsistent with naming rules of private instance fields and variables and I find it difficult to read/debug, too. I would want to ask, why using a first upper letter for methods could be a better choice than a first lower (doThis())? Just out of curiosity...

    Read the article

  • ZF: Form array field - how to display values in the view correctly

    - by Wojciech Fracz
    Let's say I have a Zend_Form form that has a few text fields, e.g: $form = new Zend_Form(); $form->addElement('text', 'name', array( 'required' => true, 'isArray' => true, 'filters' => array( /* ... */ ), 'validators' => array( /* ... */ ), )); $form->addElement('text', 'surname', array( 'required' => true, 'isArray' => true, 'filters' => array( /* ... */ ), 'validators' => array( /* ... */ ), )); After rendering it I have following HTML markup (simplified): <div id="people"> <div class="person"> <input type="text" name="name[]" /> <input type="text" name="surname[]" /> </div> </div> Now I want to have the ability to add as many people as I want. I create a "+" button that in Javascript appends next div.person to the container. Before I submit the form, I have for example 5 names and 5 surnames, posted to the server as arrays. Everything is fine unless somebody puts the value in the field that does not validate. Then the whole form validation fails and when I want to display the form again (with errors) I see the PHP Warning: htmlspecialchars() expects parameter 1 to be string, array given Which is more or less described in ticket: http://framework.zend.com/issues/browse/ZF-8112 However, I came up with a not-very-elegant solution. What I wanted to achieve: have all fields and values rendered again in the view have error messages only next to the fields that contained bad values Here is my solution (view script): <div id="people"> <?php $names = $form->name->getValue(); // will have an array here if the form were submitted $surnames= $form->surname->getValue(); // only if the form were submitted we need to validate fields' values // and display errors next to them; otherwise when user enter the page // and render the form for the first time - he would see Required validator // errors $needsValidation = is_array($names) || is_array($surnames); // print empty fields when the form is displayed the first time if(!is_array($names))$names= array(''); if(!is_array($surnames))$surnames= array(''); // display all fields! foreach($names as $index => $name): $surname = $surnames[$index]; // validate value if needed if($needsValidation){ $form->name->isValid($name); $form->surname->isValid($surname); } ?> <div class="person"> <?=$form->name->setValue($name); // display field with error if did not pass the validation ?> <?=$form->surname->setValue($surname);?> </div> <?php endforeach; ?> </div> The code work, but I want to know if there is an appropriate, more comfortable way to do this? I often hit this problem when there is a need for a more dynamic - multivalue forms and have not find better solution for a long time.

    Read the article

  • What is the point of padding?

    - by ktm5124
    In particular, I'm reading into the Mach-O binary file format for Intel 32 on OS X. After the FAT header there is a whole bunch of padding before the offset of the first archive. What is the point of all this padding? To be more specific, there is upwards of 4000 bytes of padding between the FAT header and the first archive (in particular, the mach_header). Why include all these extra bytes?! Is OS X fond of adding 4 MB to all their universal binaries?

    Read the article

< Previous Page | 329 330 331 332 333 334 335 336 337 338 339 340  | Next Page >