Search Results

Search found 103915 results on 4157 pages for 'machine code'.

Page 337/4157 | < Previous Page | 333 334 335 336 337 338 339 340 341 342 343 344  | Next Page >

  • Upload file from client machine to server - prepopulate file picker path?

    - by user246114
    Hi, I'd like to upload a file from a client machine to my server. The user would have to specify the file to upload as I understand it, using a form that looks like: <input type="file" name="datafile" size="40"> This pops up a native file picker, which is great. The problem I'm having is that it's a real pain (for most users) to go looking around their machine for the file I'm interested in. Is there a way I can initialize the file picker with a path to make it more convenient for the user? Like I know some users will be on a windows machine, so I could prepopulate the picker by already sending them to the My Documents folder for example. I don't see how this is possible, just wondering if something like that exists, Thank you

    Read the article

  • Why is my external USB hard drive sometimes completely inaccessible?

    - by Eliah Kagan
    I have an external USB hard drive, consisting of an 1 TB SATA drive in a Rosewill RX35-AT-SU SLV Aluminum 3.5" Silver USB 2.0 External Enclosure, plugged into my SONY VAIO VGN-NS310F laptop. It is plugged directly into the computer (not through a hub). The drive inside the enclosure is a 7200 rpm Western Digital, but I don't remember the exact model. I can remove the drive from the enclosure (again), if people think it's necessary to know that detail. The drive is formatted ext4. I mount it dynamically with udisks on my Lubuntu 11.10 system, usually automatically via PCManFM. (I have had Lubuntu 12.04 on this machine, and experienced all this same behavior with that too.) Every once in a while--once or twice a day--it becomes inaccessible, and difficult to unmount. Attempting to unmount it with sudo umount ... gives an error message saying the drive is in use and suggesting fuser and lsof to find out what is using it. Killing processes found to be using the drive with fuser and lsof is sometimes sufficient to let me unmount it, but usually isn't. Once the drive is unmounted or the machine is rebooted, the drive will not mount. Plugging in the drive and turning it on registers nothing on the computer. dmesg is unchanged. The drive's access light usually blinks vigorously, as though the drive is being accessed constantly. Then eventually, after I keep the drive off for a while (half an hour), I am able to mount it again. While the drive doesn't work on this machine for a while, it will work immediately on another machine running the same version of Ubuntu. Sometimes bringing it back over from the other machine seems to "fix" it. Sometimes it doesn't. The drive doesn't always stop being accessible while mounted, before becoming unmountable. Sometimes it works fine, I turn off the computer, I turn the computer back on, and I cannot mount the drive. Currently this is the only drive with which I have this problem, but I've had problems that I think are the same as this, with different drives, on different Ubuntu machines. This laptop has another external USB drive plugged into it regularly, which doesn't have this problem. Unplugging that drive before plugging in the "problem" drive doesn't fix the problem. I've opened the drive up and made sure the connections were tight in the past, and that didn't seem to help (any more than waiting the same amount of time that it took to open and close the drive, before attempting to remount it). Does anyone have any ideas about what could be causing this, what troubleshooting steps I should perform, and/or how I could fix this problem altogether? Update: I tried replacing the USB data cable (from the enclosure to the laptop), as Merlin suggested. I should've tried that long ago, since it fits the symptoms perfectly (the drive works on another machine, which would make sense because the cable would be bent at a different angle, possibly completing a circuit of frayed wires). Unfortunately, though, this did not help--I have the same problem with the new cable. I'll try to provide additional detailed information about the drive inside the enclosure, next time I'm able to get the drive working. (At the moment I don't have another machine available to attach it.) Major Update (28 June 2012) The drive seems to have deteriorated considerably. I think this is so, because I've attached it to another machine and gotten lots of errors about invalid characters, when copying files from it. I am less interested in recovering data from the drive than I am in figuring out what is wrong with it. I specifically want to figure out if the problem is the drive or the enclosure. Now, when I plug the drive into the original machine where I was having the problems, it still doesn't appear (including with sudo fdisk -l), but it is recognized by the kernel and messages are added to dmesg. Most of the message consist of errors like this, repeated many times: [ 7.707593] sd 5:0:0:0: [sdc] Unhandled sense code [ 7.707599] sd 5:0:0:0: [sdc] Result: hostbyte=invalid driverbyte=DRIVER_SENSE [ 7.707606] sd 5:0:0:0: [sdc] Sense Key : Medium Error [current] [ 7.707614] sd 5:0:0:0: [sdc] Add. Sense: Unrecovered read error [ 7.707621] sd 5:0:0:0: [sdc] CDB: Read(10): 28 00 00 00 00 00 00 00 08 00 [ 7.707636] end_request: critical target error, dev sdc, sector 0 [ 7.707641] Buffer I/O error on device sdc, logical block 0 Here are all the lines from dmesg starting with when the drive is recognized. Please note that: I'm back to running Lubuntu 12.04 on this machine (and perhaps that's a factor in better error messages). Now that the drive has been plugged into another machine and back into this one, and also now that this machine is back to running 12.04, the drive's access light doesn't blink as I had described. Looking at the drive, it would appear as though it is working normally, with low or no access. This behavior (the errors) occurs when rebooting the machine with the drive plugged in, and also when manually plugging in the drive. A few of the messages are about /dev/sdb. That drive is working fine. The bad drive is /dev/sdc. I just didn't want to edit anything out from the middle.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • JRuby wrong element type class java.lang.String(array contains char) related to JAVA_HOME

    - by Daryl
    I am on Ubuntu x64 bit running: java version "1.6.0_18" OpenJDK Runtime Environment (IcedTea6 1.8) (6b18-1.8-0ubuntu1) OpenJDK 64-Bit Server VM (build 14.0-b16, mixed mode) and jruby 1.4.0 (ruby 1.8.7 patchlevel 174) (2010-02-11 6586) (OpenJDK 64-Bit Server VM 1.6.0_18) [amd64-java] I have this code running on my Windows 7 computer at home. I recently copied over my whole folder over to Ubuntu, installed java, jruby, and associated gems but I get this error when I run my main file: jruby run.rb test =================Processing FREDERICKSBURG_1.1======================= ERROR IN TESTING wrong element type class java.lang.String(array contains char) /home/daryl/Desktop/work/Code/geografikos/lib/sentence_splitter/splitter.rb:21:in `to_java' /home/daryl/Desktop/work/Code/geografikos/lib/sentence_splitter/splitter.rb:21:in `split' /home/daryl/Desktop/work/Code/geografikos/lib/models/page.rb:103:in `sentences' /home/daryl/Desktop/work/Code/geografikos/lib/extractor/lingpipe_svm.rb:34:in `extract' /home/daryl/Desktop/work/Code/geografikos/lib/extractor/geo_controller.rb:9:in `process' /home/daryl/Desktop/work/Code/geografikos/lib/extractor/geo_controller.rb:8:in `each' /home/daryl/Desktop/work/Code/geografikos/lib/extractor/geo_controller.rb:8:in `process' /home/daryl/Desktop/work/Code/geografikos/lib/extractor/geo_controller.rb:6:in `each' /home/daryl/Desktop/work/Code/geografikos/lib/extractor/geo_controller.rb:6:in `process' /home/daryl/Desktop/work/Code/geografikos/lib/statistics.rb:111:in `generate_all' /home/daryl/Desktop/work/Code/geografikos/lib/statistics.rb:105:in `each' /home/daryl/Desktop/work/Code/geografikos/lib/statistics.rb:105:in `generate_all' run.rb:56 The focus of the error is: ERROR IN TESTING wrong element type class java.lang.String(array contains char) Everything works fine on my windows machine. I figured I was getting this error because I did not have JAVA_HOME set however I added this to bashrc as: export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk and have confirmed: echo $JAVA_HOME /usr/lib/jvm/java-1.6.0-openjdk I can produce a similar error by removing my JAVA_HOME variable on windows: =================Processing FREDERICKSBURG_1.3======================= ERROR IN TESTING cannot convert instance of class org.jruby.RubyString to char C:/work/Code/geografikos/lib/sentence_splitter/splitter.rb:21:in `to_java' C:/work/Code/geografikos/lib/sentence_splitter/splitter.rb:21:in `split' C:/work/Code/geografikos/lib/models/page.rb:103:in `sentences' C:/work/Code/geografikos/lib/extractor/lingpipe_svm.rb:34:in `extract' C:/work/Code/geografikos/lib/extractor/geo_controller.rb:9:in `process' C:/work/Code/geografikos/lib/extractor/geo_controller.rb:8:in `each' C:/work/Code/geografikos/lib/extractor/geo_controller.rb:8:in `process' C:/work/Code/geografikos/lib/extractor/geo_controller.rb:6:in `each' C:/work/Code/geografikos/lib/extractor/geo_controller.rb:6:in `process' C:/work/Code/geografikos/lib/statistics.rb:111:in `generate_all' C:/work/Code/geografikos/lib/statistics.rb:105:in `each' C:/work/Code/geografikos/lib/statistics.rb:105:in `generate_all' run.rb:56 It is obviously not exactly the same but I have a feeling this has to do with the java path. You can probably derive from the error that I am just trying to convert a ruby variable to java using to_java. This works fine on my windows machine and I have confirmed the gems are the same but I don't think this has to do with gems. I lied. I changed my JAVA_HOME back on my windows machine and this error still occurs. So now the code doesn't run on either machine. I recently installed git on my windows machine and added the code to a repository. But I haven't really done anything with it. All it said was it will convert all LF to CRLF...That shouldn't change anything though should it? Any ideas on why I am now getting these errors? I haven't changed anything on my windows machine in months except for installing git.

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • Windows 7 upgrade on XP and Vista

    - by icc97
    I am upgrading a Windows XP (32-bit) machine and a Windows Vista (32-bit) machine to Windows 7 (32-bit). The most important files and accounts are on the Windows XP machine. What I would like to do is the following: backup the XP machine using Windows Easy Transfer upgrade the Windows Vista machine to a fresh install of Windows 7 install the XP backup on the Vista machine and see if everything is working Is this possible? I would have thought its possible as once the Vista machine is upgraded to Windows 7 it should be the same as if I had upgraded the XP machine, but I don't want to waste my time if its not. Thanks

    Read the article

  • Windows 7 upgrade on XP and Vista

    - by icc97
    I am upgrading a Windows XP (32-bit) machine and a Windows Vista (32-bit) machine to Windows 7 (32-bit). The most important files and accounts are on the Windows XP machine. What I would like to do is the following: backup the XP machine using Windows Easy Transfer upgrade the Windows Vista machine to a fresh install of Windows 7 install the XP backup on the Vista machine and see if everything is working Is this possible? I would have thought its possible as once the Vista machine is upgraded to Windows 7 it should be the same as if I had upgraded the XP machine, but I don't want to waste my time if its not. Thanks

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Launching firefox on remote server causes local firefox to start instead

    - by terdon
    Right, this is strange. I am connecting from my laptop (LMDE) to a remote host (SUSE linux enterprise) using ssh -X. I want to launch a firefox instance running on the remote server so I can have access to webpages on a private network. User@RemoteMachine $ which -a firefox /usr/bin/firefox User@RemoteMachine $ /usr/bin/firefox --version Mozilla Firefox 2.0.0.2, Copyright (c) 1998 - 2007 mozilla.org User@LocalMachine $ which -a firefox /usr/bin/firefox User@LocalMachine $ /usr/bin/firefox --version Mozilla Firefox 14.0.1 Now, if firefox is not running on the local machine, everything goes as expected and executing firefox on the remote machine causes a firefox (v 2.0) window running on the remote machine to show up. However, if firefox is running on the local machine a second window of firefox 14.0.1 running on the local machine appears. I have checked top in both machines. In the 2nd case, a firefox process briefely appears on the remote machine and then disappears when the local version of firefox is launched. My questions are the following: What gives? How/why can firefox connect to its existing instance on the local machine? The remote machine appears to have access to the local machine. It, in fact, appears to have the right to execute programs on my local machine. Am I missing something or is this just weird? Is this not a security risk?

    Read the article

  • Pourquoi réinventer la roue quand il y a Runnable ? La startup ambitionne de devenir le « YouTube du Code »

    Pourquoi réinventer la roue quand il y a Runnable ? La startup ambitionne de devenir le « YouTube du Code » Runnable, qui a récemment été lancé par une startup du même nom basée à Palo Alto avec pour objectif la facilitation de la découverte et de la réutilisation de portions de code, a annoncé qu'elle a soulevé une levée de fonds de 2 millions de dollars grâce à la participation de Sierra Ventures, Resolute VC, AngelPad et 500 startups.Yash Kumar Directeur Général et co-fondateur de la start-up...

    Read the article

  • Firefox : Mozilla étudie de près les lignes de code « miracles » qui diminuent le temps de démarrage et explique les limites de ce patch

    Firefox : Mozilla étudie la possibilité d'intégrer les lignes de code « miracles » Qui diminuent le temps de démarrage et explique les limites de ce patch Un des reproches les plus importants fait à Firefox, notamment face à Chrome, est sa lenteur au démarrage. Un point sur lequel la fondation Mozilla travaille très sérieusement et que les betas succesives de Firefox 4 ont amélioré. Pas assez, cependant, au goût de certains, d'autant plus que le mois dernier, Tara Glek, un des employés de Mozilla, a publié à titre personnel une vingtaine de lignes de code censées pouvoir diviser par deux ce temps de démarrage.

    Read the article

  • Apache2 MPM-prefork MPM-worker multiple instances on same Ubuntu host machine possible?

    - by user60985
    I have a live Apache2/MPM-Worker instance running Django. I want to also run an Apache2/MPM-prefork instance to run some Drupal6 applications on the same host machine and utilize a vast selection of PHP modules that run on the prefork model. I plan to use my MPM-worker instance to reverse proxy to the Apache2-prefork instance for URLS starting with myhost.com/drupal6/. It seems theoretically doable/configurable by having the second Apache2-prefork instance configured to listen on an internal port, say 127.0.0.1:8080 and having my current Apache2-worker configured to proxy pass and reverse pass to it for the 'drupal6' URLs. However, how do I compile or install the apache2-prefork version so it has a different executable name than /usr/sbin/apache2, for example /usr/sbin/apache2p, and so apache2ctl has a different name, say apache2pctl, and that apache2pctl invokes the /usr/sbin/apache2p instead of /usr/sbin/apache2... and so on down the line (eg /etc/apache2p) so I can start and restart my two instances independently? As I understand it, no one executable of 'apache2' can be compiled with both the MPM-prefork and MPM-worker modules, so it seems I need two separate versions of the apache2 MPM flavors. But then I need to invoke and control them by separate names, I assume. I looked at the configuration options for apache2 and I am a bit queasy about compiling a second apache2 version with prefork because I am not sure I can set all the options so that none of my current apache2 files is overwritten. Is there a way? Is there a standard solution to separately installing and controlling prefork and worker apache2 executables on the same machine without them stepping on each other during installation or operation?

    Read the article

  • Why is GPO Tool reporting a GPO version mismatch when the GPO version #'s do match?

    - by SturdyErde
    Any ideas why the group policy diagnostic utility GPOTool would report a GPO version mismatch between two domain controllers if the version numbers are a match? Policy {GUID} Error: Version mismatch on dc1.domain.org, DS=65580, sysvol=65576 Friendly name: Default Domain Controllers Policy Error: Version mismatch on dc2.domain.org, DS=65580, sysvol=65576 Details: ------------------------------------------------------------ DC: dc1.domain.org Friendly name: Default Domain Controllers Policy Created: 7/7/2005 6:39:33 PM Changed: 6/18/2012 12:33:04 PM DS version: 1(user) 44(machine) Sysvol version: 1(user) 40(machine) Flags: 0 (user side enabled; machine side enabled) User extensions: not found Machine extensions: [{GUID}] Functionality version: 2 ------------------------------------------------------------ DC: dc2.domain.org Friendly name: Default Domain Controllers Policy Created: 7/7/2005 6:39:33 PM Changed: 6/18/2012 12:33:05 PM DS version: 1(user) 44(machine) Sysvol version: 1(user) 40(machine) Flags: 0 (user side enabled; machine side enabled) User extensions: not found Machine extensions: [{GUID}] Functionality version: 2

    Read the article

  • « Le tactile est une technologie de transition », mais vers quoi ? Un designer d'Apple trouve les interactions homme-machine trop pauvres

    « Le tactile est une technologie de transition » Mais vers quoi ? Un designer d'Apple pense que les interactions homme-machines actuelles sont trop pauvres « Pour moi, affirmer qu'un image sous une glace (NDT : Pictures Under Glass) est le futur des intéractions hommes machines (IHM) revient à dire que l'avenir de la photo est le noir et blanc. [Le tactile] est de manière évidente une technologie de transition. Et plus courtes sont les transitions, mieux c'est ». Voici comment Bret Victor, Human-Interface Operator chez Apple, résume sa pensée. Par « Picture Under Glass », il décrit le tactile actuel. Autrement dit les tablettes et autres smartphones dont les écrans sont lisse...

    Read the article

  • vagrant and puppet security for ssl certificates

    - by Sirex
    I'm pretty new to vagrant, would someone who knows more about it (and puppet) be able to explain how vagrant deals with the ssl certs needed when making vagrant testing machines that are processing the same node definition as the real production machines ? I run puppet in master / client mode, and I wish to spin up a vagrant version of my puppet production nodes, primarily to test new puppet code against. If my production machine is, say, sql.domain.com I spin up a vagrant machine of, say, sql.vagrant.domain.com. In the vagrant file I then use the puppet_server provisioner, and give a puppet.puppet_node entry of “sql.domain.com” to it gets the same puppet node definition. On the puppet server I use a regex of something like /*.sql.domain.com/ on that node entry so that both the vagrant machine and the real one get that node entry on the puppet server. Finally, I enable auto-signing for *.vagrant.domain.com in puppet's autosign.conf, so the vagrant machine gets signed. So far, so good... However: If one machine on my network gets rooted, say, unimportant.domain.com, what's to stop the attacker changing the hostname on that machine to sql.vagrant.domain.com, deleting the old puppet ssl cert off of it and then re-run puppet with a given node name of sql.domain.com ? The new ssl cert would be autosigned by puppet, match the node name regex, and then this hacked node would get all the juicy information intended for the sql machine ?! One solution I can think of is to avoid autosigning, and put the known puppet ssl cert for the real production machine into the vagrant shared directory, and then have a vagrant ssh job move it into place. The downside of this is I end up with all my ssl certs for each production machine sitting in one git repo (my vagrant repo) and thereby on each developer's machine – which may or may not be an issue, but it dosen't sound like the right way of doing this. tl;dr: How do other people deal with vagrant & puppet ssl certificates for development or testing clones of production machines ?

    Read the article

  • Debian/OVH: How to configure multiple Failover IP on the same Xen (Debian) Virtual Machine?

    - by D.S.
    I have a problem on a Xen virtual machine (running latest Debian), when I try to configure a second failover IP address. OVH reports that my IP is misconfigured and they complaint they receive a massive quantity of ARP packets from this IPs, so they are going to block my IP unless I fix this issue. I suspect there's a routing issue, but I don't know (and can't find any useful info on the provider's website, and their support doesn't provide me a valid solution, just bounce me to their online - useless - guides). My /etc/network/interfaces look like this: # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet static address AAA.AAA.AAA.AAA netmask 255.255.255.255 broadcast AAA.AAA.AAA.AAA post-up route add 000.000.000.254 dev eth0 post-up route add default default gw 000.000.000.254 dev eth0 # Secondary NIC auto eth0:0 iface eth0:0 inet static address BBB.BBB.BBB.BBB netmask 255.255.255.255 broadcast BBB.BBB.BBB.BBB And the routing table is: Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 000.000.000.254 0.0.0.0 255.255.255.255 UH 0 0 0 eth0 0.0.0.0 000.000.000.254 0.0.0.0 UG 0 0 0 eth0 In these examples (true IP addresses are replaced by fake ones, guess why :)), 000.000.000.000 is my main server's IP address (dom0), 000.000.000.254 is the default gateway OVH recommends, AAA.AAA.AAA.AAA is the first IP Failover and BBB.BBB.BBB.BBB is the second one. I need both AAA.AAA.AAA.AAA and BBB.BBB.BBB.BBB to be publicly reachable from Internet and point to my domU, and to be able to access Internet from inside the virtual machine (domU). I am using eth0 and eth0:0 because due to OVH support, I have to assign both IPs to the same MAC address and then create a virtual eth0:0 interface for the second IP. Any suggestion? What am I doing wrong? How can I stop OVH complaining about ARP flood? Many thanks in advance, DS

    Read the article

  • How do I make code bound to an ORM testable?

    - by RPK
    In Test Driven Development, how do I make code bound to an ORM testable? I am using a Micro-ORM (PetaPoco) and I have several methods that interact with the database like: AddCustomer UpdateRecord etc. I want to know how to write a test for these methods. I searched YouTube for videos on writing a test for DAL, but I didn't find any. I want to know which method or class is testable and how to write a test before writing the code itself.

    Read the article

  • What's the best Open Source code you've ever seen?

    - by Andrew Theken
    Part of the value of Open Source is to provide great example code to people getting started with a new platform or language. What's the best Open Source code you've encountered, and why do you like your choice? Any language will do, but I'm particularly interested in the best examples of Objective-C you can point out. Obviously this is an open-ended question, so I'll leave the question open for a while and see what kinds of answers we get. Thanks!

    Read the article

  • How do you set up a ubuntu server so that it can recieve and run code remotely

    - by deadjaguars
    I've gotten my hands on two older (i.e. ~2 years old) department towers that I came across when setting up our new workstations that I want to turn into servers that people can run code on remotely. The code would mostly consist of Python (2 and 3) and Java. Being able to run those is a must, but other languages would be nice. I thought here would be a good as place as any to ask where I would start.

    Read the article

  • How to use ULS in SharePoint 2010 for Custom Code Exception Logging?

    - by venkatx5
    What is ULS in SharePoint 2010? ULS stands for Unified Logging Service which captures and writes Exceptions/Logs in Log File(A Plain Text File with .log extension). SharePoint logs Each and every exceptions with ULS. SharePoint Administrators should know ULS and it's very useful when anything goes wrong. but when you ask any SharePoint 2007 Administrator to check log file then most of them will Kill you. Because read and understand the log file is not so easy. Imagine open a plain text file of 20 MB in NotePad and go thru line by line. Now Microsoft developed a tool "ULS Viewer" to view those Log files in easily readable format. This tools also helps to filter events based on exception priority. You can read on this blog to know in details about ULS Viewer . Where to get ULS Viewer? ULS Viewer is developed by Microsoft and available to download for free. URL : http://code.msdn.microsoft.com/ULSViewer/Release/ProjectReleases.aspx?ReleaseId=3308 Note: Eventhought this tool developed by Microsoft, it's not supported by Microsoft. Means you can't support for this tool from Microsoft and use it on your own Risk. By the way what's the risk in viewing Log Files?! How to use ULS in SharePoint 2010 Custom Code? ULS can be extended to use in user solutions to log exceptions. In Detail, Developer can use ULS to log his own application errors and exceptions on SharePoint Log files. So now all in Single Place (That's why it's called "Unified Logging"). Well in this article I am going to use Waldek's Code (Reference Link). However the article is core and am writing container for that (Basically how to implement the code in Detail). Let's see the steps. Open Visual Studio 2010 -> File -> New Project -> Visual C# -> Windows -> Class Library -> Name : ULSLogger (Make sure you've selected .net Framework 3.5)   In Solution Explorer Panel, Rename the Class1.cs to LoggingService.cs   Right Click on References -> Add Reference -> Under .Net tab select "Microsoft.SharePoint"   Right Click on the Project -> Properties. Select "Signing" Tab -> Check "Sign the Assembly".   In the below drop down select <New> and enter "ULSLogger", uncheck the "Protect my key with a Password" option.   Now copy the below code and paste. (Or Just refer.. :-) ) using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.SharePoint; using Microsoft.SharePoint.Administration; using System.Runtime.InteropServices; namespace ULSLogger { public class LoggingService : SPDiagnosticsServiceBase { public static string vsDiagnosticAreaName = "Venkats SharePoint Logging Service"; public static string CategoryName = "vsProject"; public static uint uintEventID = 700; // Event ID private static LoggingService _Current; public static LoggingService Current {  get   {    if (_Current == null)     {       _Current = new LoggingService();     }    return _Current;   } }private LoggingService() : base("Venkats SharePoint Logging Service", SPFarm.Local) {}protected override IEnumerable<SPDiagnosticsArea> ProvideAreas() { List<SPDiagnosticsArea> areas = new List<SPDiagnosticsArea>  {   new SPDiagnosticsArea(vsDiagnosticAreaName, new List<SPDiagnosticsCategory>    {     new SPDiagnosticsCategory(CategoryName, TraceSeverity.Medium, EventSeverity.Error)    })   }; return areas; }public static string LogErrorInULS(string errorMessage) { string strExecutionResult = "Message Not Logged in ULS. "; try  {   SPDiagnosticsCategory category = LoggingService.Current.Areas[vsDiagnosticAreaName].Categories[CategoryName];   LoggingService.Current.WriteTrace(uintEventID, category, TraceSeverity.Unexpected, errorMessage);   strExecutionResult = "Message Logged"; } catch (Exception ex) {  strExecutionResult += ex.Message; } return strExecutionResult; }public static string LogErrorInULS(string errorMessage, TraceSeverity tsSeverity) { string strExecutionResult = "Message Not Logged in ULS. "; try  {  SPDiagnosticsCategory category = LoggingService.Current.Areas[vsDiagnosticAreaName].Categories[CategoryName];  LoggingService.Current.WriteTrace(uintEventID, category, tsSeverity, errorMessage);  strExecutionResult = "Message Logged";  } catch (Exception ex)  {   strExecutionResult += ex.Message;   } return strExecutionResult;  } } }   Just build the solution and it's ready to use now. This ULS solution can be used in SharePoint Webparts or Console Application. Lets see how to use it in a Console Application. SharePoint Server 2010 must be installed in the same Server or the application must be hosted in SharPoint Server 2010 environment. The console application must be set to "x64" Platform target.   Create a New Console Application. (Visual Studio -> File -> New Project -> C# -> Windows -> Console Application) Right Click on References -> Add Reference -> Under .Net tab select "Microsoft.SharePoint" Open Program.cs add "using Microsoft.SharePoint.Administration;" Right Click on References -> Add Reference -> Under "Browse" tab select the "ULSLogger.dll" which we created first. (Path : ULSLogger\ULSLogger\bin\Debug\) Right Click on Project -> Properties -> Select "Build" Tab -> Under "Platform Target" option select "x64". Open the Program.cs and paste the below code. using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.SharePoint.Administration; using ULSLogger; namespace ULSLoggerClient {  class Program   {   static void Main(string[] args)     {     Console.WriteLine("ULS Logging Started.");     string strResult = LoggingService.LogErrorInULS("My Application is Working Fine.");      Console.WriteLine("ULS Logging Info. Result : " + strResult);     string strResult = LoggingService.LogErrorInULS("My Application got an Exception.", TraceSeverity.High);     Console.WriteLine("ULS Logging Waring Result : " + strResult);      Console.WriteLine("ULS Logging Completed.");      Console.ReadLine();     }   } } Just build the solution and execute. It'll log the message on the log file. Make sure you are using Farm Administrator User ID. You can play with Message and TraceSeverity as required. Now Open ULS Viewer -> File -> Open From -> ULS -> Select First Option to open the default ULS Log. It's Uls RealTime and will show all log entries in readable table format. Right Click on a row and select "Filter By This Item". Select "Event ID" and enter value "700" that we used in the application. Click Ok and now you'll see the Exceptions/Logs which logged by our application.   If you want to see High Priority Messages only then Click Icons except Red Cross Icon on the Toolbar. The tooltip will tell what's the icons used for.

    Read the article

  • How you return to a code when you don't remember what you were doing?

    - by speeder
    Well, I have some problems with procrastination and whatnot, but those get infinitely worse, when I cannot remember what I should be doing. I mean, I know my project, I wrote 100% of the code so far, and I knew more or less what I was doing, but I don't remember exactly what, I don't remember what file I was editing and why. How I get back on track? (because right now my technique of opening the source code and staring at it is not working)

    Read the article

  • How do I export banshee library settings to another machine?

    - by nityabaddha
    I am trying to downgrade my distro. The thing is, I have spent some few hours organising my music library and I do not want to lose my database. I have checked 'write meta data to files'. And so, my understanding is, that if I just import those same mp3s into a new library, those files will be arranged in the same order in the library. But this doesn't sound like a safe enough option. I'm moving from 11.10 to 10.04. Any help would be greatly appreciated. newbie

    Read the article

  • What type of code is suitable for unit testing?

    - by RPK
    In Test Driven Development, what type of code is testable? I am using a Micro-ORM (PetaPoco) and I have several methods that interact with the database like: AddCustomer UpdateRecord etc. I want to know how to write a test for these methods. I searched YouTube for videos on writing a test for DAL, but I didn't find any. I want to know which method or class is testable and how to write a test before writing the code itself.

    Read the article

  • How to publish your key used to sign deb packages so you will be able to use your repository from any machine?

    - by Sorin Sbarnea
    I am looking for a solution that would prevent me from seeing things like: W: GPG error: http://updates.example.com lenny Release: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY 00AABBCCDDEE0011 The question applies for both Debian and Ubuntu. Isn't possible to publish the key somewhere where it can be automatically downloaded by apt-get based on it's signature? Note: I know that I can put my signature to an we server and use wget to get it and install it from there, still I am using for a better solution.

    Read the article

  • Why does 'top' say my machine is only 50% idle?

    - by Chris Moore
    What's going on here? I'm running nothing on the system, iotop and iftop show the network and hard drive are both idle, and top (sorted by %CPU) shows nothing running. So why is the system only 50% idle? What's the other 50% waiting for? How can I find out? top - 12:01:05 up 3 days, 15:03, 1 user, load average: 6.00, 6.01, 6.05 Tasks: 179 total, 1 running, 178 sleeping, 0 stopped, 0 zombie Cpu(s): 0.7%us, 0.0%sy, 0.0%ni, 49.7%id, 49.7%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 2053996k total, 1992600k used, 61396k free, 81680k buffers Swap: 4092924k total, 10740k used, 4082184k free, 1338636k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1042 deb 20 0 21468 1412 1000 R 1 0.1 0:00.03 top 1 root 20 0 24188 1952 1152 S 0 0.1 0:01.44 init 2 root 20 0 0 0 0 S 0 0.0 0:00.05 kthreadd Update: dmesg shows the printer driver misbehaving: [28858.561847] cnijnetprn[1503]: segfault at 29 ip 00007f56cf3480f7 sp 00007fffb964ec30 error 4 in libcnnet.so.1.2.0[7f56cf345000+9000] [68851.187802] cnijnetprn[9180]: segfault at 29 ip 00007ffe7636a0f7 sp 00007fff9a8b1990 error 4 in libcnnet.so.1.2.0[7ffe76367000+9000] [155412.107826] cnijnetprn[19966]: segfault at 29 ip 00007fc31de770f7 sp 00007fffc03aa8e0 error 4 in libcnnet.so.1.2.0[7fc31de74000+9000] and also some issue with cp: [248041.172067] INFO: task cp:27488 blocked for more than 120 seconds. [248041.172071] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [248041.172075] cp D ffffffff81805120 0 27488 27345 0x00000004 [248041.172080] ffff880078d57a38 0000000000000046 ffff880078d579d8 ffffffff81032a79 [248041.172085] ffff880078d57fd8 ffff880078d57fd8 ffff880078d57fd8 0000000000012a40 [248041.172090] ffff88007b818000 ffff880069acc560 ffff880078d57a18 ffff88007f8532c0 [248041.172095] Call Trace: [248041.172104] [<ffffffff81032a79>] ? default_spin_lock_flags+0x9/0x10 [248041.172109] [<ffffffff8110a360>] ? __lock_page+0x70/0x70 [248041.172114] [<ffffffff815f0ecf>] schedule+0x3f/0x60 I did try copying something to the USB stick that's plugged into the router and mounted onto this computer using mount.cifs. That almost always causes everything to lock up, so I'm guessing that's the problem. I'll reboot and stop using mount.cifs.

    Read the article

< Previous Page | 333 334 335 336 337 338 339 340 341 342 343 344  | Next Page >