Search Results

Search found 40226 results on 1610 pages for 'object relational model'.

Page 345/1610 | < Previous Page | 341 342 343 344 345 346 347 348 349 350 351 352  | Next Page >

  • How to convert full outer join query to O-R query?

    - by Kugel
    I'm converting relational database into object-relational in Oracle. I have a query that uses full outer join in the old one. Is it possible to write the same query for O-R database without explicitly using full outer join? For normal inner join it simple, I just use dot notation together with ref/deref. I'm interested in this in general so let's say the relational query is: select a.attr, b.attr from a full outer join b on (a.fk = b.pk); I want to know if it's a good idea to do it this way: select a.attr, b.attr from a_obj a full outer join b_obj b on (a.b_ref = ref(b));

    Read the article

  • How to set order of appearance for fields when using Html.EditorFor in MVC 2?

    - by Anrie
    I have the following classes in my Model: public abstract class Entity : IEntity { [ScaffoldColumn(false)] public int Id { get; set; } [Required,StringLength(500)] public string Name { get; set; } } and public class Model : SortableEntity { [Required] public ModelType Type { get; set; } [ListRequired] public List<Producer> Producers { get; set; } public List<PrintArea> PrintAreas { get; set; } public List<Color> Colors { get; set; } } To display the "Model" class in the view I simply call Html.EditorFor(model=model), but the "Name" property of the base class is rendered last, which is not the desired behaviour. Is it possible to influenece on the order of displayed fields somehow?

    Read the article

  • Overriding the default error message for a ModelForm

    - by Jude Osborn
    Is there any way to override a error_message text for all the fields of a ModelForm's, without having to include all the field info in the ModelForm? For example, let's say I have a (very simple) model like this: People(models.Model): name = models.CharField(max_length=128, null=True, blank=True, help_text="Please type your name.") age = models.IntegerField(help_text="Please type your age.") I don't like the cut and dry default messages, such as, "Enter a whole number.", so I'd like to change them to something a bit nicer like "Please type a number." Ideally I'd be able to add an "error_message" property in the model, but the model does not support that property. So does that mean I have to basically duplicate all the model info in my ModelForm, or is there a way around that?

    Read the article

  • Setting a preferred item of a many-to-one in Django

    - by Mike DeSimone
    I'm trying to create a Django model that handles the following: An Item can have several Names. One of the Names for an Item is its primary Name, i.e. the Name displayed given an Item. (The model names were changed to protect the innocent.) The models.py I've got looks like: class Item(models.Model): primaryName = models.OneToOneField("Name", verbose_name="Primary Name", related_name="_unused") def __unicode__(self): return self.primaryName.name class Name(models.Model): item = models.ForeignKey(Item) name = models.CharField(max_length=32, unique=True) def __unicode__(self): return self.name class Meta: ordering = [ 'name' ] The admin.py looks like: class NameInline(admin.TabularInline): model = Name class ItemAdmin(admin.ModelAdmin): inlines = [ NameInline ] admin.site.register(Item, ItemAdmin) It looks like the database schema is working fine, but I'm having trouble with the admin, so I'm not sure of anything at this point. My main questions are: How do I explain to the admin that primaryName needs to be one of the Names of the item being edited? Is there a way to automatically set primaryName to the first Name found, if primaryName is not set, since I'm using inline admin for the names?

    Read the article

  • django modeling

    - by SledgehammerPL
    Concept: Drinks are made of components. E.g. 10ml of Vodka. In some receipt the component is very particular (10ml of Finlandia Vodka), some not (10 ml of ANY Vodka). I wonder how to model a component to solve this problem - on stock I have particular product, which can satisfy more requirements. The model for now is: class Receipt(models.Model): name = models.CharField(max_length=128) (...) components = models.ManyToManyField(Product, through='ReceiptComponent') def __unicode__(self): return self.name class ReceiptComponent(models.Model): product = models.ForeignKey(Product) receipt = models.ForeignKey(Receipt) quantity = models.FloatField(max_length=9) unit = models.ForeignKey(Unit) class Admin: pass def __unicode__(self): return unicode(self.quantity!=0 and self.quantity or '') + ' ' + unicode(self.unit) + ' ' + self.product.genitive class Product(models.Model): name = models.CharField(max_length = 128) (...) class Admin: pass def __unicode__(self): return self.name class Stock(Store): products = models.ManyToManyField(Product) class Admin: pass def __unicode__(self): return self.name I think about making some table which joins real product (on stock) with abstract product (receiptcomponent). But maybe there's easy solution?

    Read the article

  • Is it weird or strange to make multiple WCF Calls to build a ViewModel before presenting it?

    - by Nate Bross
    Am I doing something wrong if I need code like this in a Controller? Should I be doing something differently? public ActionResult Details(int id) { var svc = new ServiceClient(); var model = new MyViewModel(); model.ObjectA = svc.GetObjectA(id); model.ObjectB = svc.GetObjectB(id); model.ObjectC = svc.GetObjectC(id); return View(model); } The reason I ask, is because I've got Linq-To-Sql on the back end and a WCF Service which exposes functionality through a set of DTOs which are NOT the Linq-To-Sql generated classes and thus do not have the parent/child properties; but in the detail view, I would like to see some of the parent/child data.

    Read the article

  • What is a good architecture for a Lift-JPA application?

    - by egervari
    I was wondering what is the best practice for a JPA model in Lift? I noticed that in the jpa demo application, there is just a Model object that is like a super object that does everything. I don't think this can be the most scalable approach, no? Is it is wise to still do the DAO pattern in Lift? For example, there's some code that looks a tad bloated and could be simplified across all model objects: Model.remove(Model.getReference(classOf[Author], someId)) Could be: AuthorDao.remove(someId) I'd appreciate any tips for setting up something that will work with the way Lift wants to work and is also easy to organize and maintain. Preferably from someone who has actually used JPA on a medium to large Lift site rather than just postulating what Spring does (we know how to do that) ;) The first phase of development will be around 30-40 tables, and will eventually get to over 100... we need a scalable, neat approach.

    Read the article

  • innerHTML yielding undefined, but correct data is visible

    - by Mike Dyer
    var Model,node; document.getElementById('sedans').innerHTML=''; var thismodelabbr,prevmodelabbr; for(var j=0; j<xmlDoc.getElementsByTagName('data').length; j++){ node = xmlDoc.getElementsByTagName('data')[j]; thismodelabbr=node.getAttribute('model'); if(prevmodelabbr!=thismodelabbr){ Model+='<a href="">'+ node.getAttribute('model')+'</a>'; } prevmodelabbr=thismodelabbr; document.getElementById('sedans').innerHTML=Model; } The above javascript snippet is working correctly and as needed, but I'm getting an "Undefined" response before the entry is displayed within its respective page. I'm assuming it has to do with the .innerHTML call. Any insight would be deeply appreciated.

    Read the article

  • Artificial Intelligence ... how to make an object roam freely/avoid other objects, and model consciousness? [on hold]

    - by help bonafide pigeons
    Say a simple free roam battle scene in which a player runs around freely and engages in battle with other enemies/objects, as shown below: The dragon/dinosaur (or whatever that thing I drew appears to be) will, by some measure, try and avoid attacks so it is modeled to appear to have a conscious desire to avoid pain. My question is ... since this is very complex, many possible strategies for solving this, algorithms, etc., what is the basic idea behind how this would be accomplished in any sort? Like, we can assume the enemy in the picture is not just going to aimlessly hop around and avoid, but freely be modeled to behave as if it were really exploring/fighting. For the best example I can give, witness the behavior of the enemies in Final Fantasy 12 in this video: http://www.youtube.com/watch?v=mO0TkmhiQ6w How do the pros, or how would anyone attempt solve/implement this? PS: I have tried several times to give an image the "illusion" that is has a conciousness, but aside from emulating a real animal's consciousness in complete, I fall short and get choppy moving images that follow predictable patterns, error-prone movements, and the worst imaginable scenario of a battle engagement.

    Read the article

  • Name of dropdowlist is renamed automatically????

    - by Akawan
    Hello, I've a problem with DropDownlist Name in ASP.NET MVC In my EditorTemplate, I've <%: Html.DropDownList("PoolGeometry",Model.selectVm.PoolGeometry, new { id = "poolgeometry" })%> In generate html, I've <select name="Pool.PoolGeometry" id="poolgeometry"> Normally, "PoolGeometry" is a field in db. If my dropdownlistname has the same name, selected value is value of field. I don't understand this automatic rename! EDIT : Name is dependent on EditorTemplate : if EditorTemplate called like this: <%: Html.EditorFor(model => model.Pool,"SwimmingPool","")%> Name of dropdownlist is "PoolGeometry" and selectedvalues are ok. But if it is called like this: <%: Html.EditorFor(model => model.Pool,"SwimmingPool")%> Name of dropdownlist is "Pool.PoolGeometry"

    Read the article

  • DRY vs Security and Maintainability with MVC and View Models

    - by Mystere Man
    I like to strive for DRY, and obviously it's not always possible. However, I have to scratch my head over a concept that seems pretty common in MVC, that of the "View Model". The View Model is designed to only pass the minimum amount of information to the view, for both security, maintainability, and testing concerns. I get that. It makes sense. However, from a DRY perspective, a View Model is simply duplicating data you already have. The View Model may be temporary, and used only as a DTO, but you're basically maintaing two different versions of the same model which seems to violate the DRY principal. Do View Models violate DRY? Are they a necessary evil? Do they do more good than bad?

    Read the article

  • Rails always include (join) on initialize

    - by Seth
    Hello, I have a User model as illustrated below: class User < ActiveRecord belongs_to :college belongs_to :class_level end I want to ALWAYS join with those other two tables returning one simplified User object. How do I accomplish this in my User model. I'm aware that I can do this in another model: class Foo < ActiveRecord has_many :users, :include => [:college, :class_level] end But I want to do this in my User model, so Foo.users will either be eager loaded OR be joined already. Is there a way to create an initialize this in the User model?

    Read the article

  • Want to save data field from form into two columns of two models.

    - by vette982
    I have a Profile model with a hasOne relationship to a Detail model. I have a registration form that saves data into both model's tables, but I want the username field from the profile model to be copied over to the usernamefield in the details model so that each has the same username. function new_account() { if(!empty($this->data)) { $this->Profile->modified = date("Y-m-d H:i:s"); if($this->Profile->save($this->data)) { $this->data['Detail']['profile_id'] = $this->Profile->id; $this->data['Detail']['username'] = $this->Profile->username; $this->Profile->Detail->save($this->data); $this->Session->setFlash('Your registration was successful.'); $this->redirect(array('action'=>'index')); } } } This code in my Profile controller gives me the error: Undefined property: Profile::$username Any ideas?

    Read the article

  • MVC - thin controller idea - Codeigniter/Zend

    - by user505988
    Hi, Could some one possibly clarify this for me. In the MVC paradigm, the idea is to keep the controller as thin as possible, it is also true that the model is the bit that communicates with data sources such as the database, XML-RPC etc and this is where the business logic should go. Is the POST and GET data a 'data source' and should that kind of data be handled by the model or should it be by the controller. I would normally call a method in the model and pass it the post data, the data would be quality checked by the controller and the model method would simply do the insertion or whatever. Should it be though that controller just calls the model method if a post has occured and it is responsible for sanity check, data checks etc.

    Read the article

  • Doubt about a particular pattern of Javascript class definition

    - by fenderplayer
    Recently i saw the following code that creates a class in javascript: var Model.Foo = function(){ // private stuff var a, b; // public properties this.attr1 = ''; this.attr2 = ''; if(Model.Foo._init === 'undefined'){ Model.Foo.prototype = { func1 : function(){ //...}, func2 : function(){ //... }, //other prototype functions } } Model.Foo._init = true; } // Instantiate and use the class as follows: var foo = new Model.Foo(); foo.func1(); I guess the _init variable is used to make sure we don't define the prototypes again. Also, i feel the code is more readable since i am placing everything in a function block (so in oop-speak, all attributes and methods are in one place). Do you see any issues with the code above? Any pitfalls of using this pattern if i need to create lots of classes in a big project?

    Read the article

  • Django forms: prepopulate form with request.user and url parameter

    - by Malyo
    I'm building simple Course Management App. I want Users to sign up for Course. Here's sign up model: class CourseMembers(models.Model): student = models.ForeignKey(Student) course = models.ForeignKey(Course) def __unicode__(self): return unicode(self.student) Student model is extended User model - I'd like to fill the form with request.user. In Course model most important is course_id, which i'm passing into view throught URL parameter (for example http://127.0.0.1:8000/courses/course/1/). What i want to achieve, is to generate 'invisible' (so user can't change the inserted data) form with just input, but containing request.user and course_id parameter.

    Read the article

  • web service data type (contract)

    - by cyberguest
    hi, i have a general design question. we have a fairly big data model that represents an clinical object, the object itself has 200+ child attributes in the hierarchy. and we have a SetObject operation, and a GetObject operation. my question is, best practice wise, would it make sense to use that single data model in both operations or different data model for each? Because the Get operation will return much more details than what's needed for Set. an example of what i mean: the data model has say ProviderId, and ProviderName attributes, in the Get operation, both the ProviderId, and ProviderName would need to be returned. However, in the Set operation, only the ProviderId is needed, and ProviderName is ignored by the service since system has that information already. In this case, if the Get and Set operations use the same data model, the ProviderName is exposed even for Set operation, does that confuse the consuming developer?

    Read the article

  • How do I filter values in a Django form using ModelForm?

    - by malandro95
    I am trying to use the ModelForm to add my data. It is working well, except that the ForeignKey dropdown list is showing all values and I only want it to display the values that a pertinent for the logged in user. Here is my model for ExcludedDate, the record I want to add: class ExcludedDate(models.Model): date = models.DateTimeField() reason = models.CharField(max_length=50) user = models.ForeignKey(User) category = models.ForeignKey(Category) recurring = models.ForeignKey(RecurringExclusion) def __unicode__(self): return self.reason Here is the model for the category, which is the table containing the relationship that I'd like to limit by user: class Category(models.Model): name = models.CharField(max_length=50) user = models.ForeignKey(User, unique=False) def __unicode__(self): return self.name And finally, the form code: class ExcludedDateForm(ModelForm): class Meta: model = models.ExcludedDate exclude = ('user', 'recurring',) How do I get the form to display only the subset of categories where category.user equals the logged in user?

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   suppose we have this javascript code :  <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page :<body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code :using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and implicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

  • Passing javascript array of objects to WebService

    - by Yousef_Jadallah
    Hi folks. In the topic I will illustrate how to pass array of objects to WebService and how to deal with it in your WebService.   Suppose we have this javascript code :   <script language="javascript" type="text/javascript"> var people = new Array(); function person(playerID, playerName, playerPPD) { this.PlayerID = playerID; this.PlayerName = playerName; this.PlayerPPD = parseFloat(playerPPD); } function saveSignup() { addSomeSampleInfo(); WebService.SaveSignups(people, SucceededCallback); } function SucceededCallback(result, eventArgs) { var RsltElem = document.getElementById("divStatusMessage"); RsltElem.innerHTML = result; } function OnError(error) { alert("Service Error: " + error.get_message()); } function addSomeSampleInfo() { people = new Array(); people[people.length++] = new person(123, "Person 1 Name", 10); people[people.length++] = new person(234, "Person 2 Name", 20); people[people.length++] = new person(345, "Person 3 Name", 10.5); } </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } poeple :is the array that we want to send to the WebService. person :The function –constructor- that we are using to create object to our array. SucceededCallback : This is the callback function invoked if the Web service succeeded. OnError : this is the Error callback function so any errors that occur when the Web Service is called will trigger this function. saveSignup : This function used to call the WebSercie Method (SaveSignups), the first parameter that we pass to the WebService and the second is the name of the callback function.   Here is the body of the Page : <body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server"> <Services> <asp:ServiceReference Path="WebService.asmx" /> </Services> </asp:ScriptManager> <input type="button" id="btn1" onclick="saveSignup()" value="Click" /> <div id="divStatusMessage"> </div> </form> </body> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     Then main thing is the ServiceReference and it’s path "WebService.asmx” , this is the Web Service that we are using in this example.     A web service will be used to receive the javascript array and handle it in our code : using System; using System.Web; using System.Web.Services; using System.Xml; using System.Web.Services.Protocols; using System.Web.Script.Services; using System.Data.SqlClient; using System.Collections.Generic; [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [ScriptService] public class WebService : System.Web.Services.WebService { [WebMethod] public string SaveSignups(object [] values) { string strOutput=""; string PlayerID="", PlayerName="", PlayerPPD=""; foreach (object value in values) { Dictionary<string, object> dicValues = new Dictionary<string, object>(); dicValues = (Dictionary<string, object>)value; PlayerID = dicValues["PlayerID"].ToString(); PlayerName = dicValues["PlayerName"].ToString(); PlayerPPD = dicValues["PlayerPPD"].ToString(); strOutput += "PlayerID = " + PlayerID + ", PlayerName=" + PlayerName + ",PlayerPPD= " + PlayerPPD +"<br>"; } return strOutput; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The first thing I implement System.Collections.Generic Namespace, we need it to use the Dictionary Class. you can find in this code that I pass the javascript objects to array of object called values, then we need to deal with every separate Object and explicit it to Dictionary<string, object> . The Dictionary Represents a collection of keys and values Dictionary<TKey, TValue> TKey : The type of the keys in the dictionary TValue : The type of the values in the dictionary. For more information about Dictionary check this link : http://msdn.microsoft.com/en-us/library/xfhwa508(VS.80).aspx   Now we can get the value for every element because we have mapping from a set of keys to a set of values, the keys of this example is :  PlayerID ,PlayerName,PlayerPPD, this created from the original object person.    Ultimately,this Web method return the values as string, but the main idea of this method to show you how to deal with array of object and convert it to  Dictionary<string, object> object , and get the values of this Dictionary.   Hope this helps,

    Read the article

  • WCF timedout waiting for System.Diagnostics.Process to finish

    - by Bartek
    Dear All, We have a WCF Service deployed on Windows Server 2003 that handles file transfers. When file is in Unix format, I am converting it to Dos format in the initialization stage using System.Diagnostics.Process (.WaitForExit()). Client calls the service: obj_DataSenderService = New DataSendClient() obj_DataSenderService.InnerChannel.OperationTimeout = New TimeSpan(0, System.Configuration.ConfigurationManager.AppSettings("DatasenderServiceOperationTimeout"), 0) str_DataSenderGUID = obj_DataSenderService.Initialize(xe_InitDetails.GetXMLNode) This works fine, however for large files the conversion takes more than 10 minutes and I am getting exception: A first chance exception of type 'System.ServiceModel.CommunicationException' occurred in mscorlib.dll Additional information: The socket connection was aborted. This could be caused by an error processing your message or a receive timeout being exceeded by the remote host, or an underlying network resource issue. Local socket timeout was '00:59:59.8749992'. I tried configuring both client: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="None"> <transport clientCredentialType="Windows" protectionLevel="EncryptAndSign" /> <message clientCredentialType="Windows" /> </security> </binding> </netTcpBinding> </bindings> <client> <endpoint address="net.tcp://localhost:4000/DataSenderEndPoint" binding="netTcpBinding" bindingConfiguration="NetTcpBinding_IDataSend" contract="IDataSend" name="NetTcpBinding_IDataSend"> <identity> <servicePrincipalName value="host/localhost" /> <!--<servicePrincipalName value="host/axopwrapp01.Corp.Acxiom.net" />--> </identity> </endpoint> </client> </system.serviceModel> And service: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataSend" closeTimeout="01:00:00" openTimeout="01:00:00" receiveTimeout="01:00:00" sendTimeout="01:00:00" transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions" hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536"> </binding> </netTcpBinding> </bindings> </system.serviceModel> but without luck. In the Service trace viewer I can see: Close process timed out waiting for service dispatch to complete. with stack trace: System.ServiceModel.ServiceChannelManager.CloseInput(TimeSpan timeout) System.ServiceModel.Dispatcher.InstanceContextManager.CloseInput(TimeSpan timeout) System.ServiceModel.ServiceHostBase.OnClose(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close(TimeSpan timeout) System.ServiceModel.Channels.CommunicationObject.Close() DataSenderService.DataSender.OnStop() System.ServiceProcess.ServiceBase.DeferredStop() System.Runtime.Remoting.Messaging.StackBuilderSink._PrivateProcessMessage(IntPtr md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.PrivateProcessMessage(RuntimeMethodHandle md, Object[] args, Object server, Int32 methodPtr, Boolean fExecuteInContext, Object[]& outArgs) System.Runtime.Remoting.Messaging.StackBuilderSink.AsyncProcessMessage(IMessage msg, IMessageSink replySink) System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.DoAsyncCall() System.Runtime.Remoting.Proxies.AgileAsyncWorkerItem.ThreadPoolCallBack(Object o) System.Threading._ThreadPoolWaitCallback.WaitCallback_Context(Object state) System.Threading.ExecutionContext.runTryCode(Object userData) System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) System.Threading._ThreadPoolWaitCallback.PerformWaitCallbackInternal(_ThreadPoolWaitCallback tpWaitCallBack) System.Threading._ThreadPoolWaitCallback.PerformWaitCallback(Object state) Many thanks Bartek

    Read the article

  • How to scale rotated objects properly in Actionscript 3?

    - by Tom
    This is unfortunately a quite complex issue to explain, so please don't get discouraged by the wall of text - it's there for a reason. ;) I'm working on a transformation manager for flash, written with Actionscript 3. Users can place objects on the screen, for example a rectangle. This rectangle can then be selected and transformed: move, scale or rotate. Because flash by default rotates around the top left point of the object, and I want it to rotate around the center, I created a wrapper setup for each display object (eg. a rectangle). This is how the wrappers are setup: //the position wrapper makes sure that we do get the top left position when we access x and y var positionWrapper:Sprite = new Sprite(); positionWrapper.x = renderObject.x; positionWrapper.y = renderObject.y; //set the render objects location to center at the rotation wrappers top left renderObject.x = 0 - renderObject.width / 2; renderObject.y = 0 - renderObject.height / 2; //now create a rotation wrapper, at the center of the display object var rotationWrapper:Sprite = new Sprite(); rotationWrapper.x = renderObject.width / 2; rotationWrapper.y = renderObject.height / 2; //put the rotation wrapper inside the position wrapper and the render object inside the rotation wrapper positionWrapper.addChild(rotationWrapper); rotationWrapper.addChild(renderObject); Now, the x and y of the object can be accessed and set directly: mainWrapper.x or mainWrapper.y. The rotation can be set and accessed from the child of this main wrapper: mainWrapper.getChildAt(0).rotation. Finally, the width and height of the display object can be retreived and set by getting the child of the rotation wrapper and accessing the display object directly. An example on how I access them: //get wrappers and render object var positionWrapper:Sprite = currentSelection["render"]; var rotationWrapper:Sprite = positionWrapper.getChildAt(0) as Sprite; var renderObject:DisplayObject = rotationWrapper.getChildAt(0); This works perfectly for all initial transformations: moving, scaling and rotating. However, the problem arises when you first rotate an object (eg. 45 degrees) and then scale it. The scaled object is getting out of shape and doesn't scale as it should. This for example happens when you scale to the left. Scaling left is basically adding n width to the object and then reduce the x coord of the position wrapper by n too: renderObject.width -= diffX; positionWrapper.x += diffX; This works when the object is not rotated. However, when it is, the position wrapper won't be rotated as it is a parent of the rotation wrapper. This will make the position wrapper move left horizontally while the width of the object is increased diagonally. I hope this makes any sense, if not, please tell me and I'll try to elaborate more. Now, to the question: should I use a different kind of setup, system or structure? Should I maybe use matrixes, if so, how would you keep a static width/height after rotation? Or how do I fix my current wrapper system for scaling after rotation? Any help is appreciated.

    Read the article

  • Does my use of the strategy pattern violate the fundamental MVC pattern in iOS?

    - by Goodsquirrel
    I'm about to use the 'strategy' pattern in my iOS app, but feel like my approach violates the somehow fundamental MVC pattern. My app is displaying visual "stories", and a Story consists (i.e. has @properties) of one Photo and one or more VisualEvent objects to represent e.g. animated circles or moving arrows on the photo. Each VisualEvent object therefore has a eventType @property, that might be e.g. kEventTypeCircle or kEventTypeArrow. All events have things in common, like a startTime @property, but differ in the way they are being drawn on the StoryPlayerView. Currently I'm trying to follow the MVC pattern and have a StoryPlayer object (my controller) that knows about both the model objects (like Story and all kinds of visual events) and the view object StoryPlayerView. To chose the right drawing code for each of the different visual event types, my StoryPlayer is using a switch statement. @implementation StoryPlayer // (...) - (void)showVisualEvent:(VisualEvent *)event onStoryPlayerView:storyPlayerView { switch (event.eventType) { case kEventTypeCircle: [self showCircleEvent:event onStoryPlayerView:storyPlayerView]; break; case kEventTypeArrow: [self showArrowDrawingEvent:event onStoryPlayerView:storyPlayerView]; break; // (...) } But switch statements for type checking are bad design, aren't they? According to Uncle Bob they lead to tight coupling and can and should almost always be replaced by polymorphism. Having read about the "Strategy"-Pattern in Head First Design Patterns, I felt this was a great way to get rid of my switch statement. So I changed the design like this: All specialized visual event types are now subclasses of an abstract VisualEvent class that has a showOnStoryPlayerView: method. @interface VisualEvent : NSObject - (void)showOnStoryPlayerView:(StoryPlayerView *)storyPlayerView; // abstract Each and every concrete subclass implements a concrete specialized version of this drawing behavior method. @implementation CircleVisualEvent - (void)showOnStoryPlayerView:(StoryPlayerView *)storyPlayerView { [storyPlayerView drawCircleAtPoint:self.position color:self.color lineWidth:self.lineWidth radius:self.radius]; } The StoryPlayer now simply calls the same method on all types of events. @implementation StoryPlayer - (void)showVisualEvent:(VisualEvent *)event onStoryPlayerView:storyPlayerView { [event showOnStoryPlayerView:storyPlayerView]; } The result seems to be great: I got rid of the switch statement, and if I ever have to add new types of VisualEvents in the future, I simply create new subclasses of VisualEvent. And I won't have to change anything in StoryPlayer. But of cause this approach violates the MVC pattern since now my model has to know about and depend on my view! Now my controller talks to my model and my model talks to the view calling methods on StoryPlayerView like drawCircleAtPoint:color:lineWidth:radius:. But this kind of calls should be controller code not model code, right?? Seems to me like I made things worse. I'm confused! Am I completely missing the point of the strategy pattern? Is there a better way to get rid of the switch statement without breaking model-view separation?

    Read the article

  • 30 Steps to Master ASP.NET MVC Application development

    - by Rajesh Pillai
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Welcome Readers!,   I am starting out a new series on ASP.NET  MVC skill building which will be posted over the next couple of weeks.  Let me know your thoughts on the content, which I have planned and a couple of them has been taken from ASP.NET MVC2 Cookbook. (NOTE: Only the heading has been taken, the content will be not :)).   Do let me know what you would like to see, or any additional inputs or ideas to cover in this topics.  The 30 steps are oultined below for quick reference.  Will start filling this out quickly.   Outlined is the ‘30’ step to master ASP.NET MVC.   A Peek Into Model What is a model? Different types of model Presentation/ViewModel Model Mapping (AutoMapper)   A Peak into View How view works in ASP.NET MVC? View Engine Design Custom View Engine View Best Practices Templated Helpers Partial Views   A Peak into Controller Introduction Controller Design Controller Best Practices Asynchronous Controller Custom Action Result Action Filters Controller Factory to use with IOC   Routes Explanation Routes from the database Routes from XML More complex routing   Master Pages Basics Setting Master Page Dynamically   Working with data in the view Repeating Views Array of check boxes Array of radio buttons Paged data CRUD Client side action Confirmation Dialog (modal window) jqGrid   Working with Forms   Validation Model Validation with DataAnnotations Using the xVal validation framework Client side validation with jQuery Validation Fluent Validation Model Binders   Templating Create strongly typed helper using T4 Custom View Templates with T4 Create custom MVC project template using T4   IOC AutoFac Ninject Unity Application   Areas   jQuery, Ajax and jQuery Plugins   State Maintenance Application State User state Cookies Webfarm   Error Handling View error handling Controller error handling ELMAH (Error Logging Modules and Handlers)   Authentication and Authorization User Registration form SignOn Process Password Reminder Membership and Roles Windows authentication Restricting access to all pages Restricting access to selected pages Restricting access to pages by role Restricting access to a controller Restricting access to selected area   Profiles and Themes Using Profiles Inheriting a Profile Migrating an anonymous profile Creating custom themes Using themes User personalized themes   Configuration Adding custom application settings in web.config Displaying custom error messages Accessing other web.config configuration elements Adding custom configuration elements to web.config Encrypting web.config sections   Tracing, Debugging and Logging   Caching Caching a whole page Caching pages based on route details Caching pages based on browser type and version Caching pages based custom strings Caching partial pages Caching application data Object Caching Using Microsoft Velocity Using MemCache Using AppFabric cache   Localization   HTTP Handlers and Modules   Security XSS/CSRF AnitForgery Encoding   HtmlHelpers Strongly typed helpers Writing custom helpers   Repository Pattern (Data access)   WF/WCF   Unit Testing   Mocking Framework   Integration Testing   Load / Performance Testing   Deployment    Once again let me know your thoughts on this.   Till then, Enjoy MVC'ing!!!

    Read the article

< Previous Page | 341 342 343 344 345 346 347 348 349 350 351 352  | Next Page >