Search Results

Search found 12106 results on 485 pages for 'variable operators'.

Page 35/485 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Access variables from a number of sources

    - by mac_55
    I'm creating my first game, and I've currently set up a 'GameState' class, to store player health etc. inside. This class is currently instantiated from the AppDelegate as I need to access it from all over my game. This is fine. For each class I'm working in, I can access the app delegate, and then find the GameState object... however, it seems very messy. I'm tempted to find a way (I'm still a newbie) to define the GameState instance as being some sort of global variable so that I can access it from all over with ease... but my little bit of reading on variable scope makes me uneasy about doing this, even if I knew how. Any ideas of the best way to define and access this class? It'll be used for everything from player health, to items they've found, any personalisation etc. Thanks!

    Read the article

  • Operator Overloading in C

    - by Leif Andersen
    In C++, I can change the operator on a specific class by doing something like this: MyClass::operator==/*Or some other operator such as =, >, etc.*/(Const MyClass rhs) { /* Do Stuff*/; } But with there being no classes (built in by default) in C. So, how could I do operator overloading for just general functions? For example, if I remember correctly, importing stdlib.h gives you the - operator, which is just syntactic sugar for (*strcut_name).struct_element. So how can I do this in C? Thank you.

    Read the article

  • sOperator as and generic classes

    - by abatishchev
    I'm writing .NET On-the-Fly compiler for CLR scripting and want execution method make generic acceptable: object Execute() { return type.InvokeMember(..); } T Execute<T>() { return Execute() as T; /* doesn't work: The type parameter 'T' cannot be used with the 'as' operator because it does not have a class type constraint nor a 'class' constraint */ // also neither typeof(T) not T.GetType(), so on are possible return (T) Execute(); // ok } But I think operator as will be very useful: if result type isn't T method will return null, instead of an exception! Is it possible to do?

    Read the article

  • explicit copy constructor or implicit parameter by value

    - by R Samuel Klatchko
    I recently read (and unfortunately forgot where), that the best way to write operator= is like this: foo &operator=(foo other) { swap(*this, other); return *this; } instead of this: foo &operator=(const foo &other) { foo copy(other); swap(*this, copy); return *this; } The idea is that if operator= is called with an rvalue, the first version can optimize away construction of a copy. So when called with a rvalue, the first version is faster and when called with an lvalue the two are equivalent. I'm curious as to what other people think about this? Would people avoid the first version because of lack of explicitness? Am I correct that the first version can be better and can never be worse?

    Read the article

  • Dynamically allocated structure and casting.

    - by Simone Margaritelli
    Let's say I have a first structure like this: typedef struct { int ivalue; char cvalue; } Foo; And a second one: typedef struct { int ivalue; char cvalue; unsigned char some_data_block[0xFF]; } Bar; Now let's say I do the following: Foo *pfoo; Bar *pbar; pbar = new Bar; pfoo = (Foo *)pbar; delete pfoo; Now, when I call the delete operator, how much memory does it free? sizeof(int) + sizeof(char) Or sizeof(int) + sizeof(char) + sizeof(char) * 0xFF ? And if it's the first case due to the casting, is there any way to prevent this memory leak from happening? Note: please don't answer "use C++ polymorphism" or similar, I am using this method for a reason.

    Read the article

  • is mysql index useful on column 'state' when only doing bit-operations on the column?

    - by Geert-Jan
    I have a lot of domain entities (stored in mysql) which undergo lots of different operations. Each operation is executed from a different program. I need to keep (flow)-state for these entities which I implemented in as a long field 'flowstate' used as a bitset. to query mysql for entities which have undergone a certain operation I do something like: select * from entities where state >> 7 & 1 = 1 Indicating bit 7 (cooresponding to operation 7) has run. (<-- simplified) Anyway, I really didn't pay attention to the performance implications of this setup in the beginning, and I think I'm in a bit of trouble since queries as the above run pretty slow. What I'd like to know: Does an mysql index on 'flowstate' help at all? After all it's not a single value Mysql can quickly find using a binary sort or whatever. If it doesn't, are there any other things I could do to speed things up? . Are there special 'mask-indices' for fields with use-cases as the above? TIA, Geert-jan

    Read the article

  • Why does virtual assignment behave differently than other virtual functions of the same signature?

    - by David Rodríguez - dribeas
    While playing with implementing a virtual assignment operator I have ended with a funny behavior. It is not a compiler glitch, since g++ 4.1, 4.3 and VS 2005 share the same behavior. Basically, the virtual operator= behaves differently than any other virtual function with respect to the code that is actually being executed. struct Base { virtual Base& f( Base const & ) { std::cout << "Base::f(Base const &)" << std::endl; return *this; } virtual Base& operator=( Base const & ) { std::cout << "Base::operator=(Base const &)" << std::endl; return *this; } }; struct Derived : public Base { virtual Base& f( Base const & ) { std::cout << "Derived::f(Base const &)" << std::endl; return *this; } virtual Base& operator=( Base const & ) { std::cout << "Derived::operator=( Base const & )" << std::endl; return *this; } }; int main() { Derived a, b; a.f( b ); // [0] outputs: Derived::f(Base const &) (expected result) a = b; // [1] outputs: Base::operator=(Base const &) Base & ba = a; Base & bb = b; ba = bb; // [2] outputs: Derived::operator=(Base const &) Derived & da = a; Derived & db = b; da = db; // [3] outputs: Base::operator=(Base const &) ba = da; // [4] outputs: Derived::operator=(Base const &) da = ba; // [5] outputs: Derived::operator=(Base const &) } The effect is that the virtual operator= has a different behavior than any other virtual function with the same signature ([0] compared to [1]), by calling the Base version of the operator when called through real Derived objects ([1]) or Derived references ([3]) while it does perform as a regular virtual function when called through Base references ([2]), or when either the lvalue or rvalue are Base references and the other a Derived reference ([4],[5]). Is there any sensible explanation to this odd behavior?

    Read the article

  • C++ overloading operator comma for variadic arguments

    - by uray
    is it possible to construct variadic arguments for function by overloading operator comma of the argument? i want to see an example how to do so.., maybe something like this: template <typename T> class ArgList { public: ArgList(const T& a); ArgList<T>& operator,(const T& a,const T& b); } //declaration void myFunction(ArgList<int> list); //in use: myFunction(1,2,3,4); //or maybe: myFunction(ArgList<int>(1),2,3,4);

    Read the article

  • Logic differences in C and Java

    - by paragjain16
    Compile and run this code in C #include <stdio.h> int main() { int a[] = {10, 20, 30, 40, 50}; int index = 2; int i; a[index++] = index = index + 2; for(i = 0; i <= 4; i++) printf("%d\n", a[i]); } Output : 10 20 4 40 50 Now for the same logic in Java class Check { public static void main(String[] ar) { int a[] = {10, 20, 30, 40, 50}; int index = 2; a[index++] = index = index + 2; for(int i = 0; i <= 4; i++) System.out.println(a[i]); } } Output : 10 20 5 40 50 Why is there output difference in both languages, output is understandable for Java but I cannot understand output in C One more thing, if we apply the prefix ++ operator, we get the same result in both languages, why?

    Read the article

  • Problem with operator ==

    - by CPPDev
    I am facing some problem with use of operator == in the following c++ program. #include < iostream> using namespace std; class A { public: A(char *b) { a = b; } A(A &c) { a = c.a; } bool operator ==(A &other) { return strcmp(a, other.a); } private: char *a; }; int main() { A obj("test"); A obj1("test1"); if(obj1 == A("test1")) { cout<<"This is true"<<endl; } } What's wrong with if(obj1 == A("test1")) line ?? Any help is appreciated.

    Read the article

  • How do I overload the square-bracket operator in C#?

    - by Coderer
    DataGridView, for example, lets you do this: DataGridView dgv = ...; DataGridViewCell cell = dgv[1,5]; but for the life of me I can't find the documentation on the index/square-bracket operator. What do they call it? Where is it implemented? Can it throw? How can I do the same thing in my own classes? ETA: Thanks for all the quick answers. Briefly: the relevant documentation is under the "Item" property; the way to overload is by declaring a property like public object this[int x, int y]{ get{...}; set{...} }; the indexer for DataGridView does not throw, at least according to the documentation. It doesn't mention what happens if you supply invalid coordinates. ETA Again: OK, even though the documentation makes no mention of it (naughty Microsoft!), it turns out that the indexer for DataGridView will in fact throw an ArgumentOutOfRangeException if you supply it with invalid coordinates. Fair warning.

    Read the article

  • When should I use $ (and can it always be replaced with parentheses)?

    - by J Cooper
    From what I'm reading, $ is described as "applies a function to its arguments." However, it doesn't seem to work quite like (apply ...) in Lisp, because it's a binary operator, so really the only thing it looks like it does is help to avoid parentheses sometimes, like foo $ bar quux instead of foo (bar quux). Am I understanding it right? Is the latter form considered "bad style"?

    Read the article

  • C++ overide global operator comma gives error

    - by uray
    the second function gives error C2803 http://msdn.microsoft.com/en-us/library/zy7kx46x%28VS.80%29.aspx : 'operator ,' must have at least one formal parameter of class type. any clue? template<class T,class A = std::allocator<T>> class Sequence : public std::vector<T,A> { public: Sequence<T,A>& operator,(const T& a) { this->push_back(a); return *this; } Sequence<T,A>& operator,(const Sequence<T,A>& a) { for(Sequence<T,A>::size_type i=0 ; i<a.size() ; i++) { this->push_back(a.at(i)); } return *this; } }; //this works! template<typename T> Sequence<T> operator,(const T& a, const T&b) { Sequence<T> seq; seq.push_back(a); seq.push_back(b); return seq; } //this gives error C2803! Sequence<double> operator,(const double& a, const double& b) { Sequence<double> seq; seq.push_back(a); seq.push_back(b); return seq; }

    Read the article

  • What do you call the << operator in Ruby when it's used for appending stuff?

    - by more or less
    In other contexts I know this << is called the bitshift operator. Is there a name for it when it's just used for append operations like you would do in an array or string (not sure what else you can append with it)? I'd like to be able to use an English word to refer to it instead of saying "you know, the operator with the two left arrows that's not really the left bitshift operator".

    Read the article

  • Index, assignment and increment in one statement behaves differently in C++ and C#. Why?

    - by Ivan Zlatanov
    Why is this example of code behaving differently in c++ and C#. [C++ Example] int arr[2]; int index = 0; arr[index] = ++index; The result of which will be arr[1] = 1; [C# Example] int[] arr = new int[2]; int index = 0; arr[index] = ++index; The result of which will be arr[0] = 1; I find this very strange. Surely there must be some rationale for both languages to implement it differently? I wonder what would C++/CLI output?

    Read the article

  • what does this C++ line of code mean "sol<?=f((1<<n)-1,i,0)+abs(P[i])*price;"

    - by KItis
    Could anyone help me to understand following line of code. sol I am studying an algorithm written using c++ and it has following operator " following is the error message returned. Hello.cpp: In function ‘int main()’: Hello.cpp:115: error: ‘memset’ was not declared in this scope Hello.cpp:142: error: expected primary-expression before ‘?’ token Hello.cpp:142: error: expected primary-expression before ‘=’ token Hello.cpp:142: error: expected ‘:’ before ‘;’ token Hello.cpp:142: error: expected primary-expression before ‘;’ token may be " Thanks in advance for the time you spent reading this post.

    Read the article

  • Swig C++ Lua Pass class by reference

    - by Jeremy
    I don't know why I'm having a hard time with this. All I want to do is this: class foo { public: foo(){} ~foo(){} float a,b; }; class foo2 { public: foo2(){} foo2(const foo &f){*this = f;} ~foo2(){} void operator=(const foo& f){ x = f.a; y = f.b; } float x,y; }; /* Usage(cpp): foo f; foo2 f2(f); //or using the = operator f2 = f; */ The problem I'm having is that, after swigging this code, I can't figure out how to make the lua script play nice. /* Usage(lua) f = example.foo() f2 = example.foo2(f) --error */ The error I get is "Wrong arguments for overloaded function 'new_Foo2'": Possible c/c++ prototypes are: foo2() foo2(foo const &) The same thing happens if I try and use do f2 = f. As I understand it everything is stored as a pointer so I did try adding an additional constructor that took a pointer to foo but to no avail.

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >