Search Results

Search found 37765 results on 1511 pages for 'null reference exception'.

Page 357/1511 | < Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >

  • Is this a bad indexing strategy for a table?

    - by llamaoo7
    The table in question is part of a database that a vendor's software uses on our network. The table contains metadata about files. The schema of the table is as follows Metadata ResultID (PK, int, not null) MappedFieldname (char(50), not null) Fieldname (PK, char(50), not null) Fieldvalue (text, null) There is a clustered index on ResultID and Fieldname. This table typically contains millions of rows (in one case, it contains 500 million). The table is populated by 24 workers running 4 threads each when data is being "processed". This results in many non-sequential inserts. Later after processing, more data is inserted into this table by some of our in-house software. The fragmentation for a given table is at least 50%. In the case of the largest table, it is at 90%. We do not have a DBA. I am aware we desperately need a DB maintenance strategy. As far as my background, I'm a college student working part time at this company. My question is this, is a clustered index the best way to go about this? Should another index be considered? Are there any good references for this type and similar ad-hoc DBA tasks?

    Read the article

  • Problem with passing array of pointers to struct among functions in C

    - by karatemonkey
    The Code that follows segfaults on the call to strncpy and I can't see what I am doing wrong. I need another set of eyes to look it this. Essentially I am trying to alloc memory for a struct that is pointed to by an element in a array of pointers to struct. #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_POLICY_NAME_SIZE 64 #define POLICY_FILES_TO_BE_PROCESSED "SPFPolicyFilesReceivedOffline\0" typedef struct TarPolicyPair { int AppearanceTime; char *IndividualFile; char *FullPolicyFile; } PolicyPair; enum { bwlist = 0, fzacts, atksig, rules, MaxNumberFileTypes }; void SPFCreateIndividualPolicyListing(PolicyPair *IndividualPolicyPairtoCreate ) { IndividualPolicyPairtoCreate = (PolicyPair *) malloc(sizeof(PolicyPair)); IndividualPolicyPairtoCreate->IndividualFile = (char *)malloc((MAX_POLICY_NAME_SIZE * sizeof(char))); IndividualPolicyPairtoCreate->FullPolicyFile = (char *)malloc((MAX_POLICY_NAME_SIZE * sizeof(char))); IndividualPolicyPairtoCreate->AppearanceTime = 0; memset(IndividualPolicyPairtoCreate->IndividualFile, '\0', (MAX_POLICY_NAME_SIZE * sizeof(char))); memset(IndividualPolicyPairtoCreate->FullPolicyFile, '\0', (MAX_POLICY_NAME_SIZE * sizeof(char))); } void SPFCreateFullPolicyListing(SPFPolicyPair **CurrentPolicyPair, char *PolicyName, char *PolicyRename) { int i; for(i = 0; i < MaxNumberFileTypes; i++) { CreateIndividualPolicyListing((CurrentPolicyPair[i])); // segfaults on this call strncpy((*CurrentPolicyPair)[i].IndividualFile, POLICY_FILES_TO_BE_PROCESSED, (SPF_POLICY_NAME_SIZE * sizeof(char))); } } int main() { SPFPolicyPair *CurrentPolicyPair[MaxNumberFileTypes] = {NULL, NULL, NULL, NULL}; int i; CreateFullPolicyListing(&CurrentPolicyPair, POLICY_FILES_TO_BE_PROCESSED, POLICY_FILES_TO_BE_PROCESSED); return 0; }

    Read the article

  • best scala idiom for find & return

    - by IttayD
    This is something I encounter frequently, but I don't know the elegant way of doing. I have a collection of Foo objects. Foo has a method bar() that may return null or a Bar object. I want to scan the collection, calling each object's bar() method and stop on the first one returning an actual reference and return that reference from the scan. Obviously: foos.find(_.bar != null).bar does the trick, but calls #bar twice.

    Read the article

  • how to retrieve data from db and display it in list?

    - by raji
    In the below code I am passing catID to db.getNews(catID) super.onCreate(savedInstanceState); setContentView(R.layout.newslist); Bundle extras = getIntent().getExtras(); int catID = extras.getInt("cat_id"); mInflater = (LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE); final ListView lv = (ListView) findViewById(R.id.category); lv.setAdapter(new ArrayAdapter<String>(this, R.layout.newslist, db.getNews(catID)){ public View getView(int position, View convertView, ViewGroup parent) { View row; if (null == convertView) { row = mInflater.inflate(R.layout.newslist, null); } else { row = convertView; } TextView tv = (TextView) row.findViewById(R.id.newslist_text); tv.setText(getItem(position)); return row; } }); the getnews(int catid) function is below: public NewsItemCursor getNews(int catID) { String sql = "SELECT title FROM news WHERE catid = " + catID + " ORDER BY id ASC"; SQLiteDatabase d = getReadableDatabase(); NewsItemCursor c = (NewsItemCursor) d.rawQueryWithFactory( new NewsItemCursor.Factory(), sql, null, null); c.moveToFirst(); d.close(); return c; } But I'm getting bug as array adapter undefined... Can anyone help me to resolve this, and retrieve data to make it display in list.

    Read the article

  • Nullable values in C++

    - by DanDan
    I'm creating a database access layer in native C++, and I'm looking at ways to support NULL values. Here is what I have so far: class CNullValue { public: static CNullValue Null() { static CNullValue nv; return nv; } }; template<class T> class CNullableT { public: CNullableT(CNullValue &v) : m_Value(T()), m_IsNull(true) { } CNullableT(T value) : m_Value(value), m_IsNull(false) { } bool IsNull() { return m_IsNull; } T GetValue() { return m_Value; } private: T m_Value; bool m_IsNull; }; This is how I'll have to define functions: void StoredProc(int i, CNullableT<int> j) { ...connect to database ...if j.IsNull pass null to database etc } And I call it like this: sp.StoredProc(1, 2); or sp.StoredProc(3, CNullValue::Null()); I was just wondering if there was a better way than this. In particular I don't like the singleton-like object of CNullValue with the statics. I'd prefer to just do sp.StoredProc(3, CNullValue); or something similar. How do others solve this problem?

    Read the article

  • Catching TransactionRolledbackLocalException in Java

    - by user271858
    I receive javax.ejb.TransactionRolledbackLocalException in Websphere 7 from the container and I wonder how is it possible to catch this exception? I have a timeout set in Websphere and get this message after this time. I run session beans. I am trying to find what SQl statement was the cause of this exception. Where can i find that?

    Read the article

  • Java Swing: Expanding TreeNode

    - by sarav
    Is there any way to get a reference to the JTree component from a DefaultMutableTreeNode? All I need is to expand the given treenode and its child nodes. I am planning to use the JTree.expandPath() but I only have the reference to the treenode. I'm new to Swing and any suggestions to achieve this are welcome.

    Read the article

  • Is canvas security model ignoring access-control-allow-origin headers?

    - by luklatlug
    It seems that even if you set the access-control-allow-origin header to allow access from mydomain.org to an image hosted on domain example.org, the canvas' origin-clean flag gets set to false, and trying to manipulate that image's pixel data will trigger a security exception. Shouldn't canvas' obey the access-control-allow-origin header and allow access to image's data without throwing an exception?

    Read the article

  • Assigning values from list to list excluding nulls

    - by GutierrezDev
    Hi. Sorry for the title but I don't know other way of asking. I got 2 Dictionary < string,string list One of them has a length of 606 items including null values. The other one has a length of 285 items. I determined the length doing this: int count = 0; for (int i = 0; i < temp.Length; i++) { if (temp[i] != null) count++; } Now I want to assign every value in the temp variable to another variable excluding the null values. Any Idea? Remember that I have a different size variables. Edited Dictionary<string, string>[] info; Dictionary<string, string>[] temp = new Dictionary<string, string>[ds.Tables[0].Rows.Count]; .... Here I added some data to the Temp variable ..... Then this: int count = 0 for (int i = 0; i < temp.Length; i++) { if (temp[i] != null) count++; } info = new Dictionary<string, string>[count]; Hope you understand now.

    Read the article

  • possible solutions of the warning

    - by lego69
    Hello, I have a very large code, that's why I can't post here all my code, can somebody explain what might be a problem if I have an error incompatible pointer type and give me several ways to solve it, thanks in advance just small clarification: I'm workin with pointers to functions ptrLine createBasicLine(){ DECLARE_RESULT_ALLOCATE_AND_CHECK(ptrLine, Line); result->callsHistory = listCreate(copyCall,destroyCall); <-here result->messagesHistory = listCreate(copyMessage,destroyMessage); <-and here result->linesFeature = NULL; result->strNumber = NULL; result->lastBill = 0; result->lineType = MTM_REGULAR_LINE; result->nCallTime = 0; result->nMessages = 0; result->rateForCalls = 0; result->rateForMessage = 0; return result; } copyCall,destroyCall - pointers to functions /** * Allocates a new List. The list starts empty. * * @param copyElement * Function pointer to be used for copying elements into the list or when * copying the list. * @param freeElement * Function pointer to be used for removing elements from the list * @return * NULL - if one of the parameters is NULL or allocations failed. * A new List in case of success. */ List listCreate(CopyListElement copyElement, FreeListElement freeElement); definitions of the functions ptrCall (*createCall)() = createNumberContainer; void (*destroyCall)(ptrCall) = destroyNumberContainer; ptrCall (*copyCall)(ptrCall) = copyNumberContainer;

    Read the article

  • autoreferencing this class to use in another for c++

    - by atomsfat
    in java we can do this: public class A{ public static void main(String...str){ B b = new B(); b.doSomething(this); //How I do this in c++ ? the this self reference } } public class B{ public void doSomething(A a){ //Importat stuff happen here } } How can I do the same but in c++, I mean the self reference of A to use the method in B ?

    Read the article

  • sorting char* arrays

    - by skazhy
    Hi! I have a datastructure struct record { char cont[bufferSize]; record *next; }; When I add new records to this structure, I want them to be sorted alphabetically. I made this function, that adds record in the right place (by alphabet) in the linked list: record *start=NULL, *p, *x; void recAdd(char*temp) { p = new record; temp[strlen(temp)] = '\0'; for (int j=0;j<bufferSize;j++) p->cont[j] = temp[j]; if (start==NULL) start=p; else { x=start; int c=0; while (recComp(x->cont,p->cont) <= 0 && x->next != NULL) { x=x->next; c++; } if (c == 0) { p->next=start; start=p; } else { x=start; for (int i=0;i<c;i++) x=x->next; p->next=x->next; x->next=p; } } for (int j=0;j<bufferSize;j++) temp[j] = NULL; }; But somehow it doesn't sort things right. What is wrong with my function?

    Read the article

  • Adding a refence to Header from a control

    - by Qiky
    In the Page load of A control the Page.Header is null when I am attempting to add a reference. Is there anything special I have to do to add a reference to the head of a page from a control. Maybe a better way to as this is when does Page.Header load or when can it be accessed from a control

    Read the article

  • the variable only have it value inside while loop?

    - by user1834467
    static void parse(String fileName) throws IOException{ FileReader fileReader=new FileReader((fileName)); BufferedReader bufferedReader = new BufferedReader(fileReader); StringBuilder stringBuilder=new StringBuilder(); String string; StringBuilder myString = null; while((string = bufferedReader.readLine()) != null) { myString =stringBuilder.append(string); String h=myString.toString(); **System.out.println(h);** } } static void parse(String fileName) throws IOException{ FileReader fileReader=new FileReader((fileName)); BufferedReader bufferedReader = new BufferedReader(fileReader); StringBuilder stringBuilder=new StringBuilder(); String string; StringBuilder myString = null; while((string = bufferedReader.readLine()) != null) { myString =stringBuilder.append(string); String h=myString.toString(); } **System.out.println(h);** } when I try the second part of the code, it print out nothing. how can I get the whole h String outside of the while loop? Is it I have to declare the variable h as instance variable instead of local variable?

    Read the article

  • I get an error in FF (NS_ERROR_MALFORMED_URI)

    - by Ingalls
    Just wondering if there is an easy fix for this problem. The full error is: Error: uncaught exception: [Exception... "Component returned failure code: 0x804b000a (NS_ERROR_MALFORMED_URI) [nsIURL.spec]" nsresult: "0x804b000a (NS_ERROR_MALFORMED_URI)" location: "JS frame :: chrome://fastdial/content/file.js :: anonymous :: line 218" data: no] And line 218 is nsiUrl.spec = url; I give you all of the code from the file if you need it... Thanks Ingalls

    Read the article

  • javafx tableview get selected data from ObservableList

    - by user3717821
    i am working on a javafx project and i need your help . while i am trying to get selected data from table i can get selected data from normal cell but can't get data from ObservableList inside tableview. code for my database: -- phpMyAdmin SQL Dump -- version 4.0.4 -- http://www.phpmyadmin.net -- -- Host: localhost -- Generation Time: Jun 10, 2014 at 06:20 AM -- Server version: 5.1.33-community -- PHP Version: 5.4.12 SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO"; SET time_zone = "+00:00"; /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */; /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */; /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */; /*!40101 SET NAMES utf8 */; -- -- Database: `test` -- -- -------------------------------------------------------- -- -- Table structure for table `customer` -- CREATE TABLE IF NOT EXISTS `customer` ( `col0` int(11) NOT NULL, `col1` varchar(255) DEFAULT NULL, `col2` int(11) DEFAULT NULL, PRIMARY KEY (`col0`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -- Dumping data for table `customer` -- INSERT INTO `customer` (`col0`, `col1`, `col2`) VALUES (12, 'adasdasd', 231), (22, 'adasdasd', 231), (212, 'adasdasd', 231); /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */; /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */; /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */; my javafx codes: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Map; import javafx.application.Application; import javafx.beans.property.SimpleStringProperty; import javafx.beans.value.ChangeListener; import javafx.beans.value.ObservableValue; import javafx.collections.FXCollections; import javafx.collections.ObservableList; import javafx.event.ActionEvent; import javafx.event.EventHandler; import javafx.scene.Scene; import javafx.scene.control.Button; import javafx.scene.control.TableCell; import javafx.scene.control.TableColumn; import javafx.scene.control.TableColumn.CellDataFeatures; import javafx.scene.control.TablePosition; import javafx.scene.control.TableView; import javafx.scene.control.TableView.TableViewSelectionModel; import javafx.scene.control.cell.ChoiceBoxTableCell; import javafx.scene.control.cell.TextFieldTableCell; import javafx.scene.layout.BorderPane; import javafx.stage.Stage; import javafx.util.Callback; import javafx.util.StringConverter; class DBConnector { private static Connection conn; private static String url = "jdbc:mysql://localhost/test"; private static String user = "root"; private static String pass = "root"; public static Connection connect() throws SQLException{ try{ Class.forName("com.mysql.jdbc.Driver").newInstance(); }catch(ClassNotFoundException cnfe){ System.err.println("Error: "+cnfe.getMessage()); }catch(InstantiationException ie){ System.err.println("Error: "+ie.getMessage()); }catch(IllegalAccessException iae){ System.err.println("Error: "+iae.getMessage()); } conn = DriverManager.getConnection(url,user,pass); return conn; } public static Connection getConnection() throws SQLException, ClassNotFoundException{ if(conn !=null && !conn.isClosed()) return conn; connect(); return conn; } } public class DynamicTable extends Application{ Object newValue; //TABLE VIEW AND DATA private ObservableList<ObservableList> data; private TableView<ObservableList> tableview; //MAIN EXECUTOR public static void main(String[] args) { launch(args); } //CONNECTION DATABASE public void buildData(){ tableview.setEditable(true); Callback<TableColumn<Map, String>, TableCell<Map, String>> cellFactoryForMap = new Callback<TableColumn<Map, String>, TableCell<Map, String>>() { @Override public TableCell call(TableColumn p) { return new TextFieldTableCell(new StringConverter() { @Override public String toString(Object t) { return t.toString(); } @Override public Object fromString(String string) { return string; } }); } }; Connection c ; data = FXCollections.observableArrayList(); try{ c = DBConnector.connect(); //SQL FOR SELECTING ALL OF CUSTOMER String SQL = "SELECT * from CUSTOMer"; //ResultSet ResultSet rs = c.createStatement().executeQuery(SQL); /********************************** * TABLE COLUMN ADDED DYNAMICALLY * **********************************/ for(int i=0 ; i<rs.getMetaData().getColumnCount(); i++){ //We are using non property style for making dynamic table final int j = i; TableColumn col = new TableColumn(rs.getMetaData().getColumnName(i+1)); if(j==1){ final ObservableList<String> logLevelList = FXCollections.observableArrayList("FATAL", "ERROR", "WARN", "INFO", "INOUT", "DEBUG"); col.setCellFactory(ChoiceBoxTableCell.forTableColumn(logLevelList)); tableview.getColumns().addAll(col); } else{ col.setCellValueFactory(new Callback<CellDataFeatures<ObservableList,String>,ObservableValue<String>>(){ public ObservableValue<String> call(CellDataFeatures<ObservableList, String> param) { return new SimpleStringProperty(param.getValue().get(j).toString()); } }); tableview.getColumns().addAll(col); } if(j!=1) col.setCellFactory(cellFactoryForMap); System.out.println("Column ["+i+"] "); } /******************************** * Data added to ObservableList * ********************************/ while(rs.next()){ //Iterate Row ObservableList<String> row = FXCollections.observableArrayList(); for(int i=1 ; i<=rs.getMetaData().getColumnCount(); i++){ //Iterate Column row.add(rs.getString(i)); } System.out.println("Row [1] added "+row ); data.add(row); } //FINALLY ADDED TO TableView tableview.setItems(data); }catch(Exception e){ e.printStackTrace(); System.out.println("Error on Building Data"); } } @Override public void start(Stage stage) throws Exception { //TableView Button showDataButton = new Button("Add"); showDataButton.setOnAction(new EventHandler<ActionEvent>() { public void handle(ActionEvent event) { ObservableList<String> row = FXCollections.observableArrayList(); for(int i=1 ; i<=3; i++){ //Iterate Column row.add("asdasd"); } data.add(row); //FINALLY ADDED TO TableView tableview.setItems(data); } }); tableview = new TableView(); buildData(); //Main Scene BorderPane root = new BorderPane(); root.setCenter(tableview); root.setBottom(showDataButton); Scene scene = new Scene(root,500,500); stage.setScene(scene); stage.show(); tableview.getSelectionModel().selectedItemProperty().addListener(new ChangeListener() { @Override public void changed(ObservableValue observableValue, Object oldValue, Object newValue) { //Check whether item is selected and set value of selected item to Label if (tableview.getSelectionModel().getSelectedItem() != null) { TableViewSelectionModel selectionModel = tableview.getSelectionModel(); ObservableList selectedCells = selectionModel.getSelectedCells(); TablePosition tablePosition = (TablePosition) selectedCells.get(0); Object val = tablePosition.getTableColumn().getCellData(newValue); System.out.println("Selected Value " + val); System.out.println("Selected row " + newValue); } } }); } } please help me..

    Read the article

  • LINQ to SQL and missing Many to Many EntityRefs

    - by Rick Strahl
    Ran into an odd behavior today with a many to many mapping of one of my tables in LINQ to SQL. Many to many mappings aren’t transparent in LINQ to SQL and it maps the link table the same way the SQL schema has it when creating one. In other words LINQ to SQL isn’t smart about many to many mappings and just treats it like the 3 underlying tables that make up the many to many relationship. Iain Galloway has a nice blog entry about Many to Many relationships in LINQ to SQL. I can live with that – it’s not really difficult to deal with this arrangement once mapped, especially when reading data back. Writing is a little more difficult as you do have to insert into two entities for new records, but nothing that can’t be handled in a small business object method with a few lines of code. When I created a database I’ve been using to experiment around with various different OR/Ms recently I found that for some reason LINQ to SQL was completely failing to map even to the linking table. As it turns out there’s a good reason why it fails, can you spot it below? (read on :-}) Here is the original database layout: There’s an items table, a category table and a link table that holds only the foreign keys to the Items and Category tables for a typical M->M relationship. When these three tables are imported into the model the *look* correct – I do get the relationships added (after modifying the entity names to strip the prefix): The relationship looks perfectly fine, both in the designer as well as in the XML document: <Table Name="dbo.wws_Item_Categories" Member="ItemCategories"> <Type Name="ItemCategory"> <Column Name="ItemId" Type="System.Guid" DbType="uniqueidentifier NOT NULL" CanBeNull="false" /> <Column Name="CategoryId" Type="System.Guid" DbType="uniqueidentifier NOT NULL" CanBeNull="false" /> <Association Name="ItemCategory_Category" Member="Categories" ThisKey="CategoryId" OtherKey="Id" Type="Category" /> <Association Name="Item_ItemCategory" Member="Item" ThisKey="ItemId" OtherKey="Id" Type="Item" IsForeignKey="true" /> </Type> </Table> <Table Name="dbo.wws_Categories" Member="Categories"> <Type Name="Category"> <Column Name="Id" Type="System.Guid" DbType="UniqueIdentifier NOT NULL" IsPrimaryKey="true" IsDbGenerated="true" CanBeNull="false" /> <Column Name="ParentId" Type="System.Guid" DbType="UniqueIdentifier" CanBeNull="true" /> <Column Name="CategoryName" Type="System.String" DbType="NVarChar(150)" CanBeNull="true" /> <Column Name="CategoryDescription" Type="System.String" DbType="NVarChar(MAX)" CanBeNull="true" /> <Column Name="tstamp" AccessModifier="Internal" Type="System.Data.Linq.Binary" DbType="rowversion" CanBeNull="true" IsVersion="true" /> <Association Name="ItemCategory_Category" Member="ItemCategory" ThisKey="Id" OtherKey="CategoryId" Type="ItemCategory" IsForeignKey="true" /> </Type> </Table> However when looking at the code generated these navigation properties (also on Item) are completely missing: [global::System.Data.Linq.Mapping.TableAttribute(Name="dbo.wws_Item_Categories")] [global::System.Runtime.Serialization.DataContractAttribute()] public partial class ItemCategory : Westwind.BusinessFramework.EntityBase { private System.Guid _ItemId; private System.Guid _CategoryId; public ItemCategory() { } [global::System.Data.Linq.Mapping.ColumnAttribute(Storage="_ItemId", DbType="uniqueidentifier NOT NULL")] [global::System.Runtime.Serialization.DataMemberAttribute(Order=1)] public System.Guid ItemId { get { return this._ItemId; } set { if ((this._ItemId != value)) { this._ItemId = value; } } } [global::System.Data.Linq.Mapping.ColumnAttribute(Storage="_CategoryId", DbType="uniqueidentifier NOT NULL")] [global::System.Runtime.Serialization.DataMemberAttribute(Order=2)] public System.Guid CategoryId { get { return this._CategoryId; } set { if ((this._CategoryId != value)) { this._CategoryId = value; } } } } Notice that the Item and Category association properties which should be EntityRef properties are completely missing. They’re there in the model, but the generated code – not so much. So what’s the problem here? The problem – it appears – is that LINQ to SQL requires primary keys on all entities it tracks. In order to support tracking – even of the link table entity – the link table requires a primary key. Real obvious ain’t it, especially since the designer happily lets you import the table and even shows the relationship and implicitly the related properties. Adding an Id field as a Pk to the database and then importing results in this model layout: which properly generates the Item and Category properties into the link entity. It’s ironic that LINQ to SQL *requires* the PK in the middle – the Entity Framework requires that a link table have *only* the two foreign key fields in a table in order to recognize a many to many relation. EF actually handles the M->M relation directly without the intermediate link entity unlike LINQ to SQL. [updated from comments – 12/24/2009] Another approach is to set up both ItemId and CategoryId in the database which shows up in LINQ to SQL like this: This also work in creating the Category and Item fields in the ItemCategory entity. Ultimately this is probably the best approach as it also guarantees uniqueness of the keys and so helps in database integrity. It took me a while to figure out WTF was going on here – lulled by the designer to think that the properties should be when they were not. It’s actually a well documented feature of L2S that each entity in the model requires a Pk but of course that’s easy to miss when the model viewer shows it to you and even the underlying XML model shows the Associations properly. This is one of the issue with L2S of course – you have to play by its rules and once you hit one of those rules there’s no way around them – you’re stuck with what it requires which in this case meant changing the database.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ADO.NET  LINQ  

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Validation in Silverlight

    - by Timmy Kokke
    Getting started with the basics Validation in Silverlight can get very complex pretty easy. The DataGrid control is the only control that does data validation automatically, but often you want to validate your own entry form. Values a user may enter in this form can be restricted by the customer and have to fit an exact fit to a list of requirements or you just want to prevent problems when saving the data to the database. Showing a message to the user when a value is entered is pretty straight forward as I’ll show you in the following example.     This (default) Silverlight textbox is data-bound to a simple data class. It has to be bound in “Two-way” mode to be sure the source value is updated when the target value changes. The INotifyPropertyChanged interface must be implemented by the data class to get the notification system to work. When the property changes a simple check is performed and when it doesn’t match some criteria an ValidationException is thrown. The ValidatesOnExceptions binding attribute is set to True to tell the textbox it should handle the thrown ValidationException. Let’s have a look at some code now. The xaml should contain something like below. The most important part is inside the binding. In this case the Text property is bound to the “Name” property in TwoWay mode. It is also told to validate on exceptions. This property is false by default.   <StackPanel Orientation="Horizontal"> <TextBox Width="150" x:Name="Name" Text="{Binding Path=Name, Mode=TwoWay, ValidatesOnExceptions=True}"/> <TextBlock Text="Name"/> </StackPanel>   The data class in this first example is a very simplified person class with only one property: string Name. The INotifyPropertyChanged interface is implemented and the PropertyChanged event is fired when the Name property changes. When the property changes a check is performed to see if the new string is null or empty. If this is the case a ValidationException is thrown explaining that the entered value is invalid.   public class PersonData:INotifyPropertyChanged { private string _name; public string Name { get { return _name; } set { if (_name != value) { if(string.IsNullOrEmpty(value)) throw new ValidationException("Name is required"); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } } public event PropertyChangedEventHandler PropertyChanged=delegate { }; } The last thing that has to be done is letting binding an instance of the PersonData class to the DataContext of the control. This is done in the code behind file. public partial class Demo1 : UserControl { public Demo1() { InitializeComponent(); this.DataContext = new PersonData() {Name = "Johnny Walker"}; } }   Error Summary In many cases you would have more than one entry control. A summary of errors would be nice in such case. With a few changes to the xaml an error summary, like below, can be added.           First, add a namespace to the xaml so the control can be used. Add the following line to the header of the .xaml file. xmlns:Controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input"   Next, add the control to the layout. To get the result as in the image showed earlier, add the control right above the StackPanel from the first example. It’s got a small margin to separate it from the textbox a little.   <Controls:ValidationSummary Margin="8"/>   The ValidationSummary control has to be notified that an ValidationException occurred. This can be done with a small change to the xaml too. Add the NotifyOnValidationError to the binding expression. By default this value is set to false, so nothing would be notified. Set the property to true to get it to work.   <TextBox Width="150" x:Name="Name" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True}"/>   Data annotation Validating data in the setter is one option, but not my personal favorite. It’s the easiest way if you have a single required value you want to check, but often you want to validate more. Besides, I don’t consider it best practice to write logic in setters. The way used by frameworks like WCF Ria Services is the use of attributes on the properties. Instead of throwing exceptions you have to call the static method ValidateProperty on the Validator class. This call stays always the same for a particular property, not even when you change the attributes on the property. To mark a property “Required” you can use the RequiredAttribute. This is what the Name property is going to look like:   [Required] public string Name { get { return _name; } set { if (_name != value) { Validator.ValidateProperty(value, new ValidationContext(this, null, null){ MemberName = "Name" }); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } }   The ValidateProperty method takes the new value for the property and an instance of ValidationContext. The properties passed to the constructor of the ValidationContextclass are very straight forward. This part is the same every time. The only thing that changes is the MemberName property of the ValidationContext. Property has to hold the name of the property you want to validate. It’s the same value you provide the PropertyChangedEventArgs with. The System.ComponentModel.DataAnnotation contains eight different validation attributes including a base class to create your own. They are: RequiredAttribute Specifies that a value must be provided. RangeAttribute The provide value must fall in the specified range. RegularExpressionAttribute Validates is the value matches the regular expression. StringLengthAttribute Checks if the number of characters in a string falls between a minimum and maximum amount. CustomValidationAttribute Use a custom method to validate the value. DataTypeAttribute Specify a data type using an enum or a custom data type. EnumDataTypeAttribute Makes sure the value is found in a enum. ValidationAttribute A base class for custom validation attributes All of these will ensure that an validation exception is thrown, except the DataTypeAttribute. This attribute is used to provide some additional information about the property. You can use this information in your own code.   [Required] [Range(0,125,ErrorMessage = "Value is not a valid age")] public int Age {   It’s no problem to stack different validation attributes together. For example, when an Age is required and must fall in the range from 0 to 125:   [Required, StringLength(255,MinimumLength = 3)] public string Name {   Or in one row like this, for a required Name with at least 3 characters and a maximum of 255:   Delayed validation Having properties marked as required can be very useful. The only downside to the technique described earlier is that you have to change the value in order to get it validated. What if you start out with empty an empty entry form? All fields are empty and thus won’t be validated. With this small trick you can validate at the moment the user click the submit button.   <TextBox Width="150" x:Name="NameField" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True, UpdateSourceTrigger=Explicit}"/>   By default, when a TwoWay bound control looses focus the value is updated. When you added validation like I’ve shown you earlier, the value is validated. To overcome this, you have to tell the binding update explicitly by setting the UpdateSourceTrigger binding property to Explicit:   private void SubmitButtonClick(object sender, RoutedEventArgs e) { NameField.GetBindingExpression(TextBox.TextProperty).UpdateSource(); }   This way, the binding is in two direction but the source is only updated, thus validated, when you tell it to. In the code behind you have to call the UpdateSource method on the binding expression, which you can get from the TextBox.   Conclusion Data validation is something you’ll probably want on almost every entry form. I always thought it was hard to do, but it wasn’t. If you can throw an exception you can do validation. If you want to know anything more in depth about something I talked about in this article let me know. I might write an entire post to that.

    Read the article

  • Psychonauts crashes right after entering load save door

    - by user67974
    Psychonauts crashes right after entering the 'Load Save' door. Here is the terminal output: Shader assembly time: 0.88 seconds Found OpenAL device: 'Simple Directmedia Layer' Found OpenAL device: 'ALSA Software' Found OpenAL device: 'OSS Software' Found OpenAL device: 'PulseAudio Software' Opened OpenAL Device: '(null)' ERROR: CAudioDrv::CAudioDrv->alGenSources reports AL_INVALID_VALUE error. PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonfx.isb' to 'WorkResource/Sounds/commonfx.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonvoice.isb' to 'WorkResource/Sounds/commonvoice.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonmusic.isb' to 'WorkResource/Sounds/commonmusic.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonmentalfx.isb' to 'WorkResource/Sounds/commonmentalfx.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonmenfxmem.isb' to 'WorkResource/Sounds/commonmenfxmem.isb' PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/commonfxmem.isb' to 'WorkResource/Sounds/commonfxmem.isb' GameApp::StartUp InitSoundFiles() completed in 0.15 seconds GameApp::StartUp Load some common textures completed in 0.00 seconds WARN: ENGINE: Lua garbage collection starting FreeUnusedBlocksInBuckets released 0 Kb GameApp::StartUp InitEntities() completed in 0.02 seconds PSYCHONAUTS UNIX FILENAME: corrected 'WorkResource/SavedGames/savegameprefs.ini' to 'WorkResource/SAVEDGAMES/savegameprefs.ini' PSYCHONAUTS UNIX FILENAME: corrected 'WorkResource/SavedGames/savegameprefs.ini' to 'WorkResource/SAVEDGAMES/savegameprefs.ini' GameApp::StartUp m_pSaveLoadInterface->Startup() completed in 0.00 seconds GameApp::StartUp m_UserInterface.Setup() completed in 0.00 seconds STUBBED: multisample at EDisplayOptionsWidget (/home/icculus/projects/psychonauts/Source/game/luatest/Game/UIPCDisplayOptions.cpp:97) STUBBED: VK_* at CheckVirtualKey (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:1443) Game: Engine Running hook startup Game: Engine -> SetupGlobalObjects Game: Engine -> SetupLevelMenu Game: Engine -> InitMath GameApp::StartUp InitLua2() completed in 0.00 seconds GameApp::StartUp SetupLevelMenu() completed in 0.00 seconds STUBBED: do we even use this? at InitSocket (/home/icculus/projects/psychonauts/Source/game/luatest/Game/Gameplaylogger.cpp:210) GameApp::StartUp Post-Install total completed in 0.20 seconds Start Up completed in 1.57 seconds UnixMain: StartUp successful.. Working directory: /opt/psychonauts STUBBED: dispatch SDL events at PCMainHandleAnyWindowsMessages (/home/icculus/projects/psychonauts/Source/game/luatest/UnixMain.cpp:56) STUBBED: write me at GetJoystickInput (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:428) STUBBED: write me at GetJoystickActionValue (/home/icculus/projects/psychonauts/Source/CommonLibs/DirectX/SDLInput.cpp:613) PSYCHONAUTS UNIX FILENAME: corrected 'workresource/cutScenes/prerendered/dflogo.bik' to 'WorkResource/cutscenes/prerendered/DFLogo.bik' Prerender subtitle file: workresource\cutScenes\prerendered\dflogo.dfs not found PSYCHONAUTS UNIX FILENAME: corrected 'workresource/cutScenes/prerendered/dflogo.bik' to 'WorkResource/cutscenes/prerendered/DFLogo.bik' STUBBED: fixed function pipeline? at setColorOp (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2097) STUBBED: fixed function pipeline? at setColorArg1 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2106) STUBBED: fixed function pipeline? at setColorArg2 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2115) STUBBED: fixed function pipeline? at setAlphaOp (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2124) STUBBED: fixed function pipeline? at setAlphaArg1 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2133) STUBBED: fixed function pipeline? at setAlphaArg2 (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2142) STUBBED: fixed function pipeline? at setProjected (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Texture.cpp:2223) LOC WARN: Could not open Localization file 'Localization/English/_StringTable.lub' STUBBED: memory status at UpdateMemoryTracking (/home/icculus/projects/psychonauts/Source/game/luatest/Game/GameApp.cpp:4884) WARN: Couldn't resize array to 128; out-of-bounds elements are still in use: Vertex Pool, 188 Loading new level 'STMU' STUBBED: Need multithreaded GL at DisplayLoadingScreen (/home/icculus/projects/psychonauts/Source/game/luatest/Game/LoadingScreen.cpp:83) ========================= Memory post unload level ========================= ========================= LOC WARN: Could not open Localization file 'Localization/English/ST_StringTable.lub' DaveD: Info: Texture pack file contains 137 textures Doing a texture readback for locking! Game: Engine Saved[GLOBAL]: InstaHintFord_HostileRecord = [table] Game: Engine Saved[GLOBAL]: InstaHintFord_HostileOrder = [table] WARN: Redundant packfile read: anims\thought_bubble\bubblefirestarting.jan WARN: Redundant packfile read: anims\thought_bubble\bubbleintothemind.jan WARN: Redundant packfile read: anims\thought_bubble\bubbleinvisibility.jan WARN: Redundant packfile read: anims\thought_bubble\bubblepopperfill.jan WARN: Redundant packfile read: anims\thought_bubble\bubbletelekinesis.jan Initializing level script (if there is one) PSYCHONAUTS UNIX FILENAME: corrected 'workresource/sounds/stfx.isb' to 'WorkResource/Sounds/stfx.isb' Game: Engine Reloading goals: Game: Engine Saved[GLOBAL]: NextEncouragement = '/GLZF014TO/ 10' Game: Engine Saved[GLOBAL]: bUsedSalts = 0 Game: Engine Saved[GLOBAL]: bSTEntered = 1 Game: Engine Saved[GLOBAL]: memoriesST = 1 Game: Engine Saved[GLOBAL]: PsiBallColor = 'red' Game: Engine Saved[ST]: lastSubLevel = 'STMU' Game: Engine LOADING LEVEL st.STMU Game: Engine Saved[CA]: CALevelState = 1 Game: Engine Cutscene progression: CS Script moving from state nil to state nil, resultant state nil. Time: 0.124746672809124. * Stack Trace 1: (null) (line -1, file '(none)) () 2: SpawnScript (line -1, file 'C) (global) 3: onBeginLevel (line -1, file '(none)) (field) 4: (null) (line -1, file '(none)) () WARN: Cannot call GetDirectoryListing when running from the DVD Game: Engine Raz spawning at DartStart startpoint VM : LevelScript could not find script 'doorrimlight1' * Stack Trace 1: (null) (line -1, file '(none)) () WARN: (none(-1) SetEntityAlpha LevelScript: NULL script object passed Game: Engine Saved[GLOBAL]: bLoadedFromMainMenu = 1 Game: Engine Saved[GLOBAL]: NextEncouragement = '/GLZF014TO/ 10' Game: Engine Saved[GLOBAL]: NeedRankIncrement = 0 STUBBED: Need multithreaded GL at HideLoadingScreen (/home/icculus/projects/psychonauts/Source/game/luatest/Game/LoadingScreen.cpp:110) WARN: ENGINE: Lua garbage collection starting FreeUnusedBlocksInBuckets released 0 Kb Game: Engine Saved[GLOBAL]: SplineFigmentTVSizex = 4.51434326171875 Game: Engine Saved[GLOBAL]: SplineFigmentTVSizey = 46.38104248046875 Game: Engine Saved[GLOBAL]: SplineFigmentTVSizez = 47.08810424804688 WARN: (none(-1) SetNewAction LevelScript: no string passed ====================== Asset load progression ====================== Initial: 2.518 MB Vertex, 8.688 MB Texture Level : 3.719 MB Vertex, 22.535 MB Texture Scripts: 3.747 MB Vertex, 22.848 MB Texture ====================== ====================== Memory post level load ====================== ====================== WARN: ENGINE: Lua garbage collection starting FreeUnusedBlocksInBuckets released 0 Kb DaveD: Level loaded in 0.14 seconds Anim: anims\objects\tk_arrow_idle.jan: loaded (1 frames latency) Anim: anims\dartnew\helmet\darthelmetdn.jan: loaded (1 frames latency) Anim: anims\thought_bubble\shieldloop.jan: loaded (1 frames latency) Anim: anims\dartnew\standready.jan: loaded (1 frames latency) Anim: anims\dartnew\walkmove.jan: loaded (1 frames latency) Anim: anims\janitor\hint_end.jan: loaded (1 frames latency) Anim: anims\thought_bubble\ballstatic.jan: loaded (1 frames latency) Anim: anims\dartnew\actionfall.jan: loaded (1 frames latency) Anim: anims\dartnew\standstill.jan: loaded (1 frames latency) Anim: anims\dartnew\pack\packbounce_lf_rt.jan: loaded (1 frames latency) Anim: anims\dartnew\pack\packbounce_up_dn.jan: loaded (1 frames latency) Anim: anims\dartnew\helmet\darthelmetdefpose.jan: loaded (1 frames latency) 1: 1 (number) 1: 1 (number) STUBBED: This is probably wrong at GetDt (/home/icculus/projects/psychonauts/Source/CommonLibs/DFUtil/Profiler.cpp:181) STUBBED: set specular highlights at setSpecularEnable (/home/icculus/projects/psychonauts/Source/CommonLibs/DFGraphics/Renderer.cpp:2035) Anim: anims\dartnew\trnrtcycle.jan: loaded (1 frames latency) Anim: anims\dartnew\run.jan: loaded (1 frames latency) Anim: anims\dartnew\walk.jan: loaded (1 frames latency) Anim: anims\thought_bubble\bubbledoublejump.jan: loaded (1 frames latency) Anim: anims\dartnew\longjump.jan: loaded (1 frames latency) Anim: anims\menubrain\door1crack.jan: loaded (1 frames latency) Anim: anims\menubrain\door1crackedidle.jan: loaded (1 frames latency) Anim: anims\menubrain\door1closedidle.jan: loaded (1 frames latency) Anim: anims\dartnew\180.jan: loaded (1 frames latency) Anim: anims\menubrain\door3crack.jan: loaded (1 frames latency) Anim: anims\menubrain\door3crackedidle.jan: loaded (1 frames latency) Anim: anims\menubrain\door3closedidle.jan: loaded (1 frames latency) Anim: anims\dartnew\railslide45angle.jan: loaded (1 frames latency) Anim: anims\dartnew\railslideflat.jan: loaded (1 frames latency) Anim: anims\dartnew\trnlfcycle.jan: loaded (1 frames latency) WARN: (none(-1) SetNewAction LevelScript: no string passed Anim: anims\dartnew\mainmenu_jump.jan: loaded (1 frames latency) Anim: anims\menubrain\door1open.jan: loaded (1 frames latency) ERROR: Assert in /home/icculus/projects/psychonauts/Source/game/luatest/../../CommonLibs/Include/../DFGraphics/Color.h, line 96 v.x >= 0.0f && v.x <= 1.0f && v.y >= 0.0f && v.y <= 1.0f && v.z >= 0.0f && v.z <= 1.0f && v.w >= 0.0f && v.w <= 1.0f Encountered Error: Psychonauts has encountered an error /home/icculus/projects/psychonauts/Source/game/luatest/../../CommonLibs/Include/../DFGraphics/Color.h, line 96 v.x >= 0.0f && v.x <= 1.0f && v.y >= 0.0f && v.y <= 1.0f && v.z >= 0.0f && v.z <= 1.0f && v.w >= 0.0f && v.w <= 1.0f Please contact technical support at http://www.doublefine.com. I am currently using Bumblebee for hybrid graphics, if that helps in any way.

    Read the article

  • Reading All Users Session

    - by imran_ku07
      Introduction :            InProc Session is the widely used state management. Storing the session state Inproc is also the fastest method and is well-suited to small amounts of volatile data. Reading and writing current user Session is very easy. But some times we need to read all users session before taking a decision or sometimes we may need to check which users are currently active with the help of Session. But unfortunately there is no class in .Net Framework (i don't found myself) to read all user InProc Session Data. In this article i will use reflection to read all user Inproc Session.   Description :              This code will work equally in both MVC and webform, but for demonstration i will use a simple webform example. So let's create a simple Website and Add two aspx pages, Default.aspx and Default2.aspx. In Default.aspx just add a link to navigate to Default2.aspx and in Default.aspx.cs just add a Session. Default.aspx: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="Default" %><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html ><head runat="server">    <title>Untitled Page</title></head><body>    <form id="form1" runat="server">    <div>        <a href="Default2.aspx">Click to navigate to next page</a>    </div>    </form></body></html>  Default.aspx.cs:  using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;public partial class Default : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        Session["User"] = "User" + DateTime.Now;    }} Now when every user click this link will navigate to Default2.aspx where all the magic appears.Default2.aspx.cs: using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;using System.Reflection;using System.Web.SessionState;public partial class Default2 : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        object obj = typeof(HttpRuntime).GetProperty("CacheInternal", BindingFlags.NonPublic | BindingFlags.Static).GetValue(null, null);        Hashtable c2 = (Hashtable)obj.GetType().GetField("_entries", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(obj);        foreach (DictionaryEntry entry in c2)        {            object o1 = entry.Value.GetType().GetProperty("Value", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(entry.Value, null);            if (o1.GetType().ToString() == "System.Web.SessionState.InProcSessionState")            {                SessionStateItemCollection sess = (SessionStateItemCollection)o1.GetType().GetField("_sessionItems", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(o1);                if (sess != null)                {                    if (sess["User"] != null)                    {                        Label1.Text += sess["User"] + " is Active.<br>";                    }                }            }        }    }}            Now just open more than one browsers or more than one browser instance and then navigate to Default.aspx and click the link, you will see all the user's Session data.    How this works :        InProc session data is stored in the HttpRuntime’s internal cache in an implementation of ISessionStateItemCollection that implements ICollection. In this code, first of all i got CacheInternal Static Property of HttpRuntime class and then with the help of this object i got _entries private member which is of type ICollection. Then simply enumerate this dictionary and only take object of type System.Web.SessionState.InProcSessionState and finaly got SessionStateItemCollection for each user.Summary :        In this article, I shows you how you can get all current user Sessions. However one thing you will find when executing this code is that it will not show the current user Session which is set in the current request context because Session will be saved after all the Page Events.

    Read the article

  • At most how many customized P3 attributes could be added into Agile?

    - by Jie Chen
    I have one customer/Oracle Partner Consultant asking me such question: how many customized attributes can be allowed to add to Agile's subclass Page Three? I never did research against this because Agile User Guide never says this and theoretically Agile supports unlimited amount of customized attributes, unless the browser itself cannot handle them in allocated memory. However my customers says when to add almost 1000 attributes, the browser (Web Client) will not show any Page Three attributes, including all the out-of-box attributes. Let's see why. Analysis It is horrible to add 1000 attributes manually. Let's do it by a batch SQL like below to add them to Item's subclass Page Three tab. Do not execute below SQL because it will not take effect due to your different node id. CREATE OR REPLACE PROCEDURE createP3Text(v_name IN VARCHAR2) IS v_nid NUMBER; v_pid NUMBER; BEGIN select SEQNODETABLE.nextval into v_nid from dual; Insert Into nodeTable ( id,parentID,description,objType,inherit,helpID,version,name ) values ( v_nid,2473003, v_name ,1,0,0,0, v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,925, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,1,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,2,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,2,0,1,3,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,5, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,1,6,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,0,7,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,8,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,9,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,1,10,v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,11,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,11743,1,14,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,30, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,38, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,59,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,60,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,724,0,61, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,232,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,233,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,12239,1,415,'13307'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,605,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,610,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,716,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,795,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,2000008821,1,864,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,923,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,0,719,'0'); Insert Into tableInfo ( tabID,tableID,classID,att,ordering ) values ( 2473005,1501,2473002,v_nid,9999); commit; END createP3Text; / BEGIN FOR i in 1..1000 LOOP createP3Text('MyText' || i); END LOOP; END; / DROP PROCEDURE createP3Text; COMMIT; Now restart Agile Server and check the Server's log, we noticed below: ***** Node Created : 85625 ***** Property Created : 184579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ However the previously log before batch SQL is ***** Node Created : 84625 ***** Property Created : 157579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ Obviously we successfully imported 1000 (85625-84625) attributes. Now go to JavaClient and confirm if we have them or not. Theoretically we are able to open such item object and see all these 1000 attributes and their values, but we get below error. We have no error tips in server log. But never mind we have the Java Console for JavaClient. If to open the same item in JavaClient we get a clear error and detailed trace in Java Console. ORA-01795: maximum number of expressions in a list is 1000 java.sql.SQLException: ORA-01795: maximum number of expressions in a list is 1000 at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:125) ... ... at weblogic.jdbc.wrapper.PreparedStatement.executeQuery(PreparedStatement.java:128) at com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable(AgileFlexUtil.java:1104) at com.agile.pc.cmserver.base.BaseFlexTableDAO.loadExtraFlexAttValues(BaseFlexTableDAO.java:111) at com.agile.pc.cmserver.base.BasePageThreeDAO.loadTable(BasePageThreeDAO.java:108) If you are interested in the background of the problem, you may de-compile the class com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable and find the root cause that Agile happens to hit Oracle Database's limitation that more than 1000 values in the "IN" clause. Check here http://ora-01795.ora-code.com If you need Oracle Agile's final solution, please contact Oracle Agile Support. Performance Below two screenshot are jvm heap usage from before-SQL and after-SQL. We can see there is no big memory gap between two cases. So definitely there is no performance impact to Agile Application Server unless you have more than 1000 attributes for EACH of your dozens of  subclasses. And for client, 1000 attributes should not impact the browser's performance because in HTML we only use dt and dd for each attribute's pair: label and value. It is quite lightweight.

    Read the article

< Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >