Search Results

Search found 65196 results on 2608 pages for 'add service reference'.

Page 376/2608 | < Previous Page | 372 373 374 375 376 377 378 379 380 381 382 383  | Next Page >

  • How to consume a SOAP (WCF) service in Plone?

    - by Magick
    Hi, Im very new to Plone, having only really scratched the surface of the product. My client uses it, and would like an application built using it. Can anyone give me some pointers on how to consume a SOAP service in Plone? Any links to tutorials, articles, screencasts etc would be apprciated. thanks

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Sampler referencing in HLSL - Sampler parameter must come from a literal expression

    - by user1423893
    The following method works fine when referencing a sampler in HLSL float3 P = lightScreenPos; sampler ShadowSampler = DPFrontShadowSampler; float depth; if (alpha >= 0.5f) { // Reference the correct sampler ShadowSampler = DPFrontShadowSampler; // Front hemisphere 'P0' P.z = P.z + 1.0; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; } else { // Reference the correct sampler ShadowSampler = DPBackShadowSampler; // Back hemisphere 'P1' P.z = 1.0 - P.z; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; } // [Standard Depth Calculation] float mydepth = P.z; shadow = depth + Bias.x < mydepth ? 0.0f : 1.0f; If I try and do anything with the sampler reference outside the if statement then I get the following error: Sampler parameter must come from a literal expression This code demonstrates that float3 P = lightScreenPos; sampler ShadowSampler = DPFrontShadowSampler; if (alpha >= 0.5f) { // Reference the correct sampler ShadowSampler = DPFrontShadowSampler; // Front hemisphere 'P0' P.z = P.z + 1.0; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; } else { // Reference the correct sampler ShadowSampler = DPBackShadowSampler; // Back hemisphere 'P1' P.z = 1.0 - P.z; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; } // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; // [Standard Depth Calculation] float depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; float mydepth = P.z; shadow = depth + Bias.x < mydepth ? 0.0f : 1.0f; How can I reference the sampler in this manner without triggering the error?

    Read the article

  • SQLAuthority News – Microsoft SQL Server Protocol Documentation Download

    - by pinaldave
    The Microsoft SQL Server protocol documentation provides detailed technical specifications for Microsoft proprietary protocols (including extensions to industry-standard or other published protocols) that are implemented and used in Microsoft SQL Server to interoperate or communicate with Microsoft products. The documentation includes a set of companion overview and reference documents that supplement the technical specifications with conceptual background, overviews of inter-protocol relationships and interactions, and technical reference information. Microsoft SQL Server Protocol Documentation Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL Server Express 2008 R2 Installation error at Windows 7

    - by Shai Sherman
    Hello, I created install script that will install SQL Server 2008 R2 on windows XP SP3, windows vista and windows 7. One of the command that i used in the installation is for silent installation of SQL Server 2008 R2. When i install it on windows XP everything works just fine but when i try to install it on Windows 7 i get an error. What am I doing wrong? Here is the command line that i use: "Setup.exe /ConfigurationFile=Mysetup.ini" Mysetup.ini file: -------------------------------------Start of ini file --------------------------------- ;SQL SERVER 2008 R2 Configuration File ;Version 1.0, 5 May 2010 ; [SQLSERVER2008] ; Specify the Instance ID for the SQL Server features you have specified. SQL Server directory structure, registry structure, and service names will reflect the instance ID of the SQL Server instance. INSTANCEID="MSSQLSERVER" ; Specifies a Setup work flow, like INSTALL, UNINSTALL, or UPGRADE. This is a required parameter. ACTION="Install" ; Specifies features to install, uninstall, or upgrade. The list of top-level features include SQL, AS, RS, IS, and Tools. The SQL feature will install the database engine, replication, and full-text. The Tools feature will install Management Tools, Books online, Business Intelligence Development Studio, and other shared components. FEATURES=SQLENGINE ; Displays the command line parameters usage HELP="False" ; Specifies that the detailed Setup log should be piped to the console. INDICATEPROGRESS="False" ; Setup will not display any user interface. QUIET="False" ; Setup will display progress only without any user interaction. QUIETSIMPLE="True" ; Specifies that Setup should install into WOW64. This command line argument is not supported on an IA64 or a 32-bit system. ;X86="False" ; Specifies the path to the installation media folder where setup.exe is located. ;MEDIASOURCE="z:\" ; Detailed help for command line argument ENU has not been defined yet. ENU="True" ; Parameter that controls the user interface behavior. Valid values are Normal for the full UI, and AutoAdvance for a simplied UI. ; UIMODE="Normal" ; Specify if errors can be reported to Microsoft to improve future SQL Server releases. Specify 1 or True to enable and 0 or False to disable this feature. ERRORREPORTING="False" ; Specify the root installation directory for native shared components. ;INSTALLSHAREDDIR="D:\Program Files\Microsoft SQL Server" ; Specify the root installation directory for the WOW64 shared components. ;INSTALLSHAREDWOWDIR="D:\Program Files (x86)\Microsoft SQL Server" ; Specify the installation directory. ;INSTANCEDIR="D:\Program Files\Microsoft SQL Server" ; Specify that SQL Server feature usage data can be collected and sent to Microsoft. Specify 1 or True to enable and 0 or False to disable this feature. SQMREPORTING="False" ; Specify a default or named instance. MSSQLSERVER is the default instance for non-Express editions and SQLExpress for Express editions. This parameter is required when installing the SQL Server Database Engine (SQL), Analysis Services (AS), or Reporting Services (RS). INSTANCENAME="SQLEXPRESS" SECURITYMODE=SQL SAPWD=SystemAdmin ; Agent account name AGTSVCACCOUNT="NT AUTHORITY\NETWORK SERVICE" ; Auto-start service after installation. AGTSVCSTARTUPTYPE="Manual" ; Startup type for Integration Services. ;ISSVCSTARTUPTYPE="Automatic" ; Account for Integration Services: Domain\User or system account. ;ISSVCACCOUNT="NT AUTHORITY\NetworkService" ; Controls the service startup type setting after the service has been created. ;ASSVCSTARTUPTYPE="Automatic" ; The collation to be used by Analysis Services. ;ASCOLLATION="Latin1_General_CI_AS" ; The location for the Analysis Services data files. ;ASDATADIR="Data" ; The location for the Analysis Services log files. ;ASLOGDIR="Log" ; The location for the Analysis Services backup files. ;ASBACKUPDIR="Backup" ; The location for the Analysis Services temporary files. ;ASTEMPDIR="Temp" ; The location for the Analysis Services configuration files. ;ASCONFIGDIR="Config" ; Specifies whether or not the MSOLAP provider is allowed to run in process. ;ASPROVIDERMSOLAP="1" ; A port number used to connect to the SharePoint Central Administration web application. ;FARMADMINPORT="0" ; Startup type for the SQL Server service. SQLSVCSTARTUPTYPE="Automatic" ; Level to enable FILESTREAM feature at (0, 1, 2 or 3). FILESTREAMLEVEL="0" ; Set to "1" to enable RANU for SQL Server Express. ENABLERANU="1" ; Specifies a Windows collation or an SQL collation to use for the Database Engine. SQLCOLLATION="SQL_Latin1_General_CP1_CI_AS" ; Account for SQL Server service: Domain\User or system account. SQLSVCACCOUNT="NT Authority\System" ; Default directory for the Database Engine user databases. ;SQLUSERDBDIR="K:\Microsoft SQL Server\MSSQL\Data" ; Default directory for the Database Engine user database logs. ;SQLUSERDBLOGDIR="L:\Microsoft SQL Server\MSSQL\Data\Logs" ; Directory for Database Engine TempDB files. ;SQLTEMPDBDIR="T:\Microsoft SQL Server\MSSQL\Data" ; Directory for the Database Engine TempDB log files. ;SQLTEMPDBLOGDIR="T:\Microsoft SQL Server\MSSQL\Data\Logs" ; Provision current user as a Database Engine system administrator for SQL Server 2008 R2 Express. ADDCURRENTUSERASSQLADMIN="True" ; Specify 0 to disable or 1 to enable the TCP/IP protocol. TCPENABLED="1" ; Specify 0 to disable or 1 to enable the Named Pipes protocol. NPENABLED="0" ; Startup type for Browser Service. BROWSERSVCSTARTUPTYPE="Automatic" ; Specifies how the startup mode of the report server NT service. When ; Manual - Service startup is manual mode (default). ; Automatic - Service startup is automatic mode. ; Disabled - Service is disabled ;RSSVCSTARTUPTYPE="Automatic" ; Specifies which mode report server is installed in. ; Default value: “FilesOnly” ;RSINSTALLMODE="FilesOnlyMode" ; Accept SQL Server 2008 R2 license terms IACCEPTSQLSERVERLICENSETERMS="TRUE" ;setup.exe /CONFIGURATIONFILE=Mysetup.ini /INDICATEPROGRESS --------------------------- End of ini file ------------------------------------- And i get this error: 2010-08-31 18:05:53 Slp: Error result: -2068119551 2010-08-31 18:05:53 Slp: Result facility code: 1211 2010-08-31 18:05:53 Slp: Result error code: 1 2010-08-31 18:05:53 Slp: Sco: Attempting to create base registry key HKEY_LOCAL_MACHINE, machine 2010-08-31 18:05:53 Slp: Sco: Attempting to open registry subkey 2010-08-31 18:05:53 Slp: Sco: Attempting to open registry subkey Software\Microsoft\PCHealth\ErrorReporting\DW\Installed 2010-08-31 18:05:53 Slp: Sco: Attempting to get registry value DW0200 2010-08-31 18:05:53 Slp: Submitted 1 of 1 failures to the Watson data repository What the meaning of this? What do i need to do to fix that problem? Here is the Summary file: Overall summary: Final result: SQL Server installation failed. To continue, investigate the reason for the failure, correct the problem, uninstall SQL Server, and then rerun SQL Server Setup. Exit code (Decimal): -2068119551 Exit facility code: 1211 Exit error code: 1 Exit message: SQL Server installation failed. To continue, investigate the reason for the failure, correct the problem, uninstall SQL Server, and then rerun SQL Server Setup. Start time: 2010-08-31 18:03:44 End time: 2010-08-31 18:05:51 Requested action: Install Log with failure: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\Detail.txt Exception help link: http%3a%2f%2fgo.microsoft.com%2ffwlink%3fLinkId%3d20476%26ProdName%3dMicrosoft%2bSQL%2bServer%26EvtSrc%3dsetup.rll%26EvtID%3d50000%26ProdVer%3d10.50.1600.1%26EvtType%3d0x6121810A%400xC24842DB Machine Properties: Machine name: NVR Machine processor count: 2 OS version: Windows 7 OS service pack: OS region: United States OS language: English (United States) OS architecture: x86 Process architecture: 32 Bit OS clustered: No Product features discovered: Product Instance Instance ID Feature Language Edition Version Clustered Package properties: Description: SQL Server Database Services 2008 R2 ProductName: SQL Server 2008 R2 Type: RTM Version: 10 SPLevel: 0 Installation location: C:\Disk1\setupsql\x86\setup\ Installation edition: EXPRESS User Input Settings: ACTION: Install ADDCURRENTUSERASSQLADMIN: True AGTSVCACCOUNT: NT AUTHORITY\NETWORK SERVICE AGTSVCPASSWORD: * AGTSVCSTARTUPTYPE: Disabled ASBACKUPDIR: Backup ASCOLLATION: Latin1_General_CI_AS ASCONFIGDIR: Config ASDATADIR: Data ASDOMAINGROUP: ASLOGDIR: Log ASPROVIDERMSOLAP: 1 ASSVCACCOUNT: ASSVCPASSWORD: * ASSVCSTARTUPTYPE: Automatic ASSYSADMINACCOUNTS: ASTEMPDIR: Temp BROWSERSVCSTARTUPTYPE: Automatic CONFIGURATIONFILE: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\ConfigurationFile.ini CUSOURCE: ENABLERANU: True ENU: True ERRORREPORTING: False FARMACCOUNT: FARMADMINPORT: 0 FARMPASSWORD: * FEATURES: SQLENGINE FILESTREAMLEVEL: 0 FILESTREAMSHARENAME: FTSVCACCOUNT: FTSVCPASSWORD: * HELP: False IACCEPTSQLSERVERLICENSETERMS: True INDICATEPROGRESS: False INSTALLSHAREDDIR: C:\Program Files\Microsoft SQL Server\ INSTALLSHAREDWOWDIR: C:\Program Files\Microsoft SQL Server\ INSTALLSQLDATADIR: INSTANCEDIR: C:\Program Files\Microsoft SQL Server\ INSTANCEID: MSSQLSERVER INSTANCENAME: SQLEXPRESS ISSVCACCOUNT: NT AUTHORITY\NetworkService ISSVCPASSWORD: * ISSVCSTARTUPTYPE: Automatic NPENABLED: 0 PASSPHRASE: * PCUSOURCE: PID: * QUIET: False QUIETSIMPLE: True ROLE: AllFeatures_WithDefaults RSINSTALLMODE: FilesOnlyMode RSSVCACCOUNT: NT AUTHORITY\NETWORK SERVICE RSSVCPASSWORD: * RSSVCSTARTUPTYPE: Automatic SAPWD: * SECURITYMODE: SQL SQLBACKUPDIR: SQLCOLLATION: SQL_Latin1_General_CP1_CI_AS SQLSVCACCOUNT: NT Authority\System SQLSVCPASSWORD: * SQLSVCSTARTUPTYPE: Automatic SQLSYSADMINACCOUNTS: SQLTEMPDBDIR: SQLTEMPDBLOGDIR: SQLUSERDBDIR: SQLUSERDBLOGDIR: SQMREPORTING: False TCPENABLED: 1 UIMODE: AutoAdvance X86: False Configuration file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\ConfigurationFile.ini Detailed results: Feature: Database Engine Services Status: Failed: see logs for details MSI status: Passed Configuration status: Failed: see details below Configuration error code: 0x0A2FBD17@1211@1 Configuration error description: The process cannot access the file because it is being used by another process. Configuration log: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\Detail.txt Rules with failures: Global rules: Scenario specific rules: Rules report file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\SystemConfigurationCheck_Report.htm What should I do and why does this problem occur? Thanks , Shai.

    Read the article

  • ASP.NET Cookies

    - by Aamir Hasan
    Cookies are domain specific and cannot be used across different network domains. The only domain that can read a cookie is the domain that sets it. It does not matter what domain name you set.Cookies are used to store small pieces of information on a client machine. A cookie can store only up to 4 KB of information. Generally cookies are used to store data which user types frequently such as user id and password to login to a site.The HttpCookie class defined in the System.Web namespace represents a browser cookie.Creating cookies (C#)Dim cookie As HttpCookie = New HttpCookie("UID")cookie.Value = "id"cookie.Expires = #3/30/2010#Response.Cookies.Add(cookie)cookie = New HttpCookie("username")cookie.Value = "username"cookie.Expires = #3/31/2010#Response.Cookies.Add(cookie)Creating cookies (VB.NET) HttpCookie cookie = Request.Cookies["Preferences"];      if (cookie == null)      {        cookie = new HttpCookie("Preferences");      }      cookie["Name"] = txtName.Text;      cookie.Expires = DateTime.Now.AddYears(1);      Response.Cookies.Add(cookie);Creating cookies (C#)    HttpCookie MyCookie = new HttpCookie("Background");    MyCookie.Value = "value";    Response.Cookies.Add(MyCookie);Reading cookies  (VB.NET)Dim cookieCols As New HttpCookieCollectioncookieCols = Request.CookiesDim str As String' Read and add all cookies to the list boxFor Each str In cookieColsListBox1.Items.Add("Value:" Request.Cookies(str).Value)Next Reading cookies (C#) ArrayList colCookies = new ArrayList();        for (int i = 0; i < Request.Cookies.Count; i++)            colCookies.Add(Request.Cookies[i]);        grdCookies.DataSource = colCookies;        grdCookies.DataBind();Deleting cookies (VB.NET)Dim cookieCols As New HttpCookieCollectioncookieCols = Request.CookiesDim str As String' Read and add all cookies to the list boxRequest.Cookies.Remove("PASS")Request.Cookies.Remove("UID")Deleting cookies (C#)string[] cookies = Request.Cookies.AllKeys;        foreach (string cookie in cookies)        {            ListBox1.Items.Add("Deleting " + cookie);            Response.Cookies[cookie].Expires = DateTime.Now.AddDays(-1);        }

    Read the article

  • ASP.NET and HTML5 Local Storage

    - by Stephen Walther
    My favorite feature of HTML5, hands-down, is HTML5 local storage (aka DOM storage). By taking advantage of HTML5 local storage, you can dramatically improve the performance of your data-driven ASP.NET applications by caching data in the browser persistently. Think of HTML5 local storage like browser cookies, but much better. Like cookies, local storage is persistent. When you add something to browser local storage, it remains there when the user returns to the website (possibly days or months later). Importantly, unlike the cookie storage limitation of 4KB, you can store up to 10 megabytes in HTML5 local storage. Because HTML5 local storage works with the latest versions of all modern browsers (IE, Firefox, Chrome, Safari), you can start taking advantage of this HTML5 feature in your applications right now. Why use HTML5 Local Storage? I use HTML5 Local Storage in the JavaScript Reference application: http://Superexpert.com/JavaScriptReference The JavaScript Reference application is an HTML5 app that provides an interactive reference for all of the syntax elements of JavaScript (You can read more about the application and download the source code for the application here). When you open the application for the first time, all of the entries are transferred from the server to the browser (all 300+ entries). All of the entries are stored in local storage. When you open the application in the future, only changes are transferred from the server to the browser. The benefit of this approach is that the application performs extremely fast. When you click the details link to view details on a particular entry, the entry details appear instantly because all of the entries are stored on the client machine. When you perform key-up searches, by typing in the filter textbox, matching entries are displayed very quickly because the entries are being filtered on the local machine. This approach can have a dramatic effect on the performance of any interactive data-driven web application. Interacting with data on the client is almost always faster than interacting with the same data on the server. Retrieving Data from the Server In the JavaScript Reference application, I use Microsoft WCF Data Services to expose data to the browser. WCF Data Services generates a REST interface for your data automatically. Here are the steps: Create your database tables in Microsoft SQL Server. For example, I created a database named ReferenceDB and a database table named Entities. Use the Entity Framework to generate your data model. For example, I used the Entity Framework to generate a class named ReferenceDBEntities and a class named Entities. Expose your data through WCF Data Services. I added a WCF Data Service to my project and modified the data service class to look like this:   using System.Data.Services; using System.Data.Services.Common; using System.Web; using JavaScriptReference.Models; namespace JavaScriptReference.Services { [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class EntryService : DataService<ReferenceDBEntities> { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { config.UseVerboseErrors = true; config.SetEntitySetAccessRule("*", EntitySetRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } // Define a change interceptor for the Products entity set. [ChangeInterceptor("Entries")] public void OnChangeEntries(Entry entry, UpdateOperations operations) { if (!HttpContext.Current.Request.IsAuthenticated) { throw new DataServiceException("Cannot update reference unless authenticated."); } } } }     The WCF data service is named EntryService. Notice that it derives from DataService<ReferenceEntitites>. Because it derives from DataService<ReferenceEntities>, the data service exposes the contents of the ReferenceEntitiesDB database. In the code above, I defined a ChangeInterceptor to prevent un-authenticated users from making changes to the database. Anyone can retrieve data through the service, but only authenticated users are allowed to make changes. After you expose data through a WCF Data Service, you can use jQuery to retrieve the data by performing an Ajax call. For example, I am using an Ajax call that looks something like this to retrieve the JavaScript entries from the EntryService.svc data service: $.ajax({ dataType: "json", url: “/Services/EntryService.svc/Entries”, success: function (result) { var data = callback(result["d"]); } });     Notice that you must unwrap the data using result[“d”]. After you unwrap the data, you have a JavaScript array of the entries. I’m transferring all 300+ entries from the server to the client when the application is opened for the first time. In other words, I transfer the entire database from the server to the client, once and only once, when the application is opened for the first time. The data is transferred using JSON. Here is a fragment: { "d" : [ { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(1)", "type": "ReferenceDBModel.Entry" }, "Id": 1, "Name": "Global", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "object", "ShortDescription": "Contains global variables and functions", "FullDescription": "<p>\nThe Global object is determined by the host environment. In web browsers, the Global object is the same as the windows object.\n</p>\n<p>\nYou can use the keyword <code>this</code> to refer to the Global object when in the global context (outside of any function).\n</p>\n<p>\nThe Global object holds all global variables and functions. For example, the following code demonstrates that the global <code>movieTitle</code> variable refers to the same thing as <code>window.movieTitle</code> and <code>this.movieTitle</code>.\n</p>\n<pre>\nvar movieTitle = \"Star Wars\";\nconsole.log(movieTitle === this.movieTitle); // true\nconsole.log(movieTitle === window.movieTitle); // true\n</pre>\n", "LastUpdated": "634298578273756641", "IsDeleted": false, "OwnerId": null }, { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(2)", "type": "ReferenceDBModel.Entry" }, "Id": 2, "Name": "eval(string)", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "function", "ShortDescription": "Evaluates and executes JavaScript code dynamically", "FullDescription": "<p>\nThe following code evaluates and executes the string \"3+5\" at runtime.\n</p>\n<pre>\nvar result = eval(\"3+5\");\nconsole.log(result); // returns 8\n</pre>\n<p>\nYou can rewrite the code above like this:\n</p>\n<pre>\nvar result;\neval(\"result = 3+5\");\nconsole.log(result);\n</pre>", "LastUpdated": "634298580913817644", "IsDeleted": false, "OwnerId": 1 } … ]} I worried about the amount of time that it would take to transfer the records. According to Google Chome, it takes about 5 seconds to retrieve all 300+ records on a broadband connection over the Internet. 5 seconds is a small price to pay to avoid performing any server fetches of the data in the future. And here are the estimated times using different types of connections using Fiddler: Notice that using a modem, it takes 33 seconds to download the database. 33 seconds is a significant chunk of time. So, I would not use the approach of transferring the entire database up front if you expect a significant portion of your website audience to connect to your website with a modem. Adding Data to HTML5 Local Storage After the JavaScript entries are retrieved from the server, the entries are stored in HTML5 local storage. Here’s the reference documentation for HTML5 storage for Internet Explorer: http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx You access local storage by accessing the windows.localStorage object in JavaScript. This object contains key/value pairs. For example, you can use the following JavaScript code to add a new item to local storage: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You can use the Google Chrome Storage tab in the Developer Tools (hit CTRL-SHIFT I in Chrome) to view items added to local storage: After you add an item to local storage, you can read it at any time in the future by using the window.localStorage.getItem() method: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You only can add strings to local storage and not JavaScript objects such as arrays. Therefore, before adding a JavaScript object to local storage, you need to convert it into a JSON string. In the JavaScript Reference application, I use a wrapper around local storage that looks something like this: function Storage() { this.get = function (name) { return JSON.parse(window.localStorage.getItem(name)); }; this.set = function (name, value) { window.localStorage.setItem(name, JSON.stringify(value)); }; this.clear = function () { window.localStorage.clear(); }; }   If you use the wrapper above, then you can add arbitrary JavaScript objects to local storage like this: var store = new Storage(); // Add array to storage var products = [ {name:"Fish", price:2.33}, {name:"Bacon", price:1.33} ]; store.set("products", products); // Retrieve items from storage var products = store.get("products");   Modern browsers support the JSON object natively. If you need the script above to work with older browsers then you should download the JSON2.js library from: https://github.com/douglascrockford/JSON-js The JSON2 library will use the native JSON object if a browser already supports JSON. Merging Server Changes with Browser Local Storage When you first open the JavaScript Reference application, the entire database of JavaScript entries is transferred from the server to the browser. Two items are added to local storage: entries and entriesLastUpdated. The first item contains the entire entries database (a big JSON string of entries). The second item, a timestamp, represents the version of the entries. Whenever you open the JavaScript Reference in the future, the entriesLastUpdated timestamp is passed to the server. Only records that have been deleted, updated, or added since entriesLastUpdated are transferred to the browser. The OData query to get the latest updates looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated%20gt%20634301199890494792L) If you remove URL encoding, the query looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated gt 634301199890494792L) This query returns only those entries where the value of LastUpdated > 634301199890494792 (the version timestamp). The changes – new JavaScript entries, deleted entries, and updated entries – are merged with the existing entries in local storage. The JavaScript code for performing the merge is contained in the EntriesHelper.js file. The merge() method looks like this:   merge: function (oldEntries, newEntries) { // concat (this performs the add) oldEntries = oldEntries || []; var mergedEntries = oldEntries.concat(newEntries); // sort this.sortByIdThenLastUpdated(mergedEntries); // prune duplicates (this performs the update) mergedEntries = this.pruneDuplicates(mergedEntries); // delete mergedEntries = this.removeIsDeleted(mergedEntries); // Sort this.sortByName(mergedEntries); return mergedEntries; },   The contents of local storage are then updated with the merged entries. I spent several hours writing the merge() method (much longer than I expected). I found two resources to be extremely useful. First, I wrote extensive unit tests for the merge() method. I wrote the unit tests using server-side JavaScript. I describe this approach to writing unit tests in this blog entry. The unit tests are included in the JavaScript Reference source code. Second, I found the following blog entry to be super useful (thanks Nick!): http://nicksnettravels.builttoroam.com/post/2010/08/03/OData-Synchronization-with-WCF-Data-Services.aspx One big challenge that I encountered involved timestamps. I originally tried to store an actual UTC time as the value of the entriesLastUpdated item. I quickly discovered that trying to work with dates in JSON turned out to be a big can of worms that I did not want to open. Next, I tried to use a SQL timestamp column. However, I learned that OData cannot handle the timestamp data type when doing a filter query. Therefore, I ended up using a bigint column in SQL and manually creating the value when a record is updated. I overrode the SaveChanges() method to look something like this: public override int SaveChanges(SaveOptions options) { var changes = this.ObjectStateManager.GetObjectStateEntries( EntityState.Modified | EntityState.Added | EntityState.Deleted); foreach (var change in changes) { var entity = change.Entity as IEntityTracking; if (entity != null) { entity.LastUpdated = DateTime.Now.Ticks; } } return base.SaveChanges(options); }   Notice that I assign Date.Now.Ticks to the entity.LastUpdated property whenever an entry is modified, added, or deleted. Summary After building the JavaScript Reference application, I am convinced that HTML5 local storage can have a dramatic impact on the performance of any data-driven web application. If you are building a web application that involves extensive interaction with data then I recommend that you take advantage of this new feature included in the HTML5 standard.

    Read the article

  • Integrate BING API for Search inside ASP.Net web application

    - by sreejukg
    As you might already know, Bing is the Microsoft Search engine and is getting popular day by day. Bing offers APIs that can be integrated into your website to increase your website functionality. At this moment, there are two important APIs available. They are Bing Search API Bing Maps The Search API enables you to build applications that utilize Bing’s technology. The API allows you to search multiple source types such as web; images, video etc. and supports various output prototypes such as JSON, XML, and SOAP. Also you will be able to customize the search results as you wish for your public facing website. Bing Maps API allows you to build robust applications that use Bing Maps. In this article I am going to describe, how you can integrate Bing search into your website. In order to start using Bing, First you need to sign in to http://www.bing.com/toolbox/bingdeveloper/ using your windows live credentials. Click on the Sign in button, you will be asked to enter your windows live credentials. Once signed in you will be redirected to the Developer page. Here you can create applications and get AppID for each application. Since I am a first time user, I don’t have any applications added. Click on the Add button to add a new application. You will be asked to enter certain details about your application. The fields are straight forward, only thing you need to note is the website field, here you need to enter the website address from where you are going to use this application, and this field is optional too. Of course you need to agree on the terms and conditions and then click Save. Once you click on save, the application will be created and application ID will be available for your use. Now we got the APP Id. Basically Bing supports three protocols. They are JSON, XML and SOAP. JSON is useful if you want to call the search requests directly from the browser and use JavaScript to parse the results, thus JSON is the favorite choice for AJAX application. XML is the alternative for applications that does not support SOAP, e.g. flash/ Silverlight etc. SOAP is ideal for strongly typed languages and gives a request/response object model. In this article I am going to demonstrate how to search BING API using SOAP protocol from an ASP.Net application. For the purpose of this demonstration, I am going to create an ASP.Net project and implement the search functionality in an aspx page. Open Visual Studio, navigate to File-> New Project, select ASP.Net empty web application, I named the project as “BingSearchSample”. Add a Search.aspx page to the project, once added the solution explorer will looks similar to the following. Now you need to add a web reference to the SOAP service available from Bing. To do this, from the solution explorer, right click your project, select Add Service Reference. Now the new service reference dialog will appear. In the left bottom of the dialog, you can find advanced button, click on it. Now the service reference settings dialog will appear. In the bottom left, you can find Add Web Reference button, click on it. The add web reference dialog will appear now. Enter the URL as http://api.bing.net/search.wsdl?AppID=<YourAppIDHere>&version=2.2 (replace <yourAppIDHere> with the appID you have generated previously) and click on the button next to it. This will find the web service methods available. You can change the namespace suggested by Bing, but for the purpose of this demonstration I have accepted all the default settings. Click on the Add reference button once you are done. Now the web reference to Search service will be added your project. You can find this under solution explorer of your project. Now in the Search.aspx, that you previously created, place one textbox, button and a grid view. For the purpose of this demonstration, I have given the identifiers (ID) as txtSearch, btnSearch, gvSearch respectively. The idea is to search the text entered in the text box using Bing service and show the results in the grid view. In the design view, the search.aspx looks as follows. In the search.aspx.cs page, add a using statement that points to net.bing.api. I have added the following code for button click event handler. The code is very straight forward. It just calls the service with your AppID, a query to search and a source for searching. Let us run this page and see the output when I enter Microsoft in my textbox. If you want to search a specific site, you can include the site name in the query parameter. For e.g. the following query will search the word Microsoft from www.microsoft.com website. searchRequest.Query = “site:www.microsoft.com Microsoft”; The output of this query is as follows. Integrating BING search API to your website is easy and there is no limit on the customization of the interface you can do. There is no Bing branding required so I believe this is a great option for web developers when they plan for site search.

    Read the article

  • How to reproject a shapefile from WGS 84 to Spherical/Web Mercator projection.

    - by samkea
    Definitions: You will need to know the meaning of these terms below. I have given a small description to the acronyms but you can google and know more about them. #1:WGS-84- World Geodetic Systems (1984)- is a standard reference coordinate system used for Cartography, Geodesy and Navigation. #2: EPGS-European Petroleum Survey Group-was a scientific organization with ties to the European petroleum industry consisting of specialists working in applied geodesy, surveying, and cartography related to oil exploration. EPSG::4326 is a common coordinate reference system that refers to WGS84 as (latitude, longitude) pair coordinates in degrees with Greenwich as the central meridian. Any degree representation (e.g., decimal or DMSH: degrees minutes seconds hemisphere) may be used. Which degree representation is used must be declared for the user by the supplier of data. So, the Spherical/Web Mercator projection is referred to as EPGS::3785 which is renamed to EPSG:900913 by google for use in googlemaps. The associated CRS(Coordinate Reference System) for this is the "Popular Visualisation CRS / Mercator ". This is the kind of projection that is used by GoogleMaps, BingMaps,OSM,Virtual Earth, Deep Earth excetra...to show interactive maps over the web with thier nearly precise coordinates.  Reprojection: After reading alot about reprojecting my coordinates from the deepearth project on Codeplex, i still could not do it. After some help from a colleague, i got my ball rolling.This is how i did it. #1 You need to download and open your shapefile using Q-GIS; its the one with the biggest number of coordinate reference systems/ projections. #2 Use the plugins menu, and enable ftools and the WFS plugin. #3 Use the Vector menu--> Data Management Tools and choose define current projection. Enable, use predefined reference system and choose WGS 84 coodinate system. I am personally in zone 36, so i chose WGS84-UTM Zone 36N under ( Projected Coordinate Systems--> Universal Transverse Mercator) and click ok. #4 Now use the Vector menu--> Data Management Tools and choose export to new projection. The same dialog will pop-up. Now choose WGS 84 EPGS::4326 under Geodetic Coordinate Systems. My Input user Defined Spatial Reference System should looks like this: +proj=tmerc +lat_0=0 +lon_0=33 +k=0.9996 +x_0=500000 +y_0=200000 +ellps=WGS84 +datum=WGS84 +units=m +no_defs Your Output user Defined Spatial Reference System should look like this: +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs Browse for the place where the shapefile is going to be and give the shapefile a name(like origna_reprojected). If it prompts you to add the projected layer to the TOC, accept. There, you have your re-projected map with latitude and longitude pair of coordinates. #5 Now, this is not the actual Spherical/Web Mercator projection, but dont worry, this is where you have to stop. All the other custom web-mapping portals will pick this projection and transform it into EPGS::3785 or EPSG:900913 but the coordinates will still remain as the LatLon pair of the projected shapefile. If you want to test, a particular know point, Q-GIS has a lot of room for that. Go ahead and test it.

    Read the article

  • apache mod_jk loadbalancing issue for glassfish cluster instances

    - by SibzTer
    I have a JEE ear application deployed on 2 clusters with 2 instances each on Glassfish v3.1. These are load balanced by an Apache server running on the same machine. My problem is that I am frequently seeing the following error messages frequently in the mod_jk.log file. Can you help me understand what the issue is? [Mon Jun 13 09:37:51 2011] [7116:7852] [info] ajp_process_callback::jk_ajp_common.c (1885): Writing to client aborted or client network problems [Mon Jun 13 09:37:51 2011] [7116:7852] [info] ajp_service::jk_ajp_common.c (2543): (viewerLocalInstance4) sending request to tomcat failed (unrecoverable), because of client write error (attempt=1) [Mon Jun 13 09:37:51 2011] loadbalancerLocal myServer 0.062500 [Mon Jun 13 09:37:51 2011] [7116:6512] [info] ajp_process_callback::jk_ajp_common.c (1885): Writing to client aborted or client network problems [Mon Jun 13 09:37:51 2011] [7116:6512] [info] ajp_service::jk_ajp_common.c (2543): (viewerLocalInstance4) sending request to tomcat failed (unrecoverable), because of client write error (attempt=1) [Mon Jun 13 09:37:52 2011] [7116:3080] [info] ajp_process_callback::jk_ajp_common.c (1885): Writing to client aborted or client network problems [Mon Jun 13 09:37:52 2011] [7116:3080] [info] ajp_service::jk_ajp_common.c (2543): (viewerLocalInstance4) sending request to tomcat failed (unrecoverable), because of client write error (attempt=1) [Mon Jun 13 09:38:21 2011] [7116:6512] [info] service::jk_lb_worker.c (1388): service failed, worker viewerLocalInstance4 is in local error state [Mon Jun 13 09:38:21 2011] [7116:7852] [info] service::jk_lb_worker.c (1388): service failed, worker viewerLocalInstance4 is in local error state [Mon Jun 13 09:38:21 2011] [7116:6512] [info] service::jk_lb_worker.c (1407): unrecoverable error 200, request failed. Client failed in the middle of request, we can't recover to another instance. [Mon Jun 13 09:38:21 2011] [7116:7852] [info] service::jk_lb_worker.c (1407): unrecoverable error 200, request failed. Client failed in the middle of request, we can't recover to another instance. [Mon Jun 13 09:38:21 2011] loadbalancerLocal myServer 29.046875 [Mon Jun 13 09:38:21 2011] loadbalancerLocal myServer 29.171875 [Mon Jun 13 09:38:21 2011] [7116:6512] [info] jk_handler::mod_jk.c (2620): Aborting connection for worker=loadbalancerLocal [Mon Jun 13 09:38:21 2011] [7116:7852] [info] jk_handler::mod_jk.c (2620): Aborting connection for worker=loadbalancerLocal [Mon Jun 13 09:38:21 2011] [7116:7852] [info] ajp_process_callback::jk_ajp_common.c (1885): Writing to client aborted or client network problems [Mon Jun 13 09:38:21 2011] [7116:7852] [info] ajp_service::jk_ajp_common.c (2543): (viewerLocalInstance4) sending request to tomcat failed (unrecoverable), because of client write error (attempt=1) [Mon Jun 13 09:38:21 2011] loadbalancerLocal myServer 0.156250 [Mon Jun 13 09:38:21 2011] loadbalancerLocal myServer 0.062500 [Mon Jun 13 09:38:22 2011] [7116:3080] [info] service::jk_lb_worker.c (1388): service failed, worker viewerLocalInstance4 is in local error state [Mon Jun 13 09:38:22 2011] [7116:3080] [info] service::jk_lb_worker.c (1407): unrecoverable error 200, request failed. Client failed in the middle of request, we can't recover to another instance.

    Read the article

  • Installation procedure RAC One Node

    - by rene.kundersma
    Okay, In order to test RAC One Node, on my Oracle VM Laptop, I just: - installed Oracle VM 2.2 - Created two OEL 5.3 images The two images are fully prepared for Oracle 11gr2 Grid Infrastructure and 11gr2 RAC including four shared disks for ASM and private nics. After installation of the Oracle 11gr2 Grid Infrastructure and a "software only installation" of 11gr2 RAC, I installed patch 9004119 as you can see with the opatch lsinv output: This patch has the scripts required to administer RAC One Node, you will see them later. At the moment we have them available for Linux and Solaris. After installation of the patch, I created a RAC database with an instance on one node. Please note that the "Global Database Name" has to be the same as the SID prefix and should be less then or equal to 8 characters: When the database creation is done, first I create a service. This is because RAC One Node needs to be "initialized" each time you add a service: The service configuration details are: After creating the service, a script called raconeinit needs to run from $RDBMS_HOME/bin. This is a script supplied by the patch. I can imagine the next major patch set of 11gr2 has this scripts available by default. The script will configure the database to run on other nodes: After initialization, when you would run raconeinit again, you would see: So, now the configuration is ready and we are ready to run 'Omotion' and move the service around from one node to the other (yes, vm competitor: this is service is available during the migration, nice right ?) . Omotion is started by running Omotion. With Omotion -v you get verbose output: So, during the migration you will see the two instance active: And, after the migration, there is only one instance left on the new node:

    Read the article

  • Upgraded Linux, now CMS Made Simple is spewing errors

    - by Paul Tomblin
    I upgraded my host from Debian Lenny to Debian Squeeze, and now my CMS Made Simple site is spewing PHP errors all over the screen. I thought I'd upgrade the CMS because I haven't done so in a while, but Google Chrome tells me that the CMS Made Simple site is infested with malware. What are my options now? Example errors: Deprecated: Assigning the return value of new by reference is deprecated in /www/danmurn/cms/include.php on line 73 Deprecated: Assigning the return value of new by reference is deprecated in /www/danmurn/cms/include.php on line 162 Deprecated: Assigning the return value of new by reference is deprecated in /www/danmurn/cms/include.php on line 240 Warning: session_start() [function.session-start]: Cannot send session cookie - headers already sent by (output started at /www/danmurn/cms/include.php:73) in /www/danmurn/cms/include.php on line 34 Warning: session_start() [function.session-start]: Cannot send session cache limiter - headers already sent (output started at /www/danmurn/cms/include.php:73) in /www/danmurn/cms/include.php on line 34 Deprecated: Function set_magic_quotes_runtime() is deprecated in /www/danmurn/cms/include.php on line 62 Deprecated: Assigning the return value of new by reference is deprecated in /www/danmurn/cms/lib/classes/class.global.inc.php on line 184 Deprecated: Assigning the return value of new by reference is deprecated in /www/danmurn/cms/lib/classes/class.global.inc.php on line 196

    Read the article

  • Recent ALM Rangers Summary Posts

    - by Enrique Lima
    Willy-Peter Schaub has been a machine producing and posting content.  It is such a gem of information that you can find in the content being posted.  He has created some Summary Posts on the specific topics the ALM Rangers are working on. Here is the list of quick access TOC Posts. TOC: “Tags” a la acronyms … what do they all mean? TOC: TFS Integration Tools Blog Posts and Reference Sites TOC: TFS Iteration Automation Blog Posts and Reference Sites TOC: Virtual Machine (VM) Factory TOC: Build Customization Guide Blog Posts and Reference Sites TOC: Lab Management Guide Blog Posts and Reference Sites

    Read the article

  • Elasticsearch won't start anymore

    - by Oleander
    I restarted my elasticsearch instance 5 days ago and I haven't manage to start it since then. I get no output in the log file /var/log/elasticsearch/ nor does the elasticsearch binary print any information when running at using elasticsearch -f. I once manage to get this output. [2012-11-15 22:51:18,427][INFO ][node ] [Piper] {0.19.11}[29584]: initializing ... [2012-11-15 22:51:18,433][INFO ][plugins ] [Piper] loaded [], sites [] Running curl http://localhost:9200 resulted in curl: (7) couldn't connect to host. I've tried increasing the memory from 3gb to 10gb, but that didn't make any diffrence. Running /etc/init.d/elasticsearch start takes 30 seconds. ps aux | grep elasticsearch results in this output. /usr/local/share/elasticsearch/bin/service/exec/elasticsearch-linux-x86-64 /usr/local/share/elasticsearch/bin/service/elasticsearch.conf wrapper.syslog.ident=elasticsearch wrapper.pidfile=/usr/local/share/elasticsearch/bin/service/./elasticsearch.pid wrapper.name=elasticsearch wrapper.displayname=ElasticSearch wrapper.daemonize=TRUE wrapper.statusfile=/usr/local/share/elasticsearch/bin/service/./elasticsearch.status wrapper.java.statusfile=/usr/local/share/elasticsearch/bin/service/./elasticsearch.java.status wrapper.script.version=3.5.14 /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java -Delasticsearch-service -Des.path.home=/usr/local/share/elasticsearch -Xss256k -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75 -XX:+UseCMSInitiatingOccupancyOnly -XX:+HeapDumpOnOutOfMemoryError -Djava.awt.headless=true -Xms1024m -Xmx1024m -Djava.library.path=/usr/local/share/elasticsearch/bin/service/lib -classpath /usr/local/share/elasticsearch/bin/service/lib/wrapper.jar:/usr/local/share/elasticsearch/lib/elasticsearch-0.19.11.jar:/usr/local/share/elasticsearch/lib/elasticsearch-0.19.11.jar:/usr/local/share/elasticsearch/lib/jna-3.3.0.jar:/usr/local/share/elasticsearch/lib/log4j-1.2.17.jar:/usr/local/share/elasticsearch/lib/lucene-analyzers-3.6.1.jar:/usr/local/share/elasticsearch/lib/lucene-core-3.6.1.jar:/usr/local/share/elasticsearch/lib/lucene-highlighter-3.6.1.jar:/usr/local/share/elasticsearch/lib/lucene-memory-3.6.1.jar:/usr/local/share/elasticsearch/lib/lucene-queries-3.6.1.jar:/usr/local/share/elasticsearch/lib/snappy-java-1.0.4.1.jar:/usr/local/share/elasticsearch/lib/sigar/sigar-1.6.4.jar -Dwrapper.key=k7r81VpK3_Bb3N_5 -Dwrapper.port=32000 -Dwrapper.jvm.port.min=31000 -Dwrapper.jvm.port.max=31999 -Dwrapper.disable_console_input=TRUE -Dwrapper.pid=23888 -Dwrapper.version=3.5.14 -Dwrapper.native_library=wrapper -Dwrapper.service=TRUE -Dwrapper.cpu.timeout=10 -Dwrapper.jvmid=1 org.tanukisoftware.wrapper.WrapperSimpleApp org.elasticsearch.bootstrap.ElasticSearchF My current system: ElasticSearch Version: 0.19.11, JVM: 23.2-b09 Ubuntu 12.04 LTS I've tried re-install elasticsearch, removing old directories. Why can't I get it to start?

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 31 (sys.dm_server_services)

    - by Tamarick Hill
    The last DMV for this month long blog session is the sys.dm_server_services DMV. This DMV returns information about your SQL Server, Full-Text, and SQL Server Agent related services. To further illustrate the information this DMV contains, lets run it against our Training instance that we have been using for this blog series. SELECT * FROM sys.dm_server_services The first column returned by this DMV is the actual Service Name. The next columns are the startup_type and startup_type_desc columns which display your chosen method for how a particular method should be started. The next columns status and status_desc display the current status for each of your Services on the instance. The process_id column represents the server process id. The last_startup_time column gives you the last time that a particular service was started. The service_account column provides you with the name of the account that is used to control the service. The filename column gives you the full path to the executable for the service. Lastly we have the is_clustered column and the cluster_nodename which indicates whether or not a particular service is clustered and is part of a resource cluster group, and if so, the cluster node that the service is installed on. This is a good DMV to provide you with a quick snapshot view of the current SQL Server services you have on your instance. For more information on this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/hh204542.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • Documentation in RETL, RIB, and RSL Release 13.2.4

    - by Oracle Retail Documentation Team
    The Patch Release 13.2.4 of the integration-related products, Oracle Retail Extract, Transform and Load (RETL), Oracle Retail Integration Bus (RIB), and Oracle Retail Service Layer (RSL), is now available from My Oracle Support. End User Documentation Enhancements The following enhancements have been made to the documentation: New RETL Installation GuideNew in Release 13.2.4, the RETL Installation Guide includes complete instructions to install and configure RETL 13.2.4. Installation instructions were previously in the Programmer’s Guide. As part of this enhancement, content was added to and tested in the RETL Installation Guide to ensure that it contain similar chapters and sections included in other Oracle Retail Installation Guides. Template Creator documentation, under the RIB product umbrellaThe Oracle Retail Functional Artifact Guide and the Oracle Retail Functional ArtifactGenerator Guide contain new information about a new tool called the Template Creator. The Functional Artifacts Generator tool has been enhanced to generate custom and localized payloads business objects on demand, based on Oracle Retail Functional Artifact rules. A new tool called the Template Creator has been provided to create the placeholder XSDs and the import hooks in the base objects on an as-needed basis. In other words, this tool constructs the appropriate placeholders in the packaging structure in the correct locations. The Artifact Generator tools, including the Template Creator, can be used either as a command line or GUI tool set.   List of Documents in RETL, RIB, and the Oracle Retail Service Layer (RSL) 13.2.4  The following documents are included in release 13.2.4 of the applications noted above: RIB Oracle Retail Integration Bus Release Notes Oracle Retail Integration Bus Implementation Guide Oracle Retail Integration Bus Installation Guide Oracle Retail Integration Bus Operations Guide Oracle Retail Functional Artifact Generator Guide Oracle Retail Functional Artifacts Guide Oracle Retail Service Layer Installation Guide Oracle Retail SOA Enabler Tool Guide RIB Integration Guide (ID 1277421.1) RETL Oracle Retail Extract, Transform, and Load Release Notes Oracle Retail Extract, Transform, and Load Installation Guide Oracle Retail Extract, Transform, and Load Programmer’s Guide RSL Oracle Retail Service Layer Release Notes Oracle Retail Service Layer Installation Guide Oracle Retail Service Layer Programmer’s Guide

    Read the article

  • Setting up a very mixed Active Directory network to work with PowerShell Remote Administration

    - by erictheavg
    Summary: I want to be able to monitor the computers on my network, but don't need it to be automated. We're too small to purchase anything like MOM, but too big to do anything manually (~100 machines in two locations). I just keep running into issues, and was wondering if there's a master list of Group Policy settings I can distribute to my environment to get Remote Powershell working. Environment: Our AD network is pretty mixed. The end users have XP SP3, Win 7, and Win 7 x64. The servers include Win2k3 SP2, Win2k8, Win2k8 x64, Win2k8 R2, and Win2k8 R2 x64. Details: I'm trying to get it to work with Remote Powershell, but I run into errors like the following: Connecting to remote server failed with the following error message : The WinRM client cannot process the request. Default authentication may be used with an IP address under the following conditions: the transport is HTTPS or the destination is in the TrustedHosts list, and explicit credentials are provided. Use winrm.cmd to configure TrustedHosts. Note that computers in the TrustedHosts list might not be authenticated. For more information on how to set TrustedHosts run the following command: winrm help config. For more information, see the about_Remote_Troubleshooting Help topic. + CategoryInfo : OpenError: (:) [], PSRemotingTransportException + FullyQualifiedErrorId : PSSessionStateBroken Then I go to the computer (Win2k3 SP2 server) and run winrm quickconfig per the recommendations via google, and it says: Make these changes [y/n]? y WinRM has been updated to receive requests. WinRM service started. WSManFault Message = The client cannot connect to the destination specified in the request. Verify that the service on the destination is running and is accepting requests. Consult the logs and documentation for the WS-Management service running on the destination, most commonly IIS or WinRM. If the destination is the WinRM service, run the following command on the destination to analyze and configure the WinRM service: "winrm quickconfig". Error number: -2144108526 0x80338012 The client cannot connect to the destination specified in the request. Verify that the service on the destination is running and is accepting requests. Consult the logs and documentation for the WS-Management service running on the destination, most commonly IIS or WinRM. If the destination is the WinRM service, run the following command on the destination to analyze and configure the WinRM service: "winrm quickconfig". That's right. It tells me to remedy my winrm quickconfig failure by running winrm quickconfig. I don't want to band-aid this project one google search at a time. I'm sure there is a step-by-step tutorial out there on how to set up a network for powershell remote administration. Does anyone know of one? Books are acceptable. Thanks in advance! I didn't think my question would get this long.

    Read the article

  • WSDL-world vs CLR-world – some differences

    - by nmarun
    A change in mindset is required when switching between a typical CLR application and a web service application. There are some things in a CLR environment that just don’t add-up in a WSDL arena (and vice-versa). I’m listing some of them here. When I say WSDL-world, I’m mostly talking with respect to a WCF Service and / or a Web Service. No (direct) Method Overloading: You definitely can have overloaded methods in a, say, Console application, but when it comes to a WCF / Web Services application, you need to adorn these overloaded methods with a special attribute so the service knows which specific method to invoke. When you’re working with WCF, use the Name property of the OperationContract attribute to provide unique names. 1: [OperationContract(Name = "AddInt")] 2: int Add(int arg1, int arg2); 3:  4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); By default, the proxy generates the code for this as: 1: [System.ServiceModel.OperationContractAttribute( 2: Action="http://tempuri.org/ILearnWcfService/AddInt", 3: ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute( 7: Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", 8: ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 9: double AddDouble(double arg1, double arg2); With Web Services though the story is slightly different. Even after setting the MessageName property of the WebMethod attribute, the proxy does not change the name of the method, but only the underlying soap message changes. 1: [WebMethod] 2: public string HelloGalaxy() 3: { 4: return "Hello Milky Way!"; 5: } 6:  7: [WebMethod(MessageName = "HelloAnyGalaxy")] 8: public string HelloGalaxy(string galaxyName) 9: { 10: return string.Format("Hello {0}!", galaxyName); 11: } The one thing you need to remember is to set the WebServiceBinding accordingly. 1: [WebServiceBinding(ConformsTo = WsiProfiles.None)] The proxy is: 1: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloGalaxy", 2: RequestNamespace="http://tempuri.org/", 3: ResponseNamespace="http://tempuri.org/", 4: Use=System.Web.Services.Description.SoapBindingUse.Literal, 5: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 6: public string HelloGalaxy() 7:  8: [System.Web.Services.WebMethodAttribute(MessageName="HelloGalaxy1")] 9: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloAnyGalaxy", 10: RequestElementName="HelloAnyGalaxy", 11: RequestNamespace="http://tempuri.org/", 12: ResponseElementName="HelloAnyGalaxyResponse", 13: ResponseNamespace="http://tempuri.org/", 14: Use=System.Web.Services.Description.SoapBindingUse.Literal, 15: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 16: [return: System.Xml.Serialization.XmlElementAttribute("HelloAnyGalaxyResult")] 17: public string HelloGalaxy(string galaxyName) 18:  You see the calling method name is the same in the proxy, however the soap message that gets generated is different. Using interchangeable data types: See details on this here. Type visibility: In a CLR-based application, if you mark a field as private, well we all know, it’s ‘private’. Coming to a WSDL side of things, in a Web Service, private fields and web methods will not get generated in the proxy. In WCF however, all your operation contracts will be public as they get implemented from an interface. Even in case your ServiceContract interface is declared internal/private, you will see it as a public interface in the proxy. This is because type visibility is a CLR concept and has no bearing on WCF. Also if a private field has the [DataMember] attribute in a data contract, it will get emitted in the proxy class as a public property for the very same reason. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: private int _x; 6:  7: [DataMember] 8: public int Id { get; set; } 9:  10: [DataMember] 11: public string FirstName { get; set; } 12:  13: [DataMember] 14: public string Header { get; set; } 15: } 16: } See the ‘_x’ field is a private member with the [DataMember] attribute, but the proxy class shows as below: 1: [System.Runtime.Serialization.DataMemberAttribute()] 2: public int _x { 3: get { 4: return this._xField; 5: } 6: set { 7: if ((this._xField.Equals(value) != true)) { 8: this._xField = value; 9: this.RaisePropertyChanged("_x"); 10: } 11: } 12: } Passing derived types to web methods / operation contracts: Once again, in a CLR application, I can have a derived class be passed as a parameter where a base class is expected. I have the following set up for my WCF service. 1: [DataContract] 2: public class Employee 3: { 4: [DataMember(Name = "Id")] 5: public int EmployeeId { get; set; } 6:  7: [DataMember(Name="FirstName")] 8: public string FName { get; set; } 9:  10: [DataMember] 11: public string Header { get; set; } 12: } 13:  14: [DataContract] 15: public class Manager : Employee 16: { 17: [DataMember] 18: private int _x; 19: } 20:  21: // service contract 22: [OperationContract] 23: Manager SaveManager(Employee employee); 24:  25: // in my calling code 26: Manager manager = new Manager {_x = 1, FirstName = "abc"}; 27: manager = LearnWcfServiceClient.SaveManager(manager); The above will throw an exception saying: In short, this is saying, that a Manager type was found where an Employee type was expected! Hierarchy flattening of interfaces in WCF: See details on this here. In CLR world, you’ll see the entire hierarchy as is. That’s another difference. Using ref parameters: * can use ref for parameters, but operation contract should not be one-way (gives an error when you do an update service reference)   => bad programming; create a return object that is composed of everything you need! This one kind of stumped me. Not sure why I tried this, but you can pass parameters prefixed with ref keyword* (* terms and conditions apply). The main issue is this, how would we know the changes that were made to a ‘ref’ input parameter are returned back from the service and updated to the local variable? Turns out both Web Services and WCF make this tracking happen by passing the input parameter in the response soap. This way when the deserializer does its magic, it maps all the elements of the response xml thereby updating our local variable. Here’s what I’m talking about. 1: [WebMethod(MessageName = "HelloAnyGalaxy")] 2: public string HelloGalaxy(ref string galaxyName) 3: { 4: string output = string.Format("Hello {0}", galaxyName); 5: if (galaxyName == "Andromeda") 6: { 7: galaxyName = string.Format("{0} (2.5 million light-years away)", galaxyName); 8: } 9: return output; 10: } This is how the request and response look like in soapUI. As I said above, the behavior is quite similar for WCF as well. But the catch comes when you have a one-way web methods / operation contracts. If you have an operation contract whose return type is void, is marked one-way and that has ref parameters then you’ll get an error message when you try to reference such a service. 1: [OperationContract(Name = "Sum", IsOneWay = true)] 2: void Sum(ref double arg1, ref double arg2); 3:  4: public void Sum(ref double arg1, ref double arg2) 5: { 6: arg1 += arg2; 7: } This is what I got when I did an update to my service reference: Makes sense, because a OneWay operation is… one-way – there’s no returning from this operation. You can also have a one-way web method: 1: [SoapDocumentMethod(OneWay = true)] 2: [WebMethod(MessageName = "HelloAnyGalaxy")] 3: public void HelloGalaxy(ref string galaxyName) This will throw an exception message similar to the one above when you try to update your web service reference. In the CLR space, there’s no such concept of a ‘one-way’ street! Yes, there’s void, but you very well can have ref parameters returned through such a method. Just a point here; although the ref/out concept sounds cool, it’s generally is a code-smell. The better approach is to always return an object that is composed of everything you need returned from a method. These are some of the differences that we need to bear when dealing with services that are different from our daily ‘CLR’ life.

    Read the article

  • Is that possible to route all mails sent to a mailbox to another server's mailbox

    - by Chau Chee Yang
    I have a Linux server that has local mail service. There are few user accounts on this server. User may send the mail to each other but that only restrict to LAN environment only. For example, I may # mail user1 to send mail to user1. User are not able to send mail to public. Some service like hylafax using this local mail service to send notification of fax status. I don't want to manage and maintain local mail service anymore. I have subscribed a package from ISP to host a public domain of my own. I wish to have my hylafax service to able to send the notification mails to public mail server, is that possible to do it? It is great if all mails that send to local mail server may forward to public mail server. That makes the local mail service serve mail forward only.

    Read the article

  • XUbuntu vsftpd couldnt restart

    - by Fara
    # sudo /etc/init.d/vsftpd restart Rather than invoking init scripts through /etc/init.d, use the service(8) utility, e.g. service vsftpd restart Since the script you are attempting to invoke has been converted to an Upstart job, you may also use the stop(8) and then start(8) utilities, e.g. stop vsftpd ; start vsftpd. The restart(8) utility is also available. vsftpd start/running, process 3237 then I tried this # service vsftpd start vsftpd start/running, process 3275 # service vsftpd stop stop: Unknown instance: # service vsftpd restart stop: Unknown instance: vsftpd start/running, process 3315 # sudo service vsftpd restart stop: Unknown instance: vsftpd start/running, process 3358 I couldn't get the vsftp resrated when ever I try the restart the above happens ! How to restart ? Please advice

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 372 373 374 375 376 377 378 379 380 381 382 383  | Next Page >