Search Results

Search found 9889 results on 396 pages for 'pointer speed'.

Page 392/396 | < Previous Page | 388 389 390 391 392 393 394 395 396  | Next Page >

  • 12.04lts: no network internet

    - by dgermann
    Friends-- Cannot connect reliably to ethernet nor at all to Internet: Symptoms: About 2 weeks ago did an upgrade. Have not been able to connect to ethernet nor Internet. Today, for example, boot up this System76 laptop and there was no network connection. Did sudo mount -a and got some internal network connectivity: doug@ubuntu:/sam$ ping earth PING earth (192.168.0.201) 56(84) bytes of data. 64 bytes from earth (192.168.0.201): icmp_req=1 ttl=64 time=0.160 ms 64 bytes from earth (192.168.0.201): icmp_req=2 ttl=64 time=0.177 ms 64 bytes from earth (192.168.0.201): icmp_req=3 ttl=64 time=0.159 ms ^C --- earth ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 1998ms rtt min/avg/max/mdev = 0.159/0.165/0.177/0.013 ms doug@ubuntu:/sam$ ping doug2 PING doug (192.168.0.4) 56(84) bytes of data. ^C --- doug ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 1999ms doug@ubuntu:/sam$ ping sharon PING sharon (192.168.0.111) 56(84) bytes of data. 64 bytes from sharon (192.168.0.111): icmp_req=1 ttl=128 time=0.276 ms ^C --- sharon ping statistics --- 6 packets transmitted, 1 received, 83% packet loss, time 5031ms rtt min/avg/max/mdev = 0.276/0.276/0.276/0.000 ms doug@ubuntu:/sam$ ping 192.168.0.1 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data. ^C --- 192.168.0.1 ping statistics --- 6 packets transmitted, 0 received, 100% packet loss, time 4999ms doug@ubuntu:/sam$ ping earth PING earth (192.168.0.201) 56(84) bytes of data. ^C --- earth ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4032ms doug@ubuntu:/sam$ ping yahoo.com ping: unknown host yahoo.com doug@ubuntu:/sam$ ping ubuntu.com ping: unknown host ubuntu.com doug@ubuntu:/sam$ ping 8.8.8.8 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. ^C --- 8.8.8.8 ping statistics --- 14 packets transmitted, 0 received, 100% packet loss, time 13103ms Note that earth is the cifs server, and one time pinging it worked, later failed. Clues: doug@ubuntu:/sam$ grep -i eth /var/log/syslog |tail Aug 23 15:32:46 ubuntu kernel: [ 5328.070401] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:32:48 ubuntu kernel: [ 5330.651139] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=19090 PROTO=2 Aug 23 15:34:51 ubuntu kernel: [ 5453.072279] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:34:55 ubuntu kernel: [ 5457.085433] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16137 PROTO=2 Aug 23 15:36:56 ubuntu kernel: [ 5578.074492] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:37:00 ubuntu kernel: [ 5582.359006] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16150 PROTO=2 Aug 23 15:39:01 ubuntu kernel: [ 5703.074410] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:39:03 ubuntu kernel: [ 5705.070122] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16163 PROTO=2 Aug 23 15:41:06 ubuntu kernel: [ 5828.074387] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:41:13 ubuntu kernel: [ 5835.319941] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=23298 PROTO=2 doug@ubuntu:/sam$ ifconfig -a eth0 Link encap:Ethernet HWaddr [BLANKED] inet addr:192.168.0.7 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::21b:fcff:fe29:9dfc/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:3961 errors:0 dropped:0 overruns:0 frame:0 TX packets:2007 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:991204 (991.2 KB) TX bytes:252908 (252.9 KB) Interrupt:16 Base address:0xec00 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:2190 errors:0 dropped:0 overruns:0 frame:0 TX packets:2190 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:168052 (168.0 KB) TX bytes:168052 (168.0 KB) wlan0 Link encap:Ethernet HWaddr 00:19:d2:72:5a:0c UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) doug@ubuntu:/sam$ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off eth0 no wireless extensions. doug@ubuntu:/sam$ lsmod Module Size Used by des_generic 21191 0 md4 12523 0 nls_iso8859_1 12617 1 nls_cp437 12751 1 vfat 17308 1 fat 55605 1 vfat usb_storage 39646 1 dm_crypt 22528 1 joydev 17393 0 snd_hda_codec_analog 75395 1 snd_hda_intel 32719 2 pcmcia 39826 0 snd_hda_codec 109562 2 snd_hda_codec_analog,snd_hda_intel snd_hwdep 13276 1 snd_hda_codec ip6t_LOG 16846 4 xt_hl 12465 6 ip6t_rt 12473 3 snd_pcm 80916 2 snd_hda_intel,snd_hda_codec nf_conntrack_ipv6 13581 7 nf_defrag_ipv6 13175 1 nf_conntrack_ipv6 ipt_REJECT 12512 1 ipt_LOG 12783 5 xt_limit 12541 12 xt_tcpudp 12531 21 xt_addrtype 12596 4 snd_seq_midi 13132 0 xt_state 12514 14 ip6table_filter 12711 1 ip6_tables 22528 3 ip6t_LOG,ip6t_rt,ip6table_filter nf_conntrack_netbios_ns 12585 0 nf_conntrack_broadcast 12541 1 nf_conntrack_netbios_ns nf_nat_ftp 12595 0 nf_nat 24959 1 nf_nat_ftp nf_conntrack_ipv4 19084 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13183 1 nf_nat_ftp nf_conntrack 73847 8 nf_conntrack_ipv6,xt_state,nf_conntrack_netbios_ns,nf_conntrack_broadcast,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18106 1 iptable_filter snd_rawmidi 25424 1 snd_seq_midi psmouse 86982 0 x_tables 22011 13 ip6t_LOG,xt_hl,ip6t_rt,ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,xt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables arc4 12473 2 r592 17808 0 snd_seq_midi_event 14475 1 snd_seq_midi memstick 15857 1 r592 yenta_socket 27465 0 serio_raw 13027 0 pcmcia_rsrc 18367 1 yenta_socket iwl3945 73186 0 pcmcia_core 21511 3 pcmcia,yenta_socket,pcmcia_rsrc iwl_legacy 71334 1 iwl3945 snd_seq 51592 2 snd_seq_midi,snd_seq_midi_event mac80211 436493 2 iwl3945,iwl_legacy snd_timer 28931 2 snd_pcm,snd_seq snd_seq_device 14172 3 snd_seq_midi,snd_rawmidi,snd_seq rfcomm 38139 0 bnep 17830 2 parport_pc 32114 0 bluetooth 158447 10 rfcomm,bnep ppdev 12849 0 cfg80211 178877 3 iwl3945,iwl_legacy,mac80211 asus_laptop 23693 0 sparse_keymap 13658 1 asus_laptop input_polldev 13648 1 asus_laptop nls_utf8 12493 6 cifs 258037 10 snd 62218 13 snd_hda_codec_analog,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device soundcore 14635 1 snd mac_hid 13077 0 snd_page_alloc 14108 2 snd_hda_intel,snd_pcm lp 17455 0 parport 40930 3 parport_pc,ppdev,lp i915 428418 3 firewire_ohci 40172 0 sdhci_pci 18324 0 sdhci 28241 1 sdhci_pci firewire_core 56940 1 firewire_ohci crc_itu_t 12627 1 firewire_core r8169 56396 0 drm_kms_helper 45466 1 i915 drm 197641 4 i915,drm_kms_helper i2c_algo_bit 13199 1 i915 video 19115 1 i915 doug@ubuntu:/sam$ dmesg |grep eth [ 0.116936] i2c-core: driver [aat2870] using legacy suspend method [ 0.116939] i2c-core: driver [aat2870] using legacy resume method [ 1.453811] r8169 0000:03:07.0: eth0: RTL8169sb/8110sb at 0xf840ec00, [BLANKED], XID 10000000 IRQ 16 [ 1.453815] r8169 0000:03:07.0: eth0: jumbo features [frames: 7152 bytes, tx checksumming: ok] [ 25.681231] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 154.037318] r8169 0000:03:07.0: eth0: link down [ 154.037329] r8169 0000:03:07.0: eth0: link down [ 154.037596] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 155.583162] r8169 0000:03:07.0: eth0: link up [ 155.583366] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 156.637048] r8169 0000:03:07.0: eth0: link down [ 156.637066] r8169 0000:03:07.0: eth0: link down [ 156.637339] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 156.773699] r8169 0000:03:07.0: eth0: link down [ 156.773983] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 158.456181] r8169 0000:03:07.0: eth0: link up [ 158.456378] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 159.364468] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 162.384496] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=38877 PROTO=2 [ 166.272457] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 166.422333] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=40695 PROTO=2 [ 168.736049] eth0: no IPv6 routers present [ 183.572472] r8169 0000:03:07.0: eth0: link down [ 183.572490] r8169 0000:03:07.0: eth0: link down [ 183.572934] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 185.204801] r8169 0000:03:07.0: eth0: link up [ 185.205005] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 3620.680451] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3621.068431] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3624.912973] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9118 PROTO=2 [ 3631.088069] eth0: no IPv6 routers present [ 3703.062980] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3703.465330] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9210 PROTO=2 [ 3828.062951] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3833.617772] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9749 PROTO=2 [ 3953.062920] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3955.675129] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15983 PROTO=2 [ 4078.062922] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4078.386319] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15997 PROTO=2 [ 4203.062899] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4203.559241] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16011 PROTO=2 [ 4328.062833] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4328.930922] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16027 PROTO=2 [ 4453.062811] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4453.950224] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16039 PROTO=2 [ 4578.062742] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4580.626432] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=13738 PROTO=2 [ 4703.062704] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4706.310170] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15942 PROTO=2 [ 4828.062707] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4832.174324] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16505 PROTO=2 [ 4953.062628] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4961.469282] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16090 PROTO=2 [ 5078.062552] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5080.776462] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=17239 PROTO=2 [ 5203.070394] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5205.358134] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=17665 PROTO=2 [ 5328.070401] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5330.651139] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=19090 PROTO=2 [ 5453.072279] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5457.085433] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16137 PROTO=2 [ 5578.074492] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5582.359006] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16150 PROTO=2 [ 5703.074410] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5705.070122] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16163 PROTO=2 [ 5828.074387] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5835.319941] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=23298 PROTO=2 [ 5953.074429] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5961.925481] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=24261 PROTO=2 doug@ubuntu:/sam$ lspci -nnk |grep -iA2 eth 03:07.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8169 PCI Gigabit Ethernet Controller [10ec:8169] (rev 10) Subsystem: ASUSTeK Computer Inc. Device [1043:11e5] Kernel driver in use: r8169 doug@ubuntu:/sam$ route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.0.1 0.0.0.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 192.168.0.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 doug@ubuntu:/sam$ nm-tool NetworkManager Tool State: connected (global) - Device: eth0 [Ifupdown (eth0)] ---------------------------------------------- Type: Wired Driver: r8169 State: connected Default: yes HW Address: [BLANKED] Capabilities: Carrier Detect: yes Speed: 100 Mb/s Wired Properties Carrier: on IPv4 Settings: Address: 192.168.0.7 Prefix: 24 (255.255.255.0) Gateway: 192.168.0.1 DNS: 192.168.0.1 - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: iwl3945 State: disconnected Default: no HW Address: 00:19:D2:72:5A:0C Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points ATT592: Infra, 30:60:23:76:FE:60, Freq 2437 MHz, Rate 54 Mb/s, Strength 24 WPA WPA2 doug@ubuntu:/sam$ nslookup ubuntu.com ;; connection timed out; no servers could be reached doug@ubuntu:/sam$ dig ubuntuforums.org ; <<>> DiG 9.8.1-P1 <<>> ubuntuforums.org ;; global options: +cmd ;; connection timed out; no servers could be reached doug@ubuntu:/sam$ sudo ifconfig eth0 up doug@ubuntu:/sam$ dhcpcd eth0 The program 'dhcpcd' can be found in the following packages: * dhcpcd * dhcpcd5 Try: sudo apt-get install <selected package> doug@ubuntu:/sam$ lspci -k 00:00.0 Host bridge: Intel Corporation Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1252 Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1252 00:1b.0 Audio device: Intel Corporation NM10/ICH7 Family High Definition Audio Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 1 (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 2 (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #1 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #2 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #3 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #4 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation NM10/ICH7 Family USB2 EHCI Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev e2) 00:1f.0 ISA bridge: Intel Corporation 82801GBM (ICH7-M) LPC Interface Bridge (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel modules: leds-ss4200, iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801G (ICH7 Family) IDE Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: ata_piix 00:1f.3 SMBus: Intel Corporation NM10/ICH7 Family SMBus Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel modules: i2c-i801 02:00.0 Network controller: Intel Corporation PRO/Wireless 3945ABG [Golan] Network Connection (rev 02) Subsystem: Intel Corporation PRO/Wireless 3945ABG Network Connection Kernel driver in use: iwl3945 Kernel modules: iwl3945 03:01.0 CardBus bridge: Ricoh Co Ltd RL5c476 II (rev b3) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: yenta_cardbus Kernel modules: yenta_socket 03:01.1 FireWire (IEEE 1394): Ricoh Co Ltd R5C552 IEEE 1394 Controller (rev 08) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: firewire_ohci Kernel modules: firewire-ohci 03:01.2 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 17) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: sdhci-pci Kernel modules: sdhci-pci 03:01.3 System peripheral: Ricoh Co Ltd R5C592 Memory Stick Bus Host Adapter (rev 08) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: r592 Kernel modules: r592 03:07.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8169 PCI Gigabit Ethernet Controller (rev 10) Subsystem: ASUSTeK Computer Inc. Device 11e5 Kernel driver in use: r8169 Kernel modules: r8169 doug@ubuntu:/sam$ Things I have tried: sudo start network-manager: no help gksudo gedit /etc/network/interfaces changed line to iface eth0 inet dhcp: no help gksudo gedit /etc/NetworkManager/NetworkManager.conf, I changed managed=false to managed=true. Then sudo service network-manager restart: no help: network is unreachable sudo pkill -9 NetworkManager: no help gksudo gedit /etc/resolve.conf added line nameseriver 8.8.8.8: no help I know very little about networking; to date this has simply worked. Thanks for your help! :- Doug.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Rounded Corners and Shadows &ndash; Dialogs with CSS

    - by Rick Strahl
    Well, it looks like we’ve finally arrived at a place where at least all of the latest versions of main stream browsers support rounded corners and box shadows. The two CSS properties that make this possible are box-shadow and box-radius. Both of these CSS Properties now supported in all the major browsers as shown in this chart from QuirksMode: In it’s simplest form you can use box-shadow and border radius like this: .boxshadow { -moz-box-shadow: 3px 3px 5px #535353; -webkit-box-shadow: 3px 3px 5px #535353; box-shadow: 3px 3px 5px #535353; } .roundbox { -moz-border-radius: 6px 6px 6px 6px; -webkit-border-radius: 6px; border-radius: 6px 6px 6px 6px; } box-shadow: horizontal-shadow-pixels vertical-shadow-pixels blur-distance shadow-color box-shadow attributes specify the the horizontal and vertical offset of the shadow, the blur distance (to give the shadow a smooth soft look) and a shadow color. The spec also supports multiple shadows separated by commas using the attributes above but we’re not using that functionality here. box-radius: top-left-radius top-right-radius bottom-right-radius bottom-left-radius border-radius takes a pixel size for the radius for each corner going clockwise. CSS 3 also specifies each of the individual corner elements such as border-top-left-radius, but support for these is much less prevalent so I would recommend not using them for now until support improves. Instead use the single box-radius to specify all corners. Browser specific Support in older Browsers Notice that there are two variations: The actual CSS 3 properties (box-shadow and box-radius) and the browser specific ones (-moz, –webkit prefixes for FireFox and Chrome/Safari respectively) which work in slightly older versions of modern browsers before official CSS 3 support was added. The goal is to spread support as widely as possible and the prefix versions extend the range slightly more to those browsers that provided early support for these features. Notice that box-shadow and border-radius are used after the browser specific versions to ensure that the latter versions get precedence if the browser supports both (last assignment wins). Use the .boxshadow and .roundbox Styles in HTML To use these two styles create a simple rounded box with a shadow you can use HTML like this: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext"> Simple Rounded Corner Box. </div> </div> which looks like this in the browser: This works across browsers and it’s pretty sweet and simple. Watch out for nested Elements! There are a couple of things to be aware of however when using rounded corners. Specifically, you need to be careful when you nest other non-transparent content into the rounded box. For example check out what happens when I change the inside <div> to have a colored background: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> which renders like this:   If you look closely you’ll find that the inside <div>’s corners are not rounded and so ‘poke out’ slightly over the rounded corners. It looks like the rounded corners are ‘broken’ up instead of a solid rounded line around the corner, which his pretty ugly. The bigger the radius the more drastic this effect becomes . To fix this issue the inner <div> also has have rounded corners at the same or slightly smaller radius than the outer <div>. The simple fix for this is to simply also apply the roundbox style to the inner <div> in addition to the boxcontenttext style already applied: <div class="boxcontenttext roundbox" style="background: khaki;"> The fixed display now looks proper: Separate Top and Bottom Elements This gets even a little more tricky if you have an element at the top or bottom only of the rounded box. What if you need to add something like a header or footer <div> that have non-transparent backgrounds which is a pretty common scenario? In those cases you want only the top or bottom corners rounded and not both. To make this work a couple of additional styles to round only the top and bottom corners can be created: .roundbox-top { -moz-border-radius: 4px 4px 0 0; -webkit-border-radius: 4px 4px 0 0; border-radius: 4px 4px 0 0; } .roundbox-bottom { -moz-border-radius: 0 0 4px 4px; -webkit-border-radius: 0 0 4px 4px; border-radius: 0 0 4px 4px; } Notice that radius used for the ‘inside’ rounding is smaller (4px) than the outside radius (6px). This is so the inner radius fills into the outer border – if you use the same size you may have some white space showing between inner and out rounded corners. Experiment with values to see what works – in my experimenting the behavior across browsers here is consistent (thankfully). These styles can be applied in addition to other styles to make only the top or bottom portions of an element rounded. For example imagine I have styles like this: .gridheader, .gridheaderbig, .gridheaderleft, .gridheaderright { padding: 4px 4px 4px 4px; background: #003399 url(images/vertgradient.png) repeat-x; text-align: center; font-weight: bold; text-decoration: none; color: khaki; } .gridheaderleft { text-align: left; } .gridheaderright { text-align: right; } .gridheaderbig { font-size: 135%; } If I just apply say gridheader by itself in HTML like this: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft">Box with a Header</div> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> This results in a pretty funky display – again due to the fact that the inner elements render square rather than rounded corners: If you look close again you can see that both the header and the main content have square edges which jumps out at the eye. To fix this you can now apply the roundbox-top and roundbox-bottom to the header and content respectively: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft roundbox-top">Box with a Header</div> <div class="boxcontenttext roundbox-bottom" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> Which now gives the proper display with rounded corners both on the top and bottom: All of this is sweet to be supported – at least by the newest browser – without having to resort to images and nasty JavaScripts solutions. While this is still not a mainstream feature yet for the majority of actually installed browsers, the majority of browser users are very likely to have this support as most browsers other than IE are actively pushing users to upgrade to newer versions. Since this is a ‘visual display only feature it degrades reasonably well in non-supporting browsers: You get an uninteresting square and non-shadowed browser box, but the display is still overall functional. The main sticking point – as always is Internet Explorer versions 8.0 and down as well as older versions of other browsers. With those browsers you get a functional view that is a little less interesting to look at obviously: but at least it’s still functional. Maybe that’s just one more incentive for people using older browsers to upgrade to a  more modern browser :-) Creating Dialog Related Styles In a lot of my AJAX based applications I use pop up windows which effectively work like dialogs. Using the simple CSS behaviors above, it’s really easy to create some fairly nice looking overlaid windows with nothing but CSS. Here’s what a typical ‘dialog’ I use looks like: The beauty of this is that it’s plain CSS – no plug-ins or images (other than the gradients which are optional) required. Add jQuery-ui draggable (or ww.jquery.js as shown below) and you have a nice simple inline implementation of a dialog represented by a simple <div> tag. Here’s the HTML for this dialog: <div id="divDialog" class="dialog boxshadow" style="width: 450px;"> <div class="dialog-header"> <div class="closebox"></div> User Sign-in </div> <div class="dialog-content"> <label>Username:</label> <input type="text" name="txtUsername" value=" " /> <label>Password</label> <input type="text" name="txtPassword" value=" " /> <hr /> <input type="button" id="btnLogin" value="Login" /> </div> <div class="dialog-statusbar">Ready</div> </div> Most of this behavior is driven by the ‘dialog’ styles which are fairly basic and easy to understand. They do use a few support images for the gradients which are provided in the sample I’ve provided. Here’s what the CSS looks like: .dialog { background: White; overflow: hidden; border: solid 1px steelblue; -moz-border-radius: 6px 6px 4px 4px; -webkit-border-radius: 6px 6px 4px 4px; border-radius: 6px 6px 3px 3px; } .dialog-header { background-image: url(images/dialogheader.png); background-repeat: repeat-x; text-align: left; color: cornsilk; padding: 5px; padding-left: 10px; font-size: 1.02em; font-weight: bold; position: relative; -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-top { -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-bottom { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; } .dialog-content { padding: 15px; } .dialog-statusbar, .dialog-toolbar { background: #eeeeee; background-image: url(images/dialogstrip.png); background-repeat: repeat-x; padding: 5px; padding-left: 10px; border-top: solid 1px silver; border-bottom: solid 1px silver; font-size: 0.8em; } .dialog-statusbar { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; padding-right: 10px; } .closebox { position: absolute; right: 2px; top: 2px; background-image: url(images/close.gif); background-repeat: no-repeat; width: 14px; height: 14px; cursor: pointer; opacity: 0.60; filter: alpha(opacity="80"); } .closebox:hover { opacity: 1; filter: alpha(opacity="100"); } The main style is the dialog class which is the outer box. It has the rounded border that serves as the outline. Note that I didn’t add the box-shadow to this style because in some situations I just want the rounded box in an inline display that doesn’t have a shadow so it’s still applied separately. dialog-header, then has the rounded top corners and displays a typical dialog heading format. dialog-bottom and dialog-top then provide the same functionality as roundbox-top and roundbox-bottom described earlier but are provided mainly in the stylesheet for consistency to match the dialog’s round edges and making it easier to  remember and find in Intellisense as it shows up in the same dialog- group. dialog-statusbar and dialog-toolbar are two elements I use a lot for floating windows – the toolbar serves for buttons and options and filters typically, while the status bar provides information specific to the floating window. Since the the status bar is always on the bottom of the dialog it automatically handles the rounding of the bottom corners. Finally there’s  closebox style which is to be applied to an empty <div> tag in the header typically. What this does is render a close image that is by default low-lighted with a low opacity value, and then highlights when hovered over. All you’d have to do handle the close operation is handle the onclick of the <div>. Note that the <div> right aligns so typically you should specify it before any other content in the header. Speaking of closable – some time ago I created a closable jQuery plug-in that basically automates this process and can be applied against ANY element in a page, automatically removing or closing the element with some simple script code. Using this you can leave out the <div> tag for closable and just do the following: To make the above dialog closable (and draggable) which makes it effectively and overlay window, you’d add jQuery.js and ww.jquery.js to the page: <script type="text/javascript" src="../../scripts/jquery.min.js"></script> <script type="text/javascript" src="../../scripts/ww.jquery.min.js"></script> and then simply call: <script type="text/javascript"> $(document).ready(function () { $("#divDialog") .draggable({ handle: ".dialog-header" }) .closable({ handle: ".dialog-header", closeHandler: function () { alert("Window about to be closed."); return true; // true closes - false leaves open } }); }); </script> * ww.jquery.js emulates base features in jQuery-ui’s draggable. If jQuery-ui is loaded its draggable version will be used instead and voila you have now have a draggable and closable window – here in mid-drag:   The dragging and closable behaviors are of course optional, but it’s the final touch that provides dialog like window behavior. Relief for older Internet Explorer Versions with CSS Pie If you want to get these features to work with older versions of Internet Explorer all the way back to version 6 you can check out CSS Pie. CSS Pie provides an Internet Explorer behavior file that attaches to specific CSS rules and simulates these behavior using script code in IE (mostly by implementing filters). You can simply add the behavior to each CSS style that uses box-shadow and border-radius like this: .boxshadow {     -moz-box-shadow: 3px 3px 5px #535353;     -webkit-box-shadow: 3px 3px 5px #535353;           box-shadow: 3px 3px 5px #535353;     behavior: url(scripts/PIE.htc);           } .roundbox {      -moz-border-radius: 6px 6px 6px 6px;     -webkit-border-radius: 6px;      border-radius: 6px 6px 6px 6px;     behavior: url(scripts/PIE.htc); } CSS Pie requires the PIE.htc on your server and referenced from each CSS style that needs it. Note that the url() for IE behaviors is NOT CSS file relative as other CSS resources, but rather PAGE relative , so if you have more than one folder you probably need to reference the HTC file with a fixed path like this: behavior: url(/MyApp/scripts/PIE.htc); in the style. Small price to pay, but a royal pain if you have a common CSS file you use in many applications. Once the PIE.htc file has been copied and you have applied the behavior to each style that uses these new features Internet Explorer will render rounded corners and box shadows! Yay! Hurray for box-shadow and border-radius All of this functionality is very welcome natively in the browser. If you think this is all frivolous visual candy, you might be right :-), but if you take a look on the Web and search for rounded corner solutions that predate these CSS attributes you’ll find a boatload of stuff from image files, to custom drawn content to Javascript solutions that play tricks with a few images. It’s sooooo much easier to have this functionality built in and I for one am glad to see that’s it’s finally becoming standard in the box. Still remember that when you use these new CSS features, they are not universal, and are not going to be really soon. Legacy browsers, especially old versions of Internet Explorer that can’t be updated will continue to be around and won’t work with this shiny new stuff. I say screw ‘em: Let them get a decent recent browser or see a degraded and ugly UI. We have the luxury with this functionality in that it doesn’t typically affect usability – it just doesn’t look as nice. Resources Download the Sample The sample includes the styles and images and sample page as well as ww.jquery.js for the draggable/closable example. Online Sample Check out the sample described in this post online. Closable and Draggable Documentation Documentation for the closeable and draggable plug-ins in ww.jquery.js. You can also check out the full documentation for all the plug-ins contained in ww.jquery.js here. © Rick Strahl, West Wind Technologies, 2005-2011Posted in HTML  CSS  

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • Grandparent – Parent – Child Reports in SQL Developer

    - by thatjeffsmith
    You’ll never see one of these family stickers on my car, but I promise not to judge…much. Parent – Child reports are pretty straightforward in Oracle SQL Developer. You have a ‘parent’ report, and then one or more ‘child’ reports which are based off of a value in a selected row or value from the parent. If you need a quick tutorial to get up to speed on the subject, go ahead and take 5 minutes Shortly before I left for vacation 2 weeks agao, I got an interesting question from one of my Twitter Followers: @thatjeffsmith any luck with the #Oracle awr reports in #SQLDeveloper?This is easy with multi generation parent>child Done in #dbvisualizer — Ronald Rood (@Ik_zelf) August 26, 2012 Now that I’m back from vacation, I can tell Ronald and everyone else that the answer is ‘Yes!’ And here’s how Time to Get Out Your XML Editor Don’t have one? That’s OK, SQL Developer can edit XML files. While the Reporting interface doesn’t surface the ability to create multi-generational reports, the underlying code definitely supports it. We just need to hack away at the XML that powers a report. For this example I’m going to start simple. A query that brings back DEPARTMENTs, then EMPLOYEES, then JOBs. We can build the first two parts of the report using the report editor. A Parent-Child report in Oracle SQL Developer (Departments – Employees) Save the Report to XML Once you’ve generated the XML file, open it with your favorite XML editor. For this example I’ll be using the build-it XML editor in SQL Developer. SQL Developer Reports in their raw XML glory! Right after the PDF element in the XML document, we can start a new ‘child’ report by inserting a DISPLAY element. I just copied and pasted the existing ‘display’ down so I wouldn’t have to worry about screwing anything up. Note I also needed to change the ‘master’ name so it wouldn’t confuse SQL Developer when I try to import/open a report that has the same name. Also I needed to update the binds tags to reflect the names from the child versus the original parent report. This is pretty easy to figure out on your own actually – I mean I’m no real developer and I got it pretty quick. <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="92857fce-0139-1000-8006-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[Grandparent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.departments]]></sql> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Parent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.employees where department_id = EPARTMENT_ID]]></sql> <binds> <bind id="DEPARTMENT_ID"> <prompt><![CDATA[DEPARTMENT_ID]]></prompt> <tooltip><![CDATA[DEPARTMENT_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Child]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.jobs where job_id = :JOB_ID]]></sql> <binds> <bind id="JOB_ID"> <prompt><![CDATA[JOB_ID]]></prompt> <tooltip><![CDATA[JOB_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> </display> </display> </display> </displays> Save the file and ‘Open Report…’ You’ll see your new report name in the tree. You just need to double-click it to open it. Here’s what it looks like running A 3 generation family Now Let’s Build an AWR Text Report Ronald wanted to have the ability to query AWR snapshots and generate the AWR reports. That requires a few inputs, including a START and STOP snapshot ID. That basically tells AWR what time period to use for generating the report. And here’s where it gets tricky. We’ll need to use aliases for the SNAP_ID column. Since we’re using the same column name from 2 different queries, we need to use different bind variables. Fortunately for us, SQL Developer’s clever enough to use the column alias as the BIND. Here’s what I mean: Grandparent Query SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc Parent Query SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc And here’s where it gets even trickier – you can’t reference a bind from outside the parent query. My grandchild report can’t reference a value from the grandparent report. So I just carry the selected value down to the parent. In my parent query SELECT you see the ‘:START1′ at the end? That’s making that value available to me when I use it in my grandchild query. To complicate things a bit further, I can’t have a column name with a ‘:’ in it, or SQL Developer will get confused when I try to reference the value of the variable with the ‘:’ – and ‘::Name’ doesn’t work. But that’s OK, just alias it. Grandchild Query Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1)); Ok, and the last trick – I hard-coded my report to use my database’s DB_ID and INST_ID into the AWR package call. Now a smart person could figure out a way to make that work on any database, but I got lazy and and ran out of time. But this should be far enough for you to take it from here. Here’s what my report looks like now: Caution: don’t run this if you haven’t licensed Enterprise Edition with Diagnostic Pack. The Raw XML for this AWR Report <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="927ba96c-0139-1000-8001-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[AWR Start Stop Report Final]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Stop SNAP_ID]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[AWR Report]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1 ))]]></sql> </query> </display> </display> </display> </displays> Should We Build Support for Multiple Levels of Reports into the User Interface? Let us know! A comment here or a suggestion on our SQL Developer Exchange might help your case!

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Error compiling GLib in Ubuntu 14.04 (trying to install GimpShop)

    - by Nicolás Salvarrey
    I'm kinda new in Linux, so please take it easy on the most complicated stuff. I'm trying to install GimpShop. Installation guide asks me to install GLib first, and when I try to compile it using the make command I get errors. When I run the ./configure --prefix=/usr command, I get this: checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking for the BeOS... no checking for Win32... no checking whether to enable garbage collector friendliness... no checking whether to disable memory pools... no checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ANSI C... none needed checking for style of include used by make... GNU checking dependency style of gcc... gcc3 checking for c++... no checking for g++... no checking for gcc... gcc checking whether we are using the GNU C++ compiler... no checking whether gcc accepts -g... no checking dependency style of gcc... gcc3 checking for gcc option to accept ANSI C... none needed checking for a BSD-compatible install... /usr/bin/install -c checking for special C compiler options needed for large files... no checking for _FILE_OFFSET_BITS value needed for large files... no checking for _LARGE_FILES value needed for large files... no checking for pkg-config... /usr/bin/pkg-config checking for gawk... (cached) mawk checking for perl5... no checking for perl... perl checking for indent... no checking for perl... /usr/bin/perl checking for iconv_open... yes checking how to run the C preprocessor... gcc -E checking for egrep... grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking for LC_MESSAGES... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking for ngettext in libc... yes checking for dgettext in libc... yes checking for bind_textdomain_codeset... yes checking for msgfmt... /usr/bin/msgfmt checking for dcgettext... yes checking for gmsgfmt... /usr/bin/msgfmt checking for xgettext... /usr/bin/xgettext checking for catalogs to be installed... am ar az be bg bn bs ca cs cy da de el en_CA en_GB eo es et eu fa fi fr ga gl gu he hi hr id is it ja ko lt lv mk mn ms nb ne nl nn no or pa pl pt pt_BR ro ru sk sl sq sr sr@ije sr@Latn sv ta tl tr uk vi wa xh yi zh_CN zh_TW checking for a sed that does not truncate output... /bin/sed checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for /usr/bin/ld option to reload object files... -r checking for BSD-compatible nm... /usr/bin/nm -B checking whether ln -s works... yes checking how to recognise dependent libraries... pass_all checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for g77... no checking for f77... no checking for xlf... no checking for frt... no checking for pgf77... no checking for fort77... no checking for fl32... no checking for af77... no checking for f90... no checking for xlf90... no checking for pgf90... no checking for epcf90... no checking for f95... no checking for fort... no checking for xlf95... no checking for ifc... no checking for efc... no checking for pgf95... no checking for lf95... no checking for gfortran... no checking whether we are using the GNU Fortran 77 compiler... no checking whether accepts -g... no checking the maximum length of command line arguments... 32768 checking command to parse /usr/bin/nm -B output from gcc object... ok checking for objdir... .libs checking for ar... ar checking for ranlib... ranlib checking for strip... strip checking if gcc static flag works... yes checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC checking if gcc PIC flag -fPIC works... yes checking if gcc supports -c -o file.o... yes checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating libtool appending configuration tag "CXX" to libtool appending configuration tag "F77" to libtool checking for extra flags to get ANSI library prototypes... none needed checking for extra flags for POSIX compliance... none needed checking for ANSI C header files... (cached) yes checking for vprintf... yes checking for _doprnt... no checking for working alloca.h... yes checking for alloca... yes checking for atexit... yes checking for on_exit... yes checking for char... yes checking size of char... 1 checking for short... yes checking size of short... 2 checking for long... yes checking size of long... 8 checking for int... yes checking size of int... 4 checking for void *... yes checking size of void *... 8 checking for long long... yes checking size of long long... 8 checking for __int64... no checking size of __int64... 0 checking for format to printf and scanf a guint64... %llu checking for an ANSI C-conforming const... yes checking if malloc() and friends prototypes are gmem.h compatible... no checking for growing stack pointer... yes checking for __inline... yes checking for __inline__... yes checking for inline... yes checking if inline functions in headers work... yes checking for ISO C99 varargs macros in C... yes checking for ISO C99 varargs macros in C++... no checking for GNUC varargs macros... yes checking for GNUC visibility attribute... yes checking whether byte ordering is bigendian... no checking dirent.h usability... yes checking dirent.h presence... yes checking for dirent.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking for sys/types.h... (cached) yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/times.h usability... yes checking sys/times.h presence... yes checking for sys/times.h... yes checking for unistd.h... (cached) yes checking values.h usability... yes checking values.h presence... yes checking for values.h... yes checking for stdint.h... (cached) yes checking sched.h usability... yes checking sched.h presence... yes checking for sched.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking for nl_langinfo... yes checking for nl_langinfo and CODESET... yes checking whether we are using the GNU C Library 2.1 or newer... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdlib.h... (cached) yes checking for string.h... (cached) yes checking for setlocale... yes checking for size_t... yes checking size of size_t... 8 checking for the appropriate definition for size_t... unsigned long checking for lstat... yes checking for strerror... yes checking for strsignal... yes checking for memmove... yes checking for mkstemp... yes checking for vsnprintf... yes checking for stpcpy... yes checking for strcasecmp... yes checking for strncasecmp... yes checking for poll... yes checking for getcwd... yes checking for nanosleep... yes checking for vasprintf... yes checking for setenv... yes checking for unsetenv... yes checking for getc_unlocked... yes checking for readlink... yes checking for symlink... yes checking for C99 vsnprintf... yes checking whether printf supports positional parameters... yes checking for signed... yes checking for long long... (cached) yes checking for long double... yes checking for wchar_t... yes checking for wint_t... yes checking for size_t... (cached) yes checking for ptrdiff_t... yes checking for inttypes.h... yes checking for stdint.h... yes checking for snprintf... yes checking for C99 snprintf... yes checking for sys_errlist... yes checking for sys_siglist... yes checking for sys_siglist declaration... yes checking for fd_set... yes, found in sys/types.h checking whether realloc (NULL,) will work... yes checking for nl_langinfo (CODESET)... yes checking for OpenBSD strlcpy/strlcat... no checking for an implementation of va_copy()... yes checking for an implementation of __va_copy()... yes checking whether va_lists can be copied by value... no checking for dlopen... no checking for NSLinkModule... no checking for dlopen in -ldl... yes checking for dlsym in -ldl... yes checking for RTLD_GLOBAL brokenness... no checking for preceeding underscore in symbols... no checking for dlerror... yes checking for the suffix of shared libraries... .so checking for gspawn implementation... gspawn.lo checking for GIOChannel implementation... giounix.lo checking for platform-dependent source... checking whether to compile timeloop... yes checking if building for some Win32 platform... no checking for thread implementation... posix checking thread related cflags... -pthread checking for sched_get_priority_min... yes checking thread related libraries... -pthread checking for localtime_r... yes checking for posix getpwuid_r... yes checking size of pthread_t... 8 checking for pthread_attr_setstacksize... yes checking for minimal/maximal thread priority... sched_get_priority_min(SCHED_OTHER)/sched_get_priority_max(SCHED_OTHER) checking for pthread_setschedparam... yes checking for posix yield function... sched_yield checking size of pthread_mutex_t... 40 checking byte contents of PTHREAD_MUTEX_INITIALIZER... 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 checking whether to use assembler code for atomic operations... x86_64 checking value of POLLIN... 1 checking value of POLLOUT... 4 checking value of POLLPRI... 2 checking value of POLLERR... 8 checking value of POLLHUP... 16 checking value of POLLNVAL... 32 checking for EILSEQ... yes configure: creating ./config.status config.status: creating glib-2.0.pc config.status: creating glib-2.0-uninstalled.pc config.status: creating gmodule-2.0.pc config.status: creating gmodule-no-export-2.0.pc config.status: creating gmodule-2.0-uninstalled.pc config.status: creating gthread-2.0.pc config.status: creating gthread-2.0-uninstalled.pc config.status: creating gobject-2.0.pc config.status: creating gobject-2.0-uninstalled.pc config.status: creating glib-zip config.status: creating glib-gettextize config.status: creating Makefile config.status: creating build/Makefile config.status: creating build/win32/Makefile config.status: creating build/win32/dirent/Makefile config.status: creating glib/Makefile config.status: creating glib/libcharset/Makefile config.status: creating glib/gnulib/Makefile config.status: creating gmodule/Makefile config.status: creating gmodule/gmoduleconf.h config.status: creating gobject/Makefile config.status: creating gobject/glib-mkenums config.status: creating gthread/Makefile config.status: creating po/Makefile.in config.status: creating docs/Makefile config.status: creating docs/reference/Makefile config.status: creating docs/reference/glib/Makefile config.status: creating docs/reference/glib/version.xml config.status: creating docs/reference/gobject/Makefile config.status: creating docs/reference/gobject/version.xml config.status: creating tests/Makefile config.status: creating tests/gobject/Makefile config.status: creating m4macros/Makefile config.status: creating config.h config.status: config.h is unchanged config.status: executing depfiles commands config.status: executing default-1 commands config.status: executing glibconfig.h commands config.status: glibconfig.h is unchanged config.status: executing chmod-scripts commands nsalvarrey@Delleuze:~/glib-2.6.3$ ^C nsalvarrey@Delleuze:~/glib-2.6.3$ And then, with the make command, I get this: galias.h:83:39: error: 'g_ascii_digit_value' aliased to undefined symbol 'IA__g_ascii_digit_value' extern __typeof (g_ascii_digit_value) g_ascii_digit_value __attribute((alias("IA__g_ascii_digit_value"), visibility("default"))); ^ In file included from garray.c:35:0: galias.h:31:35: error: 'g_allocator_new' aliased to undefined symbol 'IA__g_allocator_new' extern __typeof (g_allocator_new) g_allocator_new __attribute((alias("IA__g_allocator_new"), visibility("default"))); ^ make[4]: *** [garray.lo] Error 1 make[4]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[3]: *** [all-recursive] Error 1 make[3]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[2]: *** [all] Error 2 make[2]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[1]: *** [all-recursive] Error 1 make[1]: se sale del directorio «/home/nsalvarrey/glib-2.6.3» make: *** [all] Error 2 nsalvarrey@Delleuze:~/glib-2.6.3$ (it's actually a lot longer) Can somebody help me?

    Read the article

  • Using the jQuery UI Library in a MVC 3 Application to Build a Dialog Form

    - by ChrisD
    Using a simulated dialog window is a nice way to handle inline data editing. The jQuery UI has a UI widget for a dialog window that makes it easy to get up and running with it in your application. With the release of ASP.NET MVC 3, Microsoft included the jQuery UI scripts and files in the MVC 3 project templates for Visual Studio. With the release of the MVC 3 Tools Update, Microsoft implemented the inclusion of those with NuGet as packages. That means we can get up and running using the latest version of the jQuery UI with minimal effort. To the code! Another that might interested you about JQuery Mobile and ASP.NET MVC 3 with C#. If you are starting with a new MVC 3 application and have the Tools Update then you are a NuGet update and a <link> and <script> tag away from adding the jQuery UI to your project. If you are using an existing MVC project you can still get the jQuery UI library added to your project via NuGet and then add the link and script tags. Assuming that you have pulled down the latest version (at the time of this publish it was 1.8.13) you can add the following link and script tags to your <head> tag: < link href = "@Url.Content(" ~ / Content / themes / base / jquery . ui . all . css ")" rel = "Stylesheet" type = "text/css" /> < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > The jQuery UI library relies upon the CSS scripts and some image files to handle rendering of its widgets (you can choose a different theme or role your own if you like). Adding these to the stock _Layout.cshtml file results in the following markup: <!DOCTYPE html> < html > < head >     < meta charset = "utf-8" />     < title > @ViewBag.Title </ title >     < link href = "@Url.Content(" ~ / Content / Site . css ")" rel = "stylesheet" type = "text/css" />     <link href="@Url.Content("~/Content/themes/base/jquery.ui.all.css")" rel="Stylesheet" type="text/css" />     <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script>     <script src="@Url.Content("~/Scripts/modernizr-1.7.min . js ")" type = "text/javascript" ></ script >     < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > </ head > < body >     @RenderBody() </ body > </ html > Our example will involve building a list of notes with an id, title and description. Each note can be edited and new notes can be added. The user will never have to leave the single page of notes to manage the note data. The add and edit forms will be delivered in a jQuery UI dialog widget and the note list content will get reloaded via an AJAX call after each change to the list. To begin, we need to craft a model and a data management class. We will do this so we can simulate data storage and get a feel for the workflow of the user experience. The first class named Note will have properties to represent our data model. namespace Website . Models {     public class Note     {         public int Id { get ; set ; }         public string Title { get ; set ; }         public string Body { get ; set ; }     } } The second class named NoteManager will be used to set up our simulated data storage and provide methods for querying and updating the data. We will take a look at the class content as a whole and then walk through each method after. using System . Collections . ObjectModel ; using System . Linq ; using System . Web ; namespace Website . Models {     public class NoteManager     {         public Collection < Note > Notes         {             get             {                 if ( HttpRuntime . Cache [ "Notes" ] == null )                     this . loadInitialData ();                 return ( Collection < Note >) HttpRuntime . Cache [ "Notes" ];             }         }         private void loadInitialData ()         {             var notes = new Collection < Note >();             notes . Add ( new Note                           {                               Id = 1 ,                               Title = "Set DVR for Sunday" ,                               Body = "Don't forget to record Game of Thrones!"                           });             notes . Add ( new Note                           {                               Id = 2 ,                               Title = "Read MVC article" ,                               Body = "Check out the new iwantmymvc.com post"                           });             notes . Add ( new Note                           {                               Id = 3 ,                               Title = "Pick up kid" ,                               Body = "Daughter out of school at 1:30pm on Thursday. Don't forget!"                           });             notes . Add ( new Note                           {                               Id = 4 ,                               Title = "Paint" ,                               Body = "Finish the 2nd coat in the bathroom"                           });             HttpRuntime . Cache [ "Notes" ] = notes ;         }         public Collection < Note > GetAll ()         {             return Notes ;         }         public Note GetById ( int id )         {             return Notes . Where ( i => i . Id == id ). FirstOrDefault ();         }         public int Save ( Note item )         {             if ( item . Id <= 0 )                 return saveAsNew ( item );             var existingNote = Notes . Where ( i => i . Id == item . Id ). FirstOrDefault ();             existingNote . Title = item . Title ;             existingNote . Body = item . Body ;             return existingNote . Id ;         }         private int saveAsNew ( Note item )         {             item . Id = Notes . Count + 1 ;             Notes . Add ( item );             return item . Id ;         }     } } The class has a property named Notes that is read only and handles instantiating a collection of Note objects in the runtime cache if it doesn't exist, and then returns the collection from the cache. This property is there to give us a simulated storage so that we didn't have to add a full blown database (beyond the scope of this post). The private method loadInitialData handles pre-filling the collection of Note objects with some initial data and stuffs them into the cache. Both of these chunks of code would be refactored out with a move to a real means of data storage. The GetAll and GetById methods access our simulated data storage to return all of our notes or a specific note by id. The Save method takes in a Note object, checks to see if it has an Id less than or equal to zero (we assume that an Id that is not greater than zero represents a note that is new) and if so, calls the private method saveAsNew . If the Note item sent in has an Id , the code finds that Note in the simulated storage, updates the Title and Description , and returns the Id value. The saveAsNew method sets the Id , adds it to the simulated storage, and returns the Id value. The increment of the Id is simulated here by getting the current count of the note collection and adding 1 to it. The setting of the Id is the only other chunk of code that would be refactored out when moving to a different data storage approach. With our model and data manager code in place we can turn our attention to the controller and views. We can do all of our work in a single controller. If we use a HomeController , we can add an action method named Index that will return our main view. An action method named List will get all of our Note objects from our manager and return a partial view. We will use some jQuery to make an AJAX call to that action method and update our main view with the partial view content returned. Since the jQuery AJAX call will cache the call to the content in Internet Explorer by default (a setting in jQuery), we will decorate the List, Create and Edit action methods with the OutputCache attribute and a duration of 0. This will send the no-cache flag back in the header of the content to the browser and jQuery will pick that up and not cache the AJAX call. The Create action method instantiates a new Note model object and returns a partial view, specifying the NoteForm.cshtml view file and passing in the model. The NoteForm view is used for the add and edit functionality. The Edit action method takes in the Id of the note to be edited, loads the Note model object based on that Id , and does the same return of the partial view as the Create method. The Save method takes in the posted Note object and sends it to the manager to save. It is decorated with the HttpPost attribute to ensure that it will only be available via a POST. It returns a Json object with a property named Success that can be used by the UX to verify everything went well (we won't use that in our example). Both the add and edit actions in the UX will post to the Save action method, allowing us to reduce the amount of unique jQuery we need to write in our view. The contents of the HomeController.cs file: using System . Web . Mvc ; using Website . Models ; namespace Website . Controllers {     public class HomeController : Controller     {         public ActionResult Index ()         {             return View ();         }         [ OutputCache ( Duration = 0 )]         public ActionResult List ()         {             var manager = new NoteManager ();             var model = manager . GetAll ();             return PartialView ( model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Create ()         {             var model = new Note ();             return PartialView ( "NoteForm" , model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Edit ( int id )         {             var manager = new NoteManager ();             var model = manager . GetById ( id );             return PartialView ( "NoteForm" , model );         }         [ HttpPost ]         public JsonResult Save ( Note note )         {             var manager = new NoteManager ();             var noteId = manager . Save ( note );             return Json ( new { Success = noteId > 0 });         }     } } The view for the note form, NoteForm.cshtml , looks like so: @model Website . Models . Note @using ( Html . BeginForm ( "Save" , "Home" , FormMethod . Post , new { id = "NoteForm" })) { @Html . Hidden ( "Id" ) < label class = "Title" >     < span > Title < /span><br / >     @Html . TextBox ( "Title" ) < /label> <label class="Body">     <span>Body</ span >< br />     @Html . TextArea ( "Body" ) < /label> } It is a strongly typed view for our Note model class. We give the <form> element an id attribute so that we can reference it via jQuery. The <label> and <span> tags give our UX some structure that we can style with some CSS. The List.cshtml view is used to render out a <ul> element with all of our notes. @model IEnumerable < Website . Models . Note > < ul class = "NotesList" >     @foreach ( var note in Model )     {     < li >         @note . Title < br />         @note . Body < br />         < span class = "EditLink ButtonLink" noteid = "@note.Id" > Edit < /span>     </ li >     } < /ul> This view is strongly typed as well. It includes a <span> tag that we will use as an edit button. We add a custom attribute named noteid to the <span> tag that we can use in our jQuery to identify the Id of the note object we want to edit. The view, Index.cshtml , contains a bit of html block structure and all of our jQuery logic code. @ {     ViewBag . Title = "Index" ; } < h2 > Notes < /h2> <div id="NoteListBlock"></ div > < span class = "AddLink ButtonLink" > Add New Note < /span> <div id="NoteDialog" title="" class="Hidden"></ div > < script type = "text/javascript" >     $ ( function () {         $ ( "#NoteDialog" ). dialog ({             autoOpen : false , width : 400 , height : 330 , modal : true ,             buttons : {                 "Save" : function () {                     $ . post ( "/Home/Save" ,                         $ ( "#NoteForm" ). serialize (),                         function () {                             $ ( "#NoteDialog" ). dialog ( "close" );                             LoadList ();                         });                 },                 Cancel : function () { $ ( this ). dialog ( "close" ); }             }         });         $ ( ".EditLink" ). live ( "click" , function () {             var id = $ ( this ). attr ( "noteid" );             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Edit Note" )                 . load ( "/Home/Edit/" + id , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         $ ( ".AddLink" ). click ( function () {             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Add Note" )                 . load ( "/Home/Create" , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         LoadList ();     });     function LoadList () {         $ ( "#NoteListBlock" ). load ( "/Home/List" );     } < /script> The <div> tag with the id attribute of "NoteListBlock" is used as a container target for the load of the partial view content of our List action method. It starts out empty and will get loaded with content via jQuery once the DOM is loaded. The <div> tag with the id attribute of "NoteDialog" is the element for our dialog widget. The jQuery UI library will use the title attribute for the text in the dialog widget top header bar. We start out with it empty here and will dynamically change the text via jQuery based on the request to either add or edit a note. This <div> tag is given a CSS class named "Hidden" that will set the display:none style on the element. Since our call to the jQuery UI method to make the element a dialog widget will occur in the jQuery document ready code block, the end user will see the <div> element rendered in their browser as the page renders and then it will hide after that jQuery call. Adding the display:hidden to the <div> element via CSS will ensure that it is never rendered until the user triggers the request to open the dialog. The jQuery document load block contains the setup for the dialog node, click event bindings for the edit and add links, and a call to a JavaScript function called LoadList that handles the AJAX call to the List action method. The .dialog() method is called on the "NoteDialog" <div> element and the options are set for the dialog widget. The buttons option defines 2 buttons and their click actions. The first is the "Save" button (the text in quotations is used as the text for the button) that will do an AJAX post to our Save action method and send the serialized form data from the note form (targeted with the id attribute "NoteForm"). Upon completion it will close the dialog widget and call the LoadList to update the UX without a redirect. The "Cancel" button simply closes the dialog widget. The .live() method handles binding a function to the "click" event on all elements with the CSS class named EditLink . We use the .live() method because it will catch and bind our function to elements even as the DOM changes. Since we will be constantly changing the note list as we add and edit we want to ensure that the edit links get wired up with click events. The function for the click event on the edit links gets the noteid attribute and stores it in a local variable. Then it clears out the HTML in the dialog element (to ensure a fresh start), calls the .dialog() method and sets the "title" option (this sets the title attribute value), and then calls the .load() AJAX method to hit our Edit action method and inject the returned content into the "NoteDialog" <div> element. Once the .load() method is complete it opens the dialog widget. The click event binding for the add link is similar to the edit, only we don't need to get the id value and we load the Create action method. This binding is done via the .click() method because it will only be bound on the initial load of the page. The add button will always exist. Finally, we toss in some CSS in the Content/Site.css file to style our form and the add/edit links. . ButtonLink { color : Blue ; cursor : pointer ; } . ButtonLink : hover { text - decoration : underline ; } . Hidden { display : none ; } #NoteForm label { display:block; margin-bottom:6px; } #NoteForm label > span { font-weight:bold; } #NoteForm input[type=text] { width:350px; } #NoteForm textarea { width:350px; height:80px; } With all of our code in place we can do an F5 and see our list of notes: If we click on an edit link we will get the dialog widget with the correct note data loaded: And if we click on the add new note link we will get the dialog widget with the empty form: The end result of our solution tree for our sample:

    Read the article

  • Sorting and Filtering By Model-Based LOV Display Value

    - by Steven Davelaar
    If you use a model-based LOV and you use display type "choice", then ADF nicely displays the display value, even if the table is read-only. In the screen shot below, you see the RegionName attribute displayed instead of the RegionId. This is accomplished by the model-based LOV, I did not modify the Countries view object to include a join with Regions.  Also note the sort icon, the table is sorted by RegionId. This sorting typically results in a bug reported by your test team. Europe really shouldn't come before America when sorting ascending, right? To fix this, we could of course change the Countries view object query and add a join with the Regions table to include the RegionName attribute. If the table is updateable, we still need the choice list, so we need to move the model-based LOV from the RegionId attribute to the RegionName attribute and hide the RegionId attribute in the table. But that is a lot of work for such a simple requirement, in particular if we have lots of model-based choice lists in our view object. Fortunately, there is an easier way to do this, with some generic code in your view object base class that fixes this at once for all model-based choice lists that we have defined in our application. The trick is to override the method getSortCriteria() in the base view object class. By default, this method returns null because the sorting is done in the database through a SQL Order By clause. However, if the getSortCriteria method does return a sort criteria the framework will perform in memory sorting which is what we need to achieve sorting by region name. So, inside this method we need to evaluate the Order By clause, and if the order by column matches an attribute that has a model-based LOV choicelist defined with a display attribute that is different from the value attribute, we need to return a sort criterria. Here is the complete code of this method: public SortCriteria[] getSortCriteria() {   String orderBy = getOrderByClause();          if (orderBy!=null )   {     boolean descending = false;     if (orderBy.endsWith(" DESC"))      {       descending = true;       orderBy = orderBy.substring(0,orderBy.length()-5);     }     // extract column name, is part after the dot     int dotpos = orderBy.lastIndexOf(".");     String columnName = orderBy.substring(dotpos+1);     // loop over attributes and find matching attribute     AttributeDef orderByAttrDef = null;     for (AttributeDef attrDef : getAttributeDefs())     {       if (columnName.equals(attrDef.getColumnName()))       {         orderByAttrDef = attrDef;         break;       }     }     if (orderByAttrDef!=null && "choice".equals(orderByAttrDef.getProperty("CONTROLTYPE"))          && orderByAttrDef.getListBindingDef()!=null)     {       String orderbyAttr = orderByAttrDef.getName();       String[] displayAttrs = orderByAttrDef.getListBindingDef().getListDisplayAttrNames();       String[] listAttrs = orderByAttrDef.getListBindingDef().getListAttrNames();       // if first list display attributes is not the same as first list attribute, than the value       // displayed is different from the value copied back to the order by attribute, in which case we need to       // use our custom comparator       if (displayAttrs!=null && listAttrs!=null && displayAttrs.length>0 && !displayAttrs[0].equals(listAttrs[0]))       {                  SortCriteriaImpl sc1 = new SortCriteriaImpl(orderbyAttr, descending);         SortCriteria[] sc = new SortCriteriaImpl[]{sc1};         return sc;                           }     }     }   return super.getSortCriteria(); } If this method returns a sort criteria, then the framework will call the sort method on the view object. The sort method uses a Comparator object to determine the sequence in which the rows should be returned. This comparator is retrieved by calling the getRowComparator method on the view object. So, to ensure sorting by our display value, we need to override this method to return our custom comparator: public Comparator getRowComparator() {   return new LovDisplayAttributeRowComparator(getSortCriteria()); } The custom comparator class extends the default RowComparator class and overrides the method compareRows and looks up the choice display value to compare the two rows. The complete code of this class is included in the sample application.  With this code in place, clicking on the Region sort icon nicely sorts the countries by RegionName, as you can see below. When using the Query-By-Example table filter at the top of the table, you typically want to use the same choice list to filter the rows. One way to do that is documented in ADF code corner sample 16 - How To Customize the ADF Faces Table Filter.The solution in this sample is perfectly fine to use. This sample requires you to define a separate iterator binding and associated tree binding to populate the choice list in the table filter area using the af:iterator tag. You might be able to reuse the same LOV view object instance in this iterator binding that is used as view accessor for the model-bassed LOV. However, I have seen quite a few customers who have a generic LOV view object (mapped to one "refcodes" table) with the bind variable values set in the LOV view accessor. In such a scenario, some duplicate work is needed to get a dedicated view object instance with the correct bind variables that can be used in the iterator binding. Looking for ways to maximize reuse, wouldn't it be nice if we could just reuse our model-based LOV to populate this filter choice list? Well we can. Here are the basic steps: 1. Create an attribute list binding in the page definition that we can use to retrieve the list of SelectItems needed to populate the choice list <list StaticList="false" Uses="LOV_RegionId"               IterBinding="CountriesView1Iterator" id="RegionId"/>  We need this "current row" list binding because the implicit list binding used by the item in the table is not accessible outside a table row, we cannot use the expression #{row.bindings.RegionId} in the table filter facet. 2. Create a Map-style managed bean with the get method retrieving the list binding as key, and returning the list of SelectItems. To return this list, we take the list of selectItems contained by the list binding and replace the index number that is normally used as key value with the actual attribute value that is set by the choice list. Here is the code of the get method:  public Object get(Object key) {   if (key instanceof FacesCtrlListBinding)   {     // we need to cast to internal class FacesCtrlListBinding rather than JUCtrlListBinding to     // be able to call getItems method. To prevent this import, we could evaluate an EL expression     // to get the list of items     FacesCtrlListBinding lb = (FacesCtrlListBinding) key;     if (cachedFilterLists.containsKey(lb.getName()))     {       return cachedFilterLists.get(lb.getName());     }     List<SelectItem> items = (List<SelectItem>)lb.getItems();     if (items==null || items.size()==0)     {       return items;     }     List<SelectItem> newItems = new ArrayList<SelectItem>();     JUCtrlValueDef def = ((JUCtrlValueDef)lb.getDef());     String valueAttr = def.getFirstAttrName();     // the items list has an index number as value, we need to replace this with the actual     // value of the attribute that is copied back by the choice list     for (int i = 0; i < items.size(); i++)     {       SelectItem si = (SelectItem) items.get(i);       Object value = lb.getValueFromList(i);       if (value instanceof Row)       {         Row row = (Row) value;         si.setValue(row.getAttribute(valueAttr));                 }       else       {         // this is the "empty" row, set value to empty string so all rows will be returned         // as user no longer wants to filter on this attribute         si.setValue("");       }       newItems.add(si);     }     cachedFilterLists.put(lb.getName(), newItems);     return newItems;   }   return null; } Note that we added caching to speed up performance, and to handle the situation where table filters or search criteria are set such that no rows are retrieved in the table. When there are no rows, there is no current row and the getItems method on the list binding will return no items.  An alternative approach to create the list of SelectItems would be to retrieve the iterator binding from the list binding and loop over the rows in the iterator binding rowset. Then we wouldn't need the import of the ADF internal oracle.adfinternal.view.faces.model.binding.FacesCtrlListBinding class, but then we need to figure out the display attributes from the list binding definition, and possible separate them with a dash if multiple display attributes are defined in the LOV. Doable but less reuse and more work. 3. Inside the filter facet for the column create an af:selectOneChoice with the value property of the f:selectItems tag referencing the get method of the managed bean:  <f:facet name="filter">   <af:selectOneChoice id="soc0" autoSubmit="true"                       value="#{vs.filterCriteria.RegionId}">     <!-- attention: the RegionId list binding must be created manually in the page definition! -->                       <f:selectItems id="si0"                    value="#{viewScope.TableFilterChoiceList[bindings.RegionId]}"/>   </af:selectOneChoice> </f:facet> Note that the managed bean is defined in viewScope for the caching to take effect. Here is a screen shot of the tabe filter in action: You can download the sample application here. 

    Read the article

  • iPhone SDK vs. Windows Phone 7 Series SDK Challenge, Part 2: MoveMe

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. If youre seeing this series for the first time, check out Part 1: Hello World. A note on methodologyin the prior post there was some feedback about lines of code not being a very good metric for this exercise.  I dont really disagree, theres a lot more to this than lines of code but I believe that is a relevant metric, even if its not the ultimate one.  And theres no perfect answer here.  So I am going to continue to report the number of lines of code that I, as a developer would need to write in these apps as a data point, and Ill leave it up to the reader to determine how that fits in with overall complexity, etc.  The first example was so basic that I think it was difficult to talk about in real terms.  I think that as these apps get more complex, the subjective differences in concept count and will be more important.  MoveMe The MoveMe app is the main end-to-end app writing example in the iPhone SDK, called Creating an iPhone Application.  This application demonstrates a few concepts, including handling touch input, how to do animations, and how to do some basic transforms. The behavior of the application is pretty simple.  User touches the button: The button does a throb type animation where it scales up and then back down briefly. User drags the button: After a touch begins, moving the touch point will drag the button around with the touch. User lets go of the button: The button animates back to its original position, but does a few small bounces as it reaches its original point, which makes the app fun and gives it an extra bit of interactivity. Now, how would I write an app that meets this spec for Windows Phone 7 Series, and how hard would it be?  Lets find out!     Implementing the UI Okay, lets build the UI for this application.  In the HelloWorld example, we did all the UI design in Visual Studio and/or by hand in XAML.  In this example, were going to use the Expression Blend 4 Beta. You might be wondering when to use Visual Studio, when to use Blend, and when to do XAML by hand.  Different people will have different takes on this, but heres mine: XAML by hand simple UI that doesnt contain animations, gradients, etc., and or UI that I want to really optimize and craft when I know exactly what I want to do. Visual Studio Basic UI layout, property setting, data binding, etc. Blend Any serious design work needs to be done in Blend, including animations, handling states and transitions, styling and templating, editing resources. As in Part 1, go ahead and fire up Visual Studio 2010 Express for Windows Phone (yes, soon it will take longer to say the name of our products than to start them up!), and create a new Windows Phone Application.  As in Part 1, clear out the XAML from the designer.  An easy way to do this is to just: Click on the design surface Hit Control+A Hit Delete Theres a little bit left over (the Grid.RowDefinitions element), just go ahead and delete that element so were starting with a clean state of only one outer Grid element. To use Blend, we need to save this project.  See, when you create a project with Visual Studio Express, it doesnt commit it to the disk (well, in a place where you can find it, at least) until you actually save the project.  This is handy if youre doing some fooling around, because it doesnt clutter your disk with WindowsPhoneApplication23-like directories.  But its also kind of dangerous, since when you close VS, if you dont save the projectits all gone.  Yes, this has bitten me since I was saving files and didnt remember that, so be careful to save the project/solution via Save All, at least once. So, save and note the location on disk.  Start Expression Blend 4 Beta, and chose File > Open Project/Solution, and load your project.  You should see just about the same thing you saw over in VS: a blank, black designer surface. Now, thinking about this application, we dont really need a button, even though it looks like one.  We never click it.  So were just going to create a visual and use that.  This is also true in the iPhone example above, where the visual is actually not a button either but a jpg image with a nice gradient and round edges.  Well do something simple here that looks pretty good. In Blend, look in the tool pane on the left for the icon that looks like the below (the highlighted one on the left), and hold it down to get the popout menu, and choose Border:    Okay, now draw out a box in the middle of the design surface of about 300x100.  The Properties Pane to the left should show the properties for this item. First, lets make it more visible by giving it a border brush.  Set the BorderBrush to white by clicking BorderBrush and dragging the color selector all the way to the upper right in the palette.  Then, down a bit farther, make the BorderThickness 4 all the way around, and the CornerRadius set to 6. In the Layout section, do the following to Width, Height, Horizontal and Vertical Alignment, and Margin (all 4 margin values): Youll see the outline now is in the middle of the design surface.  Now lets give it a background color.  Above BorderBrush select Background, and click the third tab over: Gradient Brush.  Youll see a gradient slider at the bottom, and if you click the markers, you can edit the gradient stops individually (or add more).  In this case, you can select something you like, but wheres what I chose: Left stop: #BFACCFE2 (I just picked a spot on the palette and set opacity to 75%, no magic here, feel free to fiddle these or just enter these numbers into the hex area and be done with it) Right stop: #FF3E738F Okay, looks pretty good.  Finally set the name of the element in the Name field at the top of the Properties pane to welcome. Now lets add some text.  Just hit T and itll select the TextBlock tool automatically: Now draw out some are inside our welcome visual and type Welcome!, then click on the design surface (to exit text entry mode) and hit V to go back into selection mode (or the top item in the tool pane that looks like a mouse pointer).  Click on the text again to select it in the tool pane.  Just like the border, we want to center this.  So set HorizontalAlignment and VerticalAlignment to Center, and clear the Margins: Thats it for the UI.  Heres how it looks, on the design surface: Not bad!  Okay, now the fun part Adding Animations Using Blend to build animations is a lot of fun, and its easy.  In XAML, I can not only declare elements and visuals, but also I can declare animations that will affect those visuals.  These are called Storyboards. To recap, well be doing two animations: The throb animation when the element is touched The center animation when the element is released after being dragged. The throb animation is just a scale transform, so well do that first.  In the Objects and Timeline Pane (left side, bottom half), click the little + icon to add a new Storyboard called touchStoryboard: The timeline view will appear.  In there, click a bit to the right of 0 to create a keyframe at .2 seconds: Now, click on our welcome element (the Border, not the TextBlock in it), and scroll to the bottom of the Properties Pane.  Open up Transform, click the third tab ("Scale), and set X and Y to 1.2: This all of this says that, at .2 seconds, I want the X and Y size of this element to scale to 1.2. In fact you can see this happen.  Push the Play arrow in the timeline view, and youll see the animation run! Lets make two tweaks.  First, we want the animation to automatically reverse so it scales up then back down nicely. Click in the dropdown that says touchStoryboard in Objects and Timeline, then in the Properties pane check Auto Reverse: Now run it again, and youll see it go both ways. Lets even make it nicer by adding an easing function. First, click on the Render Transform item in the Objects tree, then, in the Property Pane, youll see a bunch of easing functions to choose from.  Feel free to play with this, then seeing how each runs.  I chose Circle In, but some other ones are fun.  Try them out!  Elastic In is kind of fun, but well stick with Circle In.  Thats it for that animation. Now, we also want an animation to move the Border back to its original position when the user ends the touch gesture.  This is exactly the same process as above, but just targeting a different transform property. Create a new animation called releaseStoryboard Select a timeline point at 1.2 seconds. Click on the welcome Border element again Scroll to the Transforms panel at the bottom of the Properties Pane Choose the first tab (Translate), which may already be selected Set both X and Y values to 0.0 (we do this just to make the values stick, because the value is already 0 and we need Blend to know we want to save that value) Click on RenderTransform in the Objects tree In the properties pane, choose Bounce Out Set Bounces to 6, and Bounciness to 4 (feel free to play with these as well) Okay, were done. Note, if you want to test this Storyboard, you have to do something a little tricky because the final value is the same as the initial value, so playing it does nothing.  If you want to play with it, do the following: Next to the selection dropdown, hit the little "x (Close Storyboard) Go to the Translate Transform value for welcome Set X,Y to 50, 200, respectively (or whatever) Select releaseStoryboard again from the dropdown Hit play, see it run Go into the object tree and select RenderTransform to change the easing function. When youre done, hit the Close Storyboard x again and set the values in Transform/Translate back to 0 Wiring Up the Animations Okay, now go back to Visual Studio.  Youll get a prompt due to the modification of MainPage.xaml.  Hit Yes. In the designer, click on the welcome Border element.  In the Property Browser, hit the Events button, then double click each of ManipulationStarted, ManipulationDelta, ManipulationCompleted.  Youll need to flip back to the designer from code, after each double click. Its code time.  Here we go. Here, three event handlers have been created for us: welcome_ManipulationStarted: This will execute when a manipulation begins.  Think of it as MouseDown. welcome_ManipulationDelta: This executes each time a manipulation changes.  Think MouseMove. welcome_ManipulationCompleted: This will  execute when the manipulation ends. Think MouseUp. Now, in ManipuliationStarted, we want to kick off the throb animation that we called touchAnimation.  Thats easy: 1: private void welcome_ManipulationStarted(object sender, ManipulationStartedEventArgs e) 2: { 3: touchStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Likewise, when the manipulation completes, we want to re-center the welcome visual with our bounce animation: 1: private void welcome_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e) 2: { 3: releaseStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note there is actually a way to kick off these animations from Blend directly via something called Triggers, but I think its clearer to show whats going on like this.  A Trigger basically allows you to say When this event fires, trigger this Storyboard, so its the exact same logical process as above, but without the code. But how do we get the object to move?  Well, for that we really dont want an animation because we want it to respond immediately to user input. We do this by directly modifying the transform to match the offset for the manipulation, and then well let the animation bring it back to zero when the manipulation completes.  The manipulation events do a great job of keeping track of all the stuff that you usually had to do yourself when doing drags: where you started from, how far youve moved, etc. So we can easily modify the position as below: 1: private void welcome_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 2: { 3: CompositeTransform transform = (CompositeTransform)welcome.RenderTransform; 4:   5: transform.TranslateX = e.CumulativeManipulation.Translation.X; 6: transform.TranslateY = e.CumulativeManipulation.Translation.Y; 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thats it! Go ahead and run the app in the emulator.  I suggest running without the debugger, its a little faster (CTRL+F5).  If youve got a machine that supports DirectX 10, youll see nice smooth GPU accelerated graphics, which also what it looks like on the phone, running at about 60 frames per second.  If your machine does not support DX10 (like the laptop Im writing this on!), it wont be quite a smooth so youll have to take my word for it! Comparing Against the iPhone This is an example where the flexibility and power of XAML meets the tooling of Visual Studio and Blend, and the whole experience really shines.  So, for several things that are declarative and 100% toolable with the Windows Phone 7 Series, this example does them with code on the iPhone.  In parens is the lines of code that I count to do these operations. PlacardView.m: 19 total LOC Creating the view that hosts the button-like image and the text Drawing the image that is the background of the button Drawing the Welcome text over the image (I think you could technically do this step and/or the prior one using Interface Builder) MoveMeView.m:  63 total LOC Constructing and running the scale (throb) animation (25) Constructing the path describing the animation back to center plus bounce effect (38) Beyond the code count, yy experience with doing this kind of thing in code is that its VERY time intensive.  When I was a developer back on Windows Forms, doing GDI+ drawing, we did this stuff a lot, and it took forever!  You write some code and even once you get it basically working, you see its not quite right, you go back, tweak the interval, or the math a bit, run it again, etc.  You can take a look at the iPhone code here to judge for yourself.  Scroll down to animatePlacardViewToCenter toward the bottom.  I dont think this code is terribly complicated, but its not what Id call simple and its not at all simple to get right. And then theres a few other lines of code running around for setting up the ViewController and the Views, about 15 lines between MoveMeAppDelegate, PlacardView, and MoveMeView, plus the assorted decls in the h files. Adding those up, I conservatively get something like 100 lines of code (19+63+15+decls) on iPhone that I have to write, by hand, to make this project work. The lines of code that I wrote in the examples above is 5 lines of code on Windows Phone 7 Series. In terms of incremental concept counts beyond the HelloWorld app, heres a shot at that: iPhone: Drawing Images Drawing Text Handling touch events Creating animations Scaling animations Building a path and animating along that Windows Phone 7 Series: Laying out UI in Blend Creating & testing basic animations in Blend Handling touch events Invoking animations from code This was actually the first example I tried converting, even before I did the HelloWorld, and I was pretty surprised.  Some of this is luck that this app happens to match up with the Windows Phone 7 Series platform just perfectly.  In terms of time, I wrote the above application, from scratch, in about 10 minutes.  I dont know how long it would take a very skilled iPhone developer to write MoveMe on that iPhone from scratch, but if I was to write it on Silverlight in the same way (e.g. all via code), I think it would likely take me at least an hour or two to get it all working right, maybe more if I ended up picking the wrong strategy or couldnt get the math right, etc. Making Some Tweaks Silverlight contains a feature called Projections to do a variety of 3D-like effects with a 2D surface. So lets play with that a bit. Go back to Blend and select the welcome Border in the object tree.  In its properties, scroll down to the bottom, open Transform, and see Projection at the bottom.  Set X,Y,Z to 90.  Youll see the element kind of disappear, replaced by a thin blue line. Now Create a new animation called startupStoryboard. Set its key time to .5 seconds in the timeline view Set the projection values above to 0 for X, Y, and Z. Save Go back to Visual Studio, and in the constructor, add the following bold code (lines 7-9 to the constructor: 1: public MainPage() 2: { 3: InitializeComponent(); 4:   5: SupportedOrientations = SupportedPageOrientation.Portrait; 6:   7: this.Loaded += (s, e) => 8: { 9: startupStoryboard.Begin(); 10: }; 11: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If the code above looks funny, its using something called a lambda in C#, which is an inline anonymous method.  Its just a handy shorthand for creating a handler like the manipulation ones above. So with this youll get a nice 3D looking fly in effect when the app starts up.  Here it is, in flight: Pretty cool!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Windows 7 intermittently drops wired internet/lan connection.

    - by CraigTP
    In a nutshell, my Windows 7 Ultimate PC intermittently drops it's internet connection. Why? Background: My PC is wired to my ADSL modem/router which is directly connected to the phone line. I also have wireless connectivity turned on within the router for a laptop to connect wirelessly. Every few hours or so, when using my PC, I find I cannot access the internet and pages will not load. Eventually, Windows7 will update the network icon in the task-tray to show the exclamation mark symbol on the network icon. Opening up the Network And Sharing Centre will show the red cross between the "Multiple Networks" and "The Internet". Here's a picture of the "Network And Sharing Centre" (grabbed when everything was working!) As you can see, I'm running Sun's VirtualBox on this machine and that creates a Network connection for itself. This doesn't seem to affect the intermittent dropping (i.e. the intermittent drops occur whether the VirtualBox connection is in use or not). When the connection does drop, I cannot access any internet pages, nor can I access the router's web admin page at http://192.168.1.1/, so I'm assuming I've lost all local LAN access too. It's definitely not the router (or the internet connection itself) as my laptop, using the wireless connection (and running Vista Home Premium) continues to be able to access the internet (and the router's web admin pages) just fine. Every time this happens, I can immediately restore all internet and LAN access by opening Network Adapter page, disabling the "Local Area Connection" and then re-enabling it. Give it a few seconds and everything is fine again. I assume this is because, beneath the GUI, it's effectively doing an "ipconfig /release" then "ipconfig /renew". Why does this happen in the first place, though? I've googled for this and seen quite a few other people (even on MSDN/Technet forums) experiencing the same or almost the same problem, but with no clear resolution. Suggestions of turning off IPv6 on the LAN adapter, and ensuring there's no power management "sleeping" the network adapter have been tried but do not cure the problem. There does not seem to be any particular sequence of events that cause it to happen either. I've had it go twice in 20 minutes when just randomly browsing the web with no other traffic, and I've also had it go once then not go again for 2-3 hours with the same sort of usage. Can anyone tell me why this is happening and how to make it stop? EDIT: Additional information based upon the answer provided so far: Firstly, I forgot the mention that this is Windows 7 64 bit if that makes any difference at all. I mentioned that I don't think the VirtualBox network adpater is causing this problem in any way, and I also have VirtualBox installed on two other machines, one running Vista Home Premium and the other running XP. Neither of these machine experience the same network connectivity issues as the Windows 7 machine. The IP assignment for the Windows 7 machine is the same both before and after the "drop". I have a DHCP server on the router issuing IP Addresses, however my Windows 7 machine uses a static address. Here's the output from "ipconfig": Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Realtek PCIe GBE Family Controller DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 192.168.1.2(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.1.1 DNS Servers . . . . . . . . . . . : 192.168.1.1 NetBIOS over Tcpip. . . . . . . . : Enabled Within the system's event logs, the only event that relates to the connection dropping is a "DNS Client Event" and this is generated after the connection has dropped and is an event detailing that DNS information can't be found for whatever website I may be trying to access, just as the connection drops: Log Name: System Source: Microsoft-Windows-DNS-Client Event ID: 1014 Task Category: None Level: Warning Keywords: User: NETWORK SERVICE Description: Name resolution for the name weather.service.msn.com timed out after none of the configured DNS servers responded. The network adapter chipset is Realtek PCIe GBE Family Controller and I have confirmed that this is the correct chipset for the motherboard (Asus M4A77TD PRO), and in fact, Windows Update installed an updated driver for this on 12/Jan/2009. The details of the update say that it's a Realtek software update from December 2009. Incidentally, I was still having the same intermittent problems prior to this update. It seems to have made no difference at all. EDIT 2 (1 Feb 2010): In my quest to solve this problem, I have discovered some more interesting information. On another forum, someone suggested that I should try running Windows in "Safe Mode With Networking" and see if the problem continues to occur. This was a fantastic suggestion and I don't know why I didn't think of it sooner myself. So, I proceeded to run in Safe Mode with Networking for a number of hours, and amazingly, the "drops" didn't occur once. It was a positive discovery, however, due to the intermittent nature of the original problem, I wasn't completely convinced that the problem was cured. One thing I did note is that the fan on my GFX card was running alot louder than normal. This is due to the fact that I have an ASUS ENGTS250 graphics card (http://www.asus.com/product.aspx?P_ID=B6imcoax3MRY42f3) which had a known problem with a noisy fan until a BIOS update fixed the issue. (See the "Manufacturer Response" here: http://www.newegg.com/Product/Product.aspx?Item=N82E16814121334 for details). Well, running in safe mode had the fan running (incorrectly) at full speed (as it did before the BIOS update), but with an (apparently) stable network connection. Obviously some driver was not loaded for the GFX card when in Safe Mode so this got me thinking about the GFX card (since the very noisy fan was quite obvious when running in Safe Mode). I rebooted into normal mode, and found that Nvidia had a very up-to-date new driver for my GFX card (only about 1 week old), so I downloaded the appropriate driver and installed it. After installation and a reboot, I was able to use my PC for an entire day with NO NETWORK DROPS!!! This was on Saturday. However, on the Sunday, I also had my PC for pretty much the entire day and experienced 2 network drops. No other changes have been made to my PC in this time. So, the story seems to be that updating my graphics card drivers seems to have improved (if not completely fixed) the issue, however, I'm still searching for a proper fix for this problem. Hopefully, this information may help anyone who may have additional ideas as to why this problem is occuring in the first place. (And why does new GFX card drivers have anything to do with the network?) I appreciate everyone's feedback so far. However, I'll have to ask once more if anyone has any further ideas of how to fix this particular problem? Thanks in advance.

    Read the article

  • Windows Start Menu Not Staying on Top

    - by Jeff Rapp
    Hey everyone. I've had this problem since Windows Vista. I did a clean install with Windows 7 and hoped it would fix the problem. Also swapped out the video card just to rule out a strange driver issue. Here's what's happening. After running for some period of time (usually a few hours), the Start button/orb will loose it's "Chrome" and turn into a plain button that just says "Start." It will work fine for a while, but then the start menu will just stop showing. Additionally, when I hit Win+D to show the desktop, the entire taskbar completely disappears. I can get it back usually by moving/minimizing windows that may be overlapping where the start menu should show. Otherwise, it requires either a full reboot or I'll end up killing & restarting the explorer.exe process. I realize that this is a strange issue - I took a video of it http://www.youtube.com/watch?v=0B3WwT0uyr4 Thanks! --Edit-- Here's my HijackThis log: Logfile of Trend Micro HijackThis v2.0.3 (BETA) Scan saved at 4:19:00 PM, on 12/16/2009 Platform: Unknown Windows (WinNT 6.01.3504) MSIE: Internet Explorer v8.00 (8.00.7600.16385) Boot mode: Normal Running processes: C:\Program Files (x86)\Pantone\hueyPRO\hueyPROTray.exe C:\Program Files (x86)\Adobe\Acrobat 9.0\Acrobat\acrotray.exe C:\Program Files (x86)\iTunes\iTunesHelper.exe C:\Program Files (x86)\Java\jre6\bin\jusched.exe C:\Program Files (x86)\MagicDisc\MagicDisc.exe C:\Program Files (x86)\Trillian\trillian.exe C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe C:\Program Files (x86)\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\Ssms.exe C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe C:\Program Files (x86)\Common Files\Microsoft Shared\DevServer\9.0\WebDev.WebServer.EXE C:\Program Files (x86)\Notepad++\notepad++.exe C:\Program Files (x86)\Fiddler2\Fiddler.exe C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\mspdbsrv.exe C:\Program Files (x86)\iTunes\iTunes.exe C:\Program Files (x86)\Adobe\Adobe Illustrator CS4\Support Files\Contents\Windows\Illustrator.exe C:\Program Files (x86)\ColorPic 4.1\ColorPic.exe C:\Program Files (x86)\Adobe\Acrobat 9.0\Acrobat\Acrobat.exe C:\Program Files (x86)\Common Files\Microsoft Shared\Help 9\dexplore.exe C:\Program Files (x86)\Common Files\Microsoft Shared\Help 9\dexplore.exe C:\Program Files (x86)\Internet Explorer\IEXPLORE.EXE C:\Program Files (x86)\Internet Explorer\IEXPLORE.EXE C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe C:\Program Files (x86)\eBay\Blackthorne\bin\BT.exe C:\Program Files (x86)\Internet Explorer\IEXPLORE.EXE C:\Program Files (x86)\CamStudio\Recorder.exe C:\Program Files (x86)\CamStudio\Playplus.exe C:\Program Files (x86)\Mozilla Firefox 3.6 Beta 3\firefox.exe C:\Program Files (x86)\CamStudio\Playplus.exe C:\Program Files (x86)\PuTTY\putty.exe C:\Program Files (x86)\CamStudio\Playplus.exe C:\Program Files (x86)\CamStudio\Playplus.exe C:\Program Files (x86)\TrendMicro\HiJackThis\HiJackThis.exe R1 - HKCU\Software\Microsoft\Internet Explorer\Main,Search Page = http://go.microsoft.com/fwlink/?LinkId=54896 R0 - HKCU\Software\Microsoft\Internet Explorer\Main,Start Page = http://go.microsoft.com/fwlink/?LinkId=69157 R1 - HKLM\Software\Microsoft\Internet Explorer\Main,Default_Page_URL = http://go.microsoft.com/fwlink/?LinkId=69157 R1 - HKLM\Software\Microsoft\Internet Explorer\Main,Default_Search_URL = http://go.microsoft.com/fwlink/?LinkId=54896 R1 - HKLM\Software\Microsoft\Internet Explorer\Main,Search Page = http://go.microsoft.com/fwlink/?LinkId=54896 R0 - HKLM\Software\Microsoft\Internet Explorer\Main,Start Page = http://go.microsoft.com/fwlink/?LinkId=69157 R0 - HKLM\Software\Microsoft\Internet Explorer\Search,SearchAssistant = R0 - HKLM\Software\Microsoft\Internet Explorer\Search,CustomizeSearch = R0 - HKLM\Software\Microsoft\Internet Explorer\Main,Local Page = C:\Windows\SysWOW64\blank.htm R0 - HKCU\Software\Microsoft\Internet Explorer\Toolbar,LinksFolderName = F2 - REG:system.ini: UserInit=userinit.exe O2 - BHO: ContributeBHO Class - {074C1DC5-9320-4A9A-947D-C042949C6216} - C:\Program Files (x86)\Adobe\/Adobe Contribute CS4/contributeieplugin.dll O2 - BHO: AcroIEHelperStub - {18DF081C-E8AD-4283-A596-FA578C2EBDC3} - C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEHelperShim.dll O2 - BHO: Groove GFS Browser Helper - {72853161-30C5-4D22-B7F9-0BBC1D38A37E} - C:\PROGRA~2\MICROS~1\Office14\GROOVEEX.DLL O2 - BHO: Windows Live Sign-in Helper - {9030D464-4C02-4ABF-8ECC-5164760863C6} - C:\Program Files (x86)\Common Files\Microsoft Shared\Windows Live\WindowsLiveLogin.dll O2 - BHO: Adobe PDF Conversion Toolbar Helper - {AE7CD045-E861-484f-8273-0445EE161910} - C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll O2 - BHO: URLRedirectionBHO - {B4F3A835-0E21-4959-BA22-42B3008E02FF} - C:\PROGRA~2\MICROS~1\Office14\URLREDIR.DLL O2 - BHO: Java(tm) Plug-In 2 SSV Helper - {DBC80044-A445-435b-BC74-9C25C1C588A9} - C:\Program Files (x86)\Java\jre6\bin\jp2ssv.dll O2 - BHO: SmartSelect - {F4971EE7-DAA0-4053-9964-665D8EE6A077} - C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll O3 - Toolbar: Adobe PDF - {47833539-D0C5-4125-9FA8-0819E2EAAC93} - C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll O3 - Toolbar: Contribute Toolbar - {517BDDE4-E3A7-4570-B21E-2B52B6139FC7} - C:\Program Files (x86)\Adobe\/Adobe Contribute CS4/contributeieplugin.dll O4 - HKLM\..\Run: [AdobeCS4ServiceManager] "C:\Program Files (x86)\Common Files\Adobe\CS4ServiceManager\CS4ServiceManager.exe" -launchedbylogin O4 - HKLM\..\Run: [Adobe Acrobat Speed Launcher] "C:\Program Files (x86)\Adobe\Acrobat 9.0\Acrobat\Acrobat_sl.exe" O4 - HKLM\..\Run: [Acrobat Assistant 8.0] "C:\Program Files (x86)\Adobe\Acrobat 9.0\Acrobat\Acrotray.exe" O4 - HKLM\..\Run: [Adobe_ID0ENQBO] C:\PROGRA~2\COMMON~1\Adobe\ADOBEV~1\Server\bin\VERSIO~2.EXE O4 - HKLM\..\Run: [QuickTime Task] "C:\Program Files (x86)\QuickTime\QTTask.exe" -atboottime O4 - HKLM\..\Run: [iTunesHelper] "C:\Program Files (x86)\iTunes\iTunesHelper.exe" O4 - HKLM\..\Run: [SunJavaUpdateSched] "C:\Program Files (x86)\Java\jre6\bin\jusched.exe" O4 - HKUS\S-1-5-19\..\Run: [Sidebar] %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun (User 'LOCAL SERVICE') O4 - HKUS\S-1-5-19\..\RunOnce: [mctadmin] C:\Windows\System32\mctadmin.exe (User 'LOCAL SERVICE') O4 - HKUS\S-1-5-20\..\Run: [Sidebar] %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun (User 'NETWORK SERVICE') O4 - HKUS\S-1-5-20\..\RunOnce: [mctadmin] C:\Windows\System32\mctadmin.exe (User 'NETWORK SERVICE') O4 - Startup: ChatNowDesktop.appref-ms O4 - Startup: MagicDisc.lnk = C:\Program Files (x86)\MagicDisc\MagicDisc.exe O4 - Startup: Trillian.lnk = C:\Program Files (x86)\Trillian\trillian.exe O4 - Global Startup: Digsby.lnk = C:\Program Files (x86)\Digsby\digsby.exe O4 - Global Startup: hueyPROTray.lnk = C:\Program Files (x86)\Pantone\hueyPRO\hueyPROTray.exe O4 - Global Startup: OfficeSAS.lnk = ? O8 - Extra context menu item: Append Link Target to Existing PDF - res://C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll/AcroIEAppendSelLinks.html O8 - Extra context menu item: Append to Existing PDF - res://C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll/AcroIEAppend.html O8 - Extra context menu item: Convert Link Target to Adobe PDF - res://C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll/AcroIECaptureSelLinks.html O8 - Extra context menu item: Convert to Adobe PDF - res://C:\Program Files (x86)\Common Files\Adobe\Acrobat\ActiveX\AcroIEFavClient.dll/AcroIECapture.html O8 - Extra context menu item: E&xport to Microsoft Excel - res://C:\PROGRA~1\MICROS~1\Office14\EXCEL.EXE/3000 O8 - Extra context menu item: S&end to OneNote - res://C:\PROGRA~1\MICROS~1\Office14\ONBttnIE.dll/105 O9 - Extra button: Send to OneNote - {2670000A-7350-4f3c-8081-5663EE0C6C49} - C:\Program Files (x86)\Microsoft Office\Office14\ONBttnIE.dll O9 - Extra 'Tools' menuitem: Se&nd to OneNote - {2670000A-7350-4f3c-8081-5663EE0C6C49} - C:\Program Files (x86)\Microsoft Office\Office14\ONBttnIE.dll O9 - Extra button: OneNote Lin&ked Notes - {789FE86F-6FC4-46A1-9849-EDE0DB0C95CA} - C:\Program Files (x86)\Microsoft Office\Office14\ONBttnIELinkedNotes.dll O9 - Extra 'Tools' menuitem: OneNote Lin&ked Notes - {789FE86F-6FC4-46A1-9849-EDE0DB0C95CA} - C:\Program Files (x86)\Microsoft Office\Office14\ONBttnIELinkedNotes.dll O9 - Extra button: Fiddler2 - {CF819DA3-9882-4944-ADF5-6EF17ECF3C6E} - "C:\Program Files (x86)\Fiddler2\Fiddler.exe" (file missing) O9 - Extra 'Tools' menuitem: Fiddler2 - {CF819DA3-9882-4944-ADF5-6EF17ECF3C6E} - "C:\Program Files (x86)\Fiddler2\Fiddler.exe" (file missing) O13 - Gopher Prefix: O16 - DPF: {5554DCB0-700B-498D-9B58-4E40E5814405} (RSClientPrint 2008 Class) - http://reportserver/Reports/Reserved.ReportViewerWebControl.axd?ReportSession=oxadkhfvfvt1hzf2eh3y1ay2&ControlID=b89e27f15e734f3faee1308eebdfab2a&Culture=1033&UICulture=9&ReportStack=1&OpType=PrintCab&Arch=X86 O16 - DPF: {82774781-8F4E-11D1-AB1C-0000F8773BF0} (DLC Class) - https://transfers.ds.microsoft.com/FTM/TransferSource/grTransferCtrl.cab O16 - DPF: {D27CDB6E-AE6D-11CF-96B8-444553540000} (Shockwave Flash Object) - http://fpdownload2.macromedia.com/get/shockwave/cabs/flash/swflash.cab O17 - HKLM\System\CCS\Services\Tcpip\Parameters: Domain = LapkoSoft.local O17 - HKLM\System\CCS\Services\Tcpip\..\{5992B87A-643B-4385-A914-249B98BF7129}: NameServer = 192.168.1.10 O17 - HKLM\System\CS1\Services\Tcpip\Parameters: Domain = LapkoSoft.local O17 - HKLM\System\CS2\Services\Tcpip\Parameters: Domain = LapkoSoft.local O18 - Filter hijack: text/xml - {807573E5-5146-11D5-A672-00B0D022E945} - C:\Program Files (x86)\Common Files\Microsoft Shared\OFFICE14\MSOXMLMF.DLL O23 - Service: Adobe Version Cue CS4 - Adobe Systems Incorporated - C:\Program Files (x86)\Common Files\Adobe\Adobe Version Cue CS4\Server\bin\VersionCueCS4.exe O23 - Service: @%SystemRoot%\system32\Alg.exe,-112 (ALG) - Unknown owner - C:\Windows\System32\alg.exe (file missing) O23 - Service: Apple Mobile Device - Apple Inc. - C:\Program Files (x86)\Common Files\Apple\Mobile Device Support\bin\AppleMobileDeviceService.exe O23 - Service: ASP.NET State Service (aspnet_state) - Unknown owner - C:\Windows\Microsoft.NET\Framework\v2.0.50727\aspnet_state.exe (file missing) O23 - Service: Bonjour Service - Apple Inc. - C:\Program Files (x86)\Bonjour\mDNSResponder.exe O23 - Service: @%SystemRoot%\system32\efssvc.dll,-100 (EFS) - Unknown owner - C:\Windows\System32\lsass.exe (file missing) O23 - Service: @%systemroot%\system32\fxsresm.dll,-118 (Fax) - Unknown owner - C:\Windows\system32\fxssvc.exe (file missing) O23 - Service: FLEXnet Licensing Service - Acresso Software Inc. - C:\Program Files (x86)\Common Files\Macrovision Shared\FLEXnet Publisher\FNPLicensingService.exe O23 - Service: FLEXnet Licensing Service 64 - Acresso Software Inc. - C:\Program Files\Common Files\Macrovision Shared\FLEXnet Publisher\FNPLicensingService64.exe O23 - Service: @%windir%\system32\inetsrv\iisres.dll,-30007 (IISADMIN) - Unknown owner - C:\Windows\system32\inetsrv\inetinfo.exe (file missing) O23 - Service: iPod Service - Apple Inc. - C:\Program Files\iPod\bin\iPodService.exe O23 - Service: @keyiso.dll,-100 (KeyIso) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @comres.dll,-2797 (MSDTC) - Unknown owner - C:\Windows\System32\msdtc.exe (file missing) O23 - Service: @%SystemRoot%\System32\netlogon.dll,-102 (Netlogon) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: NVIDIA Performance Driver Service - Unknown owner - C:\Program Files\NVIDIA Corporation\Performance Drivers\nvPDsvc.exe O23 - Service: NVIDIA Display Driver Service (nvsvc) - Unknown owner - C:\Windows\system32\nvvsvc.exe (file missing) O23 - Service: @%systemroot%\system32\psbase.dll,-300 (ProtectedStorage) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%systemroot%\system32\Locator.exe,-2 (RpcLocator) - Unknown owner - C:\Windows\system32\locator.exe (file missing) O23 - Service: @%SystemRoot%\system32\samsrv.dll,-1 (SamSs) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%SystemRoot%\system32\snmptrap.exe,-3 (SNMPTRAP) - Unknown owner - C:\Windows\System32\snmptrap.exe (file missing) O23 - Service: @%systemroot%\system32\spoolsv.exe,-1 (Spooler) - Unknown owner - C:\Windows\System32\spoolsv.exe (file missing) O23 - Service: @%SystemRoot%\system32\sppsvc.exe,-101 (sppsvc) - Unknown owner - C:\Windows\system32\sppsvc.exe (file missing) O23 - Service: TeamViewer 5 (TeamViewer5) - TeamViewer GmbH - C:\Program Files (x86)\TeamViewer\Version5\TeamViewer_Service.exe O23 - Service: @%SystemRoot%\system32\ui0detect.exe,-101 (UI0Detect) - Unknown owner - C:\Windows\system32\UI0Detect.exe (file missing) O23 - Service: @%SystemRoot%\system32\vaultsvc.dll,-1003 (VaultSvc) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%SystemRoot%\system32\vds.exe,-100 (vds) - Unknown owner - C:\Windows\System32\vds.exe (file missing) O23 - Service: @%systemroot%\system32\vssvc.exe,-102 (VSS) - Unknown owner - C:\Windows\system32\vssvc.exe (file missing) O23 - Service: @%systemroot%\system32\wbengine.exe,-104 (wbengine) - Unknown owner - C:\Windows\system32\wbengine.exe (file missing) O23 - Service: @%Systemroot%\system32\wbem\wmiapsrv.exe,-110 (wmiApSrv) - Unknown owner - C:\Windows\system32\wbem\WmiApSrv.exe (file missing) O23 - Service: @%PROGRAMFILES%\Windows Media Player\wmpnetwk.exe,-101 (WMPNetworkSvc) - Unknown owner - C:\Program Files (x86)\Windows Media Player\wmpnetwk.exe (file missing)

    Read the article

  • Fedora 16 can connect to samba share using smbclient but not in nautilus 3.2.1

    - by Nathan Jones
    I have a machine running Ubuntu 11.10 Server acting as a Samba server to share my home directory. Everything works fine on my Windows 7 machine, but on my Fedora 16 laptop, if I use Nautilus to try to access the share using smb://192.168.0.8/nathan in the location bar, it just has the loading cursor and does nothing. It never shows any errors, nothing. Using smbclient works just fine, but I'd like to get it working in Nautilus. I know that there can be problems with SELinux and Samba, so I created a file called booleans.local that contains samba_enable_home_dirs=1. My smb.conf file looks like this: # For Unix password sync to work on a Debian GNU/Linux system, the following # parameters must be set (thanks to Ian Kahan <<[email protected]> for # sending the correct chat script for the passwd program in Debian Sarge). passwd program = /usr/bin/passwd %u passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n *password\supdated\ssuccessfully* . # This boolean controls whether PAM will be used for password changes # when requested by an SMB client instead of the program listed in # 'passwd program'. The default is 'no'. pam password change = yes # This option controls how unsuccessful authentication attempts are mapped # to anonymous connections map to guest = bad user ########## Domains ########### # Is this machine able to authenticate users. Both PDC and BDC # must have this setting enabled. If you are the BDC you must # change the 'domain master' setting to no # ; domain logons = yes # # The following setting only takes effect if 'domain logons' is set # It specifies the location of the user's profile directory # from the client point of view) # The following required a [profiles] share to be setup on the # samba server (see below) ; logon path = \\%N\profiles\%U # Another common choice is storing the profile in the user's home directory # (this is Samba's default) # logon path = \\%N\%U\profile # The following setting only takes effect if 'domain logons' is set # It specifies the location of a user's home directory (from the client # point of view) ; logon drive = H: # logon home = \\%N\%U # The following setting only takes effect if 'domain logons' is set # It specifies the script to run during logon. The script must be stored # in the [netlogon] share # NOTE: Must be store in 'DOS' file format convention ; logon script = logon.cmd # This allows Unix users to be created on the domain controller via the SAMR # RPC pipe. The example command creates a user account with a disabled Unix # password; please adapt to your needs ; add user script = /usr/sbin/adduser --quiet --disabled-password --gecos "" %u # This allows machine accounts to be created on the domain controller via the # SAMR RPC pipe. # The following assumes a "machines" group exists on the system ; add machine script = /usr/sbin/useradd -g machines -c "%u machine account" -d /var/lib/samba -s /bin/false %u # This allows Unix groups to be created on the domain controller via the SAMR # RPC pipe. ; add group script = /usr/sbin/addgroup --force-badname %g ########## Printing ########## # If you want to automatically load your printer list rather # than setting them up individually then you'll need this # load printers = yes # lpr(ng) printing. You may wish to override the location of the # printcap file ; printing = bsd ; printcap name = /etc/printcap # CUPS printing. See also the cupsaddsmb(8) manpage in the # cupsys-client package. ; printing = cups ; printcap name = cups ############ Misc ############ # Using the following line enables you to customise your configuration # on a per machine basis. The %m gets replaced with the netbios name # of the machine that is connecting ; include = /home/samba/etc/smb.conf.%m # Most people will find that this option gives better performance. # See smb.conf(5) and /usr/share/doc/samba-doc/htmldocs/Samba3-HOWTO/speed.html # for details # You may want to add the following on a Linux system: # SO_RCVBUF=8192 SO_SNDBUF=8192 # socket options = TCP_NODELAY # The following parameter is useful only if you have the linpopup package # installed. The samba maintainer and the linpopup maintainer are # working to ease installation and configuration of linpopup and samba. ; message command = /bin/sh -c '/usr/bin/linpopup "%f" "%m" %s; rm %s' & # Domain Master specifies Samba to be the Domain Master Browser. If this # machine will be configured as a BDC (a secondary logon server), you # must set this to 'no'; otherwise, the default behavior is recommended. # domain master = auto # Some defaults for winbind (make sure you're not using the ranges # for something else.) ; idmap uid = 10000-20000 ; idmap gid = 10000-20000 ; template shell = /bin/bash # The following was the default behaviour in sarge, # but samba upstream reverted the default because it might induce # performance issues in large organizations. # See Debian bug #368251 for some of the consequences of *not* # having this setting and smb.conf(5) for details. ; winbind enum groups = yes ; winbind enum users = yes # Setup usershare options to enable non-root users to share folders # with the net usershare command. # Maximum number of usershare. 0 (default) means that usershare is disabled. ; usershare max shares = 100 # Allow users who've been granted usershare privileges to create # public shares, not just authenticated ones usershare allow guests = yes #======================= Share Definitions ======================= # Un-comment the following (and tweak the other settings below to suit) # to enable the default home directory shares. This will share each # user's home director as \\server\username [homes] comment = Home Directories browseable = yes # By default, the home directories are exported read-only. Change the # next parameter to 'no' if you want to be able to write to them. read only = no # File creation mask is set to 0700 for security reasons. If you want to # create files with group=rw permissions, set next parameter to 0775. ; create mask = 0775 # Directory creation mask is set to 0700 for security reasons. If you want to # create dirs. with group=rw permissions, set next parameter to 0775. ; directory mask = 0775 # By default, \\server\username shares can be connected to by anyone # with access to the samba server. Un-comment the following parameter # to make sure that only "username" can connect to \\server\username # The following parameter makes sure that only "username" can connect # # This might need tweaking when using external authentication schemes valid users = %S # Un-comment the following and create the netlogon directory for Domain Logons # (you need to configure Samba to act as a domain controller too.) ;[netlogon] ; comment = Network Logon Service ; path = /home/samba/netlogon ; guest ok = yes ; read only = yes # Un-comment the following and create the profiles directory to store # users profiles (see the "logon path" option above) # (you need to configure Samba to act as a domain controller too.) # The path below should be writable by all users so that their # profile directory may be created the first time they log on ;[profiles] ; comment = Users profiles ; path = /home/samba/profiles ; guest ok = no ; browseable = no ; create mask = 0600 ; directory mask = 0700 [printers] comment = All Printers browseable = no path = /var/spool/samba printable = yes guest ok = no read only = no create mask = 0700 # Windows clients look for this share name as a source of downloadable # printer drivers [print$] comment = Printer Drivers path = /var/lib/samba/printers browseable = yes read only = yes guest ok = no # Uncomment to allow remote administration of Windows print drivers. # You may need to replace 'lpadmin' with the name of the group your # admin users are members of. # Please note that you also need to set appropriate Unix permissions # to the drivers directory for these users to have write rights in it ; write list = root, @lpadmin # A sample share for sharing your CD-ROM with others. ;[cdrom] ; comment = Samba server's CD-ROM ; read only = yes ; locking = no ; path = /cdrom ; guest ok = yes # The next two parameters show how to auto-mount a CD-ROM when the # cdrom share is accesed. For this to work /etc/fstab must contain # an entry like this: # # /dev/scd0 /cdrom iso9660 defaults,noauto,ro,user 0 0 # # The CD-ROM gets unmounted automatically after the connection to the # # If you don't want to use auto-mounting/unmounting make sure the CD # is mounted on /cdrom # ; preexec = /bin/mount /cdrom ; postexec = /bin/umount /cdrom smbusers: <nathan> = <"nathan"> Any help would be very much appreciated! Thanks!

    Read the article

  • webserver horrible slow, sometimes incredible fast

    - by dhanke
    i am running a small community ( 6000+ Members ) on a non-virtual 64-bit ubuntu 11.04 system. I am not a Linux-pro, not even advanced, i just tried to setup a webserver, which does nothing special actually. Delivering some dynamic PHP and RoR websites is its task. So it might be that my configuration files do look horrible bad. Also, i might use the wrong vocabulary, so in doubt, please ask. Having a current all-time record of 520 registered users (board-accounts, no system-users) online at same time, average server-load is about 2.0 - 5.0. Meantime (~250 users) average server load value is at about 0.4 - 0.8, sometimes, on some expensive searches a bit higher. everything fine. From time to time however, the load increases up to 120 (120.0, not 12.0 ;) ). In this time, its hard to even connect via SSH, but when i reach the server, and use top/htop/iotop to see whats happening, i cannot identify any process causing high CPU load. iotop tells me about a current reading/writing speed of about approx. 70kb/s, which is quite equal to power-off i think. Memory-Usage is max. at ~ 12GB of 16GB, so swap remains empty. now the odd (at least for me:) waiting some minutes ( since i always get a bit into a panic when this happens, it feels like 5 minutes, but i suppose its more like 20-30 minutes) and the server is back to normal. everything continues as normal. another odd fact: when i run hdparm -tT /dev/sda, i get answer like: /dev/sda: Timing cached reads: 7180 MB in 2.00 seconds = 3591.13 MB/sec Timing buffered disk reads: 348 MB in 3.02 seconds = 115.41 MB/sec when i run the same command while the server is "frozen", the answer is like /dev/sda: <- takes about 5 minutes until this line appears Timing cached reads: 7180 MB in 2.00 seconds = 3591.13 MB/sec <- 5 more minutes Timing buffered disk reads: 348 MB in 3.02 seconds = 115.41 MB/sec <- another 5 minutes so the values are the same, but the quoted time is completely wrong. using time command as prefix also tells me that ~ 15 minutes were used. I searched in dmesg, /var/log/[messages|syslog] - nothing found. /var/log/errors however tells me that: Jul 4 20:28:30 localhost kernel: [19080.671415] INFO: task php5-fpm:27728 blocked for more than 120 seconds. Jul 4 20:28:30 localhost kernel: [19080.671419] "echo 0 /proc/sys/kernel/hung_task_timeout_secs" disables this message. multiple times. now that message does tell me that php5-fpm task was blocked or did block ? - but not if that is the cause or just one of the results of that "freeze". Anyone? to cut the long story short, i dont know where even to start analyzing. So if you can give me any advice by looking at following specs and configs, or ask me to provide more information, i`d be glad. Specs: 6 Core AMD Phenom(tm) II X6 1055T Processor * 16 Gigabyte Ram 2x 1.5 TB Seagate ST1500DL003-9VT16L via SATA 3 via SoftwareRaid (i suppose) Services: (due to service --status-all, those with [ + ]) nginx Webserver 1.0.14 mySQL 5.1.63 Server Ruby on Rails 2.3.11 ( passenger-nginx-module ) php5-fpm 5.3.6-13ubuntu3.7 SSH ido2db Further services: default crontab + nightly backup. syslog-ng Website consists of 2 subdomains, forum. and www. where forum is a phpBB3.x PHP-Board, and www a Ruby on Rails 2.3.11 application (portal). Mini-Note: sometimes i notice that the forum is pretty slow, in contrast to the always-fast (except for this "freeze") portal. Both share the same Database, but the portal is using it read-only. The Webserver is nginx, using phusion passenger module to communicate with the ruby-application. Also, for the forum it communicates with php5-fpm via socket: relevant nginx configuration parts ( with comments/questions starting by ; ) ; in case of freeze due to too high Filesystem activity, maybe adding a limit? #worker_rlimit_nofile 50000; user www-data; ; 6 cores, so i read 6 fits. maybe already wrong? worker_processes 6; pid /var/run/nginx.pid; events { worker_connections 1024; } http { passenger_root /var/lib/gems/1.8/gems/passenger-3.0.11; passenger_ruby /usr/bin/ruby1.8; ; the forum once featured a chat, which was working w/o websockets. ; so it was a hell of pull requests (deactivated now, freeze still happening) keepalive_timeout 65; keepalive_requests 50; gzip on; server { listen 80; server_name www.domain.tld; root /var/www/domain/rails/public; passenger_enabled on; } server { listen 80; server_name forum.domain.tld; location / { root /var/www/domain/forum; index index.php; } ; satic stuff to be handled by nginx location ~* ^/style/.+.(jpg|jpeg|gif|css|png|js|ico|xml)$ { access_log off; expires 30d; root /var/www/domain/forum/; } ; now the php magic, note the "backend"-fcgi_pass location ~ .php$ { fastcgi_split_path_info ^(.+\.php)(.*)$; fastcgi_pass backend; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /var/www/domain/forum$fastcgi_script_name; include fastcgi_params; fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_intercept_errors on; fastcgi_ignore_client_abort off; fastcgi_connect_timeout 60; fastcgi_send_timeout 180; fastcgi_read_timeout 180; fastcgi_buffer_size 128k; fastcgi_buffers 256 16k; fastcgi_busy_buffers_size 256k; fastcgi_temp_file_write_size 256k; fastcgi_max_temp_file_size 0; } location ~ /\.ht { deny all; } } ;the php5-fpm socket. i read that /dev/shm/ whould be the fastes place for this. bad idea in general? upstream backend { server unix:/dev/shm/phpfpm; } ... } php5-fpm settings (i changed this values due to php5-fpm error log messages higher and higher.. (freeze-problem was there before as well)* listen = /dev/shm/phpfpm user = www-data group = www-data pm = dynamic ; holy, 4000! well, shinking this value to earth-level gave me ; 100s of 502 bad gateway commands. this values were quite stable. ; since there are only max 520 users online i dont get it, why i would need ; as many children as configured here. due to keep-alive maybe? ; asking questions is easier for me since restarting server will make ; my community-members angry ;) pm.max_children = 4000 pm.start_servers = 100 pm.min_spare_servers = 50 pm.max_spare_servers = 150 pm.max_requests = 10 pm.status_path = /status ping.path = /ping ping.response = pong slowlog = log/$pool.log.slow ;should i use rlimit? ;rlimit_files = 1024 chdir = / mysql/my.cnf [client] port = 3306 socket = /var/run/mysqld/mysqld.sock [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] user = mysql socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp skip-external-locking bind-address = 127.0.0.1 key_buffer = 16M max_allowed_packet = 16M thread_stack = 192K thread_cache_size = 8 myisam-recover = BACKUP ; high number, but less gives some phpBB errors. max_connections = 450 table_cache = 512 ; i read twice the cpu cores, bad? thread_concurrency = 12 join_buffer_size = 2084K concurrent_insert = 3 query_cache_limit = 64M query_cache_size = 512M query_cache_type = 1 log_error = /var/log/mysql/error.log log_slow_queries = /var/log/mysql/mysql-slow.log long_query_time = 2 expire_logs_days = 10 max_binlog_size = 100M low_priority_updates=1 [mysqldump] quick quote-names max_allowed_packet = 16M [isamchk] key_buffer = 16M !includedir /etc/mysql/conf.d/ I used smartctl already, hdds seem to be fine. /proc/mdstatus quotes: Personalities : [raid1] [linear] [multipath] [raid0] [raid6] [raid5] [raid4] [raid10] md3 : active raid1 sda3[1] 1459264192 blocks [2/1] [_U] md1 : active raid1 sda1[0] 3911680 blocks [2/1] [U_] unused devices: ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 127727 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 127727 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited I quote some questions in my configuration files, these are not (intentional) directly problem-related, but would be nice for me to know wether they are indeed questionable or done right. One additional Fact: my MYSQL-database is at 12GB size. i dont know if that does matter, but mytop sometimes shows me 4-5 seconds long insert queries, some are 20-30 seconds long. Its just a feeling that i am unable to prove (because i dont know how), but when i disable the database, the freeze seems not to happen. Example: i created a dummy rails application to see the development log. the app made some sql-queries, reads and inserts. the log quite often was like: DbTest Load (0.3ms) SELECT * FROM `db_test` WHERE (`db_test`.`id` = 31722) LIMIT 1 SQL (0.1ms) BEGIN DbTest Update (0.3ms) UPDATE `db_test` SET `updated_at` = '2012-07-04 23:32:34' WHERE `id` = 31722 - now the log stands still for 5-60 seconds. SQL (49.1ms) COMMIT - SQL-Update time in the log does not include freeze time Rendering test/index Completed in 96ms (View: 16, DB: 59) | 200 OK [http://localhost:9000/test] Bad part is: this mini-freeze here only happens from time to time as well. note: meanwhile i cannot even upload files via scp. I currently feel like running form bad to worse and back by googling for my server-problem due to immense lack of knowledge regarding server configurations. It still makes me wonder, why those problems even appear, since 250 users a time is not such a high amount, right? So my questions: whats wrong and how to fix? ;) or: what information can i provide to make the situation more clear? can you point at some critical bad configuration-line which i should consider to catch up in the documentation? are there any tools i can run to see some possible bottlenecks? any further advice? (next to: "pay someone who knows what he does" - its a private project, server costs enough already. :)) Thanks for your time and help. Best Regards, Daniel P.S.: i renamed the configfiles to domain.tld since i dont want to have any % more load to the server until its fixed. might be a exaggeratedly thought.. P.P.S: if i asked a complete duplicate question, sorry. my search results seemed to be quite specific in their own way.

    Read the article

  • I need advices: small memory footprint linux mail server with spam filtering

    - by petermolnar
    I have a VPS which is originally destined to be a webserver but some minimal mail capabilities are needed to be deployed as well, including sending and receiving as standalone server. The current setup is the following: Postfix reveices the mail, the users are in virtual tables, stored in MySQL on connection all servers are tested with policyd-weight service against some DNSBLs all mail is runs through SpamAssassin spamd with the help of spamc client the mail is then delivered with Dovecot 2' LDA (local delivery agent), virtual users as well As you saw... there's no virus scanner running, and that's for a reason: clamav eats all the memory possible and also, virus mails are all filtered out with this setup (I've tested the same with ClamAV enabled for 1,5 years, no virus mail ever got even to ClamAV) I don't use amavisd and I really don't want to. You only need that monster if you have plenty of memory and lots of simultaneous scanners. It's also a nightmare to fine tune by hand. I run policyd-weight instead of policyd and native DNSBLs in postfix. I don't like to send someone away because a single service listed them. Important statement: everything works fine. I receive very small amount of spam, nearly never get a false positive and most of the bad mail is stopped by policyd-weight. The only "problem" that I feel the services at total uses a bit much memory alltogether. I've already cut the modules of spamassassin (see below), but I'd really like to hear some advices how to cut the memory footprint as low as possible, mostly: what plugins SpamAssassin really needs and what are more or less useless, regarding to my current postfix & policyd-weight setup? SpamAssassin rules are also compiled with sa-compile (sa-update runs once a week from cron, compile runs right after that) These are some of the current configurations that may matter, please tell me if you need anything more. postfix/master.cf (parts only) dovecot unix - n n - - pipe flags=DRhu user=vmail:vmail argv=/usr/bin/spamc -e /usr/lib/dovecot/deliver -d ${recipient} -f {sender} postfix/main.cf (parts only) smtpd_helo_required = yes smtpd_helo_restrictions = permit_mynetworks, reject_invalid_hostname, permit smtpd_recipient_restrictions = permit_mynetworks, permit_sasl_authenticated, reject_invalid_hostname, reject_non_fqdn_hostname, reject_non_fqdn_recipient, reject_unknown_recipient_domain, reject_unauth_pipelining, reject_unauth_destination, check_policy_service inet:127.0.0.1:12525, permit policyd-weight.conf (parts only) $REJECTMSG = "550 Mail appeared to be SPAM or forged. Ask your Mail/DNS-Administrator to correct HELO and DNS MX settings or to get removed from DNSBLs"; $REJECTLEVEL = 4; $DEFER_STRING = 'IN_SPAMCOP= BOGUS_MX='; $DEFER_ACTION = '450'; $DEFER_LEVEL = 5; $DNSERRMSG = '450 No DNS entries for your MTA, HELO and Domain. Contact YOUR administrator'; # 1: ON, 0: OFF (default) # If ON request that ALL clients are only checked against RBLs $dnsbl_checks_only = 0; # 1: ON (default), 0: OFF # When set to ON it logs only RBLs which affect scoring (positive or negative) $LOG_BAD_RBL_ONLY = 1; ## DNSBL settings @dnsbl_score = ( # host, hit, miss, log name 'dnsbl.ahbl.org', 3, -1, 'dnsbl.ahbl.org', 'dnsbl.njabl.org', 3, -1, 'dnsbl.njabl.org', 'dnsbl.sorbs.net', 3, -1, 'dnsbl.sorbs.net', 'bl.spamcop.net', 3, -1, 'bl.spamcop.net', 'zen.spamhaus.org', 3, -1, 'zen.spamhaus.org', 'pbl.spamhaus.org', 3, -1, 'pbl.spamhaus.org', 'cbl.abuseat.org', 3, -1, 'cbl.abuseat.org', 'list.dsbl.org', 3, -1, 'list.dsbl.org', ); # If Client IP is listed in MORE DNSBLS than this var, it gets REJECTed immediately $MAXDNSBLHITS = 3; # alternatively, if the score of DNSBLs is ABOVE this level, reject immediately $MAXDNSBLSCORE = 9; $MAXDNSBLMSG = '550 Az levelezoszerveruk IP cime tul sok spamlistan talahato, kerjuk ellenorizze! / Your MTA is listed in too many DNSBLs; please check.'; ## RHSBL settings @rhsbl_score = ( 'multi.surbl.org', 4, 0, 'multi.surbl.org', 'rhsbl.ahbl.org', 4, 0, 'rhsbl.ahbl.org', 'dsn.rfc-ignorant.org', 4, 0, 'dsn.rfc-ignorant.org', # 'postmaster.rfc-ignorant.org', 0.1, 0, 'postmaster.rfc-ignorant.org', # 'abuse.rfc-ignorant.org', 0.1, 0, 'abuse.rfc-ignorant.org' ); # skip a RBL if this RBL had this many continuous errors $BL_ERROR_SKIP = 2; # skip a RBL for that many times $BL_SKIP_RELEASE = 10; ## cache stuff # must be a directory (add trailing slash) $LOCKPATH = '/var/run/policyd-weight/'; # socket path for the cache daemon. $SPATH = $LOCKPATH.'/polw.sock'; # how many seconds the cache may be idle before starting maintenance routines #NOTE: standard maintenance jobs happen regardless of this setting. $MAXIDLECACHE = 60; # after this number of requests do following maintenance jobs: checking for config changes $MAINTENANCE_LEVEL = 5; # negative (i.e. SPAM) result cache settings ################################## # set to 0 to disable caching for spam results. To this level the cache will be cleaned. $CACHESIZE = 2000; # at this number of entries cleanup takes place $CACHEMAXSIZE = 4000; $CACHEREJECTMSG = '550 temporarily blocked because of previous errors'; # after NTTL retries the cache entry is deleted $NTTL = 1; # client MUST NOT retry within this seconds in order to decrease TTL counter $NTIME = 30; # positve (i.,e. HAM) result cache settings ################################### # set to 0 to disable caching of HAM. To this number of entries the cache will be cleaned $POSCACHESIZE = 1000; # at this number of entries cleanup takes place $POSCACHEMAXSIZE = 2000; $POSCACHEMSG = 'using cached result'; #after PTTL requests the HAM entry must succeed one time the RBL checks again $PTTL = 60; # after $PTIME in HAM Cache the client must pass one time the RBL checks again. #Values must be nonfractal. Accepted time-units: s, m, h, d $PTIME = '3h'; # The client must pass this time the RBL checks in order to be listed as hard-HAM # After this time the client will pass immediately for PTTL within PTIME $TEMP_PTIME = '1d'; ## DNS settings # Retries for ONE DNS-Lookup $DNS_RETRIES = 1; # Retry-interval for ONE DNS-Lookup $DNS_RETRY_IVAL = 5; # max error count for unresponded queries in a complete policy query $MAXDNSERR = 3; $MAXDNSERRMSG = 'passed - too many local DNS-errors'; # persistent udp connection for DNS queries. #broken in Net::DNS version 0.51. Works with Net::DNS 0.53; DEFAULT: off $PUDP= 0; # Force the usage of Net::DNS for RBL lookups. # Normally policyd-weight tries to use a faster RBL lookup routine instead of Net::DNS $USE_NET_DNS = 0; # A list of space separated NS IPs # This overrides resolv.conf settings # Example: $NS = '1.2.3.4 1.2.3.5'; # DEFAULT: empty $NS = ''; # timeout for receiving from cache instance $IPC_TIMEOUT = 2; # If set to 1 policyd-weight closes connections to smtpd clients in order to avoid too many #established connections to one policyd-weight child $TRY_BALANCE = 0; # scores for checks, WARNING: they may manipulate eachother # or be factors for other scores. # HIT score, MISS Score @client_ip_eq_helo_score = (1.5, -1.25 ); @helo_score = (1.5, -2 ); @helo_score = (0, -2 ); @helo_from_mx_eq_ip_score= (1.5, -3.1 ); @helo_numeric_score= (2.5, 0 ); @from_match_regex_verified_helo= (1,-2 ); @from_match_regex_unverified_helo = (1.6, -1.5 ); @from_match_regex_failed_helo = (2.5, 0 ); @helo_seems_dialup = (1.5, 0 ); @failed_helo_seems_dialup= (2, 0 ); @helo_ip_in_client_subnet= (0,-1.2 ); @helo_ip_in_cl16_subnet = (0,-0.41 ); #@client_seems_dialup_score = (3.75, 0 ); @client_seems_dialup_score = (0, 0 ); @from_multiparted = (1.09, 0 ); @from_anon= (1.17, 0 ); @bogus_mx_score = (2.1, 0 ); @random_sender_score = (0.25, 0 ); @rhsbl_penalty_score = (3.1, 0 ); @enforce_dyndns_score = (3, 0 ); spamassassin/init.pre (I've put the .pre files together) loadplugin Mail::SpamAssassin::Plugin::Hashcash loadplugin Mail::SpamAssassin::Plugin::SPF loadplugin Mail::SpamAssassin::Plugin::Pyzor loadplugin Mail::SpamAssassin::Plugin::Razor2 loadplugin Mail::SpamAssassin::Plugin::AutoLearnThreshold loadplugin Mail::SpamAssassin::Plugin::MIMEHeader loadplugin Mail::SpamAssassin::Plugin::ReplaceTags loadplugin Mail::SpamAssassin::Plugin::Check loadplugin Mail::SpamAssassin::Plugin::HTTPSMismatch loadplugin Mail::SpamAssassin::Plugin::URIDetail loadplugin Mail::SpamAssassin::Plugin::Bayes loadplugin Mail::SpamAssassin::Plugin::BodyEval loadplugin Mail::SpamAssassin::Plugin::DNSEval loadplugin Mail::SpamAssassin::Plugin::HTMLEval loadplugin Mail::SpamAssassin::Plugin::HeaderEval loadplugin Mail::SpamAssassin::Plugin::MIMEEval loadplugin Mail::SpamAssassin::Plugin::RelayEval loadplugin Mail::SpamAssassin::Plugin::URIEval loadplugin Mail::SpamAssassin::Plugin::WLBLEval loadplugin Mail::SpamAssassin::Plugin::VBounce loadplugin Mail::SpamAssassin::Plugin::Rule2XSBody spamassassin/local.cf (parts) use_bayes 1 bayes_auto_learn 1 bayes_store_module Mail::SpamAssassin::BayesStore::MySQL bayes_sql_dsn DBI:mysql:db:127.0.0.1:3306 bayes_sql_username user bayes_sql_password pass bayes_ignore_header X-Bogosity bayes_ignore_header X-Spam-Flag bayes_ignore_header X-Spam-Status ### User settings user_scores_dsn DBI:mysql:db:127.0.0.1:3306 user_scores_sql_password user user_scores_sql_username pass user_scores_sql_custom_query SELECT preference, value FROM _TABLE_ WHERE username = _USERNAME_ OR username = '$GLOBAL' OR username = CONCAT('%',_DOMAIN_) ORDER BY username ASC # for better speed score DNS_FROM_AHBL_RHSBL 0 score __RFC_IGNORANT_ENVFROM 0 score DNS_FROM_RFC_DSN 0 score DNS_FROM_RFC_BOGUSMX 0 score __DNS_FROM_RFC_POST 0 score __DNS_FROM_RFC_ABUSE 0 score __DNS_FROM_RFC_WHOIS 0 UPDATE 01 As adaptr advised I remove policyd-weight and configured postfix postscreen, this resulted approximately -15-20 MB from RAM usage and a lot faster work. I'm not sure it's working at full capacity but it seems promising.

    Read the article

  • Bacula & Multiple Tape Devices, and so on

    - by Tom O'Connor
    Bacula won't make use of 2 tape devices simultaneously. (Search for #-#-# for the TL;DR) A little background, perhaps. In the process of trying to get a decent working backup solution (backing up 20TB ain't cheap, or easy) at $dayjob, we bought a bunch of things to make it work. Firstly, there's a Spectra Logic T50e autochanger, 40 slots of LTO5 goodness, and that robot's got a pair of IBM HH5 Ultrium LTO5 drives, connected via FibreChannel Arbitrated Loop to our backup server. There's the backup server.. A Dell R715 with 2x 16 core AMD 62xx CPUs, and 32GB of RAM. Yummy. That server's got 2 Emulex FCe-12000E cards, and an Intel X520-SR dual port 10GE NIC. We were also sold Commvault Backup (non-NDMP). Here's where it gets really complicated. Spectra Logic and Commvault both sent respective engineers, who set up the library and the software. Commvault was running fine, in so far as the controller was working fine. The Dell server has Ubuntu 12.04 server, and runs the MediaAgent for CommVault, and mounts our BlueArc NAS as NFS to a few mountpoints, like /home, and some stuff in /mnt. When backing up from the NFS mountpoints, we were seeing ~= 290GB/hr throughput. That's CRAP, considering we've got 20-odd TB to get through, in a <48 hour backup window. The rated maximum on the BlueArc is 700MB/s (2460GB/hr), the rated maximum write speed on the tape devices is 140MB/s, per drive, so that's 492GB/hr (or double it, for the total throughput). So, the next step was to benchmark NFS performance with IOzone, and it turns out that we get epic write performance (across 20 threads), and it's like 1.5-2.5TB/hr write, but read performance is fecking hopeless. I couldn't ever get higher than 343GB/hr maximum. So let's assume that the 343GB/hr is a theoretical maximum for read performance on the NAS, then we should in theory be able to get that performance out of a) CommVault, and b) any other backup agent. Not the case. Commvault seems to only ever give me 200-250GB/hr throughput, and out of experimentation, I installed Bacula to see what the state of play there is. If, for example, Bacula gave consistently better performance and speeds than Commvault, then we'd be able to say "**$.$ Refunds Plz $.$**" #-#-# Alas, I found a different problem with Bacula. Commvault seems pretty happy to read from one part of the mountpoint with one thread, and stream that to a Tape device, whilst reading from some other directory with the other thread, and writing to the 2nd drive in the autochanger. I can't for the life of me get Bacula to mount and write to two tape drives simultaneously. Things I've tried: Setting Maximum Concurrent Jobs = 20 in the Director, File and Storage Daemons Setting Prefer Mounted Volumes = no in the Job Definition Setting multiple devices in the Autochanger resource. Documentation seems to be very single-drive centric, and we feel a little like we've strapped a rocket to a hamster, with this one. The majority of example Bacula configurations are for DDS4 drives, manual tape swapping, and FreeBSD or IRIX systems. I should probably add that I'm not too bothered if this isn't possible, but I'd be surprised. I basically want to use Bacula as proof to stick it to the software vendors that they're overpriced ;) I read somewhere that @KyleBrandt has done something similar with a modern Tape solution.. Configuration Files: *bacula-dir.conf* # # Default Bacula Director Configuration file Director { # define myself Name = backuphost-1-dir DIRport = 9101 # where we listen for UA connections QueryFile = "/etc/bacula/scripts/query.sql" WorkingDirectory = "/var/lib/bacula" PidDirectory = "/var/run/bacula" Maximum Concurrent Jobs = 20 Password = "yourekiddingright" # Console password Messages = Daemon DirAddress = 0.0.0.0 #DirAddress = 127.0.0.1 } JobDefs { Name = "DefaultFileJob" Type = Backup Level = Incremental Client = backuphost-1-fd FileSet = "Full Set" Schedule = "WeeklyCycle" Storage = File Messages = Standard Pool = File Priority = 10 Write Bootstrap = "/var/lib/bacula/%c.bsr" } JobDefs { Name = "DefaultTapeJob" Type = Backup Level = Incremental Client = backuphost-1-fd FileSet = "Full Set" Schedule = "WeeklyCycle" Storage = "SpectraLogic" Messages = Standard Pool = AllTapes Priority = 10 Write Bootstrap = "/var/lib/bacula/%c.bsr" Prefer Mounted Volumes = no } # # Define the main nightly save backup job # By default, this job will back up to disk in /nonexistant/path/to/file/archive/dir Job { Name = "BackupClient1" JobDefs = "DefaultFileJob" } Job { Name = "BackupThisVolume" JobDefs = "DefaultTapeJob" FileSet = "SpecialVolume" } #Job { # Name = "BackupClient2" # Client = backuphost-12-fd # JobDefs = "DefaultJob" #} # Backup the catalog database (after the nightly save) Job { Name = "BackupCatalog" JobDefs = "DefaultFileJob" Level = Full FileSet="Catalog" Schedule = "WeeklyCycleAfterBackup" # This creates an ASCII copy of the catalog # Arguments to make_catalog_backup.pl are: # make_catalog_backup.pl <catalog-name> RunBeforeJob = "/etc/bacula/scripts/make_catalog_backup.pl MyCatalog" # This deletes the copy of the catalog RunAfterJob = "/etc/bacula/scripts/delete_catalog_backup" Write Bootstrap = "/var/lib/bacula/%n.bsr" Priority = 11 # run after main backup } # # Standard Restore template, to be changed by Console program # Only one such job is needed for all Jobs/Clients/Storage ... # Job { Name = "RestoreFiles" Type = Restore Client=backuphost-1-fd FileSet="Full Set" Storage = File Pool = Default Messages = Standard Where = /srv/bacula/restore } FileSet { Name = "SpecialVolume" Include { Options { signature = MD5 } File = /mnt/SpecialVolume } Exclude { File = /var/lib/bacula File = /nonexistant/path/to/file/archive/dir File = /proc File = /tmp File = /.journal File = /.fsck } } # List of files to be backed up FileSet { Name = "Full Set" Include { Options { signature = MD5 } File = /usr/sbin } Exclude { File = /var/lib/bacula File = /nonexistant/path/to/file/archive/dir File = /proc File = /tmp File = /.journal File = /.fsck } } Schedule { Name = "WeeklyCycle" Run = Full 1st sun at 23:05 Run = Differential 2nd-5th sun at 23:05 Run = Incremental mon-sat at 23:05 } # This schedule does the catalog. It starts after the WeeklyCycle Schedule { Name = "WeeklyCycleAfterBackup" Run = Full sun-sat at 23:10 } # This is the backup of the catalog FileSet { Name = "Catalog" Include { Options { signature = MD5 } File = "/var/lib/bacula/bacula.sql" } } # Client (File Services) to backup Client { Name = backuphost-1-fd Address = localhost FDPort = 9102 Catalog = MyCatalog Password = "surelyyourejoking" # password for FileDaemon File Retention = 30 days # 30 days Job Retention = 6 months # six months AutoPrune = yes # Prune expired Jobs/Files } # # Second Client (File Services) to backup # You should change Name, Address, and Password before using # #Client { # Name = backuphost-12-fd # Address = localhost2 # FDPort = 9102 # Catalog = MyCatalog # Password = "i'mnotjokinganddontcallmeshirley" # password for FileDaemon 2 # File Retention = 30 days # 30 days # Job Retention = 6 months # six months # AutoPrune = yes # Prune expired Jobs/Files #} # Definition of file storage device Storage { Name = File # Do not use "localhost" here Address = localhost # N.B. Use a fully qualified name here SDPort = 9103 Password = "lalalalala" Device = FileStorage Media Type = File } Storage { Name = "SpectraLogic" Address = localhost SDPort = 9103 Password = "linkedinmakethebestpasswords" Device = Drive-1 Device = Drive-2 Media Type = LTO5 Autochanger = yes } # Generic catalog service Catalog { Name = MyCatalog # Uncomment the following line if you want the dbi driver # dbdriver = "dbi:sqlite3"; dbaddress = 127.0.0.1; dbport = dbname = "bacula"; DB Address = ""; dbuser = "bacula"; dbpassword = "bbmaster63" } # Reasonable message delivery -- send most everything to email address # and to the console Messages { Name = Standard mailcommand = "/usr/lib/bacula/bsmtp -h localhost -f \"\(Bacula\) \<%r\>\" -s \"Bacula: %t %e of %c %l\" %r" operatorcommand = "/usr/lib/bacula/bsmtp -h localhost -f \"\(Bacula\) \<%r\>\" -s \"Bacula: Intervention needed for %j\" %r" mail = root@localhost = all, !skipped operator = root@localhost = mount console = all, !skipped, !saved # # WARNING! the following will create a file that you must cycle from # time to time as it will grow indefinitely. However, it will # also keep all your messages if they scroll off the console. # append = "/var/lib/bacula/log" = all, !skipped catalog = all } # # Message delivery for daemon messages (no job). Messages { Name = Daemon mailcommand = "/usr/lib/bacula/bsmtp -h localhost -f \"\(Bacula\) \<%r\>\" -s \"Bacula daemon message\" %r" mail = root@localhost = all, !skipped console = all, !skipped, !saved append = "/var/lib/bacula/log" = all, !skipped } # Default pool definition Pool { Name = Default Pool Type = Backup Recycle = yes # Bacula can automatically recycle Volumes AutoPrune = yes # Prune expired volumes Volume Retention = 365 days # one year } # File Pool definition Pool { Name = File Pool Type = Backup Recycle = yes # Bacula can automatically recycle Volumes AutoPrune = yes # Prune expired volumes Volume Retention = 365 days # one year Maximum Volume Bytes = 50G # Limit Volume size to something reasonable Maximum Volumes = 100 # Limit number of Volumes in Pool } Pool { Name = AllTapes Pool Type = Backup Recycle = yes AutoPrune = yes # Prune expired volumes Volume Retention = 31 days # one Moth } # Scratch pool definition Pool { Name = Scratch Pool Type = Backup } # # Restricted console used by tray-monitor to get the status of the director # Console { Name = backuphost-1-mon Password = "LastFMalsostorePasswordsLikeThis" CommandACL = status, .status } bacula-sd.conf # # Default Bacula Storage Daemon Configuration file # Storage { # definition of myself Name = backuphost-1-sd SDPort = 9103 # Director's port WorkingDirectory = "/var/lib/bacula" Pid Directory = "/var/run/bacula" Maximum Concurrent Jobs = 20 SDAddress = 0.0.0.0 # SDAddress = 127.0.0.1 } # # List Directors who are permitted to contact Storage daemon # Director { Name = backuphost-1-dir Password = "passwordslinplaintext" } # # Restricted Director, used by tray-monitor to get the # status of the storage daemon # Director { Name = backuphost-1-mon Password = "totalinsecurityabound" Monitor = yes } Device { Name = FileStorage Media Type = File Archive Device = /srv/bacula/archive LabelMedia = yes; # lets Bacula label unlabeled media Random Access = Yes; AutomaticMount = yes; # when device opened, read it RemovableMedia = no; AlwaysOpen = no; } Autochanger { Name = SpectraLogic Device = Drive-1 Device = Drive-2 Changer Command = "/etc/bacula/scripts/mtx-changer %c %o %S %a %d" Changer Device = /dev/sg4 } Device { Name = Drive-1 Drive Index = 0 Archive Device = /dev/nst0 Changer Device = /dev/sg4 Media Type = LTO5 AutoChanger = yes RemovableMedia = yes; AutomaticMount = yes; AlwaysOpen = yes; RandomAccess = no; LabelMedia = yes } Device { Name = Drive-2 Drive Index = 1 Archive Device = /dev/nst1 Changer Device = /dev/sg4 Media Type = LTO5 AutoChanger = yes RemovableMedia = yes; AutomaticMount = yes; AlwaysOpen = yes; RandomAccess = no; LabelMedia = yes } # # Send all messages to the Director, # mount messages also are sent to the email address # Messages { Name = Standard director = backuphost-1-dir = all } bacula-fd.conf # # Default Bacula File Daemon Configuration file # # # List Directors who are permitted to contact this File daemon # Director { Name = backuphost-1-dir Password = "hahahahahaha" } # # Restricted Director, used by tray-monitor to get the # status of the file daemon # Director { Name = backuphost-1-mon Password = "hohohohohho" Monitor = yes } # # "Global" File daemon configuration specifications # FileDaemon { # this is me Name = backuphost-1-fd FDport = 9102 # where we listen for the director WorkingDirectory = /var/lib/bacula Pid Directory = /var/run/bacula Maximum Concurrent Jobs = 20 #FDAddress = 127.0.0.1 FDAddress = 0.0.0.0 } # Send all messages except skipped files back to Director Messages { Name = Standard director = backuphost-1-dir = all, !skipped, !restored }

    Read the article

  • Inbound SIP calls through Cisco 881 NAT hang up after a few seconds

    - by MasterRoot24
    I've recently moved to a Cisco 881 router for my WAN link. I was previously using a Cisco Linksys WAG320N as my modem/router/WiFi AP/NAT firewall. The WAG320N is now running in bridged mode, so it's simply acting as a modem with one of it's LAN ports connected to FE4 WAN on my Cisco 881. The Cisco 881 get's a DHCP provided IP from my ISP. My LAN is part of default Vlan 1 (192.168.1.0/24). General internet connectivity is working great, I've managed to setup static NAT rules for my HTTP/HTTPS/SMTP/etc. services which are running on my LAN. I don't know whether it's worth mentioning that I've opted to use NVI NAT (ip nat enable as opposed to the traditional ip nat outside/ip nat inside) setup. My reason for this is that NVI allows NAT loopback from my LAN to the WAN IP and back in to the necessary server on the LAN. I run an Asterisk 1.8 PBX on my LAN, which connects to a SIP provider on the internet. Both inbound and outbound calls through the old setup (WAG320N providing routing/NAT) worked fine. However, since moving to the Cisco 881, inbound calls drop after around 10 seconds, whereas outbound calls work fine. The following message is logged on my Asterisk PBX: [Dec 9 15:27:45] WARNING[27734]: chan_sip.c:3641 retrans_pkt: Retransmission timeout reached on transmission [email protected] for seqno 1 (Critical Response) -- See https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions Packet timed out after 6528ms with no response [Dec 9 15:27:45] WARNING[27734]: chan_sip.c:3670 retrans_pkt: Hanging up call [email protected] - no reply to our critical packet (see https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions). (I know that this is quite a common issue - I've spend the best part of 2 days solid on this, trawling Google.) I've done as I am told and checked https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions. Referring to the section "Other SIP requests" in the page linked above, I believe that the hangup to be caused by the ACK from my SIP provider not being passed back through NAT to Asterisk on my PBX. I tried to ascertain this by dumping the packets on my WAN interface on the 881. I managed to obtain a PCAP dump of packets in/out of my WAN interface. Here's an example of an ACK being reveived by the router from my provider: 689 21.219999 193.x.x.x 188.x.x.x SIP 502 Request: ACK sip:[email protected] | However a SIP trace on the Asterisk server show's that there are no ACK's received in response to the 200 OK from my PBX: http://pastebin.com/wwHpLPPz In the past, I have been strongly advised to disable any sort of SIP ALGs on routers and/or firewalls and the many posts regarding this issue on the internet seem to support this. However, I believe on Cisco IOS, the config command to disable SIP ALG is no ip nat service sip udp port 5060 however, this doesn't appear to help the situation. To confirm that config setting is set: Router1#show running-config | include sip no ip nat service sip udp port 5060 Another interesting twist: for a short period of time, I tried another provider. Luckily, my trial account with them is still available, so I reverted my Asterisk config back to the revision before I integrated with my current provider. I then dialled in to the DDI associated with the trial trunk and the call didn't get hung up and I didn't get the error above! To me, this points at the provider, however I know, like all providers do, will say "There's no issues with our SIP proxies - it's your firewall." I'm tempted to agree with this, as this issue was not apparent with the old WAG320N router when it was doing the NAT'ing. I'm sure you'll want to see my running-config too: ! ! Last configuration change at 15:55:07 UTC Sun Dec 9 2012 by xxx version 15.2 no service pad service tcp-keepalives-in service tcp-keepalives-out service timestamps debug datetime msec localtime show-timezone service timestamps log datetime msec localtime show-timezone no service password-encryption service sequence-numbers ! hostname Router1 ! boot-start-marker boot-end-marker ! ! security authentication failure rate 10 log security passwords min-length 6 logging buffered 4096 logging console critical enable secret 4 xxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 quit no ip source-route no ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! no ip bootp server ip domain name dmz.merlin.local ip domain list dmz.merlin.local ip domain list merlin.local ip name-server x.x.x.x ip inspect audit-trail ip inspect udp idle-time 1800 ip inspect dns-timeout 7 ip inspect tcp idle-time 14400 ip inspect name autosec_inspect ftp timeout 3600 ip inspect name autosec_inspect http timeout 3600 ip inspect name autosec_inspect rcmd timeout 3600 ip inspect name autosec_inspect realaudio timeout 3600 ip inspect name autosec_inspect smtp timeout 3600 ip inspect name autosec_inspect tftp timeout 30 ip inspect name autosec_inspect udp timeout 15 ip inspect name autosec_inspect tcp timeout 3600 ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn ! ! username xxx privilege 15 secret 4 xxx username xxx secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp no ip redirects no ip unreachables no ip proxy-arp ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.1 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.2 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ip http timeout-policy idle 60 life 86400 requests 10000 ! ! no ip nat service sip udp port 5060 ip nat source list 1 interface FastEthernet4 overload ip nat source static tcp x.x.x.x 80 interface FastEthernet4 80 ip nat source static tcp x.x.x.x 443 interface FastEthernet4 443 ip nat source static tcp x.x.x.x 25 interface FastEthernet4 25 ip nat source static tcp x.x.x.x 587 interface FastEthernet4 587 ip nat source static tcp x.x.x.x 143 interface FastEthernet4 143 ip nat source static tcp x.x.x.x 993 interface FastEthernet4 993 ip nat source static tcp x.x.x.x 1723 interface FastEthernet4 1723 ! ! logging trap debugging logging facility local2 access-list 1 permit 192.168.1.0 0.0.0.255 access-list 1 permit 192.168.0.0 0.0.0.255 no cdp run ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 login authentication local_auth length 0 transport output all line aux 0 exec-timeout 15 0 login authentication local_auth transport output all line vty 0 1 access-class 1 in logging synchronous login authentication local_auth length 0 transport preferred none transport input telnet transport output all line vty 2 4 access-class 1 in login authentication local_auth length 0 transport input ssh transport output all ! ! end ...and, if it's of any use, here's my Asterisk SIP config: [general] context=default ; Default context for calls allowoverlap=no ; Disable overlap dialing support. (Default is yes) udpbindaddr=0.0.0.0 ; IP address to bind UDP listen socket to (0.0.0.0 binds to all) ; Optionally add a port number, 192.168.1.1:5062 (default is port 5060) tcpenable=no ; Enable server for incoming TCP connections (default is no) tcpbindaddr=0.0.0.0 ; IP address for TCP server to bind to (0.0.0.0 binds to all interfaces) ; Optionally add a port number, 192.168.1.1:5062 (default is port 5060) srvlookup=yes ; Enable DNS SRV lookups on outbound calls ; Note: Asterisk only uses the first host ; in SRV records ; Disabling DNS SRV lookups disables the ; ability to place SIP calls based on domain ; names to some other SIP users on the Internet ; Specifying a port in a SIP peer definition or ; when dialing outbound calls will supress SRV ; lookups for that peer or call. directmedia=no ; Don't allow direct RTP media between extensions (doesn't work through NAT) externhost=<MY DYNDNS HOSTNAME> ; Our external hostname to resolve to IP and be used in NAT'ed packets localnet=192.168.1.0/24 ; Define our local network so we know which packets need NAT'ing qualify=yes ; Qualify peers by default dtmfmode=rfc2833 ; Set the default DTMF mode disallow=all ; Disallow all codecs by default allow=ulaw ; Allow G.711 u-law allow=alaw ; Allow G.711 a-law ; ---------------------- ; SIP Trunk Registration ; ---------------------- ; Orbtalk register => <MY SIP PROVIDER USER NAME>:[email protected]/<MY DDI> ; Main Orbtalk number ; ---------- ; Trunks ; ---------- [orbtalk] ; Main Orbtalk trunk type=peer insecure=invite host=sipgw3.orbtalk.co.uk nat=yes username=<MY SIP PROVIDER USER NAME> defaultuser=<MY SIP PROVIDER USER NAME> fromuser=<MY SIP PROVIDER USER NAME> secret=xxx context=inbound I really don't know where to go with this. If anyone can help me find out why these calls are being dropped off, I'd be grateful if you could chime in! Please let me know if any further info is required.

    Read the article

  • Unicenter Software Delivery 4 not able to connect to MS SQL 2000 Database after W2003 SP2 upgrade

    - by grub
    Hello Everyone Yesterday I installed the Windows Server 2003 Service Pack 2 on a Windows Server 2003 which has Unicenter Software Delivery 4 installed. Prior to the installation I disabled every CA service on the server (Brightstor, SDO , RCO, TNG) and the MS SQL 2000 service. After the installation of the SP2 I enabled the services again but the Unicenter Service is not able to connect to the MS SQL 2000 Database anymore. The database itself is up and running and I can connect to it with the Enterprise Manager. A dbcc checkdb doesnt return any errors on the Unicenter database. The Unicenter service throws the following error messages during startup: IM[1] 27/05 10:38:31,272 Installation Manager in init phase IM[1] 27/05 10:38:31,694 Process IM(L) - [004152] failed to open database SDDATA. dbopen() call failed. IM[1] 27/05 10:38:31,694 sqls error details: IM[1] 27/05 10:38:31,694 (null) IM[1] 27/05 10:38:32,069 ##EXCEPTION## TableError T@:PS_SQLS\isam_db.cxx:744. IM[1] 27/05 10:38:32,069 ##EXCEPTION## TableError C@:TaskmgrL\ASMTML.CXX:596. IM[1] 27/05 10:38:32,069 ##EXCEPTION## ErrorCode: 4711 in SDDATA:Isam::Isam. Process IM(L) - [004152] failed to open database SDDATA. dbopen() call failed. IM[1] 27/05 10:38:32,069 sqls error details: IM[1] 27/05 10:38:32,069 (null) IM[1] 27/05 10:38:32,069 returned 0. IM[1] 27/05 10:38:32,084 Persistent Storage could not be opened. Error cause is found in the ASM Event Log. Restart Task Manager. IM[1] 27/05 10:38:32,084 Failed to open database. IM[1] 27/05 10:38:32,084 Installation Manager ends> If I check the Unicenter configutation with *chkmib_l* the tool throws an exception and creates a small dump file. An Exception Occurred: Time: 27/05 09:49:38,928 Reason: ChkMIB_l.exe caused an UNKNOWN_EXCEPTION in module kernel32.dll at 7C82001B:77E4BEE7 Registers: EAX=0012F908 EBX=00000000 ECX=00000000 EDX=02410004 ESI=0012F998 EDI=0012F998 EBP=0012F958 ESP=0012F904 EIP=77E4BEE7 FLG=00000206 CS =7C82001B DS =B90023 SS =120023 ES =120023 FS =7C82003B GS =3F0000 Call Stack: 7C82001B:77E4BEE7 (0xE06D7363 0x00000001 0x00000003 0x0012F98C) kernel32.dll 7C82001B:77BB3259 (0x0012F9B8 0x2B017C50 0x2B024404 0x00B68C98) MSVCRT.dll 7C82001B:2B010C42 (0x00020003 0x010C00FE 0x003F0190 0x00B69050) PS.dll << SOFTWARE DELIVERY INSTANCE INFO >> TRIGGER 0(1) instances: JCE 0(1) instances: TM 0(1) instances: IM 0(1) instances: DM 0(1) instances: DPU 0(71) instances: NATF 0(1) instances: MIBCONV 0(0) instances: API 0(4) instances: DTSFT 0(0) instances: TNGPOP 0(0) instances: DGATE 0(0) instances: << FLUSHING MEMORY TRACES >> << STOP FLUSHING MEMORY TRACES >> I compared the configuration of the SDO service and the system configuration with another server on which the Windows Server 2003 SP2 is installed and SDO is working. The configuration is the same and the same driver and software versions are used. Do you have any idea what causes the connection issue? Should I deinstall the unicenter service and make a fresh installation on the server or should I remove the Windows Server 2003 SP2? I don't want to remove the SP2 because it's a requirement for WSUS3 SP2 and I really don't want to know how many possible exploits are possible in such an old system ;-) Thank you very much and have a nice day. Below you can find more detailed information about the system and the SDO service. psinfo output (system information) System information for \\CZZAAS1003: Uptime: 0 days 14 hours 38 minutes 50 seconds Kernel version: Microsoft Windows Server 2003, Multiprocessor Free Product type: Standard Edition Product version: 5.2 Service pack: 2 Kernel build number: 3790 Install date: 23.9.2004, 11:16:11s IE version: 6.0000 System root: C:\WINDOWS Processors: 2 Processor speed: 2.3 GHz Processor type: Intel(R) Xeon(TM) CPU Physical memory: 1024 MB Video driver: RAGE XL PCI Family (Microsoft Corporation) sdver output (Unicenter Software delivery version) Unicenter Software Delivery 4.0 SP1 I2 ENU [2901] Copyright 2004 Computer Associates International, Incorporated ms sql 2000 version and odbc driver version MS SQL 2000 Server Standard Edition Product Version: 8.00.760 (SP3) ODBC Driver: SQL Server - Version 2000.86.3959.00 complete Unicenter Software delivery service log file TRIGGER[1] 27/05 10:38:28,366 SD Trigger Agent has started NATF[1] 27/05 10:38:28,928 Initiation phase finished IM[1] 27/05 10:38:31,272 Installation Manager in init phase IM[1] 27/05 10:38:31,694 Process IM(L) - [004152] failed to open database SDDATA. dbopen() call failed. IM[1] 27/05 10:38:31,694 sqls error details: IM[1] 27/05 10:38:31,694 (null) IM[1] 27/05 10:38:32,069 ##EXCEPTION## TableError T@:PS_SQLS\isam_db.cxx:744. IM[1] 27/05 10:38:32,069 ##EXCEPTION## TableError C@:TaskmgrL\ASMTML.CXX:596. IM[1] 27/05 10:38:32,069 ##EXCEPTION## ErrorCode: 4711 in SDDATA:Isam::Isam. Process IM(L) - [004152] failed to open database SDDATA. dbopen() call failed. IM[1] 27/05 10:38:32,069 sqls error details: IM[1] 27/05 10:38:32,069 (null) IM[1] 27/05 10:38:32,069 returned 0. IM[1] 27/05 10:38:32,084 Persistent Storage could not be opened. Error cause is found in the ASM Event Log. Restart Task Manager. IM[1] 27/05 10:38:32,084 Failed to open database. IM[1] 27/05 10:38:32,084 Installation Manager ends TM[1] 27/05 10:38:32,116 Task Manager in init phase TM[1] 27/05 10:38:32,334 Process TM(L) - [006132] failed to open database SDDATA. dbopen() call failed. TM[1] 27/05 10:38:32,334 sqls error details: TM[1] 27/05 10:38:32,334 (null) TM[1] 27/05 10:38:32,381 ##EXCEPTION## TableError T@:PS_SQLS\isam_db.cxx:744. TM[1] 27/05 10:38:32,381 ##EXCEPTION## TableError C@:TaskmgrL\ASMTML.CXX:596. TM[1] 27/05 10:38:32,381 ##EXCEPTION## ErrorCode: 4711 in SDDATA:Isam::Isam. Process TM(L) - [006132] failed to open database SDDATA. dbopen() call failed. TM[1] 27/05 10:38:32,381 sqls error details: TM[1] 27/05 10:38:32,381 (null) TM[1] 27/05 10:38:32,381 returned 0. TM[1] 27/05 10:38:32,381 Persistent Storage could not be opened. Error cause is found in the ASM Event Log. Restart Task Manager. TM[1] 27/05 10:38:32,381 Failed to open database. TM[1] 27/05 10:38:32,381 Task Manager ends DM[1] 27/05 10:38:33,272 Dialogue Manager is now active API[1] 27/05 10:38:34,397 API Server Process in init phase API[1] 27/05 10:38:34,397 API - SDNLS_Init API[1] 27/05 10:38:34,397 API - connectEM API[1] 27/05 10:38:34,412 API - apiServ.init DM[1] 27/05 10:38:34,678 **AND** 1 Agents triggered API[1] 27/05 10:38:34,709 Process API(L) - [005680] failed to open database SDDATA. dbopen() call failed. API[1] 27/05 10:38:34,709 sqls error details: API[1] 27/05 10:38:34,709 (null) API[1] 27/05 10:38:34,756 ##EXCEPTION## TableError T@:PS_SQLS\isam_db.cxx:744. API[1] 27/05 10:38:34,756 ##EXCEPTION## TableError C@:MainAPIL\APISERVL.CXX:246. API[1] 27/05 10:38:34,756 ##EXCEPTION## ErrorCode: 4711 in SDDATA:Isam::Isam. Process API(L) - [005680] failed to open database SDDATA. dbopen() call failed. API[1] 27/05 10:38:34,756 sqls error details: API[1] 27/05 10:38:34,756 (null) API[1] 27/05 10:38:34,756 returned 0. API[1] 27/05 10:38:34,756 Open of the database failed. API[1] 27/05 10:38:34,756 API - apiServ.init complete API[1] 27/05 10:38:34,756 API - start_APIServer DM[1] 27/05 10:38:34,803 CZZAAR1037 DPU[1:CZZAAR1037] 27/05 10:38:35,772 DPU in init phase DPU[1:CZZAAR1037] 27/05 10:38:36,100 >> GetManagerData DPU[1:CZZAAR1037] 27/05 10:38:36,287 >> SetCompInfo DPU[1:CZZAAR1037] 27/05 10:38:36,334 >> GetContainerList DPU[1:CZZAAR1037] 27/05 10:38:36,350 getJobState 3 from 5b6ad DPU[1:CZZAAR1037] 27/05 10:38:36,350 getJobState 3 from 5b6ad DPU[1:CZZAAR1037] 27/05 10:38:36,350 getJobState 3 from 5b6b7 DPU[1:CZZAAR1037] 27/05 10:38:36,350 getJobState 3 from 5b6b7 DPU[1:CZZAAR1037] 27/05 10:38:36,350 getJobState 3 from 5b6c1 DPU[1:CZZAAR1037] 27/05 10:38:36,350 getJobState 3 from 5b6c1 DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b6cb DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b6cb DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b6f9 DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b6f9 DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b71a DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b71a DPU[1:CZZAAR1037] 27/05 10:38:36,366 getJobState 3 from 5b724 DPU[1:CZZAAR1037] 27/05 10:38:36,381 getJobState 3 from 5b724 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b72e DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b72e DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b738 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b738 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b742 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b742 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b74c DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b74c DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b756 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b756 DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b78a DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b78a DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b7af DPU[1:CZZAAR1037] 27/05 10:38:36,397 getJobState 3 from 5b7af DPU[1:CZZAAR1037] 27/05 10:38:36,522 >> SetCompAttr DPU[1:CZZAAR1037] 27/05 10:38:36,569 >> SetDetected DPU[1:CZZAAR1037] 27/05 10:38:36,584 disconnect DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b6ad DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b6b7 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b6c1 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b6cb DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b6f9 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b71a DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b724 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b72e DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b738 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b742 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b74c DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b756 DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b78a DPU[1:CZZAAR1037] 27/05 10:38:36,584 getJobState 3 from 5b7af DPU[1:CZZAAR1037] 27/05 10:38:36,584 DPU ends DM[1] 27/05 10:38:38,006 **AND** 0 Agents triggered JCE[1] 27/05 10:38:38,053 JCE starts DM[1] 27/05 10:38:38,287 CZZAAS1003 DPU[2:CZZAAS1003] 27/05 10:38:38,412 DPU in init phase DPU[2:CZZAAS1003] 27/05 10:38:38,647 >> GetManagerData DPU[2:CZZAAS1003] 27/05 10:38:38,756 >> SetCompInfo DPU[2:CZZAAS1003] 27/05 10:38:38,787 >> GetContainerList DM[1] 27/05 10:38:38,850 **AND** 1 Agents triggered DM[1] 27/05 10:38:38,928 CZZAAR1124 DPU[3:CZZAAR1124] 27/05 10:38:39,053 DPU in init phase DPU[3:CZZAAR1124] 27/05 10:38:39,272 >> GetManagerData DM[1] 27/05 10:38:39,334 **AND** 1 Agents triggered DPU[3:CZZAAR1124] 27/05 10:38:39,381 >> SetCompInfo DPU[3:CZZAAR1124] 27/05 10:38:39,412 >> GetContainerList DM[1] 27/05 10:38:39,412 CZZAAR1125 DPU[3:CZZAAR1124] 27/05 10:38:39,428 getJobState 3 from 5b88e DPU[3:CZZAAR1124] 27/05 10:38:39,428 getJobState 3 from 5b88e DPU[2:CZZAAS1003] 27/05 10:38:39,491 >> SetCompAttr DPU[3:CZZAAR1124] 27/05 10:38:39,522 >> SetCompAttr DPU[4:CZZAAR1125] 27/05 10:38:39,522 DPU in init phase DPU[3:CZZAAR1124] 27/05 10:38:39,584 >> SetDetected DPU[2:CZZAAS1003] 27/05 10:38:39,584 >> SetDetected DPU[3:CZZAAR1124] 27/05 10:38:39,584 disconnect DPU[3:CZZAAR1124] 27/05 10:38:39,600 getJobState 3 from 5b88e DPU[3:CZZAAR1124] 27/05 10:38:39,600 DPU ends DPU[2:CZZAAS1003] 27/05 10:38:39,631 disconnect DPU[2:CZZAAS1003] 27/05 10:38:39,631 DPU ends DPU[4:CZZAAR1125] 27/05 10:38:39,756 >> GetManagerData DPU[4:CZZAAR1125] 27/05 10:38:39,850 >> SetCompInfo DPU[4:CZZAAR1125] 27/05 10:38:39,881 >> GetContainerList DPU[4:CZZAAR1125] 27/05 10:38:39,897 getJobState 3 from 5b8a9 DPU[4:CZZAAR1125] 27/05 10:38:39,897 getJobState 3 from 5b8a9 DPU[4:CZZAAR1125] 27/05 10:38:39,991 >> SetCompAttr DPU[4:CZZAAR1125] 27/05 10:38:40,100 >> SetDetected DPU[4:CZZAAR1125] 27/05 10:38:40,116 disconnect DPU[4:CZZAAR1125] 27/05 10:38:40,116 getJobState 3 from 5b8a9 DPU[4:CZZAAR1125] 27/05 10:38:40,116 DPU ends DM[1] 27/05 10:38:40,741 **AND** 0 Agents triggered JCE[1] 27/05 10:38:42,756 JCE ends DM[1] 27/05 10:38:47,475 **AND** 0 Agents triggered DM[1] 27/05 10:38:54,241 **AND** 0 Agents triggered

    Read the article

< Previous Page | 388 389 390 391 392 393 394 395 396  | Next Page >