Search Results

Search found 194 results on 8 pages for 'dbcc'.

Page 4/8 | < Previous Page | 1 2 3 4 5 6 7 8  | Next Page >

  • SQL Server 2012 Integration Services - Package and Project Parameters

    In SQL Server 2012, Microsoft introduced SQL Server Data Tools to accommodate the dynamic nature of SSIS constructs in the form of package and project parameters. This approach lets you combine multi-package projects into a single unit, eliminating the possibility of breaking dependencies between parent and child packages during subsequent deployments. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL Relay 2012

    This May brings SQL Server experts to your locality; full day seminars in Edinburgh, Manchester, Birmingham, Bristol and London. Overview sessions from Microsoft in the morning, Deep Dive sessions in the afternoon from SQL Server MVP's and evening community events. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • Reliable Storage Systems for SQL Server

    By validating the IO path before commissioning the production database system, and performing ongoing validation through page checksums and DBCC checks, you can hopefully avoid data corruption altogether, or at least nip it in the bud. If corruption occurs, then you have to take the right decisions fast to deal with it. Rod Colledge explains how a pessimistic mindset can be an advantage

    Read the article

  • SQL Server 2012 Integration Services - Package and Project Configurations

    Marcin Policht examines SSIS 2012 package and project configurations, which offer different ways of modifying values of variables and parameters without having to directly edit content of the packages and projects of which they are a part. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • Database Continuous Integration 101

    We talk a lot about continuous integration here on the Atlassian Dev Tools blog, and many readers are bonafide CI gurus. Now that you are integrating your application code, test code, config files and deploy scripts, are you ready to take it to the next level? An increasing number of engineering shops are starting to bring the continuous integration discipline into their database development. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • Ten Things I Wish I'd Known When I Started Using tSQLt and SQL Test

    The tSQLt framework is a great way of writing unit tests in the same language as the one being tested, but there are some 'Gotchas' that can catch you out. Dave Green lists a few tips he wished he'd read beforehand. Are you sure you can restore your backups? Run full restore + DBCC CHECKDB quickly and easily with SQL Backup Pro's new automated verification. Check for corruption and prepare for when disaster strikes. Try it now.

    Read the article

  • A simple T-SQL statement to create a list of lookup values

    In this article, we provide a simple way to get a comma delimited list from a table of entries without having to use a CURSOR or a WHILE loop to read through the table. Are you sure you can restore your backups? Run full restore + DBCC CHECKDB quickly and easily with SQL Backup Pro's new automated verification. Check for corruption and prepare for when disaster strikes. Try it now.

    Read the article

  • The Strategic Value of Monitoring SQL Servers

    Why would you ever need to automatically monitor the SQL Servers in your care? What is the business value of doing so? What are the important features that a DBA should look for in a performance-monitoring tool? Rodney Landrum gives answers based on long experience. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL in the City Seminar Portland 2013 –Deployment Stairway

    Join Red Gate for a free seminar on November 15 (the day before SQL Saturday Oregon). Steve Jones and Grant Fritchey, SQL Server MVPs, will present best practices for SQL Server version control, continuous integration and deployment, in addition to showing Red Gate tools in action. Want faster, smaller backups you can rely on? Use SQL Backup Pro for up to 95% compression, faster file transfer and integrated DBCC CHECKDB. Download a free trial now.

    Read the article

  • Data Access Tracing in SQL Server 2012

    Learn how to apply the tracing functionality in Microsoft data access technologies such as ADO.NET 2.0, MDAC 2.82, SQL Server Native Client, and the JDBC driver; and in the SQL Server network protocols and the Microsoft SQL Server database engine. Are you sure you can restore your backups? Run full restore + DBCC CHECKDB quickly and easily with SQL Backup Pro's new automated verification. Check for corruption and prepare for when disaster strikes. Try it now.

    Read the article

  • The Lure of Simplicity in IT

    A deceptively simple solution to a business re-engineering problem can beguile companies into selecting a compromise that doesn't actually meet all their needs. Simple is great, but not at the expense of functionality. Some IT solutions are complex because the problem is complex, but they can be made conceptually clearer. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • Developing a SSRS report using a SSAS Data Source

    After designing several SSRS reports based on regular relational databases, your boss would now like several new reports to be designed and rolled out to production based on your organization's SSAS OLAP cube. How do you get started with designing a report based on a cube? Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL Server Prefetch and Query Performance

    Prefetching can make a surprising difference to SQL Server query execution times where there is a high incidence of waiting for disk i/o operations, but the benefits come at a cost. Mostly, the Query Optimizer gets it right, but occasionally there are queries that would benefit from tuning. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL Server 2012 Integration Services - Project Deployment

    SQL Server 2012 Integration Services parameters introduce a new way of dealing with package development, deployment, and execution. In order to truly appreciate their relevance, it is necessary to take a look at the new Project Deployment Model. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL VIEW Basics

    SQL Views are essential for the database developer. However, it is common to see them misued, or neglected. Joe Celko tackles an introduction to the subject, but there is something about the topic that makes it likely that even the experienced developer will find out something new from reading it. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • Reliable Storage Systems for SQL Server

    By validating the IO path before commissioning the production database system, and performing ongoing validation through page checksums and DBCC checks, you can hopefully avoid data corruption altogether, or at least nip it in the bud. If corruption occurs, then you have to take the right decisions fast to deal with it. Rod Colledge explains how a pessimistic mindset can be an advantage

    Read the article

  • DAX Query Basics

    In this document I will attempt to talk you through writing your first very simple DAX queries. For the purpose of this document I will query the rather familiar Adventure Works Tabular Cube. Are you sure you can restore your backups? Run full restore + DBCC CHECKDB quickly and easily with SQL Backup Pro's new automated verification. Check for corruption and prepare for when disaster strikes. Try it now.

    Read the article

  • Simplified Restores with SQL Server 2012 Recovery Advisor

    Occasionally, a DBA may need to restore a database from a multiple backup files that originated from multiple servers. This requirement might arise, for example, in a database-mirroring configuration, where backups may be from either of the servers. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • Advantages of SQL Backup Pro

    - by Grant Fritchey
    Getting backups of your databases in place is a fundamental issue for protection of the business. Yes, I said business, not data, not databases, but business. Because of a lack of good, tested, backups, companies have gone completely out of business or suffered traumatic financial loss. That’s just a simple fact (outlined with a few examples here). So you want to get backups right. That’s a big part of why we make Red Gate SQL Backup Pro work the way it does. Yes, you could just use native backups, but you’ll be missing a few advantages that we provide over and above what you get out of the box from Microsoft. Let’s talk about them. Guidance If you’re a hard-core DBA with 20+ years of experience on every version of SQL Server and several other data platforms besides, you may already know what you need in order to get a set of tested backups in place. But, if you’re not, maybe a little help would be a good thing. To set up backups for your servers, we supply a wizard that will step you through the entire process. It will also act to guide you down good paths. For example, if your databases are in Full Recovery, you should set up transaction log backups to run on a regular basis. When you choose a transaction log backup from the Backup Type you’ll see that only those databases that are in Full Recovery will be listed: This makes it very easy to be sure you have a log backup set up for all the databases you should and none of the databases where you won’t be able to. There are other examples of guidance throughout the product. If you have the responsibility of managing backups but very little knowledge or time, we can help you out. Throughout the software you’ll notice little green question marks. You can see two in the screen above and more in each of the screens in other topics below this one. Clicking on these will open a window with additional information about the topic in question which should help to guide you through some of the tougher decisions you may have to make while setting up your backup jobs. Here’s an example: Backup Copies As a part of the wizard you can choose to make a copy of your backup on your network. This process runs as part of the Red Gate SQL Backup engine. It will copy your backup, after completing the backup so it doesn’t cause any additional blocking or resource use within the backup process, to the network location you define. Creating a copy acts as a mechanism of protection for your backups. You can then backup that copy or do other things with it, all without affecting the original backup file. This requires either an additional backup or additional scripting to get it done within the native Microsoft backup engine. Offsite Storage Red Gate offers you the ability to immediately copy your backup to the cloud as a further, off-site, protection of your backups. It’s a service we provide and expose through the Backup wizard. Your backup will complete first, just like with the network backup copy, then an asynchronous process will copy that backup to cloud storage. Again, this is built right into the wizard or even the command line calls to SQL Backup, so it’s part a single process within your system. With native backup you would need to write additional scripts, possibly outside of T-SQL, to make this happen. Before you can use this with your backups you’ll need to do a little setup, but it’s built right into the product to get this done. You’ll be directed to the web site for our hosted storage where you can set up an account. Compression If you have SQL Server 2008 Enterprise, or you’re on SQL Server 2008R2 or greater and you have a Standard or Enterprise license, then you have backup compression. It’s built right in and works well. But, if you need even more compression then you might want to consider Red Gate SQL Backup Pro. We offer four levels of compression within the product. This means you can get a little compression faster, or you can just sacrifice some CPU time and get even more compression. You decide. For just a simple example I backed up AdventureWorks2012 using both methods of compression. The resulting file from native was 53mb. Our file was 33mb. That’s a file that is smaller by 38%, not a small number when we start talking gigabytes. We even provide guidance here to help you determine which level of compression would be right for you and your system: So for this test, if you wanted maximum compression with minimum CPU use you’d probably want to go with Level 2 which gets you almost as much compression as Level 3 but will use fewer resources. And that compression is still better than the native one by 10%. Restore Testing Backups are vital. But, a backup is just a file until you restore it. How do you know that you can restore that backup? Of course, you’ll use CHECKSUM to validate that what was read from disk during the backup process is what gets written to the backup file. You’ll also use VERIFYONLY to check that the backup header and the checksums on the backup file are valid. But, this doesn’t do a complete test of the backup. The only complete test is a restore. So, what you really need is a process that tests your backups. This is something you’ll have to schedule separately from your backups, but we provide a couple of mechanisms to help you out here. First, when you create a backup schedule, all done through our wizard which gives you as much guidance as you get when running backups, you get the option of creating a reminder to create a job to test your restores. You can enable this or disable it as you choose when creating your scheduled backups. Once you’re ready to schedule test restores for your databases, we have a wizard for this as well. After you choose the databases and restores you want to test, all configurable for automation, you get to decide if you’re going to restore to a specified copy or to the original database: If you’re doing your tests on a new server (probably the best choice) you can just overwrite the original database if it’s there. If not, you may want to create a new database each time you test your restores. Another part of validating your backups is ensuring that they can pass consistency checks. So we have DBCC built right into the process. You can even decide how you want DBCC run, which error messages to include, limit or add to the checks being run. With this you could offload some DBCC checks from your production system so that you only run the physical checks on your production box, but run the full check on this backup. That makes backup testing not just a general safety process, but a performance enhancer as well: Finally, assuming the tests pass, you can delete the database, leave it in place, or delete it regardless of the tests passing. All this is automated and scheduled through the SQL Agent job on your servers. Running your databases through this process will ensure that you don’t just have backups, but that you have tested backups. Single Point of Management If you have more than one server to maintain, getting backups setup could be a tedious process. But, with Red Gate SQL Backup Pro you can connect to multiple servers and then manage all your databases and all your servers backups from a single location. You’ll be able to see what is scheduled, what has run successfully and what has failed, all from a single interface without having to connect to different servers. Log Shipping Wizard If you want to set up log shipping as part of a disaster recovery process, it can frequently be a pain to get configured correctly. We supply a wizard that will walk you through every step of the process including setting up alerts so you’ll know should your log shipping fail. Summary You want to get your backups right. As outlined above, Red Gate SQL Backup Pro will absolutely help you there. We supply a number of processes and functionalities above and beyond what you get with SQL Server native. Plus, with our guidance, hints and reminders, you will get your backups set up in a way that protects your business.

    Read the article

  • T-SQL Tuesday #33: Trick Shots: Undocumented, Underdocumented, and Unknown Conspiracies!

    - by Most Valuable Yak (Rob Volk)
    Mike Fal (b | t) is hosting this month's T-SQL Tuesday on Trick Shots.  I love this choice because I've been preoccupied with sneaky/tricky/evil SQL Server stuff for a long time and have been presenting on it for the past year.  Mike's directives were "Show us a cool trick or process you developed…It doesn’t have to be useful", which most of my blogging definitely fits, and "Tell us what you learned from this trick…tell us how it gave you insight in to how SQL Server works", which is definitely a new concept.  I've done a lot of reading and watching on SQL Server Internals and even attended training, but sometimes I need to go explore on my own, using my own tools and techniques.  It's an itch I get every few months, and, well, it sure beats workin'. I've found some people to be intimidated by SQL Server's internals, and I'll admit there are A LOT of internals to keep track of, but there are tons of excellent resources that clearly document most of them, and show how knowing even the basics of internals can dramatically improve your database's performance.  It may seem like rocket science, or even brain surgery, but you don't have to be a genius to understand it. Although being an "evil genius" can help you learn some things they haven't told you about. ;) This blog post isn't a traditional "deep dive" into internals, it's more of an approach to find out how a program works.  It utilizes an extremely handy tool from an even more extremely handy suite of tools, Sysinternals.  I'm not the only one who finds Sysinternals useful for SQL Server: Argenis Fernandez (b | t), Microsoft employee and former T-SQL Tuesday host, has an excellent presentation on how to troubleshoot SQL Server using Sysinternals, and I highly recommend it.  Argenis didn't cover the Strings.exe utility, but I'll be using it to "hack" the SQL Server executable (DLL and EXE) files. Please note that I'm not promoting software piracy or applying these techniques to attack SQL Server via internal knowledge. This is strictly educational and doesn't reveal any proprietary Microsoft information.  And since Argenis works for Microsoft and demonstrated Sysinternals with SQL Server, I'll just let him take the blame for it. :P (The truth is I've used Strings.exe on SQL Server before I ever met Argenis.) Once you download and install Strings.exe you can run it from the command line.  For our purposes we'll want to run this in the Binn folder of your SQL Server instance (I'm referencing SQL Server 2012 RTM): cd "C:\Program Files\Microsoft SQL Server\MSSQL11\MSSQL\Binn" C:\Program Files\Microsoft SQL Server\MSSQL11\MSSQL\Binn> strings *sql*.dll > sqldll.txt C:\Program Files\Microsoft SQL Server\MSSQL11\MSSQL\Binn> strings *sql*.exe > sqlexe.txt   I've limited myself to DLLs and EXEs that have "sql" in their names.  There are quite a few more but I haven't examined them in any detail. (Homework assignment for you!) If you run this yourself you'll get 2 text files, one with all the extracted strings from every SQL DLL file, and the other with the SQL EXE strings.  You can open these in Notepad, but you're better off using Notepad++, EditPad, Emacs, Vim or another more powerful text editor, as these will be several megabytes in size. And when you do open it…you'll find…a TON of gibberish.  (If you think that's bad, just try opening the raw DLL or EXE file in Notepad.  And by the way, don't do this in production, or even on a running instance of SQL Server.)  Even if you don't clean up the file, you can still use your editor's search function to find a keyword like "SELECT" or some other item you expect to be there.  As dumb as this sounds, I sometimes spend my lunch break just scanning the raw text for anything interesting.  I'm boring like that. Sometimes though, having these files available can lead to some incredible learning experiences.  For me the most recent time was after reading Joe Sack's post on non-parallel plan reasons.  He mentions a new SQL Server 2012 execution plan element called NonParallelPlanReason, and demonstrates a query that generates "MaxDOPSetToOne".  Joe (formerly on the Microsoft SQL Server product team, so he knows this stuff) mentioned that this new element was not currently documented and tried a few more examples to see what other reasons could be generated. Since I'd already run Strings.exe on the SQL Server DLLs and EXE files, it was easy to run grep/find/findstr for MaxDOPSetToOne on those extracts.  Once I found which files it belonged to (sqlmin.dll) I opened the text to see if the other reasons were listed.  As you can see in my comment on Joe's blog, there were about 20 additional non-parallel reasons.  And while it's not "documentation" of this underdocumented feature, the names are pretty self-explanatory about what can prevent parallel processing. I especially like the ones about cursors – more ammo! - and am curious about the PDW compilation and Cloud DB replication reasons. One reason completely stumped me: NoParallelHekatonPlan.  What the heck is a hekaton?  Google and Wikipedia were vague, and the top results were not in English.  I found one reference to Greek, stating "hekaton" can be translated as "hundredfold"; with a little more Wikipedia-ing this leads to hecto, the prefix for "one hundred" as a unit of measure.  I'm not sure why Microsoft chose hekaton for such a plan name, but having already learned some Greek I figured I might as well dig some more in the DLL text for hekaton.  Here's what I found: hekaton_slow_param_passing Occurs when a Hekaton procedure call dispatch goes to slow parameter passing code path The reason why Hekaton parameter passing code took the slow code path hekaton_slow_param_pass_reason sp_deploy_hekaton_database sp_undeploy_hekaton_database sp_drop_hekaton_database sp_checkpoint_hekaton_database sp_restore_hekaton_database e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\hkproc.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\matgen.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\matquery.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\sqlmeta.cpp e:\sql11_main_t\sql\ntdbms\hekaton\sqlhost\sqllang\resultset.cpp Interesting!  The first 4 entries (in red) mention parameters and "slow code".  Could this be the foundation of the mythical DBCC RUNFASTER command?  Have I been passing my parameters the slow way all this time? And what about those sp_xxxx_hekaton_database procedures (in blue)? Could THEY be the secret to a faster SQL Server? Could they promise a "hundredfold" improvement in performance?  Are these special, super-undocumented DIB (databases in black)? I decided to look in the SQL Server system views for any objects with hekaton in the name, or references to them, in hopes of discovering some new code that would answer all my questions: SELECT name FROM sys.all_objects WHERE name LIKE '%hekaton%' SELECT name FROM sys.all_objects WHERE object_definition(OBJECT_ID) LIKE '%hekaton%' Which revealed: name ------------------------ (0 row(s) affected) name ------------------------ sp_createstats sp_recompile sp_updatestats (3 row(s) affected)   Hmm.  Well that didn't find much.  Looks like these procedures are seriously undocumented, unknown, perhaps forbidden knowledge. Maybe a part of some unspeakable evil? (No, I'm not paranoid, I just like mysteries and thought that punching this up with that kind of thing might keep you reading.  I know I'd fall asleep without it.) OK, so let's check out those 3 procedures and see what they reveal when I search for "Hekaton": sp_createstats: -- filter out local temp tables, Hekaton tables, and tables for which current user has no permissions -- Note that OBJECTPROPERTY returns NULL on type="IT" tables, thus we only call it on type='U' tables   OK, that's interesting, let's go looking down a little further: ((@table_type<>'U') or (0 = OBJECTPROPERTY(@table_id, 'TableIsInMemory'))) and -- Hekaton table   Wellllll, that tells us a few new things: There's such a thing as Hekaton tables (UPDATE: I'm not the only one to have found them!) They are not standard user tables and probably not in memory UPDATE: I misinterpreted this because I didn't read all the code when I wrote this blog post. The OBJECTPROPERTY function has an undocumented TableIsInMemory option Let's check out sp_recompile: -- (3) Must not be a Hekaton procedure.   And once again go a little further: if (ObjectProperty(@objid, 'IsExecuted') <> 0 AND ObjectProperty(@objid, 'IsInlineFunction') = 0 AND ObjectProperty(@objid, 'IsView') = 0 AND -- Hekaton procedure cannot be recompiled -- Make them go through schema version bumping branch, which will fail ObjectProperty(@objid, 'ExecIsCompiledProc') = 0)   And now we learn that hekaton procedures also exist, they can't be recompiled, there's a "schema version bumping branch" somewhere, and OBJECTPROPERTY has another undocumented option, ExecIsCompiledProc.  (If you experiment with this you'll find this option returns null, I think it only works when called from a system object.) This is neat! Sadly sp_updatestats doesn't reveal anything new, the comments about hekaton are the same as sp_createstats.  But we've ALSO discovered undocumented features for the OBJECTPROPERTY function, which we can now search for: SELECT name, object_definition(OBJECT_ID) FROM sys.all_objects WHERE object_definition(OBJECT_ID) LIKE '%OBJECTPROPERTY(%'   I'll leave that to you as more homework.  I should add that searching the system procedures was recommended long ago by the late, great Ken Henderson, in his Guru's Guide books, as a great way to find undocumented features.  That seems to be really good advice! Now if you're a programmer/hacker, you've probably been drooling over the last 5 entries for hekaton (in green), because these are the names of source code files for SQL Server!  Does this mean we can access the source code for SQL Server?  As The Oracle suggested to Neo, can we return to The Source??? Actually, no. Well, maybe a little bit.  While you won't get the actual source code from the compiled DLL and EXE files, you'll get references to source files, debugging symbols, variables and module names, error messages, and even the startup flags for SQL Server.  And if you search for "DBCC" or "CHECKDB" you'll find a really nice section listing all the DBCC commands, including the undocumented ones.  Granted those are pretty easy to find online, but you may be surprised what those web sites DIDN'T tell you! (And neither will I, go look for yourself!)  And as we saw earlier, you'll also find execution plan elements, query processing rules, and who knows what else.  It's also instructive to see how Microsoft organizes their source directories, how various components (storage engine, query processor, Full Text, AlwaysOn/HADR) are split into smaller modules. There are over 2000 source file references, go do some exploring! So what did we learn?  We can pull strings out of executable files, search them for known items, browse them for unknown items, and use the results to examine internal code to learn even more things about SQL Server.  We've even learned how to use command-line utilities!  We are now 1337 h4X0rz!  (Not really.  I hate that leetspeak crap.) Although, I must confess I might've gone too far with the "conspiracy" part of this post.  I apologize for that, it's just my overactive imagination.  There's really no hidden agenda or conspiracy regarding SQL Server internals.  It's not The Matrix.  It's not like you'd find anything like that in there: Attach Matrix Database DM_MATRIX_COMM_PIPELINES MATRIXXACTPARTICIPANTS dm_matrix_agents   Alright, enough of this paranoid ranting!  Microsoft are not really evil!  It's not like they're The Borg from Star Trek: ALTER FEDERATION DROP ALTER FEDERATION SPLIT DROP FEDERATION   #tsql2sday

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • SQL SERVER – Puzzle – Statistics are not Updated but are Created Once

    - by pinaldave
    After having excellent response to my quiz – Why SELECT * throws an error but SELECT COUNT(*) does not?I have decided to ask another puzzling question to all of you. I am running this test on SQL Server 2008 R2. Here is the quick scenario about my setup. Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated Note: Auto Update Statistics and Auto Create Statistics for database is TRUE Expected Result – Statistics should be updated – SQL SERVER – When are Statistics Updated – What triggers Statistics to Update Now the question is why the statistics are not updated? The common answer is – we can update the statistics ourselves using UPDATE STATISTICS TableName WITH FULLSCAN, ALL However, the solution I am looking is where statistics should be updated automatically based on algorithm mentioned here. Now the solution is to ____________________. Vinod Kumar is not allowed to take participate over here as he is the one who has helped me to build this puzzle. I will publish the solution on next week. Please leave a comment and if your comment consist valid answer, I will publish with due credit. Here is the script to reproduce the scenario which I mentioned. -- Execution Plans Difference -- Create Sample Database CREATE DATABASE SampleDB GO USE SampleDB GO -- Create Table CREATE TABLE ExecTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO -- Insert One Thousand Records -- INSERT 1 INSERT INTO ExecTable (ID,FirstName,LastName,City) SELECT TOP 1000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%20 = 1 THEN 'New York' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 5 THEN 'San Marino' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 3 THEN 'Los Angeles' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 7 THEN 'La Cinega' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 13 THEN 'San Diego' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 17 THEN 'Las Vegas' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Display statistics of the table - none listed sp_helpstats N'ExecTable', 'ALL' GO -- Select Statement SELECT FirstName, LastName, City FROM ExecTable WHERE City  = 'New York' GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Replace your Statistics over here -- NOTE: Replace your _WA_Sys with stats from above query DBCC SHOW_STATISTICS('ExecTable', _WA_Sys_00000004_7D78A4E7); GO -------------------------------------------------------------- -- Round 2 -- Insert Ten Thousand Records -- INSERT 2 INSERT INTO ExecTable (ID,FirstName,LastName,City) SELECT TOP 10000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%20 = 1 THEN 'New York' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 5 THEN 'San Marino' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 3 THEN 'Los Angeles' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 7 THEN 'La Cinega' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 13 THEN 'San Diego' WHEN  ROW_NUMBER() OVER (ORDER BY a.name)%20 = 17 THEN 'Las Vegas' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Select Statement SELECT FirstName, LastName, City FROM ExecTable WHERE City  = 'New York' GO -- Display statistics of the table sp_helpstats N'ExecTable', 'ALL' GO -- Replace your Statistics over here -- NOTE: Replace your _WA_Sys with stats from above query DBCC SHOW_STATISTICS('ExecTable', _WA_Sys_00000004_7D78A4E7); GO -- You will notice that Statistics are still updated with 1000 rows -- Clean up Database DROP TABLE ExecTable GO USE MASTER GO ALTER DATABASE SampleDB SET SINGLE_USER WITH ROLLBACK IMMEDIATE; GO DROP DATABASE SampleDB GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics, Statistics

    Read the article

  • What Counts For a DBA – Decisions

    - by Louis Davidson
    It’s Friday afternoon, and the lead DBA, a very talented guy, is getting ready to head out for two well-earned weeks of vacation, with his family, when this error message pops up in his inbox: Msg 211, Level 23, State 51, Line 1. Possible schema corruption. Run DBCC CHECKCATALOG. His heart sinks. It’s ten…no eight…minutes till it’s time to walk out the door. He glances around at his coworkers, competent to handle many problems, but probably not up to the challenge of fixing possible database corruption. What does he do? After a few agonizing moments of indecision, he clicks shut his laptop. He’ll just wait and see. It was unlikely to come to anything; after all, it did say “possible” schema corruption, not definite. In that moment, his fate was sealed. The start of the solution to the problem (run DBCC CHECKCATALOG) had been right there in the error message. Had he done this, or at least took two of those eight minutes to delegate the task to a coworker, then he wouldn’t have ended up spending two-thirds of an idyllic vacation (for the rest of the family, at least) dealing with a problem that got consistently worse as the weekend progressed until the entire system was down. When I told this story to a friend of mine, an opera fan, he smiled and said it described the basic plotline of almost every opera or ‘Greek Tragedy’ ever written. The particular joy in opera, he told me, isn’t the warbly voiced leading ladies, or the plump middle-aged romantic leads, or even the music. No, what packs the opera houses in Italy is the drama of characters who, by the very nature of their life-experiences and emotional baggage, make all sorts of bad choices when faced with ordinary decisions, and so move inexorably to their fate. The audience is gripped by the spectacle of exotic characters doomed by their inability to see the obvious. I confess, my personal experience with opera is limited to Bugs Bunny in “What’s Opera, Doc?” (Elmer Fudd is a great example of a bad decision maker, if ever one existed), but I was struck by my friend’s analogy. If all the DBA cubicles were a stage, I think we would hear many similarly tragic tales, played out to music: “Error handling? We write our code to never experience errors, so nah…“ “Backups failed today, but it’s okay, we’ll back up tomorrow (we’ll back up tomorrow)“ And similarly, they would leave their audience gasping, not necessarily at the beauty of the music, or poetry of the lyrics, but at the inevitable, grisly fate of the protagonists. If you choose not to use proper error handling, or if you choose to skip a backup because, hey, you haven’t had a server crash in 10 years, then inevitably, in that moment you expected to be enjoying a vacation, or a football game, with your family and friends, you will instead be sitting in front of a computer screen, paying for your poor choices. Tragedies are very much part of IT. Most of a DBA’s day to day work has limited potential to wreak havoc; paperwork, timesheets, random anonymous threats to developers, routine maintenance and whatnot. However, just occasionally, you, as a DBA, will face one of those decisions that really matter, and which has the possibility to greatly affect your future and the future of your user’s data. Make those decisions count, and you’ll avoid the tragic fate of many an operatic hero or villain.

    Read the article

  • All connections in pool are in use

    - by veljkoz
    We currently have a little situation on our hands - it seems that someone, somewhere forgot to close the connection in code. Result is that the pool of connections is relatively quickly exhausted. As a temporary patch we added Max Pool Size = 500; to our connection string on web service, and recycle pool when all connections are spent, until we figure this out. So far we have done this: SELECT SPId FROM MASTER..SysProcesses WHERE DBId = DB_ID('MyDb') and last_batch < DATEADD(MINUTE, -15, GETDATE()) to get SPID's that aren't used for 15 minutes. We're now trying to get the query that was executed last using that SPID with: DBCC INPUTBUFFER(61) but the queries displayed are various, meaning either something on base level regarding connection manipulation was broken, or our deduction is erroneous... Is there an error in our thinking here? Does the DBCC / sysprocesses give results we're expecting or is there some side-effect catch? (for example, connections in pool influence?) (please, stick to what we could find out using SQL since the guys that did the code are many and not all present right now)

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8  | Next Page >