Search Results

Search found 14841 results on 594 pages for 'performance monitoring'.

Page 4/594 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Performance Monitor (perfmon) showing some unusual statistics

    - by Param
    Recently i have thought to used perfmon.msc to monitor process utilization of remote computer. But i am faced with some peculiar situation. Please see the below Print-screen I have selected three computer -- QDIT049, QDIT199V6 & QNIVN014. Please observer the processor Time % which i have marked in Red Circle. How it can be more than 100%.? The Total Processor Time can never go above 100%, am i right? If i am right? than why the processor time % is showing 200% Please let me know, how it is possible or where i have done mistake. Thanks & Regards, Param

    Read the article

  • Ask the Readers: How Do You Monitor Your Computer?

    - by Jason Fitzpatrick
    Beneath the shiny case of your computer and GUI of your operating system there’s a lot–CPU utilization, memory access, and disk space consumption to name a few things–you can keep an eye on. How do you keep an eye on resource utilization and more on your computer? Image available as wallpaper here. Whether you’re carefully managing a small pool of RAM, making sure your abundant apps don’t bog down your processor, or you just like having an intimate view of what’s going on in the guts of your computer, we want to hear all about the tools you use to do it. How and why do you monitor your computer? From disk use to case temps, any kind of monitoring is fair game. Sound off in the comments with the how and why of your monitoring arrangement and then be sure to stop back in on Friday for the What You Said roundup to see what tricks and tools your fellow readers are using to keep an eye on their hardware. HTG Explains: How Antivirus Software Works HTG Explains: Why Deleted Files Can Be Recovered and How You Can Prevent It HTG Explains: What Are the Sys Rq, Scroll Lock, and Pause/Break Keys on My Keyboard?

    Read the article

  • Monitoring ASP.NET Application

    - by imran_ku07
        Introduction:          There are times when you may need to monitor your ASP.NET application's CPU and memory consumption, so that you can fine-tune your ASP.NET application(whether Web Form, MVC or WebMatrix). Also, sometimes you may need to see all the exceptions(and their details) of your application raising, whether they are handled or not. If you are creating an ASP.NET application in .NET Framework 4.0, then you can easily monitor your application's CPU or memory consumption and see how many exceptions your application raising. In this article I will show you how you can do this.       Description:           With .NET Framework 4.0, you can turn on the monitoring of CPU and memory consumption by setting AppDomain.MonitoringEnabled property to true. Also, in .NET Framework 4.0, you can register a callback method to AppDomain.FirstChanceException event to monitor the exceptions being thrown within your application's AppDomain. Turning on the monitoring and registering a callback method will add some additional overhead to your application, which will hurt your application performance. So it is better to turn on these features only if you have following properties in web.config file,   <add key="AppDomainMonitoringEnabled" value="true"/> <add key="FirstChanceExceptionMonitoringEnabled" value="true"/>             In case if you wonder what does FirstChanceException mean. It simply means the first notification of an exception raised by your application. Even CLR invokes this notification before the catch block that handles the exception. Now just update global.asax.cs file as,   string _item = "__RequestExceptionKey"; protected void Application_Start() { SetupMonitoring(); } private void SetupMonitoring() { bool appDomainMonitoringEnabled, firstChanceExceptionMonitoringEnabled; bool.TryParse(ConfigurationManager.AppSettings["AppDomainMonitoringEnabled"], out appDomainMonitoringEnabled); bool.TryParse(ConfigurationManager.AppSettings["FirstChanceExceptionMonitoringEnabled"], out firstChanceExceptionMonitoringEnabled); if (appDomainMonitoringEnabled) { AppDomain.MonitoringIsEnabled = true; } if (firstChanceExceptionMonitoringEnabled) { AppDomain.CurrentDomain.FirstChanceException += (object source, FirstChanceExceptionEventArgs e) => { if (HttpContext.Current == null)// If no context available, ignore it return; if (HttpContext.Current.Items[_item] == null) HttpContext.Current.Items[_item] = new RequestException { Exceptions = new List<Exception>() }; (HttpContext.Current.Items[_item] as RequestException).Exceptions.Add(e.Exception); }; } } protected void Application_EndRequest() { if (Context.Items[_item] != null) { //Only add the request if atleast one exception is raised var reqExc = Context.Items[_item] as RequestException; reqExc.Url = Request.Url.AbsoluteUri; Application.Lock(); if (Application["AllExc"] == null) Application["AllExc"] = new List<RequestException>(); (Application["AllExc"] as List<RequestException>).Add(reqExc); Application.UnLock(); } }               Now browse to Monitoring.cshtml file, you will see the following screen,                            The above screen shows you the total bytes allocated, total bytes in use and CPU usage of your application. The above screen also shows you all the exceptions raised by your application which is very helpful for you. I have uploaded a sample project on github at here. You can find Monitoring.cshtml file on this sample project. You can use this approach in ASP.NET MVC, ASP.NET WebForm and WebMatrix application.       Summary:          This is very important for administrators/developers to manage and administer their web application after deploying to production server. This article will help administrators/developers to see the memory and CPU usage of their web application. This will also help administrators/developers to see all the exceptions your application is throwing whether they are swallowed or not. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • SQL SERVER – Iridium I/O – SQL Server Deduplication that Shrinks Databases and Improves Performance

    - by Pinal Dave
    Database performance is a common problem for SQL Server DBA’s.  It seems like we spend more time on performance than just about anything else.  In many cases, we use scripts or tools that point out performance bottlenecks but we don’t have any way to fix them.  For example, what do you do when you need to speed up a query that is already tuned as well as possible?  Or what do you do when you aren’t allowed to make changes for a database supporting a purchased application? Iridium I/O for SQL Server was originally built at Confio software (makers of Ignite) because DBA’s kept asking for a way to actually fix performance instead of just pointing out performance problems. The technology is certified by Microsoft and was so promising that it was spun out into a separate company that is now run by the Confio Founder/CEO and technology management team. Iridium uses deduplication technology to both shrink the databases as well as boost IO performance.  It is intriguing to see it work.  It will deduplicate a live database as it is running transactions.  You can watch the database get smaller while user queries are running. Iridium is a simple tool to use. After installing the software, you click an “Analyze” button which will spend a minute or two on each database and estimate both your storage and performance savings.  Next, you click an “Activate” button to turn on Iridium I/O for your selected databases.  You don’t need to reboot the operating system or restart the database during any part of the process. As part of my test, I also wanted to see if there would be an impact on my databases when Iridium was removed.  The ‘revert’ process (bringing the files back to their SQL Server native format) was executed by a simple click of a button, and completed while the databases were available for normal processing. I was impressed and enjoyed playing with the software and encourage all of you to try it out.  Here is the link to the website to download Iridium for free. . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Can anybody recommend a Windows system monitoring tool similar to iPulse for the Mac?

    - by John MacIntyre
    Occasionally, my PC grinds to a halt, and by the time I get any monitoring tools open (don't forget my PC is slow at this point), performance has picked up a bit. A friend recently told me he uses iPulse, which is awesome since it's always running, and you can just glance at it when there's an issue to see what is happening. Unfortunately it's only for the Mac. Does anybody know of a good Windows system monitoring tool similar to iPulse for the Mac?

    Read the article

  • EPM 11.1.2 - In WebLogic Server, Enable Native IO Performance Pack

    - by Ahmed Awan
    Performance can be improved by enabling native IO in production mode. WebLogic Server benchmarks show major performance improvements when native performance packs are used on machines that host Oracle WebLogic Server instances. Important Note:  Always enable native I/O, if available, and check for errors at startup to make sure it is being initialed properly. Tip: The use of NATIVE performance packs are enabled by default in the configuration shipped with your distribution. You can use the Administration Console to verify that performance packs are enabled by clicking on each managed server and click on Tuning tab.

    Read the article

  • What are best monitoring tool customizable for cluster / distributed system?

    - by Adil
    I am working on a system having multiple servers. I am interested in monitoring some server specific data like CPU/memory usage, disk/filesystem usage, network traffic, system load etc. and some other my process specific data. What are available open source that can serve my purpose? If it provides to customize the parameter to be monitored and monitor your own data by creating plugin / agent. Any suggestions? I heard of Nagios, Zabbix and Pandora but not sure if they provide such interface.

    Read the article

  • June 22-24, 2010 in London City Level 400 SQL Server Performance Monitoring & Tuning Workshop

    - by sqlworkshops
    We are organizing the “3 Day Level 400 SQL Server Performance Monitoring & Tuning Workshop” for the 1st time in London City during June 22-24, 2010.Agenda is located @ www.sqlworkshops.com/workshops & you can register @ www.sqlworkshops.com/ruk. Charges: £ 1800 (5% discount for those who register before 21st May, £ 1710).In this 3 Day Level 400 hands-on workshop, unlike short SQLBits sessions, we go deeper on the tuning topics. Not sure if this will be a good use of your time & money? Watch our webcasts @ www.sqlworkshops.com/webcasts.We are trying to balance these commercial offerings with our free community contributions. Financially: These workshops are essential for us to stay in business!Feedback from Finland workshop posted by Jukka, Wärtsilä Oyj on February 23, 2010 to the LinkedIn SQL Server User Group Finland (more feedbacks @ www.sqlworkshops.com/feedbacks):Just want to start this thread and give some feedback on the Workshop that I attended last week at Microsoft.Three days in a row, deep dive into the query optimization and performance monitoring :-) I must say, that the SQL guru Ramesh has all the tricks up in his sleeves.The workshop was very helpful and what's most important: no slide show marathon: samples after samples explained very clearly and with our own class room SQL servers we can try the same stuff while Ramesh typed his own samples.If the workshop will be rearranged, I can most willingly recommend it to anyone who wants to know what's "under the hood" of SQL Server 2008.Once again, thank you Microsoft and Ramesh to make this happen. May the force be with us all :-)Hope to see you @ the Workshop. Feel free to pass on this information to your SQL Server colleagues.-ramesh-www.sqlbits.com/speakers/r_meyyappan/default.aspx

    Read the article

  • SQL Server Management Data Warehouse - quick tour on setting health monitoring policies

    - by ssqa.net
    Profiler, Perfmon, DMVs & scripts are legendary tools for a DBA to monitor the SQL arena. In line with these tools SQL Server 2008 throws a powerful stream with policy based management (PBM) framework & management data warehouse (MDW) methods, which is a relational database that contains the data that is collected from a server that is a data collection target. This data is used to generate the reports for the System Data collection sets, and can also be used to create custom reports. .....(read more)

    Read the article

  • Practical Performance Monitoring and Tuning Event

    - by Andrew Kelly
      For any of you who may be interested or know of someone in the market for a performance Monitoring and Tuning class I have just the ticket for you. It’s a 3 day event that will be held in Atlanta Ga. on January 25th to the 27th 2011. For those of you that know me or have been to my sessions you realize I like to provide more than just classroom theory and like to teach real world and above all practical methodology when it comes to performance in SQL Server. This class covers all the essentials...(read more)

    Read the article

  • Postfix performance

    - by Brian G
    Running postfix on ubuntu, sending alot of mail ( ~ 1 million messages ) per day. loads are extremly high but not much in terms of cpu and memory load. Anyone in a similiar situation and know how to remove the bottleneck? All mail on this server is outbound. I would have to assume the bottleneck is disk. Just an update, here is what iostat looks like: avg-cpu: %user %nice %system %iowait %steal %idle 0.00 0.00 0.12 99.88 0.00 0.00 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util sda 0.00 12.38 0.00 2.48 0.00 118.81 48.00 0.00 0.00 0.00 0.00 sdb 1.49 22.28 72.28 42.57 629.70 1041.58 14.55 135.56 834.31 8.71 100.00 Are these numbers in line with the performance you would expect from a single disk? sdb is dedicated to postfix. I think it is queue shuffling, from incoming-active-deferred More details from questions: Server: Quad core Xeon(R) CPU E5405 @ 2.00GH with 4 GB ram Load average: 464.88, 489.11, 483.91, 4 cores. but the memory utilization and cpu is minimal Postfix instances between 16 - 32

    Read the article

  • Increase application performance on Amazon AWS

    - by Honus Wagner
    I've got a client with an MVC v1 (.NET) application running on a micro instance. On this instance, I've got .NET, IIS 7.5, and MS SQL Server 2008 running to handle the application. The client has reported that it is taking nearly 10 seconds to process each request. Even loading the initial login page takes about that long, then logging in takes that long, etc etc. The currently running instance specs are as follows: 615 MB RAM Intel Xenon CPU E5430 @ 2.66GHz 2.78 GHz 64-Bit Is the memory availability the issue? or is it the processing power? I forsee two options: Change to a larget instance Set up a 2-tier architecture with two micro instances Which of these will give the application better performance? Thanks in advance.

    Read the article

  • Monitoring Events in your BPEL Runtime - RSS Feeds?

    - by Ramkumar Menon
    @10g - It had been a while since I'd tried something different. so here's what I did this week!Whenever our Developers deployed processes to the BPEL runtime, or perhaps when a process gets turned off due to connectivity issues, or maybe someone retired a process, I needed to know. So here's what I did. Step 1: Downloaded Quartz libraries and went through the documentation to understand what it takes to schedule a recurring job. Step 2: Cranked out two components using Oracle JDeveloper. [Within a new Web Project] a) A simple Java Class named FeedUpdater that extends org.quartz.Job. All this class does is to connect to your BPEL Runtime [via opmn:ormi] and fetch all events that occured in the last "n" minutes. events? - If it doesn't ring a bell - its right there on the BPEL Console. If you click on "Administration > Process Log" - what you see are events.The API to retrieve the events is //get the locator reference for the domain you are interested in.Locator l = .... //Predicate to retrieve events for last "n" minutesWhereCondition wc = new WhereCondition(...) //get all those events you needed.BPELProcessEvent[] events = l.listProcessEvents(wc); After you get all these events, write out these into an RSS Feed XML structure and stream it into a file that resides either in your Apache htdocs, or wherever it can be accessed via HTTP.You can read all about RSS 2.0 here. At a high level, here is how it looks like. <?xml version = '1.0' encoding = 'UTF-8'?><rss version="2.0">  <channel>    <title>Live Updates from the Development Environment</title>    <link>http://soadev.myserver.com/feeds/</link>    <description>Live Updates from the Development Environment</description>    <lastBuildDate>Fri, 19 Nov 2010 01:03:00 PST</lastBuildDate>    <language>en-us</language>    <ttl>1</ttl>    <item>      <guid>1290213724692</guid>      <title>Process compiled</title>      <link>http://soadev.myserver.com/BPELConsole/mdm_product/administration.jsp?mode=processLog&amp;processName=&amp;dn=all&amp;eventType=all&amp;eventDate=600&amp;Filter=++Filter++</link>      <pubDate>Fri Nov 19 00:00:37 PST 2010</pubDate>      <description>SendPurchaseOrderRequestService: 3.0 Time : Fri Nov 19 00:00:37                   PST 2010</description>    </item>   ...... </channel> </rss> For writing ut XML content, read through Oracle XML Parser APIs - [search around for oracle.xml.parser.v2] b) Now that my "Job" was done, my job was half done. Next, I wrote up a simple Scheduler Servlet that schedules the above "Job" class to be executed ever "n" minutes. It is very straight forward. Here is the primary section of the code.           try {        Scheduler sched = StdSchedulerFactory.getDefaultScheduler();         //get n and make a trigger that executes every "n" seconds        Trigger trigger = TriggerUtils.makeSecondlyTrigger(n);        trigger.setName("feedTrigger" + System.currentTimeMillis());        trigger.setGroup("feedGroup");                JobDetail job = new JobDetail("SOA_Feed" + System.currentTimeMillis(), "feedGroup", FeedUpdater.class);        sched.scheduleJob(job,trigger);         }catch(Exception ex) {            ex.printStackTrace();            throw new ServletException(ex.getMessage());        } Look up the Quartz API and documentation. It will make this look much simpler.   Now that both components were ready, I packaged the Application into a war file and deployed it onto my Application Server. When the servlet initialized, the "n" second schedule was set/initialized. From then on, the servlet kept populating the RSS Feed file. I just ensured that my "Job" code keeps only 30 latest events within it, so that the feed file is small and under control. [a few kbs]   Next I opened up the feed xml on my browser - It requested a subscription - and Here I was - watching new deployments/life cycle events all popping up on my browser toolbar every 5 (actually n)  minutes!   Well, you could do it on a browser/reader of your choice - or perhaps read them like you read an email on your thunderbird!.      

    Read the article

  • Download Monitoring for MovieMusic Portal

    - by VenomVipes
    Our portal is targeted on Mobile Users. We have Music(mp3) Video(3gp) files for download. I expect 300 Parallel Downloads. I want a way to control my Downloads. Like Kicking/Ban a IP or download. Stastics of download. Bandwidth Consumed .... I have root/admin access to my Server. My Question is : Is there a way I can Monitor & Control the OnGoing downloads that visitors are doing from my Site.

    Read the article

  • SSMS Built in Reports for Server and Database Monitoring

    - by GrumpyOldDBA
    This is a long post which I hope will format correctly – I’ve placed a pdf version for download here  http://www.grumpyolddba.co.uk/sql2008/ssmsreports_grumpyolddba.pdf I sometimes discover that the built in reports for SQL Server within SSMS are an unknown, sometimes this is because not all the right components were installed during the server build, other times is because generally there’s never been great reporting for the DBA from the SQL Team so no-one expects to find anything useful for...(read more)

    Read the article

  • Application Performance: The Best of the Web

    - by Michaela Murray
    Wisdom A deep understanding and realization […] resulting in the ability to apply perceptions, judgements and actions. It is also the comprehension of what is true coupled with optimum judgment as to action. - Wikipedia We’re writing a book for ASP.NET developers, and we want you to be a part of it. We know that there’s a huge amount of web developer wisdom that never gets shared, and we want to find those golden nuggets of knowledge and experience, and make sure everyone can learn from them. Right now, we want to find out about your top tips, hard-won lessons, and sage advice for avoiding, finding, and fixing application performance problems. If you work with .NET and SQL, even better – a lot of application performance relies on the interaction with the database, so we want to hear from you! “How Do You Want Me To Be Involved?” Right! Details! We want you, our most excellent readers, to email us with the Best Advice you would give to other developers for getting the best performance out of their applications. It doesn’t matter if your advice is for newbies or veterans, .NET or SQL – so long as it’s about application performance, we want to hear from you. (And if you think that there’s developer wisdom out there that “everyone knows”, a) I’m willing to bet you could find someone who doesn’t know about it, and b) it probably bears repeating anyway!) “I’m Interested. What Can You Do For Me?” Excellent question. For starters, there’s a chance to win a Microsoft Surface (the tablet, not the table-top). Once all the ASP.NET Wisdom has been collected, tallied, and labelled, it will then be weighed and measured by a team of expert judges (whose identities are still a closely-guarded secret).  The top tip in both SQL & .NET categories will each win their author their very own MS Surface. But that’s not all! We can also give you… immortality! More details? Ok. We’ll be collecting all of the tips sent in by our readers (and we can’t wait to learn from you all,) and with the help of our Simple-Talk editors, we will publish and distribute your combined and documented knowledge as a free, community-created, professionally typeset eBook. You will naturally be credited by name / pseudonym / twitter handle / GitHub username / StackOverflow profile / Whatever, as the clearly ingenious author of hot performance tips. The Not-Very-Fine Print Here’s the breakdown: We want to bring together the best application performance knowledge from ASP.NET developers. Closing date for submissions will be 9am GMT, December 4th. Submissions should be made by email – [email protected] Submissions will be judged by a panel of expert judges (who will be revealed soon). The top submission in both the SQL & .NET categories will each win a Microsoft Surface. ALL the tips which make it through the judging process will be polished by Simple-Talk editors, and turned into a professionally typeset eBook, which will be freely available, and promoted alongside the ANTS Performance Profiler tool. Anyone whose entry makes it into the book will be clearly and profusely credited in the method of their choice (or can remain anonymous.) The really REALLY short version Share what you know about ASP.NET application performance for a chance to win a Microsoft Surface, and then get your name credited in a slick eBook with top-notch production values. For more details, see above. We can’t wait to learn from you!

    Read the article

  • What are the requirements for an application health monitoring system?

    - by Steven A. Lowe
    What, at a minimum, should an application health-monitoring system do for you (the developer) and/or your boss (the IT Manager) and/or the oeprations (on-call) staff? What else should it do above the minimum requirements? Is monitoring the 'infrastructure' applications (ms-exchange, apache, etc.) sufficient or do individual user applications, web sites, and databases also need to be monitored? if the latter, what do you need to know about them? ADDENDUM: thanks for the input, i was really looking for application-level monitoring not infrastructure monitoring, but it is good to know about both

    Read the article

  • Server Performance

    - by sb12
    I know very little about performance tuning of servers etc... so i thought i'd put this up here as i start some research on it, just to get some direction. I am in the process of migrating from my old server to a new one - both are 64 bit machines. One is a few years old, the other brand new (PowerEdge R410). The old server spec is: 2 cpus, 3.4GHz Pentiums, 8G of RAM, Fedora 11 currently installed The new server spec is: 16 cpus, 3.2 GHz Xeon, 16G of RAM, CentOS 6.2 installed. Also RAID10 is on the new server - no RAID on the old one. Both servers currently have the same database (MySQL) with the same data migrated. I wrote a Perl script that simply steps through each row of a table in the database (about 18000 rows) and updates a value in that row. Every row in the table is updated. Out of curiosity i ran this perl script on both machines, just to see how the new server would perform vs. the old one, and it produced interesting results: The old server was twice as fast as the new one to complete. Looking at the database, both are configured exactly the same (the new one being a dump of the old one...)... Anyone any ideas why this would be given the hardware gap between both? As i said i'm about to start some digging, but thought i'd put this up here to maybe get some good direction.... Many thanks in advance..

    Read the article

  • Analysing and measuring the performance of a .NET application (survey results)

    - by Laila
    Back in December last year, I asked myself: could it be that .NET developers think that you need three days and a PhD to do performance profiling on their code? What if developers are shunning profilers because they perceive them as too complex to use? If so, then what method do they use to measure and analyse the performance of their .NET applications? Do they even care about performance? So, a few weeks ago, I decided to get a 1-minute survey up and running in the hopes that some good, hard data would clear the matter up once and for all. I posted the survey on Simple Talk and got help from a few people to promote it. The survey consisted of 3 simple questions: Amazingly, 533 developers took the time to respond - which means I had enough data to get representative results! So before I go any further, I would like to thank all of you who contributed, because I now have some pretty good answers to the troubling questions I was asking myself. To thank you properly, I thought I would share some of the results with you. First of all, application performance is indeed important to most of you. In fact, performance is an intrinsic part of the development cycle for a good 40% of you, which is much higher than I had anticipated, I have to admit. (I know, "Have a little faith Laila!") When asked what tool you use to measure and analyse application performance, I found that nearly half of the respondents use logging statements, a third use performance counters, and 70% of respondents use a profiler of some sort (a 3rd party performance profilers, the CLR profiler or the Visual Studio profiler). The importance attributed to logging statements did surprise me a little. I am still not sure why somebody would go to the trouble of manually instrumenting code in order to measure its performance, instead of just using a profiler. I personally find the process of annotating code, calculating times from log files, and relating it all back to your source terrifyingly laborious. Not to mention that you then need to remember to turn it all off later! Even when you have logging in place throughout all your code anyway, you still have a fair amount of potentially error-prone calculation to sift through the results; in addition, you'll only get method-level rather than line-level timings, and you won't get timings from any framework or library methods you don't have source for. To top it all, we all know that bottlenecks are rarely where you would expect them to be, so you could be wasting time looking for a performance problem in the wrong place. On the other hand, profilers do all the work for you: they automatically collect the CPU and wall-clock timings, and present the results from method timing all the way down to individual lines of code. Maybe I'm missing a trick. I would love to know about the types of scenarios where you actively prefer to use logging statements. Finally, while a third of the respondents didn't have a strong opinion about code performance profilers, those who had an opinion thought that they were mainly complex to use and time consuming. Three respondents in particular summarised this perfectly: "sometimes, they are rather complex to use, adding an additional time-sink to the process of trying to resolve the existing problem". "they are simple to use, but the results are hard to understand" "Complex to find the more advanced things, easy to find some low hanging fruit". These results confirmed my suspicions: Profilers are seen to be designed for more advanced users who can use them effectively and make sense of the results. I found yet more interesting information when I started comparing samples of "developers for whom performance is an important part of the dev cycle", with those "to whom performance is only looked at in times of crisis", and "developers to whom performance is not important, as long as the app works". See the three graphs below. Sample of developers to whom performance is an important part of the dev cycle: Sample of developers to whom performance is important only in times of crisis: Sample of developers to whom performance is not important, as long as the app works: As you can see, there is a strong correlation between the usage of a profiler and the importance attributed to performance: indeed, the more important performance is to a development team, the more likely they are to use a profiler. In addition, developers to whom performance is an important part of the dev cycle have a higher tendency to use a much wider range of methods for performance measurement and analysis. And, unsurprisingly, the less important performance is, the less varied the methods of measurement are. So all in all, to come back to my random questions: .NET developers do care about performance. Those who care the most use a wider range of performance measurement methods than those who care less. But overall, logging statements, performance counters and third party performance profilers are the performance measurement methods of choice for most developers. Finally, although most of you find code profilers complex to use, those of you who care the most about performance tend to use profilers more than those of you to whom performance is not so important.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • How often is software speed evident in the eyes of customers?

    - by rwong
    In theory, customers should be able to feel the software performance improvements from first-hand experience. In practice, sometimes the improvements are not noticible enough, such that in order to monetize from the improvements, it is necessary to use quotable performance figures in marketing in order to attract customers. We already know the difference between perceived performance (GUI latency, etc) and server-side performance (machines, networks, infrastructure, etc). How often is it that programmers need to go the extra length to "write up" performance analyses for which the audience is not fellow programmers, but managers and customers?

    Read the article

  • Monitoring disk performance with MRTG

    - by Ghostrider
    I use MRTG to monitor vital stats on my servers like disk space, CPU load, memory usage, temperatures etc. It all works fine and well for parameters that don't change rapidly. By running small VB script I can also get any Performance Counter. However these scripts are called by MRTG every 5 minutes while performance counters like physical disk idle time return a snapshot value from previous few seconds so a lot or data is missed. Surely I could write a service that would poll all required counters in background and store average values somewhere on disk where MRTG would pick them up. However before I do so I would like to find out if there is some ready solution that would allow me to get average value of some counter for the last 5 minutes as opposed to immediate snapshot.

    Read the article

  • SQL SERVER – Server Side Paging in SQL Server 2011 Performance Comparison

    - by pinaldave
    Earlier, I have written about SQL SERVER – Server Side Paging in SQL Server 2011 – A Better Alternative. I got many emails asking for performance analysis of paging. Here is the quick analysis of it. The real challenge of paging is all the unnecessary IO reads from the database. Network traffic was one of the reasons why paging has become a very expensive operation. I have seen many legacy applications where a complete resultset is brought back to the application and paging has been done. As what you have read earlier, SQL Server 2011 offers a better alternative to an age-old solution. This article has been divided into two parts: Test 1: Performance Comparison of the Two Different Pages on SQL Server 2011 Method In this test, we will analyze the performance of the two different pages where one is at the beginning of the table and the other one is at its end. Test 2: Performance Comparison of the Two Different Pages Using CTE (Earlier Solution from SQL Server 2005/2008) and the New Method of SQL Server 2011 We will explore this in the next article. This article will tackle test 1 first. Test 1: Retrieving Page from two different locations of the table. Run the following T-SQL Script and compare the performance. SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO You will notice that when we are reading the page from the beginning of the table, the database pages read are much lower than when the page is read from the end of the table. This is very interesting as when the the OFFSET changes, PAGE IO is increased or decreased. In the normal case of the search engine, people usually read it from the first few pages, which means that IO will be increased as we go further in the higher parts of navigation. I am really impressed because using the new method of SQL Server 2011,  PAGE IO will be much lower when the first few pages are searched in the navigation. Test 2: Retrieving Page from two different locations of the table and comparing to earlier versions. In this test, we will compare the queries of the Test 1 with the earlier solution via Common Table Expression (CTE) which we utilized in SQL Server 2005 and SQL Server 2008. Test 2 A : Page early in the table -- Test with pages early in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO Test 2 B : Page later in the table -- Test with pages later in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO From the resultset, it is very clear that in the earlier case, the pages read in the solution are always much higher than the new technique introduced in SQL Server 2011 even if we don’t retrieve all the data to the screen. If you carefully look at both the comparisons, the PAGE IO is much lesser in the case of the new technique introduced in SQL Server 2011 when we read the page from the beginning of the table and when we read it from the end. I consider this as a big improvement as paging is one of the most used features for the most part of the application. The solution introduced in SQL Server 2011 is very elegant because it also improves the performance of the query and, at large, the database. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >