Search Results

Search found 90 results on 4 pages for 'viewbag'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • web grid server pagination trigger multiple controller call when changing page

    - by Thomas Scattolin
    When I server-filter on "au" my web grid and change page, multiple call to the controller are done : the first with 0 filtering, the second with "a" filtering, the third with "au" filtering. My table load huge data so the first call is longer than others. I see the grid displaying firstly the third call result, then the second, and finally the first call (this order correspond to the response time of my controller due to filter parameter) Why are all that controller call made ? Can't just my controller be called once with my total filter "au" ? What should I do ? Here is my grid : $("#" + gridId).kendoGrid({ selectable: "row", pageable: true, filterable:true, scrollable : true, //scrollable: { // virtual: true //false // Bug : Génère un affichage multiple... //}, navigatable: true, groupable: true, sortable: { mode: "multiple", // enables multi-column sorting allowUnsort: true }, dataSource: { type: "json", serverPaging: true, serverSorting: true, serverFiltering: true, serverGrouping:false, // Ne fonctionne pas... pageSize: '@ViewBag.Pagination', transport: { read: { url: Procvalue + "/LOV", type: "POST", dataType: "json", contentType: "application/json; charset=utf-8" }, parameterMap: function (options, type) { // Mise à jour du format d'envoi des paramètres // pour qu'ils puissent être correctement interprétés côté serveur. // Construction du paramètre sort : if (options.sort != null) { var sort = options.sort; var sort2 = ""; for (i = 0; i < sort.length; i++) { sort2 = sort2 + sort[i].field + '-' + sort[i].dir + '~'; } options.sort = sort2; } if (options.group != null) { var group = options.group; var group2 = ""; for (i = 0; i < group.length; i++) { group2 = group2 + group[i].field + '-' + group[i].dir + '~'; } options.group = group2; } if (options.filter != null) { var filter = options.filter.filters; var filter2 = ""; for (i = 0; i < filter.length; i++) { // Vérification si type colonne == string. // Parcours des colonnes pour trouver celle qui a le même nom de champ. var type = ""; for (j = 0 ; j < colonnes.length ; j++) { if (colonnes[j].champ == filter[i].field) { type = colonnes[j].type; break; } } if (filter2.length == 0) { if (type == "string") { // Avec '' autour de la valeur. filter2 = filter2 + filter[i].field + '~' + filter[i].operator + "~'" + filter[i].value + "'"; } else { // Sans '' autour de la valeur. filter2 = filter2 + filter[i].field + '~' + filter[i].operator + "~" + filter[i].value; } } else { if (type == "string") { // Avec '' autour de la valeur. filter2 = filter2 + '~' + options.filter.logic + '~' + filter[i].field + '~' + filter[i].operator + "~'" + filter[i].value + "'"; }else{ filter2 = filter2 + '~' + options.filter.logic + '~' + filter[i].field + '~' + filter[i].operator + "~" + filter[i].value; } } } options.filter = filter2; } var json = JSON.stringify(options); return json; } }, schema: { data: function (data) { return eval(data.data.Data); }, total: function (data) { return eval(data.data.Total); } }, filter: { logic: "or", filters:filtre(valeur) } }, columns: getColonnes(colonnes) }); Here is my controller : [HttpPost] public ActionResult LOV([DataSourceRequest] DataSourceRequest request) { return Json(CProduitsManager.GetProduits().ToDataSourceResult(request)); }

    Read the article

  • ASP.NET MVC 3 embrace dynamic type - CSDN.NET - CSDN Software Development Channel

    - by user559071
    About a decade ago, Microsoft will all bet on the WebForms and static types. With the complete package from scattered to the continuous development, and now almost every page can be viewed as its own procedure. Subsequent years, the industry continued to move in another direction, love is better than separation package, better than the late binding early binding to the idea. This leads to two very interesting questions. The first is the problem of terminology. Consider the original Smalltalk MVC model, view and controller is not only tightly coupled together, and usually in pairs. Most of the framework is that Microsoft, including the classic VB, WinForms, WebForms, WPF and Silverlight, they both use the code behind file to store the controller logic. But said "MVC" usually refers to the view and controller are loosely coupled framework. This is especially true for the Web framework, HTML form submission mechanism allows any views submitted to any of the controller. Since this article was mainly talking about Web technologies, so we need to use the modern definition. The second question is "If you're Microsoft, how to change orbit without causing too much pressure to the developer?" So far, the answer is: new releases each year, until the developers meet up. ASP.NET MVC's first product was released last March. Released in March this year, ASP.NET MVC 2.0. 3.0 RC 2 is currently in phase, expected to be released next March. December 10, Microsoft released ASP.NET MVC 3.0 Release Candidate 2. RC 2 is built on top of Microsoft's commitment to the jQuery: The default project template into jQuery 1.4.4, jQuery Validation 1.7 and jQuery UI. Although people think that Microsoft will focus shifted away from server-side controls to be a joke, but the introduction of Microsoft's jQuery UI is that this is the real thing. For those worried about the scalability of the developers, there are many excellent control can replace the session state. With SessionState property, you can tell the controller session state is read-only, read-write, or can be completely ignored in the. This site is no single server, but if a server needs to access another server session state, then this approach can provide a great help. MVC 3 contains Razor view engine. By default, the engine will be encoded HTML output, so that we can easily output on the screen the text of the original. HTML injection attacks even without the risk of encoded text can not easily prevent the page rendering. For many C # developers in the end do what is most shocking that MVC 3 for the controller and view and embrace the dynamic type. ViewBag property will open a dynamic object, developers can run on top of the object to add attributes. In general, it is used to send the view from the controller non-mode data. Scott Guthrie provides state of the sample contains text (such as the current time) and used to assemble the list box entries. Asked Link: http://www.infoq.com/cn/news/2010/12/ASPNET-MVC-3-RC-2; jsessionid = 3561C3B7957F1FB97848950809AD9483

    Read the article

  • Pass existing model into AJAX PartialViewResult

    - by Joe
    I’m using AJAX to asynchronously update a partial view and need to pass the existing model into the partial view. Controller Action public ActionResult Edit(int id) { var vM = new MyViewModel(); // vM is viewModel return View(vM); } Edit View @using (Html.BeginForm()) { @Html.ValidationSummary(true) ... <span id = "Ship"> @Html.Partial("AJAX_Views/_Ship")</span> _Ship Partial View @model MyProject.ViewModels.MyViewModel <table class="detailtable" style="min-width:398px"> <tr> <th style="padding-left:132px" colspan="2"> <span class="editor-label">Shipping&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Address</span> <span class="editor-label" style="padding-left:55px"> @Ajax.ActionLink("Delete", "SHIPDEL", new AjaxOptions { UpdateTargetId = "Ship", InsertionMode = InsertionMode.Replace, HttpMethod = "Get" })</span> <tr><th style="min-width:152px"><span class="editor-label">Street:</span></th> @Html.HiddenFor(m => m.CmpAdrsSh.Id) @Html.HiddenFor(m => m.CmpAdrsSh.CompPersonId) @Html.HiddenFor(m => m.CmpAdrsSh.IsShip) <td><span class="editor-field">@Html.EditorFor(m => m.CmpAdrsSh.Street) @Html.ValidationMessageFor(m => m.CmpAdrsSh.Street) </span></td></tr> <tr><th><span class="editor-label">City:</span></th> <td><span class="editor-field">@Html.EditorFor(m => m.CmpAdrsSh.City) @Html.ValidationMessageFor(m => m.CmpAdrsSh.City) </span></td></tr> <tr><th><span class="editor-label">State:</span></th> <td><span class="editor-field">@Html.DropDownList("CmpAdrsSh.State", (IEnumerable<SelectListItem>)ViewBag._State) @Html.ValidationMessageFor(m => m.CmpAdrsSh.State) </span></td></tr> <tr><th><span class="editor-label">Zip:</span></th> <td><span class="editor-field">@Html.EditorFor(m => m.CmpAdrsSh.Zip) @Html.ValidationMessageFor(m => m.CmpAdrsSh.Zip) </span></td></tr> _ShipDel Partial View @model MyProject.ViewModels.MyViewModel <table class="detailtable" style="min-width:398px"> <tr> <th style="padding-left:132px" colspan="2"> <span class="editor-label">Shipping&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Address</span> <span class="editor-label" style="padding-left:10px; color:red">Marked for Deletion.</span></th></tr> <tr><td>To not Delete Select Cancel below!</td></tr> @Html.HiddenFor(m => m.CmpAdrsSh.Street) @Html.HiddenFor(m => m.CmpAdrsSh.City) @Html.HiddenFor(m => m.CmpAdrsSh.State) @Html.HiddenFor(m => m.CmpAdrsSh.Zip) Controller PartialViewResult Action public PartialViewResult SHIPDEL() { return PartialView("AJAX_Views/_ShipDel"); } I tried adding this.ModelState to the Action but then the view will not render. I'm guessing I somehow have to pass the model to the SHIPDEL Action first. I couldn't find an @Ajax.ActionLink overload that would allow this. public PartialViewResult SHIPDEL() { return PartialView("AJAX_Views/_ShipDel", this.ModelState); } In the _ShipDel Partial View I need to expose the CmpAdrsSh properties so the model validates in the POST Action. The model is empty at this point. How do I pass the existing vM model into the _ShipDel partial view? Thank you,

    Read the article

  • Create Views for object properties in model in MVC 3 application?

    - by Anders Svensson
    I have an Asp.Net MVC 3 application with a database "Consultants", accessed by EF. Now, the Consultant table in the db has a one-to-many relationship to several other tables for CV type information (work experience, etc). So a user should be able to fill in their name etc once, but should be able to add a number of "work experiences", and so on. But these foreign key tables are complex objects in the model, and when creating the Create View I only get the simple properties as editor fields. How do I go about designing the View or Views so that the complex objects can be filled in as well? I picture a View in my mind where the simple properties are simple fields, and then some sort of control where you can click "add work experience", and as many as needed would be added. But how would I do that and still utilize the model binding? In fact, I don't know how to go about it at all. (BTW, Program and Language stand for things like software experience in general, and natural language competence, not programming languages, in case you're wondering about the relationships there). Any ideas greatly appreciated! Here's the Create View created by the add View command by default: @{ ViewBag.Title = "Create"; } <h2>Create</h2> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>Consultant</legend> <div class="editor-label"> @Html.LabelFor(model => model.FirstName) </div> <div class="editor-field"> @Html.EditorFor(model => model.FirstName) @Html.ValidationMessageFor(model => model.FirstName) </div> <div class="editor-label"> @Html.LabelFor(model => model.LastName) </div> <div class="editor-field"> @Html.EditorFor(model => model.LastName) @Html.ValidationMessageFor(model => model.LastName) </div> <div class="editor-label"> @Html.LabelFor(model => model.UserName) </div> <div class="editor-field"> @Html.EditorFor(model => model.UserName) @Html.ValidationMessageFor(model => model.UserName) </div> <div class="editor-label"> @Html.LabelFor(model => model.Description) </div> <div class="editor-field"> @Html.EditorFor(model => model.Description) @Html.ValidationMessageFor(model => model.Description) </div> <p> <input type="submit" value="Create" /> </p> </fieldset> } <div> @Html.ActionLink("Back to List", "Index") </div> And here's the EF database diagram:

    Read the article

  • Html.BeginForm() not rendering properly

    - by Taskos George
    While searching in stackoverflow the other questions didn't exactly helped in my situation. How it would be possible to debug such an error like the one that the Html.BeginForm does not properly rendered to the page. I use this code @model ExtremeProduction.Models.SelectUserGroupsViewModel @{ ViewBag.Title = "User Groups"; } <h2>Groups for user @Html.DisplayFor(model => model.UserName)</h2> <hr /> @using (Html.BeginForm("UserGroups", "Account", FormMethod.Post, new { encType = "multipart/form-data", id = "userGroupsForm" })) { @Html.AntiForgeryToken() <div class="form-horizontal"> @Html.ValidationSummary(true) <div class="form-group"> <div class="col-md-10"> @Html.HiddenFor(model => model.UserName) </div> </div> <h4>Select Group Assignments</h4> <br /> <hr /> <table> <tr> <th> Select </th> <th> Group </th> </tr> @Html.EditorFor(model => model.Groups) </table> <br /> <hr /> <div class="form-group"> <div class="col-md-offset-2 col-md-10"> <input type="submit" value="Save" class="btn btn-default" /> </div> </div> </div> } <div> @Html.ActionLink("Back to List", "Index") </div> EDIT: Added the Model // Wrapper for SelectGroupEditorViewModel to select user group membership: public class SelectUserGroupsViewModel { public string UserName { get; set; } public string FirstName { get; set; } public string LastName { get; set; } public List<SelectGroupEditorViewModel> Groups { get; set; } public SelectUserGroupsViewModel() { this.Groups = new List<SelectGroupEditorViewModel>(); } public SelectUserGroupsViewModel(ApplicationUser user) : this() { this.UserName = user.UserName; this.FirstName = user.FirstName; this.LastName = user.LastName; var Db = new ApplicationDbContext(); // Add all available groups to the public list: var allGroups = Db.Groups; foreach (var role in allGroups) { // An EditorViewModel will be used by Editor Template: var rvm = new SelectGroupEditorViewModel(role); this.Groups.Add(rvm); } // Set the Selected property to true where user is already a member: foreach (var group in user.Groups) { var checkUserRole = this.Groups.Find(r => r.GroupName == group.Group.Name); checkUserRole.Selected = true; } } } // Used to display a single role group with a checkbox, within a list structure: public class SelectGroupEditorViewModel { public SelectGroupEditorViewModel() { } public SelectGroupEditorViewModel(Group group) { this.GroupName = group.Name; this.GroupId = group.Id; } public bool Selected { get; set; } [Required] public int GroupId { get; set; } public string GroupName { get; set; } } public class Group { public Group() { } public Group(string name) : this() { Roles = new List<ApplicationRoleGroup>(); Name = name; } [Key] [Required] public virtual int Id { get; set; } public virtual string Name { get; set; } public virtual ICollection<ApplicationRoleGroup> Roles { get; set; } } ** EDIT ** And I get this form http://i834.photobucket.com/albums/zz268/gtas/formmine_zpsf6470e02.png I should receive a form like the one that I copied the code like this http://i834.photobucket.com/albums/zz268/gtas/formcopied_zpsdb2f129e.png Any ideas where or how to look the source of evil that makes my life hard for some time now?

    Read the article

  • mvc3 datatabels and ajax-beginform

    - by MIkCode
    im trying to send and ajax request and returning the result into a new table i debugged the req and i can confirm that evry thing is good except the VIEW the end result is an empty table instead of one row one more weird thing is if i page source i can see all the table result(more than the one that suppose to) this is the view: @model Fnx.Esb.ServiceMonitor.ViewModel.MainModels @{ ViewBag.Title = "MainSearch"; } @Html.EditorForModel() @{ AjaxOptions ajaxOpts = new AjaxOptions { UpdateTargetId = "MainTable", InsertionMode = InsertionMode.Replace, Url = Url.Action("queryData", "MainSearch"), }; } @using (Ajax.BeginForm(ajaxOpts)) { <div class="container"> <form action="#" method="post"> <div id="mainSearch"> @Html.EditorFor(x => x.MainSearchModel) </div> <br /> <br /> <br /> <br /> <div id="advancedSearch"> <div class="accordion" id="accordion2"> <div class="accordion-group"> <div class="accordion-heading"> <a class="accordion-toggle" data-toggle="collapse" data-parent="#accordion2" href="#collapseOne"> Advanced Search </a> </div> <div id="collapseOne" class="accordion-body collapse in"> <div class="accordion-inner"> @Html.EditorFor(x => x.AdvanceSearchContainerModel) </div> </div> </div> </div> </div> <br /> <br /> <button type="submit" class="btn"> <i class="icon-search"></i> Search </button> <button type="reset" class="btn"> <i class="icon-trash"></i> clear </button> </form> <br /> <br /> <br /> <br /> <br /> <br /> <table id="MainTable" cellpadding="0" cellspacing="0" border="0" class="table table-striped table-bordered"> <thead> <tr> <th> serviceDuration </th> <th> status </th> <th> ESBLatency </th> <th> serviceName </th> <th> serviceId </th> <th> startTime </th> <th> endTime </th> <th> instanceID </th> </tr> </thead> <tbody> @foreach (var item in Model.MainTableModel) { <tr> <td> @Html.DisplayFor(modelItem => item.serviceDuration) </td> <td> @Html.DisplayFor(modelItem => item.status) </td> <td> @Html.DisplayFor(modelItem => item.ESBLatency) </td> <td> @Html.DisplayFor(modelItem => item.serviceName) </td> <td> @Html.DisplayFor(modelItem => item.serviceId) </td> <td> @Html.DisplayFor(modelItem => item.startTime) </td> <td> @Html.DisplayFor(modelItem => item.endTime) </td> <td> @Html.DisplayFor(modelItem => item.instanceID) </td> </tr> } </tbody> </table> </div> } the datatables: javascript options $('#MainTable').dataTable({ "sDom": "<'row'<'span6'l><'span6'f>r>t<'row'<'span6'i><'span6'p>>", "bDestroy": true }); thanks miki

    Read the article

  • Introducing Data Annotations Extensions

    - by srkirkland
    Validation of user input is integral to building a modern web application, and ASP.NET MVC offers us a way to enforce business rules on both the client and server using Model Validation.  The recent release of ASP.NET MVC 3 has improved these offerings on the client side by introducing an unobtrusive validation library built on top of jquery.validation.  Out of the box MVC comes with support for Data Annotations (that is, System.ComponentModel.DataAnnotations) and can be extended to support other frameworks.  Data Annotations Validation is becoming more popular and is being baked in to many other Microsoft offerings, including Entity Framework, though with MVC it only contains four validators: Range, Required, StringLength and Regular Expression.  The Data Annotations Extensions project attempts to augment these validators with additional attributes while maintaining the clean integration Data Annotations provides. A Quick Word About Data Annotations Extensions The Data Annotations Extensions project can be found at http://dataannotationsextensions.org/, and currently provides 11 additional validation attributes (ex: Email, EqualTo, Min/Max) on top of Data Annotations’ original 4.  You can find a current list of the validation attributes on the afore mentioned website. The core library provides server-side validation attributes that can be used in any .NET 4.0 project (no MVC dependency). There is also an easily pluggable client-side validation library which can be used in ASP.NET MVC 3 projects using unobtrusive jquery validation (only MVC3 included javascript files are required). On to the Preview Let’s say you had the following “Customer” domain model (or view model, depending on your project structure) in an MVC 3 project: public class Customer { public string Email { get; set; } public int Age { get; set; } public string ProfilePictureLocation { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When it comes time to create/edit this Customer, you will probably have a CustomerController and a simple form that just uses one of the Html.EditorFor() methods that the ASP.NET MVC tooling generates for you (or you can write yourself).  It should look something like this: With no validation, the customer can enter nonsense for an email address, and then can even report their age as a negative number!  With the built-in Data Annotations validation, I could do a bit better by adding a Range to the age, adding a RegularExpression for email (yuck!), and adding some required attributes.  However, I’d still be able to report my age as 10.75 years old, and my profile picture could still be any string.  Let’s use Data Annotations along with this project, Data Annotations Extensions, and see what we can get: public class Customer { [Email] [Required] public string Email { get; set; }   [Integer] [Min(1, ErrorMessage="Unless you are benjamin button you are lying.")] [Required] public int Age { get; set; }   [FileExtensions("png|jpg|jpeg|gif")] public string ProfilePictureLocation { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now let’s try to put in some invalid values and see what happens: That is very nice validation, all done on the client side (will also be validated on the server).  Also, the Customer class validation attributes are very easy to read and understand. Another bonus: Since Data Annotations Extensions can integrate with MVC 3’s unobtrusive validation, no additional scripts are required! Now that we’ve seen our target, let’s take a look at how to get there within a new MVC 3 project. Adding Data Annotations Extensions To Your Project First we will File->New Project and create an ASP.NET MVC 3 project.  I am going to use Razor for these examples, but any view engine can be used in practice.  Now go into the NuGet Extension Manager (right click on references and select add Library Package Reference) and search for “DataAnnotationsExtensions.”  You should see the following two packages: The first package is for server-side validation scenarios, but since we are using MVC 3 and would like comprehensive sever and client validation support, click on the DataAnnotationsExtensions.MVC3 project and then click Install.  This will install the Data Annotations Extensions server and client validation DLLs along with David Ebbo’s web activator (which enables the validation attributes to be registered with MVC 3). Now that Data Annotations Extensions is installed you have all you need to start doing advanced model validation.  If you are already using Data Annotations in your project, just making use of the additional validation attributes will provide client and server validation automatically.  However, assuming you are starting with a blank project I’ll walk you through setting up a controller and model to test with. Creating Your Model In the Models folder, create a new User.cs file with a User class that you can use as a model.  To start with, I’ll use the following class: public class User { public string Email { get; set; } public string Password { get; set; } public string PasswordConfirm { get; set; } public string HomePage { get; set; } public int Age { get; set; } } Next, create a simple controller with at least a Create method, and then a matching Create view (note, you can do all of this via the MVC built-in tooling).  Your files will look something like this: UserController.cs: public class UserController : Controller { public ActionResult Create() { return View(new User()); }   [HttpPost] public ActionResult Create(User user) { if (!ModelState.IsValid) { return View(user); }   return Content("User valid!"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Create.cshtml: @model NuGetValidationTester.Models.User   @{ ViewBag.Title = "Create"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>User</legend> @Html.EditorForModel() <p> <input type="submit" value="Create" /> </p> </fieldset> } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the Create.cshtml view, note that we are referencing jquery validation and jquery unobtrusive (jquery is referenced in the layout page).  These MVC 3 included scripts are the only ones you need to enjoy both the basic Data Annotations validation as well as the validation additions available in Data Annotations Extensions.  These references are added by default when you use the MVC 3 “Add View” dialog on a modification template type. Now when we go to /User/Create we should see a form for editing a User Since we haven’t yet added any validation attributes, this form is valid as shown (including no password, email and an age of 0).  With the built-in Data Annotations attributes we can make some of the fields required, and we could use a range validator of maybe 1 to 110 on Age (of course we don’t want to leave out supercentenarians) but let’s go further and validate our input comprehensively using Data Annotations Extensions.  The new and improved User.cs model class. { [Required] [Email] public string Email { get; set; }   [Required] public string Password { get; set; }   [Required] [EqualTo("Password")] public string PasswordConfirm { get; set; }   [Url] public string HomePage { get; set; }   [Integer] [Min(1)] public int Age { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now let’s re-run our form and try to use some invalid values: All of the validation errors you see above occurred on the client, without ever even hitting submit.  The validation is also checked on the server, which is a good practice since client validation is easily bypassed. That’s all you need to do to start a new project and include Data Annotations Extensions, and of course you can integrate it into an existing project just as easily. Nitpickers Corner ASP.NET MVC 3 futures defines four new data annotations attributes which this project has as well: CreditCard, Email, Url and EqualTo.  Unfortunately referencing MVC 3 futures necessitates taking an dependency on MVC 3 in your model layer, which may be unadvisable in a multi-tiered project.  Data Annotations Extensions keeps the server and client side libraries separate so using the project’s validation attributes don’t require you to take any additional dependencies in your model layer which still allowing for the rich client validation experience if you are using MVC 3. Custom Error Message and Globalization: Since the Data Annotations Extensions are build on top of Data Annotations, you have the ability to define your own static error messages and even to use resource files for very customizable error messages. Available Validators: Please see the project site at http://dataannotationsextensions.org/ for an up-to-date list of the new validators included in this project.  As of this post, the following validators are available: CreditCard Date Digits Email EqualTo FileExtensions Integer Max Min Numeric Url Conclusion Hopefully I’ve illustrated how easy it is to add server and client validation to your MVC 3 projects, and how to easily you can extend the available validation options to meet real world needs. The Data Annotations Extensions project is fully open source under the BSD license.  Any feedback would be greatly appreciated.  More information than you require, along with links to the source code, is available at http://dataannotationsextensions.org/. Enjoy!

    Read the article

  • Loosely coupled .NET Cache Provider using Dependency Injection

    - by Rhames
    I have recently been reading the excellent book “Dependency Injection in .NET”, written by Mark Seemann. I do not generally buy software development related books, as I never seem to have the time to read them, but I have found the time to read Mark’s book, and it was time well spent I think. Reading the ideas around Dependency Injection made me realise that the Cache Provider code I wrote about earlier (see http://geekswithblogs.net/Rhames/archive/2011/01/10/using-the-asp.net-cache-to-cache-data-in-a-model.aspx) could be refactored to use Dependency Injection, which should produce cleaner code. The goals are to: Separate the cache provider implementation (using the ASP.NET data cache) from the consumers (loose coupling). This will also mean that the dependency on System.Web for the cache provider does not ripple down into the layers where it is being consumed (such as the domain layer). Provide a decorator pattern to allow a consumer of the cache provider to be implemented separately from the base consumer (i.e. if we have a base repository, we can decorate this with a caching version). Although I used the term repository, in reality the cache consumer could be just about anything. Use constructor injection to provide the Dependency Injection, with a suitable DI container (I use Castle Windsor). The sample code for this post is available on github, https://github.com/RobinHames/CacheProvider.git ICacheProvider In the sample code, the key interface is ICacheProvider, which is in the domain layer. 1: using System; 2: using System.Collections.Generic; 3:   4: namespace CacheDiSample.Domain 5: { 6: public interface ICacheProvider<T> 7: { 8: T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); 9: IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); 10: } 11: }   This interface contains two methods to retrieve data from the cache, either as a single instance or as an IEnumerable. the second paramerter is of type Func<T>. This is the method used to retrieve data if nothing is found in the cache. The ASP.NET implementation of the ICacheProvider interface needs to live in a project that has a reference to system.web, typically this will be the root UI project, or it could be a separate project. The key thing is that the domain or data access layers do not need system.web references adding to them. In my sample MVC application, the CacheProvider is implemented in the UI project, in a folder called “CacheProviders”: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Caching; 6: using CacheDiSample.Domain; 7:   8: namespace CacheDiSample.CacheProvider 9: { 10: public class CacheProvider<T> : ICacheProvider<T> 11: { 12: public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 13: { 14: return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry); 15: } 16:   17: public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 18: { 19: return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry); 20: } 21:   22: #region Helper Methods 23:   24: private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) 25: { 26: U value; 27: if (!TryGetValue<U>(key, out value)) 28: { 29: value = retrieveData(); 30: if (!absoluteExpiry.HasValue) 31: absoluteExpiry = Cache.NoAbsoluteExpiration; 32:   33: if (!relativeExpiry.HasValue) 34: relativeExpiry = Cache.NoSlidingExpiration; 35:   36: HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value); 37: } 38: return value; 39: } 40:   41: private bool TryGetValue<U>(string key, out U value) 42: { 43: object cachedValue = HttpContext.Current.Cache.Get(key); 44: if (cachedValue == null) 45: { 46: value = default(U); 47: return false; 48: } 49: else 50: { 51: try 52: { 53: value = (U)cachedValue; 54: return true; 55: } 56: catch 57: { 58: value = default(U); 59: return false; 60: } 61: } 62: } 63:   64: #endregion 65:   66: } 67: }   The FetchAndCache helper method checks if the specified cache key exists, if it does not, the Func<U> retrieveData method is called, and the results are added to the cache. Using Castle Windsor to register the cache provider In the MVC UI project (my application root), Castle Windsor is used to register the CacheProvider implementation, using a Windsor Installer: 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain; 6: using CacheDiSample.CacheProvider; 7:   8: namespace CacheDiSample.WindsorInstallers 9: { 10: public class CacheInstaller : IWindsorInstaller 11: { 12: public void Install(IWindsorContainer container, IConfigurationStore store) 13: { 14: container.Register( 15: Component.For(typeof(ICacheProvider<>)) 16: .ImplementedBy(typeof(CacheProvider<>)) 17: .LifestyleTransient()); 18: } 19: } 20: }   Note that the cache provider is registered as a open generic type. Consuming a Repository I have an existing couple of repository interfaces defined in my domain layer: IRepository.cs 1: using System; 2: using System.Collections.Generic; 3:   4: using CacheDiSample.Domain.Model; 5:   6: namespace CacheDiSample.Domain.Repositories 7: { 8: public interface IRepository<T> 9: where T : EntityBase 10: { 11: T GetById(int id); 12: IList<T> GetAll(); 13: } 14: }   IBlogRepository.cs 1: using System; 2: using CacheDiSample.Domain.Model; 3:   4: namespace CacheDiSample.Domain.Repositories 5: { 6: public interface IBlogRepository : IRepository<Blog> 7: { 8: Blog GetByName(string name); 9: } 10: }   These two repositories are implemented in the DataAccess layer, using Entity Framework to retrieve data (this is not important though). One important point is that in the BaseRepository implementation of IRepository, the methods are virtual. This will allow the decorator to override them. The BlogRepository is registered in a RepositoriesInstaller, again in the MVC UI project. 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain.CacheDecorators; 6: using CacheDiSample.Domain.Repositories; 7: using CacheDiSample.DataAccess; 8:   9: namespace CacheDiSample.WindsorInstallers 10: { 11: public class RepositoriesInstaller : IWindsorInstaller 12: { 13: public void Install(IWindsorContainer container, IConfigurationStore store) 14: { 15: container.Register(Component.For<IBlogRepository>() 16: .ImplementedBy<BlogRepository>() 17: .LifestyleTransient() 18: .DependsOn(new 19: { 20: nameOrConnectionString = "BloggingContext" 21: })); 22: } 23: } 24: }   Now I can inject a dependency on the IBlogRepository into a consumer, such as a controller in my sample code: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:   7: using CacheDiSample.Domain.Repositories; 8: using CacheDiSample.Domain.Model; 9:   10: namespace CacheDiSample.Controllers 11: { 12: public class HomeController : Controller 13: { 14: private readonly IBlogRepository blogRepository; 15:   16: public HomeController(IBlogRepository blogRepository) 17: { 18: if (blogRepository == null) 19: throw new ArgumentNullException("blogRepository"); 20:   21: this.blogRepository = blogRepository; 22: } 23:   24: public ActionResult Index() 25: { 26: ViewBag.Message = "Welcome to ASP.NET MVC!"; 27:   28: var blogs = blogRepository.GetAll(); 29:   30: return View(new Models.HomeModel { Blogs = blogs }); 31: } 32:   33: public ActionResult About() 34: { 35: return View(); 36: } 37: } 38: }   Consuming the Cache Provider via a Decorator I used a Decorator pattern to consume the cache provider, this means my repositories follow the open/closed principle, as they do not require any modifications to implement the caching. It also means that my controllers do not have any knowledge of the caching taking place, as the DI container will simply inject the decorator instead of the root implementation of the repository. The first step is to implement a BlogRepository decorator, with the caching logic in it. Note that this can reside in the domain layer, as it does not require any knowledge of the data access methods. BlogRepositoryWithCaching.cs 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:   6: using CacheDiSample.Domain.Model; 7: using CacheDiSample.Domain; 8: using CacheDiSample.Domain.Repositories; 9:   10: namespace CacheDiSample.Domain.CacheDecorators 11: { 12: public class BlogRepositoryWithCaching : IBlogRepository 13: { 14: // The generic cache provider, injected by DI 15: private ICacheProvider<Blog> cacheProvider; 16: // The decorated blog repository, injected by DI 17: private IBlogRepository parentBlogRepository; 18:   19: public BlogRepositoryWithCaching(IBlogRepository parentBlogRepository, ICacheProvider<Blog> cacheProvider) 20: { 21: if (parentBlogRepository == null) 22: throw new ArgumentNullException("parentBlogRepository"); 23:   24: this.parentBlogRepository = parentBlogRepository; 25:   26: if (cacheProvider == null) 27: throw new ArgumentNullException("cacheProvider"); 28:   29: this.cacheProvider = cacheProvider; 30: } 31:   32: public Blog GetByName(string name) 33: { 34: string key = string.Format("CacheDiSample.DataAccess.GetByName.{0}", name); 35: // hard code 5 minute expiry! 36: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 37: return cacheProvider.Fetch(key, () => 38: { 39: return parentBlogRepository.GetByName(name); 40: }, 41: null, relativeCacheExpiry); 42: } 43:   44: public Blog GetById(int id) 45: { 46: string key = string.Format("CacheDiSample.DataAccess.GetById.{0}", id); 47:   48: // hard code 5 minute expiry! 49: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 50: return cacheProvider.Fetch(key, () => 51: { 52: return parentBlogRepository.GetById(id); 53: }, 54: null, relativeCacheExpiry); 55: } 56:   57: public IList<Blog> GetAll() 58: { 59: string key = string.Format("CacheDiSample.DataAccess.GetAll"); 60:   61: // hard code 5 minute expiry! 62: TimeSpan relativeCacheExpiry = new TimeSpan(0, 5, 0); 63: return cacheProvider.Fetch(key, () => 64: { 65: return parentBlogRepository.GetAll(); 66: }, 67: null, relativeCacheExpiry) 68: .ToList(); 69: } 70: } 71: }   The key things in this caching repository are: I inject into the repository the ICacheProvider<Blog> implementation, via the constructor. This will make the cache provider functionality available to the repository. I inject the parent IBlogRepository implementation (which has the actual data access code), via the constructor. This will allow the methods implemented in the parent to be called if nothing is found in the cache. I override each of the methods implemented in the repository, including those implemented in the generic BaseRepository. Each override of these methods follows the same pattern. It makes a call to the CacheProvider.Fetch method, and passes in the parentBlogRepository implementation of the method as the retrieval method, to be used if nothing is present in the cache. Configuring the Caching Repository in the DI Container The final piece of the jigsaw is to tell Castle Windsor to use the BlogRepositoryWithCaching implementation of IBlogRepository, but to inject the actual Data Access implementation into this decorator. This is easily achieved by modifying the RepositoriesInstaller to use Windsor’s implicit decorator wiring: 1: using Castle.MicroKernel.Registration; 2: using Castle.MicroKernel.SubSystems.Configuration; 3: using Castle.Windsor; 4:   5: using CacheDiSample.Domain.CacheDecorators; 6: using CacheDiSample.Domain.Repositories; 7: using CacheDiSample.DataAccess; 8:   9: namespace CacheDiSample.WindsorInstallers 10: { 11: public class RepositoriesInstaller : IWindsorInstaller 12: { 13: public void Install(IWindsorContainer container, IConfigurationStore store) 14: { 15:   16: // Use Castle Windsor implicit wiring for the block repository decorator 17: // Register the outermost decorator first 18: container.Register(Component.For<IBlogRepository>() 19: .ImplementedBy<BlogRepositoryWithCaching>() 20: .LifestyleTransient()); 21: // Next register the IBlogRepository inmplementation to inject into the outer decorator 22: container.Register(Component.For<IBlogRepository>() 23: .ImplementedBy<BlogRepository>() 24: .LifestyleTransient() 25: .DependsOn(new 26: { 27: nameOrConnectionString = "BloggingContext" 28: })); 29: } 30: } 31: }   This is all that is needed. Now if the consumer of the repository makes a call to the repositories method, it will be routed via the caching mechanism. You can test this by stepping through the code, and seeing that the DataAccess.BlogRepository code is only called if there is no data in the cache, or this has expired. The next step is to add the SQL Cache Dependency support into this pattern, this will be a future post.

    Read the article

  • Announcing release of ASP.NET MVC 3, IIS Express, SQL CE 4, Web Farm Framework, Orchard, WebMatrix

    - by ScottGu
    I’m excited to announce the release today of several products: ASP.NET MVC 3 NuGet IIS Express 7.5 SQL Server Compact Edition 4 Web Deploy and Web Farm Framework 2.0 Orchard 1.0 WebMatrix 1.0 The above products are all free. They build upon the .NET 4 and VS 2010 release, and add a ton of additional value to ASP.NET (both Web Forms and MVC) and the Microsoft Web Server stack. ASP.NET MVC 3 Today we are shipping the final release of ASP.NET MVC 3.  You can download and install ASP.NET MVC 3 here.  The ASP.NET MVC 3 source code (released under an OSI-compliant open source license) can also optionally be downloaded here. ASP.NET MVC 3 is a significant update that brings with it a bunch of great features.  Some of the improvements include: Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to continuing to support/enhance the existing .aspx view engine).  Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, with Razor you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type.  You can learn more about Razor from some of the blog posts I’ve done about it over the last 6 months Introducing Razor New @model keyword in Razor Layouts with Razor Server-Side Comments with Razor Razor’s @: and <text> syntax Implicit and Explicit code nuggets with Razor Layouts and Sections with Razor Today’s release supports full code intellisense support for Razor (both VB and C#) with Visual Studio 2010 and the free Visual Web Developer 2010 Express. JavaScript Improvements ASP.NET MVC 3 enables richer JavaScript scenarios and takes advantage of emerging HTML5 capabilities. The AJAX and Validation helpers in ASP.NET MVC 3 now use an Unobtrusive JavaScript based approach.  Unobtrusive JavaScript avoids injecting inline JavaScript into HTML, and enables cleaner separation of behavior using the new HTML 5 “data-“ attribute convention (which conveniently works on older browsers as well – including IE6). This keeps your HTML tight and clean, and makes it easier to optionally swap out or customize JS libraries.  ASP.NET MVC 3 now includes built-in support for posting JSON-based parameters from client-side JavaScript to action methods on the server.  This makes it easier to exchange data across the client and server, and build rich JavaScript front-ends.  We think this capability will be particularly useful going forward with scenarios involving client templates and data binding (including the jQuery plugins the ASP.NET team recently contributed to the jQuery project).  Previous releases of ASP.NET MVC included the core jQuery library.  ASP.NET MVC 3 also now ships the jQuery Validate plugin (which our validation helpers use for client-side validation scenarios).  We are also now shipping and including jQuery UI by default as well (which provides a rich set of client-side JavaScript UI widgets for you to use within projects). Improved Validation ASP.NET MVC 3 includes a bunch of validation enhancements that make it even easier to work with data. Client-side validation is now enabled by default with ASP.NET MVC 3 (using an onbtrusive javascript implementation).  Today’s release also includes built-in support for Remote Validation - which enables you to annotate a model class with a validation attribute that causes ASP.NET MVC to perform a remote validation call to a server method when validating input on the client. The validation features introduced within .NET 4’s System.ComponentModel.DataAnnotations namespace are now supported by ASP.NET MVC 3.  This includes support for the new IValidatableObject interface – which enables you to perform model-level validation, and allows you to provide validation error messages specific to the state of the overall model, or between two properties within the model.  ASP.NET MVC 3 also supports the improvements made to the ValidationAttribute class in .NET 4.  ValidationAttribute now supports a new IsValid overload that provides more information about the current validation context, such as what object is being validated.  This enables richer scenarios where you can validate the current value based on another property of the model.  We’ve shipped a built-in [Compare] validation attribute  with ASP.NET MVC 3 that uses this support and makes it easy out of the box to compare and validate two property values. You can use any data access API or technology with ASP.NET MVC.  This past year, though, we’ve worked closely with the .NET data team to ensure that the new EF Code First library works really well for ASP.NET MVC applications.  These two posts of mine cover the latest EF Code First preview and demonstrates how to use it with ASP.NET MVC 3 to enable easy editing of data (with end to end client+server validation support).  The final release of EF Code First will ship in the next few weeks. Today we are also publishing the first preview of a new MvcScaffolding project.  It enables you to easily scaffold ASP.NET MVC 3 Controllers and Views, and works great with EF Code-First (and is pluggable to support other data providers).  You can learn more about it – and install it via NuGet today - from Steve Sanderson’s MvcScaffolding blog post. Output Caching Previous releases of ASP.NET MVC supported output caching content at a URL or action-method level. With ASP.NET MVC V3 we are also enabling support for partial page output caching – which allows you to easily output cache regions or fragments of a response as opposed to the entire thing.  This ends up being super useful in a lot of scenarios, and enables you to dramatically reduce the work your application does on the server.  The new partial page output caching support in ASP.NET MVC 3 enables you to easily re-use cached sub-regions/fragments of a page across multiple URLs on a site.  It supports the ability to cache the content either on the web-server, or optionally cache it within a distributed cache server like Windows Server AppFabric or memcached. I’ll post some tutorials on my blog that show how to take advantage of ASP.NET MVC 3’s new output caching support for partial page scenarios in the future. Better Dependency Injection ASP.NET MVC 3 provides better support for applying Dependency Injection (DI) and integrating with Dependency Injection/IOC containers. With ASP.NET MVC 3 you no longer need to author custom ControllerFactory classes in order to enable DI with Controllers.  You can instead just register a Dependency Injection framework with ASP.NET MVC 3 and it will resolve dependencies not only for Controllers, but also for Views, Action Filters, Model Binders, Value Providers, Validation Providers, and Model Metadata Providers that you use within your application. This makes it much easier to cleanly integrate dependency injection within your projects. Other Goodies ASP.NET MVC 3 includes dozens of other nice improvements that help to both reduce the amount of code you write, and make the code you do write cleaner.  Here are just a few examples: Improved New Project dialog that makes it easy to start new ASP.NET MVC 3 projects from templates. Improved Add->View Scaffolding support that enables the generation of even cleaner view templates. New ViewBag property that uses .NET 4’s dynamic support to make it easy to pass late-bound data from Controllers to Views. Global Filters support that allows specifying cross-cutting filter attributes (like [HandleError]) across all Controllers within an app. New [AllowHtml] attribute that allows for more granular request validation when binding form posted data to models. Sessionless controller support that allows fine grained control over whether SessionState is enabled on a Controller. New ActionResult types like HttpNotFoundResult and RedirectPermanent for common HTTP scenarios. New Html.Raw() helper to indicate that output should not be HTML encoded. New Crypto helpers for salting and hashing passwords. And much, much more… Learn More about ASP.NET MVC 3 We will be posting lots of tutorials and samples on the http://asp.net/mvc site in the weeks ahead.  Below are two good ASP.NET MVC 3 tutorials available on the site today: Build your First ASP.NET MVC 3 Application: VB and C# Building the ASP.NET MVC 3 Music Store We’ll post additional ASP.NET MVC 3 tutorials and videos on the http://asp.net/mvc site in the future. Visit it regularly to find new tutorials as they are published. How to Upgrade Existing Projects ASP.NET MVC 3 is compatible with ASP.NET MVC 2 – which means it should be easy to update existing MVC projects to ASP.NET MVC 3.  The new features in ASP.NET MVC 3 build on top of the foundational work we’ve already done with the MVC 1 and MVC 2 releases – which means that the skills, knowledge, libraries, and books you’ve acquired are all directly applicable with the MVC 3 release.  MVC 3 adds new features and capabilities – it doesn’t obsolete existing ones. You can upgrade existing ASP.NET MVC 2 projects by following the manual upgrade steps in the release notes.  Alternatively, you can use this automated ASP.NET MVC 3 upgrade tool to easily update your  existing projects. Localized Builds Today’s ASP.NET MVC 3 release is available in English.  We will be releasing localized versions of ASP.NET MVC 3 (in 9 languages) in a few days.  I’ll blog pointers to the localized downloads once they are available. NuGet Today we are also shipping NuGet – a free, open source, package manager that makes it easy for you to find, install, and use open source libraries in your projects. It works with all .NET project types (including ASP.NET Web Forms, ASP.NET MVC, WPF, WinForms, Silverlight, and Class Libraries).  You can download and install it here. NuGet enables developers who maintain open source projects (for example, .NET projects like Moq, NHibernate, Ninject, StructureMap, NUnit, Windsor, Raven, Elmah, etc) to package up their libraries and register them with an online gallery/catalog that is searchable.  The client-side NuGet tools – which include full Visual Studio integration – make it trivial for any .NET developer who wants to use one of these libraries to easily find and install it within the project they are working on. NuGet handles dependency management between libraries (for example: library1 depends on library2). It also makes it easy to update (and optionally remove) libraries from your projects later. It supports updating web.config files (if a package needs configuration settings). It also allows packages to add PowerShell scripts to a project (for example: scaffold commands). Importantly, NuGet is transparent and clean – and does not install anything at the system level. Instead it is focused on making it easy to manage libraries you use with your projects. Our goal with NuGet is to make it as simple as possible to integrate open source libraries within .NET projects.  NuGet Gallery This week we also launched a beta version of the http://nuget.org web-site – which allows anyone to easily search and browse an online gallery of open source packages available via NuGet.  The site also now allows developers to optionally submit new packages that they wish to share with others.  You can learn more about how to create and share a package here. There are hundreds of open-source .NET projects already within the NuGet Gallery today.  We hope to have thousands there in the future. IIS Express 7.5 Today we are also shipping IIS Express 7.5.  IIS Express is a free version of IIS 7.5 that is optimized for developer scenarios.  It works for both ASP.NET Web Forms and ASP.NET MVC project types. We think IIS Express combines the ease of use of the ASP.NET Web Server (aka Cassini) currently built-into Visual Studio today with the full power of IIS.  Specifically: It’s lightweight and easy to install (less than 5Mb download and a quick install) It does not require an administrator account to run/debug applications from Visual Studio It enables a full web-server feature set – including SSL, URL Rewrite, and other IIS 7.x modules It supports and enables the same extensibility model and web.config file settings that IIS 7.x support It can be installed side-by-side with the full IIS web server as well as the ASP.NET Development Server (they do not conflict at all) It works on Windows XP and higher operating systems – giving you a full IIS 7.x developer feature-set on all Windows OS platforms IIS Express (like the ASP.NET Development Server) can be quickly launched to run a site from a directory on disk.  It does not require any registration/configuration steps. This makes it really easy to launch and run for development scenarios.  You can also optionally redistribute IIS Express with your own applications if you want a lightweight web-server.  The standard IIS Express EULA now includes redistributable rights. Visual Studio 2010 SP1 adds support for IIS Express.  Read my VS 2010 SP1 and IIS Express blog post to learn more about what it enables.  SQL Server Compact Edition 4 Today we are also shipping SQL Server Compact Edition 4 (aka SQL CE 4).  SQL CE is a free, embedded, database engine that enables easy database storage. No Database Installation Required SQL CE does not require you to run a setup or install a database server in order to use it.  You can simply copy the SQL CE binaries into the \bin directory of your ASP.NET application, and then your web application can use it as a database engine.  No setup or extra security permissions are required for it to run. You do not need to have an administrator account on the machine. Just copy your web application onto any server and it will work. This is true even of medium-trust applications running in a web hosting environment. SQL CE runs in-memory within your ASP.NET application and will start-up when you first access a SQL CE database, and will automatically shutdown when your application is unloaded.  SQL CE databases are stored as files that live within the \App_Data folder of your ASP.NET Applications. Works with Existing Data APIs SQL CE 4 works with existing .NET-based data APIs, and supports a SQL Server compatible query syntax.  This means you can use existing data APIs like ADO.NET, as well as use higher-level ORMs like Entity Framework and NHibernate with SQL CE.  This enables you to use the same data programming skills and data APIs you know today. Supports Development, Testing and Production Scenarios SQL CE can be used for development scenarios, testing scenarios, and light production usage scenarios.  With the SQL CE 4 release we’ve done the engineering work to ensure that SQL CE won’t crash or deadlock when used in a multi-threaded server scenario (like ASP.NET).  This is a big change from previous releases of SQL CE – which were designed for client-only scenarios and which explicitly blocked running in web-server environments.  Starting with SQL CE 4 you can use it in a web-server as well. There are no license restrictions with SQL CE.  It is also totally free. Tooling Support with VS 2010 SP1 Visual Studio 2010 SP1 adds support for SQL CE 4 and ASP.NET Projects.  Read my VS 2010 SP1 and SQL CE 4 blog post to learn more about what it enables.  Web Deploy and Web Farm Framework 2.0 Today we are also releasing Microsoft Web Deploy V2 and Microsoft Web Farm Framework V2.  These services provide a flexible and powerful way to deploy ASP.NET applications onto either a single server, or across a web farm of machines. You can learn more about these capabilities from my previous blog posts on them: Introducing the Microsoft Web Farm Framework Automating Deployment with Microsoft Web Deploy Visit the http://iis.net website to learn more and install them. Both are free. Orchard 1.0 Today we are also releasing Orchard v1.0.  Orchard is a free, open source, community based project.  It provides Content Management System (CMS) and Blogging System support out of the box, and makes it possible to easily create and manage web-sites without having to write code (site owners can customize a site through the browser-based editing tools built-into Orchard).  Read these tutorials to learn more about how you can setup and manage your own Orchard site. Orchard itself is built as an ASP.NET MVC 3 application using Razor view templates (and by default uses SQL CE 4 for data storage).  Developers wishing to extend an Orchard site with custom functionality can open and edit it as a Visual Studio project – and add new ASP.NET MVC Controllers/Views to it.  WebMatrix 1.0 WebMatrix is a new, free, web development tool from Microsoft that provides a suite of technologies that make it easier to enable website development.  It enables a developer to start a new site by browsing and downloading an app template from an online gallery of web applications (which includes popular apps like Umbraco, DotNetNuke, Orchard, WordPress, Drupal and Joomla).  Alternatively it also enables developers to create and code web sites from scratch. WebMatrix is task focused and helps guide developers as they work on sites.  WebMatrix includes IIS Express, SQL CE 4, and ASP.NET - providing an integrated web-server, database and programming framework combination.  It also includes built-in web publishing support which makes it easy to find and deploy sites to web hosting providers. You can learn more about WebMatrix from my Introducing WebMatrix blog post this summer.  Visit http://microsoft.com/web to download and install it today. Summary I’m really excited about today’s releases – they provide a bunch of additional value that makes web development with ASP.NET, Visual Studio and the Microsoft Web Server a lot better.  A lot of folks worked hard to share this with you today. On behalf of my whole team – we hope you enjoy them! Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Ninject.ActivationException: Error activating IMainLicense

    - by Stefan Karlsson
    Im don't know fully how Ninject works thats wye i ask this question here to figure out whats wrong. If i create a empty constructor in ClaimsSecurityService it gets hit. This is my error: Error activating IMainLicense No matching bindings are available, and the type is not self-bindable. Activation path: 3) Injection of dependency IMainLicense into parameter mainLicenses of constructor of type ClaimsSecurityService 2) Injection of dependency ISecurityService into parameter securityService of constructor of type AccountController 1) Request for AccountController Stack: Ninject.KernelBase.Resolve(IRequest request) +474 Ninject.Planning.Targets.Target`1.GetValue(Type service, IContext parent) +153 Ninject.Planning.Targets.Target`1.ResolveWithin(IContext parent) +747 Ninject.Activation.Providers.StandardProvider.GetValue(IContext context, ITarget target) +269 Ninject.Activation.Providers.<>c__DisplayClass4.<Create>b__2(ITarget target) +69 System.Linq.WhereSelectArrayIterator`2.MoveNext() +66 System.Linq.Buffer`1..ctor(IEnumerable`1 source) +216 System.Linq.Enumerable.ToArray(IEnumerable`1 source) +77 Ninject.Activation.Providers.StandardProvider.Create(IContext context) +847 Ninject.Activation.Context.ResolveInternal(Object scope) +218 Ninject.Activation.Context.Resolve() +277 Ninject.<>c__DisplayClass15.<Resolve>b__f(IBinding binding) +86 System.Linq.WhereSelectEnumerableIterator`2.MoveNext() +145 System.Linq.Enumerable.SingleOrDefault(IEnumerable`1 source) +4059897 Ninject.Planning.Targets.Target`1.GetValue(Type service, IContext parent) +169 Ninject.Planning.Targets.Target`1.ResolveWithin(IContext parent) +747 Ninject.Activation.Providers.StandardProvider.GetValue(IContext context, ITarget target) +269 Ninject.Activation.Providers.<>c__DisplayClass4.<Create>b__2(ITarget target) +69 System.Linq.WhereSelectArrayIterator`2.MoveNext() +66 System.Linq.Buffer`1..ctor(IEnumerable`1 source) +216 System.Linq.Enumerable.ToArray(IEnumerable`1 source) +77 Ninject.Activation.Providers.StandardProvider.Create(IContext context) +847 Ninject.Activation.Context.ResolveInternal(Object scope) +218 Ninject.Activation.Context.Resolve() +277 Ninject.<>c__DisplayClass15.<Resolve>b__f(IBinding binding) +86 System.Linq.WhereSelectEnumerableIterator`2.MoveNext() +145 System.Linq.Enumerable.SingleOrDefault(IEnumerable`1 source) +4059897 Ninject.Web.Mvc.NinjectDependencyResolver.GetService(Type serviceType) +145 System.Web.Mvc.DefaultControllerActivator.Create(RequestContext requestContext, Type controllerType) +87 [InvalidOperationException: An error occurred when trying to create a controller of type 'Successful.Struct.Web.Controllers.AccountController'. Make sure that the controller has a parameterless public constructor.] System.Web.Mvc.DefaultControllerActivator.Create(RequestContext requestContext, Type controllerType) +247 System.Web.Mvc.DefaultControllerFactory.GetControllerInstance(RequestContext requestContext, Type controllerType) +438 System.Web.Mvc.DefaultControllerFactory.CreateController(RequestContext requestContext, String controllerName) +257 System.Web.Mvc.MvcHandler.ProcessRequestInit(HttpContextBase httpContext, IController& controller, IControllerFactory& factory) +326 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContextBase httpContext, AsyncCallback callback, Object state) +157 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContext httpContext, AsyncCallback callback, Object state) +88 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.BeginProcessRequest(HttpContext context, AsyncCallback cb, Object extraData) +50 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +301 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 Account controller: public class AccountController : Controller { private readonly ISecurityService _securityService; public AccountController(ISecurityService securityService) { _securityService = securityService; } // // GET: /Account/Login [AllowAnonymous] public ActionResult Login(string returnUrl) { ViewBag.ReturnUrl = returnUrl; return View(); } } NinjectWebCommon: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Http; using System.Web.Http.Dependencies; using Microsoft.Web.Infrastructure.DynamicModuleHelper; using Ninject; using Ninject.Extensions.Conventions; using Ninject.Parameters; using Ninject.Syntax; using Ninject.Web.Common; using Successful.Struct.Web; [assembly: WebActivator.PreApplicationStartMethod(typeof(NinjectWebCommon), "Start")] [assembly: WebActivator.ApplicationShutdownMethodAttribute(typeof(NinjectWebCommon), "Stop")] namespace Successful.Struct.Web { public static class NinjectWebCommon { private static readonly Bootstrapper Bootstrapper = new Bootstrapper(); /// <summary> /// Starts the application /// </summary> public static void Start() { DynamicModuleUtility.RegisterModule(typeof(OnePerRequestHttpModule)); DynamicModuleUtility.RegisterModule(typeof(NinjectHttpModule)); Bootstrapper.Initialize(CreateKernel); } /// <summary> /// Stops the application. /// </summary> public static void Stop() { Bootstrapper.ShutDown(); } /// <summary> /// Creates the kernel that will manage your application. /// </summary> /// <returns>The created kernel.</returns> private static IKernel CreateKernel() { var kernel = new StandardKernel(); kernel.Bind<Func<IKernel>>().ToMethod(ctx => () => new Bootstrapper().Kernel); kernel.Bind<IHttpModule>().To<HttpApplicationInitializationHttpModule>(); kernel.Load("Successful*.dll"); kernel.Bind(x => x.FromAssembliesMatching("Successful*.dll") .SelectAllClasses() .BindAllInterfaces() ); GlobalConfiguration.Configuration.DependencyResolver = new NinjectResolver(kernel); RegisterServices(kernel); return kernel; } /// <summary> /// Load your modules or register your services here! /// </summary> /// <param name="kernel">The kernel.</param> private static void RegisterServices(IKernel kernel) { } } public class NinjectResolver : NinjectScope, IDependencyResolver { private readonly IKernel _kernel; public NinjectResolver(IKernel kernel) : base(kernel) { _kernel = kernel; } public IDependencyScope BeginScope() { return new NinjectScope(_kernel.BeginBlock()); } } public class NinjectScope : IDependencyScope { protected IResolutionRoot ResolutionRoot; public NinjectScope(IResolutionRoot kernel) { ResolutionRoot = kernel; } public object GetService(Type serviceType) { var request = ResolutionRoot.CreateRequest(serviceType, null, new Parameter[0], true, true); return ResolutionRoot.Resolve(request).SingleOrDefault(); } public IEnumerable<object> GetServices(Type serviceType) { var request = ResolutionRoot.CreateRequest(serviceType, null, new Parameter[0], true, true); return ResolutionRoot.Resolve(request).ToList(); } public void Dispose() { var disposable = (IDisposable)ResolutionRoot; if (disposable != null) disposable.Dispose(); ResolutionRoot = null; } } } ClaimsSecurityService: public class ClaimsSecurityService : ISecurityService { private const string AscClaimsIdType = "http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider"; private const string SuccessfulStructWebNamespace = "Successful.Struct.Web"; private readonly IMainLicense _mainLicenses; private readonly ICompany _companys; private readonly IAuthTokenService _authService; [Inject] public IApplicationContext ApplicationContext { get; set; } [Inject] public ILogger<LocationService> Logger { get; set; } public ClaimsSecurityService(IMainLicense mainLicenses, ICompany companys, IAuthTokenService authService) { _mainLicenses = mainLicenses; _companys = companys; _authService = authService; } }

    Read the article

  • MVC 3 ModelView passing parameters between view & controller

    - by Tobias Vandenbempt
    I've been playing with MVC 3 in a test project and have the following issue. I have Group & Subscriber entities and those are coupled through a SubscriberGroup table. Using the DetailView of Group I open a view of SubscriberGroup containing all subscribers. This list has the option to filter. So far it all works, however when I call the AddToGroup method on the controller it fails. Specifically it goes into the method but doesn't pass the subscriberCheckedModels list. Am I doing something wrong? View: SubscriberGroup Index.aspx <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.master" Inherits="System.Web.Mvc.ViewPage<Mail.Models.SubscriberCheckedListViewModel>" %> … <h2 class="common-box-title"> Add Subscribers to Group</h2> <p> <% using (Html.BeginForm("Index", "SubscriberGroup")) { %> <input name="filter" id="filter" type="text" /> <input type="submit" value="Search" /> <%} %> </p> <% using (Html.BeginForm("AddToGroup", "SubscriberGroup", Model,FormMethod.Get, null)) { %> <fieldset> <div style="display: inline-block; width: 70%; vertical-align: top;"> <% if (Model.subscribers.Count() != 0) { %> <table class="hor-minimalist-b"> <tr> <th> Add To Group </th> <th> Full Name </th> <th> Email </th> <th> Customer </th> </tr> <% foreach (var item in Model.subscribers) { %> <tr> <td> <%= Html.CheckBoxFor(modelItem => item.AddToGroup)%> </td> <td> <%= Html.DisplayFor(modelItem => item.subscriber.LastName)%> <%= Html.ActionLink(item.subscriber.FirstName + " " + item.subscriber.LastName, "Details", new { id = item.subscriber.SubscriberID })%> </td> <td> <%: Html.DisplayFor(modelItem => item.subscriber.Email)%> </td> <td> <%: Html.DisplayFor(modelItem => item.subscriber.Customer.Company)%> <%= Html.HiddenFor(modelItem => item.subscriber) %> </td> </tr> <% } %> <% ViewBag.subscribers = Model.subscribers; %> probeersel <%= Html.HiddenFor(model => model.subscribers) %> probeersel </table> <%} %> <%else { %> <p> No subscribers found.</p> <%} %> <input type="submit" value="Add Subscribers" /> </div> </fieldset> <%} %> Controller: SubscriberGroupController using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using System.Web.Security; using Mail.Models; namespace Mail.Controllers { public class SubscriberGroupController : Controller { private int groupID; private MailDBEntities db = new MailDBEntities(); // // GET: /SubscriberGroup/ public ActionResult Index(int id) { groupID = id; MembershipUser myObject = Membership.GetUser(); Guid UserID = Guid.Parse(myObject.ProviderUserKey.ToString()); UserCustomer usercustomer = db.UserCustomers.Single(s => s.UserID == UserID); var subscribers = from subscriber in db.Subscribers where (subscriber.CustomerID == usercustomer.CustomerID) | (subscriber.CustomerID == 0) select new SubscriberCheckedModel { subscriber = subscriber, AddToGroup = false }; SubscriberCheckedListViewModel test = new SubscriberCheckedListViewModel(); test.subscribers = subscribers; return View(test); } [HttpPost] public ActionResult Index(string filter) { MembershipUser myObject = Membership.GetUser(); Guid UserID = Guid.Parse(myObject.ProviderUserKey.ToString()); UserCustomer usercustomer = db.UserCustomers.Single(s => s.UserID == UserID); var subscribers2 = from subscriber in db.Subscribers where ((subscriber.FirstName.Contains(filter)|| subscriber.LastName.Contains(filter)) && (subscriber.CustomerID == usercustomer.CustomerID || subscriber.CustomerID == 0)) select new SubscriberCheckedModel { subscriber = subscriber, AddToGroup = false }; SubscriberCheckedListViewModel test = new SubscriberCheckedListViewModel(); test.subscribers = subscribers2.ToList(); return View(test); } [HttpPost] public ActionResult AddToGroup(SubscriberCheckedListViewModel test) { //test is null return RedirectToAction("Details", "Group", new { id = groupID }); } } } ViewModel: SubscriberGroupModel using System.Collections.Generic; using Mail; namespace Mail.Models { public class SubscriberCheckedModel { public Subscriber subscriber { get; set; } public bool AddToGroup { get; set; } } public class SubscriberCheckedListViewModel { public IEnumerable<SubscriberCheckedModel> subscribers { get; set; } } }

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Model value not being set on return from View to Controller

    - by sagesky36
    I have a boolean model variable who's value is supposed to be set to TRUE in order to perform a process on return back into the Controller. It works absolutely fine on my local machine, but not on the remote web server. Can somebody PLEASE inform me what I am missing? Below is the "proof of the pudding": The boolean value in quesion is "ShouldGeneratePdf"; MODEL: namespace PDFConverterModel.ViewModels { public partial class ViewModelTemplate_Guarantors { public ViewModelTemplate_Guarantors() { Templates = new List<PDFTemplate>(); Guarantors = new List<tGuarantor>(); } public int SelectedTemplateId { get; set; } public List<PDFTemplate> Templates { get; set; } public int SelectedGuarantorId { get; set; } public List<tGuarantor> Guarantors { get; set; } public string LoanId { get; set; } public string DepartmentId { get; set; } public bool isRepeat { get; set; } public string ddlDept { get; set; } public string SelectedDeptText { get; set; } public string LoanTypeId { get; set; } public string LoanType { get; set; } public string Error { get; set; } public string ErrorT { get; set; } public string ErrorG { get; set; } public bool ShowGeneratePDFBtn { get; set; } public bool ShouldGeneratePdf { get; set; } } } MasterPage: <!DOCTYPE html> <html> <head> <title>@ViewBag.Title</title> <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <link href="@Url.Content("~/Content/kendo/2012.2.913/kendo.common.min.css")" rel="stylesheet" type="text/css" /> <link href="@Url.Content("~/Content/kendo/2012.2.913/kendo.dataviz.min.css")" rel="stylesheet" type="text/css" /> <link href="@Url.Content("~/Content/kendo/2012.2.913/kendo.blueopal.min.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.7.1.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/modernizr-2.5.3.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/kendo/2012.2.913/kendo.all.min.js")"></script> <script src="@Url.Content("~/Scripts/kendo/2012.2.913/kendo.aspnetmvc.min.js")"></script> </head> <body> <div class="page"> <header> <div id="title"> <h1>BHG :: PDF Service Generator</h1> </div> </header> <section id="main"> @RenderBody() </section> <footer> </footer> </div> </body> </html> View: @model PDFConverterModel.ViewModels.ViewModelTemplate_Guarantors @using (Html.BeginForm("ProcessForm", "Home", new AjaxOptions { HttpMethod = "POST" })) { <table style="width: 1000px"> @Html.HiddenFor(x => x.ShouldGeneratePdf) <tr> <td> <img alt="BHG Logo" src="~/Images/logo.gif" /> </td> </tr> <tr> <td> @(Html.Kendo().IntegerTextBox() .Placeholder("Enter Loan Id") .Name("LoanId") .Format("{0:#######}") .Value(Convert.ToInt32(Model.LoanId)) ) </td> </tr> <tr> <td>@Html.Label("Loan Type: ") @Html.DisplayFor(model => Model.LoanType) </td> <td> <label for="ddlDept">Department:</label> @(Html.Kendo().DropDownListFor(model => Model.ddlDept) .Name("ddlDept") .DataTextField("DepartmentName") .DataValueField("DepartmentID") .Events(e => e.Change("Refresh")) .DataSource(source => { source.Read(read => { read.Action("GetDepartments", "Home"); }); }) .Value(Model.ddlDept.ToString()) ) </td> </tr> @if (Model.ShowGeneratePDFBtn == true) { if (Model.ErrorT == string.Empty) { <tr> <td> <u><b>@Html.Label("Templates:")</b></u> </td> </tr> <tr> @for (int i = 0; i < Model.Templates.Count; i++) { <td> @Html.CheckBoxFor(model => Model.Templates[i].IsChecked) @Html.DisplayFor(model => Model.Templates[i].TemplateId) </td> } </tr> } else { <tr> <td> <b>@Html.DisplayFor(model => Model.ErrorT)</b> </td> </tr> } if (Model.ErrorG == string.Empty) { <tr> <td> <u><b>@Html.Label("Guarantors:")</b></u> </td> </tr> <tr> @for (int i = 0; i < Model.Guarantors.Count; i++) { <td> @Html.CheckBoxFor(model => Model.Guarantors[i].isChecked) @Html.DisplayFor(model => Model.Guarantors[i].GuarantorFirstName)&nbsp;@Html.DisplayFor(model => Model.Guarantors[i].GuarantorLastName) </td> } </tr> } else { <tr> <td> <b>@Html.DisplayFor(model => Model.ErrorG)</b> </td> </tr> } } <tr> <td> <input type="submit" name="submitbutton" id="btnRefresh" value='Refresh' /> </td> @if (Model.ShowGeneratePDFBtn == true) { <td> <input type="submit" name="submitbutton" id="btnGeneratePDF" value='Generate PDF' /> </td> } </tr> <tr> <td style="color: red; font: bold"> @Model.Error </td> </tr> </table> } <script type="text/javascript"> $('#btnRefresh').click(function () { Refresh(); }); function Refresh() { var LoanID = $("#LoanID").val(); if (parseInt(LoanID) != 0) { $('#ShouldGeneratePdf').val(false) document.forms[0].submit(); } else { alert("Please enter a LoanId"); } } //$(function () { // //DOM loaded // $('#btnGeneratePDF').click(function () { // DisableGeneratePDF(); // $('#ShouldGeneratePdf').val(true) // }); //}); //function DisableGeneratePDF() { // $('#btnGeneratePDF').attr("disabled", true); // $('#btnRefresh').attr("disabled", true); //} $('#btnGeneratePDF').click(function () { alert("inside click function"); DisableGeneratePDF(); $('#ShouldGeneratePdf').val(true) tof = $('#ShouldGeneratePdf').val(); alert("ShouldGeneratePdf set to " + tof); }); function DisableGeneratePDF() { alert("begin DisableGeneratePDF function"); $('#btnGeneratePDF').attr("disabled", true); $('#btnRefresh').attr("disabled", true); alert("end DisableGeneratePDF function"); } </script> Controller: [HttpPost] public ActionResult ProcessForm(string submitbutton, ViewModelTemplate_Guarantors model, FormCollection collection) if ((submitbutton == "Refresh") || (submitbutton == null) && (model.ShouldGeneratePdf == false)) { } else if ((submitbutton == "Generate PDF") || (model.ShouldGeneratePdf == true)) { } The "Alerts" in the script above come out to exactly what they should be on the remote server. The last alert shows that the value of the bool variable is "true". However, when I do page source views of the hidden variable, below is the result. The values of the hidden variable when the page loads and when the last alert button finishes are as follows: My local machine: The remote machine: As you can see, the value on my machine is set to true when the process executes. However, on the remote machine, it is set to false where it then doesn't excute. Why isn't the value in the model being returned as TRUE on the remote machine?

    Read the article

< Previous Page | 1 2 3 4