Search Results

Search found 16413 results on 657 pages for 'array manipulation'.

Page 423/657 | < Previous Page | 419 420 421 422 423 424 425 426 427 428 429 430  | Next Page >

  • $_SERVER['HTTP_X_REQUESTED_WITH'] seemingly not available on PHP 5.1.6

    - by kenny99
    Hi, I've run into a problem on a server running php 5.1.6 - the code i use to detect ajax requests isn't working as the $_SERVER['HTTP_X_REQUESTED_WITH'] variable is missing from the $_SERVER array. The same code works fine on php 5.2 and in firebug i can see the headers include X-Requested-With XMLHttpRequest. Anyone know any more about this issue and how I can get round it? Thanks in advance.

    Read the article

  • Parse Directory Structure (Strings) to JSON using PHP

    - by Ecropolis
    I have an array of file-path strings like this videos/funny/jelloman.wmv videos/funny/bellydance.flv videos/abc.mp4 videos/june.mp4 videos/cleaver.mp4 fun.wmv jimmy.wmv herman.wmv Is there a library or easy way I can get to a data structure json or xml? Something like this: (I see there are a lot of snippets available for traversing actual folders, but again, I just have strings.) { files:{ file:[ { filename:'fun.wmv' }, { filename:'jimmy.wmv' }, { filename:'herman.wmv' } ], folder:{ foldername:'videos', file:[ { filename:'abc.mp4' }, { filename:'june.mp4' }, { filename:'cleaver.mp4' } ], folder:{ foldername:'funny', file:[ { filename:'jelloman.wmv' }, { filename:'bellydance.flv' } ] } } } }

    Read the article

  • Cakephp Insert Ignore Feature?

    - by SeanDowney
    Is there a way to do an "insert ignore" in cake without using a model-query function? $this->Model->save(array( 'id' => NULL, 'guid' => $guid, 'name' => $name, )); Generates error: Warning (512): SQL Error: 1062: Duplicate entry 'GUID.....' for key 'unique_guid' [CORE/cake/libs/model/datasources/dbo_source.php, line 524] It would be great to be able to set some flag or option that says "don't care"

    Read the article

  • Model associations

    - by Kalyan M
    I have two models Library and Book. In my Library model, I have an array - book_ids. The primary key of Book model is ID. How do I create a has_many :books relation in my library model? This is a legacy database we are using with rails. Thanks.

    Read the article

  • Mapping a ER model to Rails

    - by Thiago
    Hi there, I want to map the following ER schema to rails: I have an entity called "user" which has a self relationship called "has friend", which has an attribute called "status". In code, I would like to run: User.friends and it should return me an array of users, containing the users that I'm friend of. It shouldn't matter in which side of the relationship I am (i.e. whether I'm the friender or the friendee). Any thoughts?

    Read the article

  • templates of functions

    - by anotr67
    I'm told to create template of function , that will take 4 arguments : pointer reference pointer to array pointer to function How to perform this task ? I was trying : template<typename TYPE> TYPE biggest(TYPE *L, TYPE $M, TYPE *K[], TYPE *O()) { } but it is wrong.

    Read the article

  • how to use json_encode without PHP 5.2

    - by Ashley Ward
    I've written a CMS which uses the PHP function json_encode to send some data back via an Ajax Request. Unfortunately, I'm trying to load it onto a server which is running PHP version 5.1, the json_encode PHP function is not available on versions of PHP before 5.2.0. Does anyone know of a way to encode a PH array as JSON without using the inbuilt json_encode function?

    Read the article

  • multiple word Predictive/autocomplete textarea?

    - by pablo
    Hi there I'm lookin for a javascript plugin (for js/any framework) I want to create a textarea that while I type will using a supplied data array, check for predictive matches to the current word im typing and try to suggest a solution. All solutions I've found so far (for jquery) only match one word, then end... I want to write like a sentence or paragraph but have autocomplete ability. Mockup image attached.

    Read the article

  • An IOCP documentation interpretation question - buffer ownership ambiguity

    - by Poni
    Since I'm not a native English speaker I might be missing something so maybe someone here knows better than me. Taken from WSASend's doumentation at MSDN: lpBuffers [in] A pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length, in bytes, of the buffer. For a Winsock application, once the WSASend function is called, the system owns these buffers and the application may not access them. This array must remain valid for the duration of the send operation. Ok, can you see the bold text? That's the unclear spot! I can think of two translations for this line (might be something else, you name it): Translation 1 - "buffers" refers to the OVERLAPPED structure that I pass this function when calling it. I may reuse the object again only when getting a completion notification about it. Translation 2 - "buffers" refer to the actual buffers, those with the data I'm sending. If the WSABUF object points to one buffer, then I cannot touch this buffer until the operation is complete. Can anyone tell what's the right interpretation to that line? And..... If the answer is the second one - how would you resolve it? Because to me it implies that for each and every data/buffer I'm sending I must retain a copy of it at the sender side - thus having MANY "pending" buffers (in different sizes) on an high traffic application, which really going to hurt "scalability". Statement 1: In addition to the above paragraph (the "And...."), I thought that IOCP copies the data to-be-sent to it's own buffer and sends from there, unless you set SO_SNDBUF to zero. Statement 2: I use stack-allocated buffers (you know, something like char cBuff[1024]; at the function body - if the translation to the main question is the second option (i.e buffers must stay as they are until the send is complete), then... that really screws things up big-time! Can you think of a way to resolve it? (I know, I asked it in other words above).

    Read the article

  • Training sets for AdaBoost algorithm

    - by palau1
    How do you find the negative and positive training data sets of Haar features for the AdaBoost algorithm? So say you have a certain type of blob that you want to locate in an image and there are several of them in your entire array - how do you go about training it? I'd appreciate a nontechnical explanation as much as possible. I'm new to this. Thanks.

    Read the article

  • Python - Get Instance Variables

    - by Chris Bunch
    Is there a built-in method in Python to get an array of all a class' instance variables? For example, if I have this code: class hi: def __init__(self): self.ii = "foo" self.kk = "bar" Is there a way for me to do this: >>> mystery_method(hi) ["ii", "kk"] Thanks guys! Edit: I originally had asked for class variables erroneously. Thanks to all who brought this to my attention!

    Read the article

  • Steganography Experiment - Trouble hiding message bits in DCT coefficients

    - by JohnHankinson
    I have an application requiring me to be able to embed loss-less data into an image. As such I've been experimenting with steganography, specifically via modification of DCT coefficients as the method I select, apart from being loss-less must also be relatively resilient against format conversion, scaling/DSP etc. From the research I've done thus far this method seems to be the best candidate. I've seen a number of papers on the subject which all seem to neglect specific details (some neglect to mention modification of 0 coefficients, or modification of AC coefficient etc). After combining the findings and making a few modifications of my own which include: 1) Using a more quantized version of the DCT matrix to ensure we only modify coefficients that would still be present should the image be JPEG'ed further or processed (I'm using this in place of simply following a zig-zag pattern). 2) I'm modifying bit 4 instead of the LSB and then based on what the original bit value was adjusting the lower bits to minimize the difference. 3) I'm only modifying the blue channel as it should be the least visible. This process must modify the actual image and not the DCT values stored in file (like jsteg) as there is no guarantee the file will be a JPEG, it may also be opened and re-saved at a later stage in a different format. For added robustness I've included the message multiple times and use the bits that occur most often, I had considered using a QR code as the message data or simply applying the reed-solomon error correction, but for this simple application and given that the "message" in question is usually going to be between 10-32 bytes I have plenty of room to repeat it which should provide sufficient redundancy to recover the true bits. No matter what I do I don't seem to be able to recover the bits at the decode stage. I've tried including / excluding various checks (even if it degrades image quality for the time being). I've tried using fixed point vs. double arithmetic, moving the bit to encode, I suspect that the message bits are being lost during the IDCT back to image. Any thoughts or suggestions on how to get this working would be hugely appreciated. (PS I am aware that the actual DCT/IDCT could be optimized from it's naive On4 operation using row column algorithm, or an FDCT like AAN, but for now it just needs to work :) ) Reference Papers: http://www.lokminglui.com/dct.pdf http://arxiv.org/ftp/arxiv/papers/1006/1006.1186.pdf Code for the Encode/Decode process in C# below: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Drawing.Imaging; using System.Drawing; namespace ImageKey { public class Encoder { public const int HIDE_BIT_POS = 3; // use bit position 4 (1 << 3). public const int HIDE_COUNT = 16; // Number of times to repeat the message to avoid error. // JPEG Standard Quantization Matrix. // (to get higher quality multiply by (100-quality)/50 .. // for lower than 50 multiply by 50/quality. Then round to integers and clip to ensure only positive integers. public static double[] Q = {16,11,10,16,24,40,51,61, 12,12,14,19,26,58,60,55, 14,13,16,24,40,57,69,56, 14,17,22,29,51,87,80,62, 18,22,37,56,68,109,103,77, 24,35,55,64,81,104,113,92, 49,64,78,87,103,121,120,101, 72,92,95,98,112,100,103,99}; // Maximum qauality quantization matrix (if all 1's doesn't modify coefficients at all). public static double[] Q2 = {1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1}; public static Bitmap Encode(Bitmap b, string key) { Bitmap response = new Bitmap(b.Width, b.Height, PixelFormat.Format32bppArgb); uint imgWidth = ((uint)b.Width) & ~((uint)7); // Maximum usable X resolution (divisible by 8). uint imgHeight = ((uint)b.Height) & ~((uint)7); // Maximum usable Y resolution (divisible by 8). // Start be transferring the unmodified image portions. // As we'll be using slightly less width/height for the encoding process we'll need the edges to be populated. for (int y = 0; y < b.Height; y++) for (int x = 0; x < b.Width; x++) { if( (x >= imgWidth && x < b.Width) || (y>=imgHeight && y < b.Height)) response.SetPixel(x, y, b.GetPixel(x, y)); } // Setup the counters and byte data for the message to encode. StringBuilder sb = new StringBuilder(); for(int i=0;i<HIDE_COUNT;i++) sb.Append(key); byte[] codeBytes = System.Text.Encoding.ASCII.GetBytes(sb.ToString()); int bitofs = 0; // Current bit position we've encoded too. int totalBits = (codeBytes.Length * 8); // Total number of bits to encode. for (int y = 0; y < imgHeight; y += 8) { for (int x = 0; x < imgWidth; x += 8) { int[] redData = GetRedChannelData(b, x, y); int[] greenData = GetGreenChannelData(b, x, y); int[] blueData = GetBlueChannelData(b, x, y); int[] newRedData; int[] newGreenData; int[] newBlueData; if (bitofs < totalBits) { double[] redDCT = DCT(ref redData); double[] greenDCT = DCT(ref greenData); double[] blueDCT = DCT(ref blueData); int[] redDCTI = Quantize(ref redDCT, ref Q2); int[] greenDCTI = Quantize(ref greenDCT, ref Q2); int[] blueDCTI = Quantize(ref blueDCT, ref Q2); int[] blueDCTC = Quantize(ref blueDCT, ref Q); HideBits(ref blueDCTI, ref blueDCTC, ref bitofs, ref totalBits, ref codeBytes); double[] redDCT2 = DeQuantize(ref redDCTI, ref Q2); double[] greenDCT2 = DeQuantize(ref greenDCTI, ref Q2); double[] blueDCT2 = DeQuantize(ref blueDCTI, ref Q2); newRedData = IDCT(ref redDCT2); newGreenData = IDCT(ref greenDCT2); newBlueData = IDCT(ref blueDCT2); } else { newRedData = redData; newGreenData = greenData; newBlueData = blueData; } MapToRGBRange(ref newRedData); MapToRGBRange(ref newGreenData); MapToRGBRange(ref newBlueData); for(int dy=0;dy<8;dy++) { for(int dx=0;dx<8;dx++) { int col = (0xff<<24) + (newRedData[dx+(dy*8)]<<16) + (newGreenData[dx+(dy*8)]<<8) + (newBlueData[dx+(dy*8)]); response.SetPixel(x+dx,y+dy,Color.FromArgb(col)); } } } } if (bitofs < totalBits) throw new Exception("Failed to encode data - insufficient cover image coefficients"); return (response); } public static void HideBits(ref int[] DCTMatrix, ref int[] CMatrix, ref int bitofs, ref int totalBits, ref byte[] codeBytes) { int tempValue = 0; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { if ( (u != 0 || v != 0) && CMatrix[v+(u*8)] != 0 && DCTMatrix[v+(u*8)] != 0) { if (bitofs < totalBits) { tempValue = DCTMatrix[v + (u * 8)]; int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); byte value = (byte)((codeBytes[bytePos] & mask) >> bitPos); // 0 or 1. if (value == 0) { int a = DCTMatrix[v + (u * 8)] & (1 << HIDE_BIT_POS); if (a != 0) DCTMatrix[v + (u * 8)] |= (1 << HIDE_BIT_POS) - 1; DCTMatrix[v + (u * 8)] &= ~(1 << HIDE_BIT_POS); } else if (value == 1) { int a = DCTMatrix[v + (u * 8)] & (1 << HIDE_BIT_POS); if (a == 0) DCTMatrix[v + (u * 8)] &= ~((1 << HIDE_BIT_POS) - 1); DCTMatrix[v + (u * 8)] |= (1 << HIDE_BIT_POS); } if (DCTMatrix[v + (u * 8)] != 0) bitofs++; else DCTMatrix[v + (u * 8)] = tempValue; } } } } } public static void MapToRGBRange(ref int[] data) { for(int i=0;i<data.Length;i++) { data[i] += 128; if(data[i] < 0) data[i] = 0; else if(data[i] > 255) data[i] = 255; } } public static int[] GetRedChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x,y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 16) & 0xff) - 128; } } return (data); } public static int[] GetGreenChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x, y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 8) & 0xff) - 128; } } return (data); } public static int[] GetBlueChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x, y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 0) & 0xff) - 128; } } return (data); } public static int[] Quantize(ref double[] DCTMatrix, ref double[] Q) { int[] DCTMatrixOut = new int[8*8]; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { DCTMatrixOut[v + (u * 8)] = (int)Math.Round(DCTMatrix[v + (u * 8)] / Q[v + (u * 8)]); } } return(DCTMatrixOut); } public static double[] DeQuantize(ref int[] DCTMatrix, ref double[] Q) { double[] DCTMatrixOut = new double[8*8]; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { DCTMatrixOut[v + (u * 8)] = (double)DCTMatrix[v + (u * 8)] * Q[v + (u * 8)]; } } return(DCTMatrixOut); } public static double[] DCT(ref int[] data) { double[] DCTMatrix = new double[8 * 8]; for (int v = 0; v < 8; v++) { for (int u = 0; u < 8; u++) { double cu = 1; if (u == 0) cu = (1.0 / Math.Sqrt(2.0)); double cv = 1; if (v == 0) cv = (1.0 / Math.Sqrt(2.0)); double sum = 0.0; for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { double s = data[x + (y * 8)]; double dctVal = Math.Cos((2 * y + 1) * v * Math.PI / 16) * Math.Cos((2 * x + 1) * u * Math.PI / 16); sum += s * dctVal; } } DCTMatrix[u + (v * 8)] = (0.25 * cu * cv * sum); } } return (DCTMatrix); } public static int[] IDCT(ref double[] DCTMatrix) { int[] Matrix = new int[8 * 8]; for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { double sum = 0; for (int v = 0; v < 8; v++) { for (int u = 0; u < 8; u++) { double cu = 1; if (u == 0) cu = (1.0 / Math.Sqrt(2.0)); double cv = 1; if (v == 0) cv = (1.0 / Math.Sqrt(2.0)); double idctVal = (cu * cv) / 4.0 * Math.Cos((2 * y + 1) * v * Math.PI / 16) * Math.Cos((2 * x + 1) * u * Math.PI / 16); sum += (DCTMatrix[u + (v * 8)] * idctVal); } } Matrix[x + (y * 8)] = (int)Math.Round(sum); } } return (Matrix); } } public class Decoder { public static string Decode(Bitmap b, int expectedLength) { expectedLength *= Encoder.HIDE_COUNT; uint imgWidth = ((uint)b.Width) & ~((uint)7); // Maximum usable X resolution (divisible by 8). uint imgHeight = ((uint)b.Height) & ~((uint)7); // Maximum usable Y resolution (divisible by 8). // Setup the counters and byte data for the message to decode. byte[] codeBytes = new byte[expectedLength]; byte[] outBytes = new byte[expectedLength / Encoder.HIDE_COUNT]; int bitofs = 0; // Current bit position we've decoded too. int totalBits = (codeBytes.Length * 8); // Total number of bits to decode. for (int y = 0; y < imgHeight; y += 8) { for (int x = 0; x < imgWidth; x += 8) { int[] blueData = ImageKey.Encoder.GetBlueChannelData(b, x, y); double[] blueDCT = ImageKey.Encoder.DCT(ref blueData); int[] blueDCTI = ImageKey.Encoder.Quantize(ref blueDCT, ref Encoder.Q2); int[] blueDCTC = ImageKey.Encoder.Quantize(ref blueDCT, ref Encoder.Q); if (bitofs < totalBits) GetBits(ref blueDCTI, ref blueDCTC, ref bitofs, ref totalBits, ref codeBytes); } } bitofs = 0; for (int i = 0; i < (expectedLength / Encoder.HIDE_COUNT) * 8; i++) { int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); List<int> values = new List<int>(); int zeroCount = 0; int oneCount = 0; for (int j = 0; j < Encoder.HIDE_COUNT; j++) { int val = (codeBytes[bytePos + ((expectedLength / Encoder.HIDE_COUNT) * j)] & mask) >> bitPos; values.Add(val); if (val == 0) zeroCount++; else oneCount++; } if (oneCount >= zeroCount) outBytes[bytePos] |= mask; bitofs++; values.Clear(); } return (System.Text.Encoding.ASCII.GetString(outBytes)); } public static void GetBits(ref int[] DCTMatrix, ref int[] CMatrix, ref int bitofs, ref int totalBits, ref byte[] codeBytes) { for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { if ((u != 0 || v != 0) && CMatrix[v + (u * 8)] != 0 && DCTMatrix[v + (u * 8)] != 0) { if (bitofs < totalBits) { int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); int value = DCTMatrix[v + (u * 8)] & (1 << Encoder.HIDE_BIT_POS); if (value != 0) codeBytes[bytePos] |= mask; bitofs++; } } } } } } } UPDATE: By switching to using a QR Code as the source message and swapping a pair of coefficients in each block instead of bit manipulation I've been able to get the message to survive the transform. However to get the message to come through without corruption I have to adjust both coefficients as well as swap them. For example swapping (3,4) and (4,3) in the DCT matrix and then respectively adding 8 and subtracting 8 as an arbitrary constant seems to work. This survives a re-JPEG'ing of 96 but any form of scaling/cropping destroys the message again. I was hoping that by operating on mid to low frequency values that the message would be preserved even under some light image manipulation.

    Read the article

  • Design pattern question: encapsulation or inheritance

    - by Matt
    Hey all, I have a question I have been toiling over for quite a while. I am building a templating engine with two main classes Template.php and Tag.php, with a bunch of extension classes like Img.php and String.php. The program works like this: A Template object creates a Tag objects. Each tag object determines which extension class (img, string, etc.) to implement. The point of the Tag class is to provide helper functions for each extension class such as wrap('div'), addClass('slideshow'), etc. Each Img or String class is used to render code specific to what is required, so $Img->render() would give something like <img src='blah.jpg' /> My Question is: Should I encapsulate all extension functionality within the Tag object like so: Tag.php function __construct($namespace, $args) { // Sort out namespace to determine which extension to call $this->extension = new $namespace($this); // Pass in Tag object so it can be used within extension return $this; // Tag object } function render() { return $this->extension->render(); } Img.php function __construct(Tag $T) { $args = $T->getArgs(); $T->addClass('img'); } function render() { return '<img src="blah.jpg" />'; } Usage: $T = new Tag("img", array(...); $T->render(); .... or should I create more of an inheritance structure because "Img is a Tag" Tag.php public static create($namespace, $args) { // Sort out namespace to determine which extension to call return new $namespace($args); } Img.php class Img extends Tag { function __construct($args) { // Determine namespace then call create tag $T = parent::__construct($namespace, $args); } function render() { return '<img src="blah.jpg" />'; } } Usage: $Img = Tag::create('img', array(...)); $Img->render(); One thing I do need is a common interface for creating custom tags, ie I can instantiate Img(...) then instantiate String(...), I do need to instantiate each extension using Tag. I know this is somewhat vague of a question, I'm hoping some of you have dealt with this in the past and can foresee certain issues with choosing each design pattern. If you have any other suggestions I would love to hear them. Thanks! Matt Mueller

    Read the article

< Previous Page | 419 420 421 422 423 424 425 426 427 428 429 430  | Next Page >