Search Results

Search found 1184 results on 48 pages for 'movement prediction'.

Page 43/48 | < Previous Page | 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • Fraud Detection with the SQL Server Suite Part 1

    - by Dejan Sarka
    While working on different fraud detection projects, I developed my own approach to the solution for this problem. In my PASS Summit 2013 session I am introducing this approach. I also wrote a whitepaper on the same topic, which was generously reviewed by my friend Matija Lah. In order to spread this knowledge faster, I am starting a series of blog posts which will at the end make the whole whitepaper. Abstract With the massive usage of credit cards and web applications for banking and payment processing, the number of fraudulent transactions is growing rapidly and on a global scale. Several fraud detection algorithms are available within a variety of different products. In this paper, we focus on using the Microsoft SQL Server suite for this purpose. In addition, we will explain our original approach to solving the problem by introducing a continuous learning procedure. Our preferred type of service is mentoring; it allows us to perform the work and consulting together with transferring the knowledge onto the customer, thus making it possible for a customer to continue to learn independently. This paper is based on practical experience with different projects covering online banking and credit card usage. Introduction A fraud is a criminal or deceptive activity with the intention of achieving financial or some other gain. Fraud can appear in multiple business areas. You can find a detailed overview of the business domains where fraud can take place in Sahin Y., & Duman E. (2011), Detecting Credit Card Fraud by Decision Trees and Support Vector Machines, Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol 1. Hong Kong: IMECS. Dealing with frauds includes fraud prevention and fraud detection. Fraud prevention is a proactive mechanism, which tries to disable frauds by using previous knowledge. Fraud detection is a reactive mechanism with the goal of detecting suspicious behavior when a fraudster surpasses the fraud prevention mechanism. A fraud detection mechanism checks every transaction and assigns a weight in terms of probability between 0 and 1 that represents a score for evaluating whether a transaction is fraudulent or not. A fraud detection mechanism cannot detect frauds with a probability of 100%; therefore, manual transaction checking must also be available. With fraud detection, this manual part can focus on the most suspicious transactions. This way, an unchanged number of supervisors can detect significantly more frauds than could be achieved with traditional methods of selecting which transactions to check, for example with random sampling. There are two principal data mining techniques available both in general data mining as well as in specific fraud detection techniques: supervised or directed and unsupervised or undirected. Supervised techniques or data mining models use previous knowledge. Typically, existing transactions are marked with a flag denoting whether a particular transaction is fraudulent or not. Customers at some point in time do report frauds, and the transactional system should be capable of accepting such a flag. Supervised data mining algorithms try to explain the value of this flag by using different input variables. When the patterns and rules that lead to frauds are learned through the model training process, they can be used for prediction of the fraud flag on new incoming transactions. Unsupervised techniques analyze data without prior knowledge, without the fraud flag; they try to find transactions which do not resemble other transactions, i.e. outliers. In both cases, there should be more frauds in the data set selected for checking by using the data mining knowledge compared to selecting the data set with simpler methods; this is known as the lift of a model. Typically, we compare the lift with random sampling. The supervised methods typically give a much better lift than the unsupervised ones. However, we must use the unsupervised ones when we do not have any previous knowledge. Furthermore, unsupervised methods are useful for controlling whether the supervised models are still efficient. Accuracy of the predictions drops over time. Patterns of credit card usage, for example, change over time. In addition, fraudsters continuously learn as well. Therefore, it is important to check the efficiency of the predictive models with the undirected ones. When the difference between the lift of the supervised models and the lift of the unsupervised models drops, it is time to refine the supervised models. However, the unsupervised models can become obsolete as well. It is also important to measure the overall efficiency of both, supervised and unsupervised models, over time. We can compare the number of predicted frauds with the total number of frauds that include predicted and reported occurrences. For measuring behavior across time, specific analytical databases called data warehouses (DW) and on-line analytical processing (OLAP) systems can be employed. By controlling the supervised models with unsupervised ones and by using an OLAP system or DW reports to control both, a continuous learning infrastructure can be established. There are many difficulties in developing a fraud detection system. As has already been mentioned, fraudsters continuously learn, and the patterns change. The exchange of experiences and ideas can be very limited due to privacy concerns. In addition, both data sets and results might be censored, as the companies generally do not want to publically expose actual fraudulent behaviors. Therefore it can be quite difficult if not impossible to cross-evaluate the models using data from different companies and different business areas. This fact stresses the importance of continuous learning even more. Finally, the number of frauds in the total number of transactions is small, typically much less than 1% of transactions is fraudulent. Some predictive data mining algorithms do not give good results when the target state is represented with a very low frequency. Data preparation techniques like oversampling and undersampling can help overcome the shortcomings of many algorithms. SQL Server suite includes all of the software required to create, deploy any maintain a fraud detection infrastructure. The Database Engine is the relational database management system (RDBMS), which supports all activity needed for data preparation and for data warehouses. SQL Server Analysis Services (SSAS) supports OLAP and data mining (in version 2012, you need to install SSAS in multidimensional and data mining mode; this was the only mode in previous versions of SSAS, while SSAS 2012 also supports the tabular mode, which does not include data mining). Additional products from the suite can be useful as well. SQL Server Integration Services (SSIS) is a tool for developing extract transform–load (ETL) applications. SSIS is typically used for loading a DW, and in addition, it can use SSAS data mining models for building intelligent data flows. SQL Server Reporting Services (SSRS) is useful for presenting the results in a variety of reports. Data Quality Services (DQS) mitigate the occasional data cleansing process by maintaining a knowledge base. Master Data Services is an application that helps companies maintaining a central, authoritative source of their master data, i.e. the most important data to any organization. For an overview of the SQL Server business intelligence (BI) part of the suite that includes Database Engine, SSAS and SSRS, please refer to Veerman E., Lachev T., & Sarka D. (2009). MCTS Self-Paced Training Kit (Exam 70-448): Microsoft® SQL Server® 2008 Business Intelligence Development and Maintenance. MS Press. For an overview of the enterprise information management (EIM) part that includes SSIS, DQS and MDS, please refer to Sarka D., Lah M., & Jerkic G. (2012). Training Kit (Exam 70-463): Implementing a Data Warehouse with Microsoft® SQL Server® 2012. O'Reilly. For details about SSAS data mining, please refer to MacLennan J., Tang Z., & Crivat B. (2009). Data Mining with Microsoft SQL Server 2008. Wiley. SQL Server Data Mining Add-ins for Office, a free download for Office versions 2007, 2010 and 2013, bring the power of data mining to Excel, enabling advanced analytics in Excel. Together with PowerPivot for Excel, which is also freely downloadable and can be used in Excel 2010, is already included in Excel 2013. It brings OLAP functionalities directly into Excel, making it possible for an advanced analyst to build a complete learning infrastructure using a familiar tool. This way, many more people, including employees in subsidiaries, can contribute to the learning process by examining local transactions and quickly identifying new patterns.

    Read the article

  • Android: How/where to put gesture code into IME?

    - by CardinalFIB
    Hi, I'm new to Android but I'm trying to create an IME that allows for gesture-character recognition. I can already do simple apps that perform gesture recognition but am not sure where to hook in the gesture views/obj with an IME. Here is a starting skeleton of what I have for the IME so far. I would like to use android.gesture.Gesture/Prediction/GestureOverlayView/OnGesturePerformedListener. Does anyone have advice? -- CardinalFIB gestureIME.java public class gestureIME extends InputMethodService { private static Keyboard keyboard; private static KeyboardView kView; private int lastDisplayWidth; @Override public void onCreate() { super.onCreate(); } @Override public void onInitializeInterface() { int displayWidth; if (keyboard != null) { displayWidth = getMaxWidth(); if (displayWidth == lastDisplayWidth) return; else lastDisplayWidth = getMaxWidth(); } keyboard = new GestureKeyboard(this, R.xml.keyboard); } @Override public View onCreateInputView() { kView = (KeyboardView) getLayoutInflater().inflate(R.layout.input, null); kView.setOnKeyboardActionListener(kListener); kView.setKeyboard(keyboard); return kView; } @Override public View onCreateCandidatesView() { return null; } @Override public void onStartInputView(EditorInfo attribute, boolean restarting) { super.onStartInputView(attribute, restarting); kView.setKeyboard(keyboard); kView.closing(); //what does this do??? } @Override public void onStartInput(EditorInfo attribute, boolean restarting) { super.onStartInput(attribute, restarting); } @Override public void onFinishInput() { super.onFinishInput(); } public KeyboardView.OnKeyboardActionListener kListener = new KeyboardView.OnKeyboardActionListener() { @Override public void onKey(int keyCode, int[] otherKeyCodes) { if(keyCode==Keyboard.KEYCODE_CANCEL) handleClose(); if(keyCode==10) getCurrentInputConnection().commitText(String.valueOf((char) keyCode), 1); //keyCode RETURN } @Override public void onPress(int primaryCode) {} // TODO Auto-generated method stub @Override public void onRelease(int primaryCode) {} // TODO Auto-generated method stub @Override public void onText(CharSequence text) {} // TODO Auto-generated method stub @Override public void swipeDown() {} // TODO Auto-generated method stub @Override public void swipeLeft() {} // TODO Auto-generated method stub @Override public void swipeRight() {} // TODO Auto-generated method stub @Override public void swipeUp() {} // TODO Auto-generated method stub }; private void handleClose() { requestHideSelf(0); kView.closing(); } } GestureKeyboard.java package com.android.jt.gestureIME; import android.content.Context; import android.inputmethodservice.Keyboard; public class GestureKeyboard extends Keyboard { public GestureKeyboard(Context context, int xmlLayoutResId) { super(context, xmlLayoutResId); } } GesureKeyboardView.java package com.android.jt.gestureIME; import android.content.Context; import android.inputmethodservice.KeyboardView; import android.inputmethodservice.Keyboard.Key; import android.util.AttributeSet; public class GestureKeyboardView extends KeyboardView { public GestureKeyboardView(Context context, AttributeSet attrs) { super(context, attrs); } public GestureKeyboardView(Context context, AttributeSet attrs, int defStyle) { super(context, attrs, defStyle); } @Override protected boolean onLongPress(Key key) { return super.onLongPress(key); } } keyboard.xml <?xml version="1.0" encoding="utf-8"?> <Keyboard xmlns:android="http://schemas.android.com/apk/res/android" android:keyWidth="10%p" android:horizontalGap="0px" android:verticalGap="0px" android:keyHeight="@dimen/key_height" > <Row android:rowEdgeFlags="bottom"> <Key android:codes="-3" android:keyLabel="Close" android:keyWidth="20%p" android:keyEdgeFlags="left"/> <Key android:codes="10" android:keyLabel="Return" android:keyWidth="20%p" android:keyEdgeFlags="right"/> </Row> </Keyboard> input.xml <?xml version="1.0" encoding="utf-8"?> <com.android.jt.gestureIME.GestureKeyboardView xmlns:android="http://schemas.android.com/apk/res/android" android:id="@+id/gkeyboard" android:layout_alignParentBottom="true" android:layout_width="fill_parent" android:layout_height="wrap_content" />

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • Generating strongly biased radom numbers for tests

    - by nobody
    I want to run tests with randomized inputs and need to generate 'sensible' random numbers, that is, numbers that match good enough to pass the tested function's preconditions, but hopefully wreak havoc deeper inside its code. math.random() (I'm using Lua) produces uniformly distributed random numbers. Scaling these up will give far more big numbers than small numbers, and there will be very few integers. I would like to skew the random numbers (or generate new ones using the old function as a randomness source) in a way that strongly favors 'simple' numbers, but will still cover the whole range, I.e. extending up to positive/negative infinity (or ±1e309 for double). This means: numbers up to, say, ten should be most common, integers should be more common than fractions, numbers ending in 0.5 should be the most common fractions, followed by 0.25 and 0.75; then 0.125, and so on. A different description: Fix a base probability x such that probabilities will sum to one and define the probability of a number n as xk where k is the generation in which n is constructed as a surreal number1. That assigns x to 0, x2 to -1 and +1, x3 to -2, -1/2, +1/2 and +2, and so on. This gives a nice description of something close to what I want (it skews a bit too much), but is near-unusable for computing random numbers. The resulting distribution is nowhere continuous (it's fractal!), I'm not sure how to determine the base probability x (I think for infinite precision it would be zero), and computing numbers based on this by iteration is awfully slow (spending near-infinite time to construct large numbers). Does anyone know of a simple approximation that, given a uniformly distributed randomness source, produces random numbers very roughly distributed as described above? I would like to run thousands of randomized tests, quantity/speed is more important than quality. Still, better numbers mean less inputs get rejected. Lua has a JIT, so performance can't be reasonably predicted. Jumps based on randomness will break every prediction, and many calls to math.random() will be slow, too. This means a closed formula will be better than an iterative or recursive one. 1 Wikipedia has an article on surreal numbers, with a nice picture. A surreal number is a pair of two surreal numbers, i.e. x := {n|m}, and its value is the number in the middle of the pair, i.e. (for finite numbers) {n|m} = (n+m)/2 (as rational). If one side of the pair is empty, that's interpreted as increment (or decrement, if right is empty) by one. If both sides are empty, that's zero. Initially, there are no numbers, so the only number one can build is 0 := { | }. In generation two one can build numbers {0| } =: 1 and { |0} =: -1, in three we get {1| } =: 2, {|1} =: -2, {0|1} =: 1/2 and {-1|0} =: -1/2 (plus some more complex representations of known numbers, e.g. {-1|1} ? 0). Note that e.g. 1/3 is never generated by finite numbers because it is an infinite fraction – the same goes for floats, 1/3 is never represented exactly.

    Read the article

  • How to Create Auto Playlists in Windows Media Player 12

    - by DigitalGeekery
    Are you getting tired of the same old playlists in Windows Media Player? Today we’ll show you how to create dynamic auto playlists based on criteria you choose in WMP 12 in Windows 7. Auto Playlists In Library view, click on Create playlist dropdown arrow and select Create auto playlist. On the New Auto Playlist window type in a name for the playlist in the text box. Now we need to choose our criteria by which to filter your playlist. Select Click here to add criteria. For our example, we will create a playlist of songs that were added to the library in the last week from the Alternative genre. So, we will first select Date Added from the dropdown list. Many criteria will have addition options to configure. In the example below you will see that we have a few options to fine tune.   We will filter all the songs added to the library in the last 7 days. We will select Is After from the first dropdown list. Then select Last 7 Days from the second dropdown list. You can add multiple criteria to further filter your playlist. If you can’t find the criteria you are looking for, select “More” at the bottom of the dropdown list.   This will pull up a filter window with all the criteria. Select a filter and then click OK when finished.   From the Genre dropdown, we will select Alternative. If you’d like to add Pictures, Videos, or TV Shows to your auto playlists you can do so by selecting them from the dropdown list under And also include. You will then be able to select criteria for your pictures, videos, or TV shows from the dropdown list.   Finally, you can also add restrictions to your music such as the number of items, duration, or total size. We will limit the duration of our playlist to one hour by selecting Limit Total Duration To… Then type in 1 hour…Click OK.   Our library is automatically filtered and a playlist is created based on the criteria we selected. When additional songs are added to the Windows Media Player library, any of new songs that fit the criteria will automatically be added to the New Songs playlist. You can also save a copy of an auto playlist as a regular playlist. Switch to Playlists view by clicking Playlists from either the top menu or the navigation bar. Select the Play tab and then click Clear list to remove any tracks from the list pane.   Right-click on the playlist you want to save, select Add to, and then Play list. The songs from your auto playlist will appear as an Unsaved list on the list pane. Click Save list. Type in a name for your playlist. Your auto playlist will continue to change as you add or remove items from your Media Player library that meet the criteria you established. The new saved playlist we just created will stay as it is currently. Editing a Auto playlist is easy. Right-click on the playlist and select Edit. Now you are ready to enjoy your playlist. Conclusion Auto playlists are great way to keep your playlists fresh in Windows Media Player 12. Users can get creative and experiment with the wide variety of criteria to customize their listening experience. If you are new to playlists in Windows Media Player, you may want to check our our previous post on how to create custom playlists in Windows Media Player 12. Are you looking to get better sound from WMP 12? Take a look at how to improve playback using enhancements in Windows Media Player 12. Similar Articles Productive Geek Tips Create Custom Playlists in Windows Media Player 12Fixing When Windows Media Player Library Won’t Let You Add FilesInstall and Use the VLC Media Player on Ubuntu LinuxMake Windows Media Player Automatically Open in Mini Player ModeMake VLC Player Look like Windows Media Player 10 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Error Goblin Explains Windows Error Codes Twelve must-have Google Chrome plugins Cool Looking Skins for Windows Media Player 12 Move the Mouse Pointer With Your Face Movement Using eViacam Boot Windows Faster With Boot Performance Diagnostics Create Ringtones For Your Android Phone With RingDroid

    Read the article

  • WCF REST on .Net 4.0

    - by AngelEyes
    A simple and straight forward article taken from: http://christopherdeweese.com/blog2/post/drop-the-soap-wcf-rest-and-pretty-uris-in-net-4 Drop the Soap: WCF, REST, and Pretty URIs in .NET 4 Years ago I was working in libraries when the Web 2.0 revolution began.  One of the things that caught my attention about early start-ups using the AJAX/REST/Web 2.0 model was how nice the URIs were for their applications.  Those were my first impressions of REST; pretty URIs.  Turns out there is a little more to it than that. REST is an architectural style that focuses on resources and structured ways to access those resources via the web.  REST evolved as an “anti-SOAP” movement, driven by developers who did not want to deal with all the complexity SOAP introduces (which is al lot when you don’t have frameworks hiding it all).  One of the biggest benefits to REST is that browsers can talk to rest services directly because REST works using URIs, QueryStrings, Cookies, SSL, and all those HTTP verbs that we don’t have to think about anymore. If you are familiar with ASP.NET MVC then you have been exposed to rest at some level.  MVC is relies heavily on routing to generate consistent and clean URIs.  REST for WCF gives you the same type of feel for your services.  Let’s dive in. WCF REST in .NET 3.5 SP1 and .NET 4 This post will cover WCF REST in .NET 4 which drew heavily from the REST Starter Kit and community feedback.  There is basic REST support in .NET 3.5 SP1 and you can also grab the REST Starter Kit to enable some of the features you’ll find in .NET 4. This post will cover REST in .NET 4 and Visual Studio 2010. Getting Started To get started we’ll create a basic WCF Rest Service Application using the new on-line templates option in VS 2010: When you first install a template you are prompted with this dialog: Dude Where’s my .Svc File? The WCF REST template shows us the new way we can simply build services.  Before we talk about what’s there, let’s look at what is not there: The .Svc File An Interface Contract Dozens of lines of configuration that you have to change to make your service work REST in .NET 4 is greatly simplified and leverages the Web Routing capabilities used in ASP.NET MVC and other parts of the web frameworks.  With REST in .NET 4 you use a global.asax to set the route to your service using the new ServiceRoute class.  From there, the WCF runtime handles dispatching service calls to the methods based on the Uri Templates. global.asax using System; using System.ServiceModel.Activation; using System.Web; using System.Web.Routing; namespace Blog.WcfRest.TimeService {     public class Global : HttpApplication     {         void Application_Start(object sender, EventArgs e)         {             RegisterRoutes();         }         private static void RegisterRoutes()         {             RouteTable.Routes.Add(new ServiceRoute("TimeService",                 new WebServiceHostFactory(), typeof(TimeService)));         }     } } The web.config contains some new structures to support a configuration free deployment.  Note that this is the default config generated with the template.  I did not make any changes to web.config. web.config <?xml version="1.0"?> <configuration>   <system.web>     <compilation debug="true" targetFramework="4.0" />   </system.web>   <system.webServer>     <modules runAllManagedModulesForAllRequests="true">       <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,            System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />     </modules>   </system.webServer>   <system.serviceModel>     <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>     <standardEndpoints>       <webHttpEndpoint>         <!--             Configure the WCF REST service base address via the global.asax.cs file and the default endpoint             via the attributes on the <standardEndpoint> element below         -->         <standardEndpoint name="" helpEnabled="true" automaticFormatSelectionEnabled="true"/>       </webHttpEndpoint>     </standardEndpoints>   </system.serviceModel> </configuration> Building the Time Service We’ll create a simple “TimeService” that will return the current time.  Let’s start with the following code: using System; using System.ServiceModel; using System.ServiceModel.Activation; using System.ServiceModel.Web; namespace Blog.WcfRest.TimeService {     [ServiceContract]     [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]     [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]     public class TimeService     {         [WebGet(UriTemplate = "CurrentTime")]         public string CurrentTime()         {             return DateTime.Now.ToString();         }     } } The endpoint for this service will be http://[machinename]:[port]/TimeService.  To get the current time http://[machinename]:[port]/TimeService/CurrentTime will do the trick. The Results Are In Remember That Route In global.asax? Turns out it is pretty important.  When you set the route name, that defines the resource name starting after the host portion of the Uri. Help Pages in WCF 4 Another feature that came from the starter kit are the help pages.  To access the help pages simply append Help to the end of the service’s base Uri. Dropping the Soap Having dabbled with REST in the past and after using Soap for the last few years, the WCF 4 REST support is certainly refreshing.  I’m currently working on some REST implementations in .NET 3.5 and VS 2008 and am looking forward to working on REST in .NET 4 and VS 2010.

    Read the article

  • Blending the Sketchflow Action

    - by GeekAgilistMercenary
    Started a new Sketchflow Prototype in Expression Blend recently and documented each of the steps.  This blog entry covers some of those steps, which are the basic elements of any prototype.  I will have more information regarding design, prototype creation, and the process of the initial phases for development in the future.  For now, I hope you enjoy this short walk through.  Also, be sure to check out my last quick entry on Sketchflow. I started off with a Sketchflow Project, just like I did in my previous entry (more specifics in that entry about how to manipulate and build out the Sketchflow Map). Once I created the project I setup the following Sketchflow Map. The CoreNavigation is a ComponentScreen setup solely for the page navigation at the top of the screen.  The XAML markup in case you want to create a Component Screen with the same design is included below. <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity" xmlns:pb="clr-namespace:Microsoft.Expression.Prototyping.Behavior;assembly=Microsoft.Expression.Prototyping.Interactivity" x:Class="RapidPrototypeSketchScreens.CoreNavigation" d:DesignWidth="624" d:DesignHeight="49" Height="49" Width="624">   <Grid x:Name="LayoutRoot"> <TextBlock HorizontalAlignment="Stretch" Margin="307,3,0,0" Style="{StaticResource TitleCenter-Sketch}" Text="Aütøchart Scorecards" TextWrapping="Wrap"> <i:Interaction.Triggers> <i:EventTrigger EventName="MouseLeftButtonDown"> <pb:NavigateToScreenAction TargetScreen="RapidPrototypeSketchScreens.Screen_1"/> </i:EventTrigger> </i:Interaction.Triggers> </TextBlock> <Button HorizontalAlignment="Left" Margin="164,8,0,11" Style="{StaticResource Button-Sketch}" Width="144" Content="Scorecard"> <i:Interaction.Triggers> <i:EventTrigger EventName="Click"> <pb:NavigateToScreenAction TargetScreen="RapidPrototypeSketchScreens.Screen_1_2"/> </i:EventTrigger> </i:Interaction.Triggers> </Button> <Button HorizontalAlignment="Left" Margin="8,8,0,11" Style="{StaticResource Button-Sketch}" Width="152" Content="Standard Reports"> <i:Interaction.Triggers> <i:EventTrigger EventName="Click"> <pb:NavigateToScreenAction TargetScreen="RapidPrototypeSketchScreens.Screen_1_1"/> </i:EventTrigger> </i:Interaction.Triggers> </Button> </Grid> </UserControl> Now that the CoreNavigation Component Screen is done I built out each of the others.  In each of those screens I included the CoreNavigation Screen (all those little green lines in the image) as the top navigation.  In order to do that, as I created each of the pages I would hover over the CoreNavigation Object in the Sketchflow Map.  When the utilities drawer (the small menu that pops down under a node when you hover over it) shows click on the third little icon and drag it onto the page node you want a navigation screen on. Once I created all the screens I setup the navigation by opening up each screen and right clicking on the objects that needed to point to somewhere else in the prototype. Once I was done with the main page, my Home Navigation Page, it looked something like this in the Expression Blend Designer. I fleshed out each of the additional screens.  Once I was done I wanted to try out the deployment package.  The way to deploy a Sketchflow Prototype is to merely click on File –> Package SketchFlow Project and a prompt will appear.  In the prompt enter what you want the package to be called. I like to see the files generated afterwards too, so I checked the box to see that.  When Expression Blend is done generating everything you’ll have a directory like the one shown below, with all the needed files for deployment. Now these files can be copied or moved to any location for viewing.  One can even copy them (such as via FTP) to a server location to share with others.  Once they are deployed and you run the "TestPage.html" the other features of the Sketchflow Package are available. In the image below I have tagged a few sections to show the Sketchflow Player Features.  To the top left is the navigation, which provides a clearly defined area of movement in a list.  To the center right is the actual prototype application.  I have placed lists of things and made edits.  On the left hand side is the highlight feature, which is available in the Feedback section of the lower left.  On the right hand list I underlined the Autochart with an orange marker, and marked out two list items with a red marker. In the lower left hand side in the Feedback section is also an area to type in your feedback.  This can be useful for time based feedback, when you post this somewhere and want people to provide subsequent follow up feedback. Overall lots of great features, that enable some fairly rapid prototyping with customers.  Once one is familiar with the steps and parts of this Sketchflow Prototype Capabilities it is easy to step through an application without even stopping.  It really is that easy.  So get hold of Expression Blend 3 and get ramped up on Sketchflow, it will pay off in the design phases to do so! Original Entry

    Read the article

  • Big Data – What is Big Data – 3 Vs of Big Data – Volume, Velocity and Variety – Day 2 of 21

    - by Pinal Dave
    Data is forever. Think about it – it is indeed true. Are you using any application as it is which was built 10 years ago? Are you using any piece of hardware which was built 10 years ago? The answer is most certainly No. However, if I ask you – are you using any data which were captured 50 years ago, the answer is most certainly Yes. For example, look at the history of our nation. I am from India and we have documented history which goes back as over 1000s of year. Well, just look at our birthday data – atleast we are using it till today. Data never gets old and it is going to stay there forever.  Application which interprets and analysis data got changed but the data remained in its purest format in most cases. As organizations have grown the data associated with them also grew exponentially and today there are lots of complexity to their data. Most of the big organizations have data in multiple applications and in different formats. The data is also spread out so much that it is hard to categorize with a single algorithm or logic. The mobile revolution which we are experimenting right now has completely changed how we capture the data and build intelligent systems.  Big organizations are indeed facing challenges to keep all the data on a platform which give them a  single consistent view of their data. This unique challenge to make sense of all the data coming in from different sources and deriving the useful actionable information out of is the revolution Big Data world is facing. Defining Big Data The 3Vs that define Big Data are Variety, Velocity and Volume. Volume We currently see the exponential growth in the data storage as the data is now more than text data. We can find data in the format of videos, musics and large images on our social media channels. It is very common to have Terabytes and Petabytes of the storage system for enterprises. As the database grows the applications and architecture built to support the data needs to be reevaluated quite often. Sometimes the same data is re-evaluated with multiple angles and even though the original data is the same the new found intelligence creates explosion of the data. The big volume indeed represents Big Data. Velocity The data growth and social media explosion have changed how we look at the data. There was a time when we used to believe that data of yesterday is recent. The matter of the fact newspapers is still following that logic. However, news channels and radios have changed how fast we receive the news. Today, people reply on social media to update them with the latest happening. On social media sometimes a few seconds old messages (a tweet, status updates etc.) is not something interests users. They often discard old messages and pay attention to recent updates. The data movement is now almost real time and the update window has reduced to fractions of the seconds. This high velocity data represent Big Data. Variety Data can be stored in multiple format. For example database, excel, csv, access or for the matter of the fact, it can be stored in a simple text file. Sometimes the data is not even in the traditional format as we assume, it may be in the form of video, SMS, pdf or something we might have not thought about it. It is the need of the organization to arrange it and make it meaningful. It will be easy to do so if we have data in the same format, however it is not the case most of the time. The real world have data in many different formats and that is the challenge we need to overcome with the Big Data. This variety of the data represent  represent Big Data. Big Data in Simple Words Big Data is not just about lots of data, it is actually a concept providing an opportunity to find new insight into your existing data as well guidelines to capture and analysis your future data. It makes any business more agile and robust so it can adapt and overcome business challenges. Tomorrow In tomorrow’s blog post we will try to answer discuss Evolution of Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • XNA Notes 002

    - by George Clingerman
    This past week (much like every week in the XNA community) was filled with things happening and people doing cool things (and getting noticed for doing cool things!). You can definitely tell there are some Xbox LIVE Indie game developers starting to make some names for themselves. Can’t wait to name drop them at bars. Me- “Oh you played Game X? Yeah, I know the guy that made that. Pretty cool guy.” Yeah, I’ll be THAT guy.   Time Critical XNA News 30 days left to submit XBLIGs made in XNA Game Studio 3.1 http://blogs.msdn.com/b/xna/archive/2011/01/08/30-days-left-to-submit-xna-gs-3-1-games-to-app-hub.aspx Jeromy Walsh wants you to know his XNA 4.0 Winter Workshop starting soon, go get signed up! And the forum is now LIVE on GameDev.net http://gamedevelopedia.com/ http://tinyurl.com/4gg2cfv The XNA Team Per Nick Gravelyn, Aaron Stebner’s blog post is a must read for icons on Windows Phone http://forums.create.msdn.com/forums/p/72022/439597.aspx#439597 http://blogs.msdn.com/b/astebner/archive/2010/10/01/10070507.aspx Shawn Hargreaves writes about Sprite Billboards in a 3D world http://blogs.msdn.com/b/shawnhar/archive/2011/01/12/spritebatch-billboards-in-a-3d-world.aspx XNA MVPs Andy “The ZMan” Dunn wants YOU to come to the MVP Summit and run a 5K http://www.indiegameguy.com/blogs/zman/archive/2010/12/26/come-to-the-mvp-summit-and-run-a-5k-yes-you.aspx Jim Perry updates his forum signature just to make it clear that he’s not speaking for Microsoft or giving official information (LOL, thanks Jim, now if only people will take the time to read that...) XNA MVP | Please use the Forum Search and read the Forum FAQs | My posts are not official info http://forums.create.msdn.com/forums/p/70849/439613.aspx#439613 XNA Developers Robert Boyd (@werezombie) working hard at converting his RPG engine used to make Breath of Death VII and Chtulu Saves the World to XNA 4.0. If you haven’t done the upgrade yet yourself, might be useful to read back through his tweets and recent forum posts to see the problems/solutions he’s encountered. http://forums.create.msdn.com/forums/p/71834/438099.aspx#438099 http://www.twitter.com/werezompire SpynDoctorGames is in the final phase before the release of Your Doodles are Bugged for the PC! Going to be interesting to watch as more XNA game developers explore the PC game market for their games. http://twitter.com/SpynDoctorGames/statuses/24503173217521664 http://www.spyn-doctor.de @DrMistry shares some details of his next title YoYoYo http://www.mstargames.co.uk/mistryblogmain/35-genblog/177-a-new-year-a-new-game-and-maybe-a-new-approach.html Travis Woodward (@RabidLionGames) has a blog post coming this weekend on Farseer and Mario-like platformer movement. http://twitter.com/RabidLionGames/statuses/24992762021548032 http://www.rabidlion.com/ S4G Interview with Radiangames http://n4g.com/news/679492/s4g-interview-with-radiangames XBLAratings.com interviews Steve Flores (@DragonDivide) developer of Alpha Squad http://www.xblaratings.com/developer-qaa/3621-alpha-squad-developer-interview XBox LIVE Indie Games If you haven’t been reading the roundups on IndieGames by NaviFairy on GayGamer, you’ve been missing out! http://gaygamer.net/2011/01/xbox_indie_review_roundup_1112.html Armless Octopus posts the Top 20 Games of 2010 Part 1 http://www.armlessoctopus.com/2011/01/10/top-20-xbox-live-indie-games-of-2010-part-1/ Armless Octopus posts the Top 20 Games of 2010 Part 2 http://www.armlessoctopus.com/2011/01/12/top-20-xbox-live-indie-games-of-2010-%E2%80%93-part-2/ Xbox LIVE Indie Game Reviews http://www.gamemarx.com/ Don’t forget to be following @XboxHornet . That’s a great way to snag free copies of Xbox LIVE Indie Games http://twitter.com/XboxHornet/statuses/24471103808208896 http://www.xboxhornet.com/wordpress/ Xbox LIVE Indie Game Review posts the top 20 Xbox 360 LIVE Indie Games of 2010 http://www.xbox-360-community-games-reviews.com/top-20-best-xbox-360-live-indie-games-of-2010/ VVGtv to Stream #XBLIG Again! Help out if you can. http://vvgtv.com/2011/01/07/vvgtv-to-stream-xblig-again/ Indie Gamer Magazine Issue 14 has a look at the Xbox LIVE Winter Indie Game Uprisiing http://www.indiegamemag.com/issue14/ XNA Game Development Andrew Russell announced and asked for help in his development of ExEn: XNA for iPhone, Android and Silverlight http://rockethub.com/projects/752-exen-xna-for-iphone-android-and-silverlight App Hub forums letting you down? Don’t forget about StackOverflow and the game development specific version gamedev.stackexchange http://stackoverflow.com/questions/tagged/xna http://gamedev.stackexchange.com/questions/tagged/xna Transmute gets an update from Aaron Foley (@slyprid) and you can now add and visually edit parallax layers to your 2D tile game. http://twitpic.com/3nudj0 http://twitter.com/slyprid/statuses/23418379574448128 http://forgottenstarstudios.com/Transmute/default.html Webcomics Weekly #75 touches on some feelings I’ve seen people try to express (myself included) when talking about game development and what types of games should be released for XBLIG http://www.pvponline.com/2011/01/05/webcomics-weekly-75-sour-oats/ Setting up a new PC for XNA development? Here’s a site that helps you quickly build a installer for all the most common applications developers use. http://ninite.com/ Fun wew thread on the XNA forums asking XBLIG/XNA developers just what their Top 10 favorite video games of all time are. http://forums.create.msdn.com/forums/107.aspx Christopher Hill (@Xalterax) stumbled across an entire community that does nothing but create box art. This is a great potential resource for Xbox LIVE Indie Game developers to get some awesome box art for their games. http://forums.create.msdn.com/forums/p/46582/441451.aspx#441451 http://www.vgboxart.com/browse/plat/360/ Don’t forget about the XNA Wiki, fantastic community resource (and roll up those sleeves and contribute already!) http://xnawiki.com/index.php?title=Main_Page

    Read the article

  • ACORD LOMA Session Highlights Policy Administration Trends

    - by [email protected]
    Helen Pitts, senior product marketing manager for Oracle Insurance, attended and is blogging from the ACORD LOMA Insurance Forum this week. Above: Paul Vancheri, Chief Information Officer, Fidelity Investments Life Insurance Company. Vancheri gave a presentation during the ACORD LOMA Insurance Systems Forum about the key elements of modern policy administration systems and how insurers can mitigate risk during legacy system migrations to safely introduce new technologies. When I had a few particularly challenging honors courses in college my father, a long-time technology industry veteran, used to say, "If you don't know how to do something go ask the experts. Find someone who has been there and done that, don't be afraid to ask the tough questions, and apply and build upon what you learn." (Actually he still offers this same advice today.) That's probably why my favorite sessions at industry events, like the ACORD LOMA Insurance Forum this week, are those that include insight on industry trends and case studies from carriers who share their experiences and offer best practices based upon their own lessons learned. I had the opportunity to attend a particularly insightful session Wednesday as Craig Weber, senior vice president of Celent's Insurance practice, and Paul Vancheri, CIO of Fidelity Life Investments, presented, "Managing the Dynamic Insurance Landscape: Enabling Growth and Profitability with a Modern Policy Administration System." Policy Administration Trends Growing the business is the top issue when it comes to IT among both life and annuity and property and casualty carriers according to Weber. To drive growth and capture market share from competitors, carriers are looking to modernize their core insurance systems, with 65 percent of those CIOs participating in recent Celent research citing plans to replace their policy administration systems. Weber noted that there has been continued focus and investment, particularly in the last three years, by software and technology vendors to offer modern, rules-based, configurable policy administration solutions. He added that these solutions are continuing to evolve with the ongoing aim of helping carriers rapidly meet shifting business needs--whether it is to launch new products to market faster than the competition, adapt existing products to meet shifting consumer and /or regulatory demands, or to exit unprofitable markets. He closed by noting the top four trends for policy administration either in the process of being adopted today or on the not-so-distant horizon for the future: Underwriting and service desktops New business automation Convergence of ultra-configurable and domain content-rich systems Better usability and screen design Mitigating the Risk When Making the Decision to Modernize Third-party analyst research from advisory firms like Celent was a key part of the due diligence process for Fidelity as it sought a replacement for its legacy policy administration system back in 2005, according to Vancheri. The company's business opportunities were outrunning system capability. Its legacy system had not been upgraded in several years and was deficient from a functionality and currency standpoint. This was constraining the carrier's ability to rapidly configure and bring new and complex products to market. The company sought a new, modern policy administration system, one that would enable it to keep pace with rapid and often unexpected industry changes and ahead of the competition. A cross-functional team that included representatives from finance, actuarial, operations, client services and IT conducted an extensive selection process. This process included deep documentation review, pilot evaluations, demonstrations of required functionality and complex problem-solving, infrastructure integration capability, and the ability to meet the company's desired cost model. The company ultimately selected an adaptive policy administration system that met its requirements to: Deliver ease of use - eliminating paper and rework, while easing the burden on representatives to sell and service annuities Provide customer parity - offering Web-based capabilities in alignment with the company's focus on delivering a consistent customer experience across its business Deliver scalability, efficiency - enabling automation, while simplifying and standardizing systems across its technology stack Offer desired functionality - supporting Fidelity's product configuration / rules management philosophy, focus on customer service and technology upgrade requirements Meet cost requirements - including implementation, professional services and licenses fees and ongoing maintenance Deliver upon business requirements - enabling the ability to drive time to market for new products and flexibility to make changes Best Practices for Addressing Implementation Challenges Based upon lessons learned during the company's implementation, Vancheri advised carriers to evaluate staffing capabilities and cultural impacts, review business requirements to avoid rebuilding legacy processes, factor in dependent systems, and review policies and practices to secure customer data. His formula for success: upfront planning + clear requirements = precision execution. Achieving a Return on Investment Vancheri said the decision to replace their legacy policy administration system and deploy a modern, rules-based system--before the economic downturn occurred--has been integral in helping the company adapt to shifting market conditions, while enabling growth in its direct channel sales of variable annuities. Since deploying its new policy admin system, the company has reduced its average time to market for new products from 12-15 months to 4.5 months. The company has since migrated its other products to the new system and retired its legacy system, significantly decreasing its overall product development cycle. From a processing standpoint Vancheri noted the company has achieved gains in automation, information, and ease of use, resulting in improved real-time data edits, controls for better quality, and tax handling capability. Plus, with by having only one platform to manage, the company has simplified its IT environment and is well positioned to deliver system enhancements for greater efficiencies. Commitment to Continuing the Investment In the short and longer term future Vancheri said the company plans to enhance business functionality to support money movement, wire automation, divorce processing on payout contracts and cost-based tracking improvements. It also plans to continue system upgrades to remain current as well as focus on further reducing cycle time, driving down maintenance costs, and integrating with other products. Helen Pitts is senior product marketing manager for Oracle Insurance focused on life/annuities and enterprise document automation.

    Read the article

  • What Counts For a DBA: Simplicity

    - by Louis Davidson
    Too many computer processes do an apparently simple task in a bizarrely complex way. They remind me of this strip by one of my favorite artists: Rube Goldberg. In order to keep the boss from knowing one was late, a process is devised whereby the cuckoo clock kisses a live cuckoo bird, who then pulls a string, which triggers a hat flinging, which in turn lands on a rod that removes a typewriter cover…and so on. We rely on creating automated processes to keep on top of tasks. DBAs have a lot of tasks to perform: backups, performance tuning, data movement, system monitoring, and of course, avoiding being noticed.  Every day, there are many steps to perform to maintain the database infrastructure, including: checking physical structures, re-indexing tables where needed, backing up the databases, checking those backups, running the ETL, and preparing the daily reports and yes, all of these processes have to complete before you can call it a day, and probably before many others have started that same day. Some of these tasks are just naturally complicated on their own. Other tasks become complicated because the database architecture is excessively rigid, and we often discover during “production testing” that certain processes need to be changed because the written requirements barely resembled the actual customer requirements.   Then, with no time to change that rigid structure, we are forced to heap layer upon layer of code onto the problematic processes. Instead of a slight table change and a new index, we end up with 4 new ETL processes, 20 temp tables, 30 extra queries, and 1000 lines of SQL code.  Report writers then need to build reports and make magical numbers appear from those toxic data structures that are overly complex and probably filled with inconsistent data. What starts out as a collection of fairly simple tasks turns into a Goldbergian nightmare of daily processes that are likely to cause your dinner to be interrupted by the smartphone doing the vibration dance that signifies trouble at the mill. So what to do? Well, if it is at all possible, simplify the problem by either going into the code and refactoring the complex code to simple, or taking all of the processes and simplifying them into small, independent, easily-tested steps.  The former approach usually requires an agreement on changing underlying structures that requires countless mind-numbing meetings; while the latter can generally be done to any complex process without the same frustration or anger, though it will still leave you with lots of steps to complete, the ability to test each step independently will definitely increase the quality of the overall process (and with each step reporting status back, finding an actual problem within the process will be definitely less unpleasant.) We all know the principle behind simplifying a sequence of processes because we learned it in math classes in our early years of attending school, starting with elementary school. In my 4 years (ok, 9 years) of undergraduate work, I remember pretty much one thing from my many math classes that I apply daily to my career as a data architect, data programmer, and as an occasional indentured DBA: “show your work”. This process of showing your work was my first lesson in simplification. Each step in the process was in fact, far simpler than the entire process.  When you were working an equation that took both sides of 4 sheets of paper, showing your work was important because the teacher could see every step, judge it, and mark it accordingly.  So often I would make an error in the first few lines of a problem which meant that the rest of the work was actually moving me closer to a very wrong answer, no matter how correct the math was in the subsequent steps. Yet, when I got my grade back, I would sometimes be pleasantly surprised. I passed, yet missed every problem on the test. But why? While I got the fact that 1+1=2 wrong in every problem, the teacher could see that I was using the right process. In a computer process, the process is very similar. We take complex processes, show our work by storing intermediate values, and test each step independently. When a process has 100 steps, each step becomes a simple step that is tested and verified, such that there will be 100 places where data is stored, validated, and can be checked off as complete. If you get step 1 of 100 wrong, you can fix it and be confident (that if you did your job of testing the other steps better than the one you had to repair,) that the rest of the process works. If you have 100 steps, and store the state of the process exactly once, the resulting testable chunk of code will be far more complex and finding the error will require checking all 100 steps as one, and usually it would be easier to find a specific needle in a stack of similarly shaped needles.  The goal is to strive for simplicity either in the solution, or at least by simplifying every process down to as many, independent, testable, simple tasks as possible.  For the tasks that really can’t be done completely independently, minimally take those tasks and break them down into simpler steps that can be tested independently.  Like working out division problems longhand, have each step of the larger problem verified and tested.

    Read the article

  • The Arab HEUG is now a reality, and other random thoughts

    - by user9147039
    I just returned from Doha, Qatar where the first of its kind HEUG (Higher Education User Group) meeting for institutions in the Middle East and North Africa was held at Qatar University and jointly hosted by Damman University from Saudi Arabia. Over 80 delegates attended including representation from education institutions in Oman, Saudi Arabia, Lebanon, and Qatar. There are many other regional HEUG organizations in place (in Australia/New Zealand, APAC, EMEA, as well as smaller regional HEUG’s in the Netherlands, South Africa, and in regions of the US), but it was truly an accomplishment to see this Middle East/North Africa group organize and launch their chapter with a meeting of this quality. To be known as the Arab HEUG going forward, I am excited about the prospects for sharing between the institutions and for the growth of Oracle solutions in the region. In particular the hosts for the event (Qatar University) did a masterful job with logistics and organization, and the quality of the event was a testament to their capabilities. Among the more interesting and enlightening presentations I attended were one from Dammam University on the lessons learned from their implementation of Campus Solutions and transition off of Banner, as well as the use by Qatar University E-business Suite for grants management (both pre-and post-award). The most notable fact coming from this latter presentation was the fit (89%) of e-Business Suite Grants to the university’s requirements. In a few weeks time we will be convening the 5th meeting of the Oracle Education & Research Industry Strategy Council in Redwood Shores (5th since my advent into my current role). The main topics of discussion will be around our Higher Education Applications Strategy for the future (including cloud approaches to ERP (HCM, Finance, and Student Information Systems), how some cases studies on the benefits of leveraging delivered functionality and extensibility in the software (versus customization). On the second day of the event we will turn our attention to Oracle in Research and also budgeting and planning in higher education. Both of these sessions will include significant participation from council members in the form of panel discussions. Our EVP’s for Systems (John Fowler) and for Global Cloud Services and North America application sales (Joanne Olson) will join us for the discussion. I recently read a couple of articles that were surprising to me. The first was from Inside Higher Ed on October 15 entitled, “As colleges prepare for major software upgrades, Kuali tries to woo them from corporate vendors.” It continues to disappointment that after all this time we are still debating whether it is better to build enterprise software through open or community source initiatives when fully functional, flexible, supported, and widely adopted options exist in the marketplace. Over a decade or more ago when these solutions were relatively immature and there was a great deal of turnover in the market I could appreciate the initiatives like Kuali. But let’s not kid ourselves – the real objective of this movement is to counter a perceived predatory commercial software industry. Again, when commercial solutions are deployed as written without significant customization, and standard business processes are adopted, the cost of these solutions (relative to the value delivered) is quite low, and certain much lower than the massive investment (and risk) in in-house developers to support a bespoke community source system. In this era of cost pressures in education and the need to refocus resources on teaching, learning, and research, I believe it’s bordering on irresponsible to continue to pursue open-source ERP. Many of the adopter’s total costs are staggering and have little to show for their efforts and expended resources. The second article was recently in the Chronicle of Higher Education and was entitled “’Big Data’ Is Bunk, Obama Campaign’s Tech Guru Tells University Leaders.” This one was so outrageous I almost don’t want to legitimize it by referencing it here. In the article the writer relays statements made by Harper Reed, President Obama’s former CTO for his 2012 re-election campaign, that big data solutions in education have no relevance and are akin to snake oil. He goes on to state that while he’s a fan of data-driven decision making in education, most of the necessary analysis can be accomplished in Excel spreadsheets. Yeah… right. This is exactly what ails education (higher education in particular). Dozens of shadow and siloed systems running on spreadsheets with limited-to-no enterprise wide initiatives to harness the data-rich environment that is a higher ed institution and transform the data into useable information. I’ll grant Mr. Reed that “Big Data” is overused and hackneyed, but imperatives like improving student success in higher education are classic big data problems that data-mining and predictive analytics can address. Further, higher ed need to be producing a massive amount more data scientists and analysts than are currently in the pipeline, to further this discipline and application of these tools to many many other problems across multiple industries.

    Read the article

  • Agile Development Requires Agile Support

    - by Matt Watson
    Agile developmentAgile development has become the standard methodology for application development. The days of long term planning with giant Gantt waterfall charts and detailed requirements is fading away. For years the product planning process frustrated product owners and businesses because no matter the plan, nothing ever went to plan. Agile development throws the detailed planning out the window and instead focuses on giving developers some basic requirements and pointing them in the right direction. Constant collaboration via quick iterations with the end users, product owners, and the development team helps ensure the project is done correctly.  The various agile development methodologies have helped greatly with creating products faster, but not without causing new problems. Complicated application deployments now occur weekly or monthly. Most of the products are web-based and deployed as a software service model. System performance and availability of these apps becomes mission critical. This is all much different from the old process of mailing new releases of client-server apps on CD once per quarter or year.The steady stream of new products and product enhancements puts a lot of pressure on IT operations to keep up with the software deployments and adding infrastructure capacity. The problem is most operations teams still move slowly thanks to change orders, documentation, procedures, testing and other processes. Operations can slow the process down and push back on the development team in some organizations. The DevOps movement is trying to solve some of these problems by integrating the development and operations teams more together. Rapid change introduces new problemsThe rapid product change ultimately creates some application problems along the way. Higher rates of change increase the likelihood of new application defects. Delivering applications as a software service also means that scalability of applications is critical. Development teams struggle to keep up with application defects and scalability concerns in their applications. Fixing application problems is a never ending job for agile development teams. Fixing problems before your customers do and fixing them quickly is critical. Most companies really struggle with this due to the divide between the development and operations groups. Fixing application problems typically requires querying databases, looking at log files, reviewing config files, reviewing error logs and other similar tasks. It becomes difficult to work on new features when your lead developers are working on defects from the last product version. Developers need more visibilityThe problem is most developers are not given access to see server and application information in the production environments. The operations team doesn’t trust giving all the developers the keys to the kingdom to log in to production and poke around the servers. The challenge is either give them no access, or potentially too much access. Those with access can still waste time figuring out the location of the application and how to connect to it over VPN. In addition, reproducing problems in test environments takes too much time and isn't always possible. System administrators spend a lot of time helping developers track down server information. Most companies give key developers access to all of the production resources so they can help resolve application defects. The problem is only those key people have access and they become a bottleneck. They end up spending 25-50% of their time on a daily basis trying to solve application issues because they are the only ones with access. These key employees’ time is best spent on strategic new projects, not addressing application defects. This job should fall to entry level developers, provided they have access to all the information they need to troubleshoot the problems.The solution to agile application support is giving all the developers limited access to the production environment and all the server information they need to see. Some companies create their own solutions internally to collect log files, centralize errors or other things to address the problem. Some developers even have access to server monitoring or other tools. But they key is giving them access to everything they need so they can see the full picture and giving access to the whole team. Giving access to everyone scales up the application support team and creates collaboration around providing improved application support.Stackify enables agile application supportStackify has created a solution that can give all developers a secure and read only view of the entire production server environment without console or remote desktop access.They provide a web application that provides real time visibility to the important information that developers need to see. An application centric view enables them to see all of their apps across multiple datacenters and environments. They don’t need to know where the application is deployed, just the name of the application to find it and dig in to see more. All your developers can see server health, application health, log files, config files, windows event viewer, deployment history, application notes, and much more. They can receive email and text alerts when problems arise and even safely query your production databases.Stackify enables companies that do agile development to scale up their application support team by getting more team members involved. The lead developers can spend more time on new projects. Application issues can be fixed quicker than ever. Operations can spend less time helping developers collect server information. Agile application support starts with Stackify. Visit Stackify.com to learn more.

    Read the article

  • 2D Platformer Collision Handling

    - by defender-zone
    Hello, everyone! I am trying to create a 2D platformer (Mario-type) game and I am some having some issues with handling collisions properly. I am writing this game in C++, using SDL for input, image loading, font loading, etcetera. I am also using OpenGL via the FreeGLUT library in conjunction with SDL to display graphics. My method of collision detection is AABB (Axis-Aligned Bounding Box), which is really all I need to start with. What I need is an easy way to both detect which side the collision occurred on and handle the collisions properly. So, basically, if the player collides with the top of the platform, reposition him to the top; if there is a collision to the sides, reposition the player back to the side of the object; if there is a collision to the bottom, reposition the player under the platform. I have tried many different ways of doing this, such as trying to find the penetration depth and repositioning the player backwards by the penetration depth. Sadly, nothing I've tried seems to work correctly. Player movement ends up being very glitchy and repositions the player when I don't want it to. Part of the reason is probably because I feel like this is something so simple but I'm over-thinking it. If anyone thinks they can help, please take a look at the code below and help me try to improve on this if you can. I would like to refrain from using a library to handle this (as I want to learn on my own) or the something like the SAT (Separating Axis Theorem) if at all possible. Thank you in advance for your help! void world1Level1CollisionDetection() { for(int i; i < blocks; i++) { if (de2dCheckCollision(ball,block[i],0.0f,0.0f)==true) { int up = 0; int left = 0; int right = 0; int down = 0; if(ball.coords[0] < block[i].coords[0] && block[i].coords[0] < ball.coords[2] && ball.coords[2] < block[i].coords[2]) { left = 1; } if(block[i].coords[0] < ball.coords[0] && ball.coords[0] < block[i].coords[2] && block[i].coords[2] < ball.coords[2]) { right = 1; } if(ball.coords[1] < block[i].coords[1] && block[i].coords[1] < ball.coords[3] && ball.coords[3] < block[i].coords[3]) { up = 1; } if(block[i].coords[1] < ball.coords[1] && ball.coords[1] < block[i].coords[3] && block[i].coords[3] < ball.coords[3]) { down = 1; } cout << left << ", " << right << ", " << up << ", " << down << ", " << endl; if (left == 1) { ball.coords[0] = block[i].coords[0] - 16.0f; ball.coords[2] = block[i].coords[0] - 0.0f; } if (right == 1) { ball.coords[0] = block[i].coords[2] + 0.0f; ball.coords[2] = block[i].coords[2] + 16.0f; } if (down == 1) { ball.coords[1] = block[i].coords[3] + 0.0f; ball.coords[3] = block[i].coords[3] + 16.0f; } if (up == 1) { ball.yspeed = 0.0f; ball.gravity = 0.0f; ball.coords[1] = block[i].coords[1] - 16.0f; ball.coords[3] = block[i].coords[1] - 0.0f; } } if (de2dCheckCollision(ball,block[i],0.0f,0.0f)==false) { ball.gravity = -0.5f; } } } To explain what some of this code means: The blocks variable is basically an integer that is storing the amount of blocks, or platforms. I am checking all of the blocks using a for loop, and the number that the loop is currently on is represented by integer i. The coordinate system might seem a little weird, so that's worth explaining. coords[0] represents the x position (left) of the object (where it starts on the x axis). coords[1] represents the y position (top) of the object (where it starts on the y axis). coords[2] represents the width of the object plus coords[0] (right). coords[3] represents the height of the object plus coords[1] (bottom). de2dCheckCollision performs an AABB collision detection. Up is negative y and down is positive y, as it is in most games. Hopefully I have provided enough information for someone to help me successfully. If there is something I left out that might be crucial, let me know and I'll provide the necessary information. Finally, for anyone who can help, providing code would be very helpful and much appreciated. Thank you again for your help!

    Read the article

  • XNA RTS A* pathfinding issues

    - by Slayter
    I'm starting to develop an RTS game using the XNA framework in C# and am still in the very early prototyping stage. I'm working on the basics. I've got unit selection down and am currently working on moving multiple units. I've implemented an A* pathfinding algorithm which works fine for moving a single unit. However when moving multiple units they stack on top of each other. I tried fixing this with a variation of the boids flocking algorithm but this has caused units to sometimes freeze and get stuck trying to move but going no where. Ill post the related methods for moving the units below but ill only post a link to the pathfinding class because its really long and i don't want to clutter up the page. These parts of the code are in the update method for the main controlling class: if (selectedUnits.Count > 0) { int indexOfLeader = 0; for (int i = 0; i < selectedUnits.Count; i++) { if (i == 0) { indexOfLeader = 0; } else { if (Vector2.Distance(selectedUnits[i].position, destination) < Vector2.Distance(selectedUnits[indexOfLeader].position, destination)) indexOfLeader = i; } selectedUnits[i].leader = false; } selectedUnits[indexOfLeader].leader = true; foreach (Unit unit in selectedUnits) unit.FindPath(destination); } foreach (Unit unit in units) { unit.Update(gameTime, selectedUnits); } These three methods control movement in the Unit class: public void FindPath(Vector2 destination) { if (path != null) path.Clear(); Point startPoint = new Point((int)position.X / 32, (int)position.Y / 32); Point endPoint = new Point((int)destination.X / 32, (int)destination.Y / 32); path = pathfinder.FindPath(startPoint, endPoint); pointCounter = 0; if (path != null) nextPoint = path[pointCounter]; dX = 0.0f; dY = 0.0f; stop = false; } private void Move(List<Unit> units) { if (nextPoint == position && !stop) { pointCounter++; if (pointCounter <= path.Count - 1) { nextPoint = path[pointCounter]; if (nextPoint == position) stop = true; } else if (pointCounter >= path.Count) { path.Clear(); pointCounter = 0; stop = true; } } else { if (!stop) { map.occupiedPoints.Remove(this); Flock(units); // Move in X ********* TOOK OUT SPEED ********** if ((int)nextPoint.X > (int)position.X) { position.X += dX; } else if ((int)nextPoint.X < (int)position.X) { position.X -= dX; } // Move in Y if ((int)nextPoint.Y > (int)position.Y) { position.Y += dY; } else if ((int)nextPoint.Y < (int)position.Y) { position.Y -= dY; } if (position == nextPoint && pointCounter >= path.Count - 1) stop = true; map.occupiedPoints.Add(this, position); } if (stop) { path.Clear(); pointCounter = 0; } } } private void Flock(List<Unit> units) { float distanceToNextPoint = Vector2.Distance(position, nextPoint); foreach (Unit unit in units) { float distance = Vector2.Distance(position, unit.position); if (unit != this) { if (distance < space && !leader && (nextPoint != position)) { // create space dX += (position.X - unit.position.X) * 0.1f; dY += (position.Y - unit.position.Y) * 0.1f; if (dX > .05f) nextPoint.X = nextPoint.X - dX; else if (dX < -.05f) nextPoint.X = nextPoint.X + dX; if (dY > .05f) nextPoint.Y = nextPoint.Y - dY; else if (dY < -.05f) nextPoint.Y = nextPoint.Y + dY; if ((dX < .05f && dX > -.05f) && (dY < .05f && dY > -.05f)) stop = true; path[pointCounter] = nextPoint; Console.WriteLine("Make Space: " + dX + ", " + dY); } else if (nextPoint != position && !stop) { dX = speed; dY = speed; Console.WriteLine(dX + ", " + dY); } } } } And here's the link to the pathfinder: https://docs.google.com/open?id=0B_Cqt6txUDkddU40QXBMeTR1djA I hope this post wasn't too long. Also please excuse the messiness of the code. As I said before this is early prototyping. Any help would be appreciated. Thanks!

    Read the article

  • Phones, Nokia, Microsoft and More

    - by Bill Evjen
    The phone revolution that is under way at the moment is insanely interesting and continuously full of buzz about directions, failures, and promises. The movement started with Apple completely reinventing what a smart phone was all about and now we have the followers. Though – don’t dismiss the followers, they are usually the ones that come out with the leap frog products when most of the world is thinking about jumping on. Remember the often used analogy – the USA invented the TV – but it was Japan that took it to the next level and now all TVs are from somewhere else other than the USA. Really there are two camps for the phones – the Cool Kids and other kids that no one wants to hang out with anymore. When it comes to cool – for some reason, the phone is an important part of that factor. Everyone wants to show their phone and its configuration (apps installed, etc) to their friends as a sign of (1) “I have money” and (2) I have smarts/tastes/style/etc when it comes to my applications that are on my phone. For those that don’t know – the Cool Kids include: Apple – this is quite obvious as everything Apple produces is in the cool camp. Just having an Apple product on your person means you can dance. Google – this is one of the more interesting releases as they have created something called Android (which in it’s own right is a major brand in itself). Microsoft – you might be saying “Really, Microsoft is cool?”. I would argue that they are indeed cool as it is now associated with XBOX 360, Kinect, and Windows 7. Gone are the days of Bob and that silly paperclip. Well – that’s it. There is nobody else I would stick in that camp. The other kids that weren’t picked for that dodgeball team include: Nokia Motorola Palm Blackberry and many many more The sad part of all this is that no matter what this second camp does now, it won’t be able to get out of this bucket easily. They will always be associated as yesterday’s technology and that association will drive the sales of the phone purchasers of the world. For those in that group, the only possible way out is to get invited to the cool club by one of the cool club members in the hope that their coolness somehow rubs off. To me, this is the move that Nokia is making. They are at this point where they have realized that they don’t have the full scope of the required end to end solution to make this all work. They have the plants to build the phones and the reach of the retailers that sell what they have. What they are missing is the proper operating system for the new world of multi-touch form factor phones. Even the companies that come up with some sort of new operating system for this type of new device, they are still associated with the yesterday and lack the developer community behind them to be the real wave of adoption that this market needs. Think about that – this is a major different between Nokia/Blackberry when you compare it to the likes of Apple, Google, and Microsoft. These three powerhouses having a very large and strong development community that will eagerly take on new initiatives using the skillsets that they have already cultivated over the years of already working with the company. This then results in a plethora of applications that are then placed on an app store of some kind. The developer gets a cut and then Apple/Google/Microsoft then get their cut. It is definitely a win-win. None of the other phone companies and wannabies can provide the same results. What Microsoft was missing was the major phone manufactures coming on board to create and push forward with the phones that are required to start the wave. This is where Nokia can come in and help Microsoft. They have the ability to promote the Windows Phone operating system on a new wave of phones. This does mean that Nokia will sell phones, but they lose out on the application store that they might have been thinking about making some money on as well as controlling the end to end solution. What is interesting is in questioning to oneself if Microsoft will purchase Nokia. It really depends upon how they want to compete and with whom Microsoft views as the major competitor. For instance, they can purchase Nokia and have their own hardware company and distribution network for phones – thereby taking on a model that is quite similar to Apple. On the other hand, they could just leave it up to the phone hardware companies such as Nokia and others to build and promote phones in a model that is similar to Google. Both ways have pluses and minuses. If they own the phone manufacturer, they really can put some thought into the design and technical specifications of the phone that is really designed to exactly how they want it. Microsoft has shown that they have this ability – especially with the XBOX initiative they have done over the years. Think about how good and powerful they have moved forward with XBOX – and I am not talking about just copying what others are doing, but coming up with leapfrog products that are steps ahead of everyone else. Though, if they didn’t do it themselves, they could then leave it up to the phone manufacturers to drive each other to build better and better phones that run the Microsoft OS – competition drives better products. We have seen this with the Android line of phones that are out there on the market. I have read a lot about Nokia investors really upset about the new Microsoft relationship – but really, this is a great thing. I for one am a fan of this relationship (I am also a Nokia stock holder btw). This will mean better days for Nokia.

    Read the article

  • Which of these algorithms is best for my goal?

    - by JonathonG
    I have created a program that restricts the mouse to a certain region based on a black/white bitmap. The program is 100% functional as-is, but uses an inaccurate, albeit fast, algorithm for repositioning the mouse when it strays outside the area. Currently, when the mouse moves outside the area, basically what happens is this: A line is drawn between a pre-defined static point inside the region and the mouse's new position. The point where that line intersects the edge of the allowed area is found. The mouse is moved to that point. This works, but only works perfectly for a perfect circle with the pre-defined point set in the exact center. Unfortunately, this will never be the case. The application will be used with a variety of rectangles and irregular, amorphous shapes. On such shapes, the point where the line drawn intersects the edge will usually not be the closest point on the shape to the mouse. I need to create a new algorithm that finds the closest point to the mouse's new position on the edge of the allowed area. I have several ideas about this, but I am not sure of their validity, in that they may have far too much overhead. While I am not asking for code, it might help to know that I am using Objective C / Cocoa, developing for OS X, as I feel the language being used might affect the efficiency of potential methods. My ideas are: Using a bit of trigonometry to project lines would work, but that would require some kind of intense algorithm to test every point on every line until it found the edge of the region... That seems too resource intensive since there could be something like 200 lines that would have each have to have as many as 200 pixels checked for black/white.... Using something like an A* pathing algorithm to find the shortest path to a black pixel; however, A* seems resource intensive, even though I could probably restrict it to only checking roughly in one direction. It also seems like it will take more time and effort than I have available to spend on this small portion of the much larger project I am working on, correct me if I am wrong and it would not be a significant amount of code (100 lines or around there). Mapping the border of the region before the application begins running the event tap loop. I think I could accomplish this by using my current line-based algorithm to find an edge point and then initiating an algorithm that checks all 8 pixels around that pixel, finds the next border pixel in one direction, and continues to do this until it comes back to the starting pixel. I could then store that data in an array to be used for the entire duration of the program, and have the mouse re-positioning method check the array for the closest pixel on the border to the mouse target position. That last method would presumably execute it's initial border mapping fairly quickly. (It would only have to map between 2,000 and 8,000 pixels, which means 8,000 to 64,000 checked, and I could even permanently store the data to make launching faster.) However, I am uncertain as to how much overhead it would take to scan through that array for the shortest distance for every single mouse move event... I suppose there could be a shortcut to restrict the number of elements in the array that will be checked to a variable number starting with the intersecting point on the line (from my original algorithm), and raise/lower that number to experiment with the overhead/accuracy tradeoff. Please let me know if I am over thinking this and there is an easier way that will work just fine, or which of these methods would be able to execute something like 30 times per second to keep mouse movement smooth, or if you have a better/faster method. I've posted relevant parts of my code below for reference, and included an example of what the area might look like. (I check for color value against a loaded bitmap that is black/white.) // // This part of my code runs every single time the mouse moves. // CGPoint point = CGEventGetLocation(event); float tX = point.x; float tY = point.y; if( is_in_area(tX,tY, mouse_mask)){ // target is inside O.K. area, do nothing }else{ CGPoint target; //point inside restricted region: float iX = 600; // inside x float iY = 500; // inside y // delta to midpoint between iX,iY and tX,tY float dX; float dY; float accuracy = .5; //accuracy to loop until reached do { dX = (tX-iX)/2; dY = (tY-iY)/2; if(is_in_area((tX-dX),(tY-dY),mouse_mask)){ iX += dX; iY += dY; } else { tX -= dX; tY -= dY; } } while (abs(dX)>accuracy || abs(dY)>accuracy); target = CGPointMake(roundf(tX), roundf(tY)); CGDisplayMoveCursorToPoint(CGMainDisplayID(),target); } Here is "is_in_area(int x, int y)" : bool is_in_area(NSInteger x, NSInteger y, NSBitmapImageRep *mouse_mask){ NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; NSUInteger pixel[4]; [mouse_mask getPixel:pixel atX:x y:y]; if(pixel[0]!= 0){ [pool release]; return false; } [pool release]; return true; }

    Read the article

  • Educause Top-Ten IT Issues - the most change in a decade or more

    - by user739873
    The Education IT Issue Panel has released the 2012 top-ten issues facing higher education IT leadership, and instead of the customary reshuffling of the same deck, the issues reflect much of the tumult and dynamism facing higher education generally.  I find it interesting (and encouraging) that at the top of this year's list is "Updating IT Professionals' Skills and Roles to Accommodate Emerging Technologies and Changing IT Management and Service Delivery Models."  This reflects, in my view, the realization that higher education IT must change in order to fully realize the potential for transforming the institution, and therefore it's people must learn new skills, understand and accept new ways of solving problems, and not be tied down by past practices or institutional inertia. What follows in the remaining 9 top issues all speak, in some form or fashion, to the need for dramatic change, but not just in the areas of "funding IT" (code for cost containment or reduction), but rather the need to increase effectiveness and efficiency of the institution through the use of technology—leveraging the wave of BYOD (Bring Your Own Device) to the institution's advantage, rather than viewing it as a threat and a problem to be contained. Although it's #10 of 10, IT Governance (and establishment and implementation of the governance model throughout the institution) is key to effectively acting upon many of the preceding issues in this year's list.  In the majority of cases, technology exists to meet the needs and requirements to effectively address many of the challenges outlined in top-ten issues list. Which brings me to my next point. Although I try not to sound too much like an Oracle commercial in these (all too infrequent) blog posts, I can't help but point out how much confluence there is between several of the top issues this year and what my colleagues and I have been evangelizing for some time. Starting from the bottom of the list up: 1) I'm gratified that research and the IT challenges it presents has made the cut.  Big Data (or Large Data as it's phased in the report) is rapidly going to overwhelm much of what exists today even at our most prepared and well-equipped research universities.  Combine large data with the significantly more stringent requirements around data preservation, archiving, sharing, curation, etc. coming from granting agencies like NSF, and you have the brewing storm that could result in a lot of "one-off" solutions to a problem that could very well be addressed collectively and "at scale."   2) Transformative effects of IT – while I see more and more examples of this, there is still much more that can be achieved. My experience tells me that culture (as the report indicates or at least poses the question) gets in the way more than technology not being up to task.  We spend too much time on "context" and not "core," and get lost in the weeds on the journey to truly transforming the institution with technology. 3) Analytics as a key element in improving various institutional outcomes.  In our work around Student Success, we see predictive "academic" analytics as essential to getting in front of the Student Success issue, regardless of how an institution or collections of institutions defines success.  Analytics must be part of the fabric of the key academic enterprise applications, not a bolt-on.  We will spend a significant amount of time on this topic during our semi-annual Education Industry Strategy Council meeting in Washington, D.C. later this month. 4) Cloud strategy for the broad range of applications in the academic enterprise.  Some of the recent work by Casey Green at the Campus Computing Survey would seem to indicate that there is movement in this area but mostly in what has been termed "below the campus" application areas such as collaboration tools, recruiting, and alumni relations.  It's time to get serious about sourcing elements of mature applications like student information systems, HR, Finance, etc. leveraging a model other than traditional on-campus custom. I've only selected a few areas of the list to highlight, but the unifying theme here (and this is where I run the risk of sounding like an Oracle commercial) is that these lofty goals cry out for partners that can bring economies of scale to bear on the problems married with a deep understanding of the nuances unique to higher education.  In a recent piece in Educause Review on Student Information Systems, the author points out that "best of breed is back". Unfortunately I am compelled to point out that best of breed is a large part of the reason we have made as little progress as we have as an industry in advancing some of the causes outlined above.  Don't confuse "integrated" and "full stack" for vendor lock-in.  The best-of-breed market forces that Ron points to ensure that solutions have to be "integratable" or they don't survive in the marketplace. However, by leveraging the efficiencies afforded by adopting solutions that are pre-integrated (and possibly metered out as a service) allows us to shed unnecessary costs – as difficult as these decisions are to make and to drive throughout the organization. Cole

    Read the article

  • XNA - Use Mouse To Rotate & Arrow Keys To Scroll A Linearly Wrapped Texture:

    - by The Thing
    Using XNA I'm working on my first, relatively simple, videogame for the PC. At the moment my game window is 1024 X 768 and I have a 'Starfield' linearly wrapped background texture 1280 X 1280 in size whose origin has been set to its center point (width / 2, height / 2). This texture is drawn onscreen using (graphics.PreferredBackBufferWidth / 2, graphics.PreferredBackBufferHeight / 2) to place the origin in the center of the window. I want to be able to use the horizontal movement of the mouse to rotate my texture left or right and use the arrow keys to scroll the texture in four directions. From my own related coding experiments I have found that once I rotate the texture it no longer scrolls in the direction I want, it's as if somehow the XNA framework's 'sense of direction' has been 'rotated' along with the texture. As an example of what I've described above lets say I rotate the texture 45 degrees to the right, then pressing the up arrow key results in the texture scrolling diagonally from top-right to bottom-left. This is not what I want, regardless of the degree or direction of rotation I want my texture to scroll straight up, straight down, or to the left or right depending on which arrow key was pressed. How do I go about accomplishing this? Any help or guidance is appreciated. To finish up there are two points I'd like to clarify: [1] The reason I'm using linear wrapping on my starfield texture is that it gives a nice impression of an endless starfield. [2] Using a texture at least 1280 X 1280 in conjunction with a game window of 1024 X 768 means that at no point in it's rotation will the edges of the texture become visible. Thanks for reading..... Update # 1 - as requested by RCIX: The code below is what I was referring to earlier when I mentioned 'related coding experiments'. As you can see I am scrolling a linearly wrapped texture in the direction I've moved the mouse relative to the center of the screen. This works perfectly if I don't rotate the texture, but once I do rotate it the direction of the scrolling gets messed up for some reason. public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; int x; int y; float z = 250f; Texture2D Overlay; Texture2D RotatingBackground; Rectangle? sourceRectangle; Color color; float rotation; Vector2 ScreenCenter; Vector2 Origin; Vector2 scale; Vector2 Direction; SpriteEffects effects; float layerDepth; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } protected override void Initialize() { graphics.PreferredBackBufferWidth = 1024; graphics.PreferredBackBufferHeight = 768; graphics.ApplyChanges(); Direction = Vector2.Zero; IsMouseVisible = true; ScreenCenter = new Vector2(graphics.PreferredBackBufferWidth / 2, graphics.PreferredBackBufferHeight / 2); Mouse.SetPosition((int)graphics.PreferredBackBufferWidth / 2, (int)graphics.PreferredBackBufferHeight / 2); sourceRectangle = null; color = Color.White; rotation = 0.0f; scale = new Vector2(1.0f, 1.0f); effects = SpriteEffects.None; layerDepth = 1.0f; base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); Overlay = Content.Load<Texture2D>("Overlay"); RotatingBackground = Content.Load<Texture2D>("Background"); Origin = new Vector2((int)RotatingBackground.Width / 2, (int)RotatingBackground.Height / 2); } protected override void UnloadContent() { } protected override void Update(GameTime gameTime) { float timePassed = (float)gameTime.ElapsedGameTime.TotalSeconds; MouseState ms = Mouse.GetState(); Vector2 MousePosition = new Vector2(ms.X, ms.Y); Direction = ScreenCenter - MousePosition; if (Direction != Vector2.Zero) { Direction.Normalize(); } x += (int)(Direction.X * z * timePassed); y += (int)(Direction.Y * z * timePassed); //No rotation = texture scrolls as intended, With rotation = texture no longer scrolls in the direction of the mouse. My update method needs to somehow compensate for this. //rotation += 0.01f; base.Update(gameTime); } protected override void Draw(GameTime gameTime) { spriteBatch.Begin(SpriteSortMode.Deferred, null, SamplerState.LinearWrap, null, null); spriteBatch.Draw(RotatingBackground, ScreenCenter, new Rectangle(x, y, RotatingBackground.Width, RotatingBackground.Height), color, rotation, Origin, scale, effects, layerDepth); spriteBatch.Draw(Overlay, Vector2.Zero, Color.White); spriteBatch.End(); base.Draw(gameTime); } }

    Read the article

  • Space invaders clone not moving properly

    - by ThePlan
    I'm trying to make a basic space invaders clone in allegro 5, I've got my game set up, basic events and such, here is the code: #include <allegro5/allegro.h> #include <allegro5/allegro_image.h> #include <allegro5/allegro_primitives.h> #include <allegro5/allegro_font.h> #include <allegro5/allegro_ttf.h> #include "Entity.h" // GLOBALS ========================================== const int width = 500; const int height = 500; const int imgsize = 3; bool key[5] = {false, false, false, false, false}; bool running = true; bool draw = true; // FUNCTIONS ======================================== void initSpaceship(Spaceship &ship); void moveSpaceshipRight(Spaceship &ship); void moveSpaceshipLeft(Spaceship &ship); void initInvader(Invader &invader); void moveInvaderRight(Invader &invader); void moveInvaderLeft(Invader &invader); void initBullet(Bullet &bullet); void fireBullet(); void doCollision(); void updateInvaders(); void drawText(); enum key_t { UP, DOWN, LEFT, RIGHT, SPACE }; enum source_t { INVADER, DEFENDER }; int main(void) { if(!al_init()) { return -1; } Spaceship ship; Invader invader; Bullet bullet; al_init_image_addon(); al_install_keyboard(); al_init_font_addon(); al_init_ttf_addon(); ALLEGRO_DISPLAY *display = al_create_display(width, height); ALLEGRO_EVENT_QUEUE *event_queue = al_create_event_queue(); ALLEGRO_TIMER *timer = al_create_timer(1.0 / 60); ALLEGRO_BITMAP *images[imgsize]; ALLEGRO_FONT *font1 = al_load_font("arial.ttf", 20, 0); al_register_event_source(event_queue, al_get_keyboard_event_source()); al_register_event_source(event_queue, al_get_display_event_source(display)); al_register_event_source(event_queue, al_get_timer_event_source(timer)); images[0] = al_load_bitmap("defender.bmp"); images[1] = al_load_bitmap("invader.bmp"); images[2] = al_load_bitmap("explosion.bmp"); al_convert_mask_to_alpha(images[0], al_map_rgb(0, 0, 0)); al_convert_mask_to_alpha(images[1], al_map_rgb(0, 0, 0)); al_convert_mask_to_alpha(images[2], al_map_rgb(0, 0, 0)); initSpaceship(ship); initBullet(bullet); initInvader(invader); al_start_timer(timer); while(running) { ALLEGRO_EVENT ev; al_wait_for_event(event_queue, &ev); if(ev.type == ALLEGRO_EVENT_TIMER) { draw = true; if(key[RIGHT] == true) moveSpaceshipRight(ship); if(key[LEFT] == true) moveSpaceshipLeft(ship); } else if(ev.type == ALLEGRO_EVENT_DISPLAY_CLOSE) running = false; else if(ev.type == ALLEGRO_EVENT_KEY_DOWN) { switch(ev.keyboard.keycode) { case ALLEGRO_KEY_ESCAPE: running = false; break; case ALLEGRO_KEY_LEFT: key[LEFT] = true; break; case ALLEGRO_KEY_RIGHT: key[RIGHT] = true; break; case ALLEGRO_KEY_SPACE: key[SPACE] = true; break; } } else if(ev.type == ALLEGRO_KEY_UP) { switch(ev.keyboard.keycode) { case ALLEGRO_KEY_LEFT: key[LEFT] = false; break; case ALLEGRO_KEY_RIGHT: key[RIGHT] = false; break; case ALLEGRO_KEY_SPACE: key[SPACE] = false; break; } } if(draw && al_is_event_queue_empty(event_queue)) { draw = false; al_draw_bitmap(images[0], ship.pos_x, ship.pos_y, 0); al_flip_display(); al_clear_to_color(al_map_rgb(0, 0, 0)); } } al_destroy_font(font1); al_destroy_event_queue(event_queue); al_destroy_timer(timer); for(int i = 0; i < imgsize; i++) al_destroy_bitmap(images[i]); al_destroy_display(display); } // FUNCTION LOGIC ====================================== void initSpaceship(Spaceship &ship) { ship.lives = 3; ship.speed = 2; ship.pos_x = width / 2; ship.pos_y = height - 20; } void initInvader(Invader &invader) { invader.health = 100; invader.count = 40; invader.speed = 0.5; invader.pos_x = 300; invader.pos_y = 300; } void initBullet(Bullet &bullet) { bullet.speed = 10; } void moveSpaceshipRight(Spaceship &ship) { ship.pos_x += ship.speed; if(ship.pos_x >= width) ship.pos_x = width-30; } void moveSpaceshipLeft(Spaceship &ship) { ship.pos_x -= ship.speed; if(ship.pos_x <= 0) ship.pos_x = 0+30; } However it's not behaving the way I want it to behave, in fact the behavior for the ship movement is un-normal. Basically I specified that the ship only moves when the right/left key is down, however the ship is moving constantly to the direction of the key pressed, it never stops although it should only move while my key is down. Even more weird behavior, when I press the opposite key the ship completely stops no matter what else I press. What's wrong with the code? Why does the ship move constantly even after I specified it only moves when a key is down?

    Read the article

  • Contricted A* problem

    - by Ragekit
    I've got a little problem with an A* algorithm that I need to constrict a little bit. Basically : I use an A* to find the shortest path between 2 randomly placed room in 3D space, and then build a corridor between them. The problem I found is that sometimes it makes chimney like corridors that are not ideal, so I constrict the A* so that if the last movement was up or down, you go sideways. Everything is fine, but in some corner cases, it fails to find a path (when there is obviously one). Like here between the blue and red dot : (i'm in unity btw, but i don't think it matters) Here is the code of the actual A* (a bit long, and some redundency) while(current != goal) { //add stair up / stair down foreach(Node<GridUnit> test in current.Neighbors) { if(!test.Data.empty && test != goal) continue; //bug at arrival; if(test == goal && penul !=null) { Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(currentDiff.y,0)) { //wanna drop on the last if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,to.Data.bounds.center)) { continue; } else { if(Mathf.Approximately(to.Data.bounds.center.x, current.Data.parentUnit.bounds.center.x) && Mathf.Approximately(to.Data.bounds.center.z, current.Data.parentUnit.bounds.center.z)) { continue; } } } } if(current.Data.parentUnit != null) { Vector3 previousDiff = current.Data.parentUnit.bounds.center - current.Data.bounds.center; Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(previousDiff.y,0)) { if(!Mathf.Approximately(currentDiff.y,0)) { //you wanna drop now : continue; } if(current.Data.parentUnit.parentUnit != null) { if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,current.Data.parentUnit.parentUnit.bounds.center)) { continue; }else { if(Mathf.Approximately(test.Data.bounds.center.x, current.Data.parentUnit.parentUnit.bounds.center.x) && Mathf.Approximately(test.Data.bounds.center.z, current.Data.parentUnit.parentUnit.bounds.center.z)) { continue; } } } } } g = current.Data.g + HEURISTIC(current.Data,test.Data); h = HEURISTIC(test.Data,goal.Data); f = g + h; if(open.Contains(test) || closed.Contains(test)) { if(test.Data.f > f) { //found a shorter path going passing through that point test.Data.f = f; test.Data.g = g; test.Data.h = h; test.Data.parentUnit = current.Data; } } else { //jamais rencontré test.Data.f = f; test.Data.h = h; test.Data.g = g; test.Data.parentUnit = current.Data; open.Add(test); } } closed.Add (current); if(open.Count == 0) { Debug.Log("nothingfound"); //nothing more to test no path found, stay to from; List<GridUnit> r = new List<GridUnit>(); r.Add(from.Data); return r; } //sort open from small to biggest travel cost open.Sort(delegate(Node<GridUnit> x, Node<GridUnit> y) { return (int)(x.Data.f-y.Data.f); }); //get the smallest travel cost node; Node<GridUnit> smallest = open[0]; current = smallest; open.RemoveAt(0); } //build the path going backward; List<GridUnit> ret = new List<GridUnit>(); if(penul != null) { ret.Insert(0,to.Data); } GridUnit cur = goal.Data; ret.Insert(0,cur); do{ cur = cur.parentUnit; ret.Insert(0,cur); } while(cur != from.Data); return ret; You see at the start of the foreach i constrict the A* like i said. If you have any insight it would be cool. Thanks

    Read the article

  • Draw Bug 2D player Camera

    - by RedShft
    I have just implemented a 2D player camera for my game, everything works properly except the player on the screen jitters when it moves between tiles. What I mean by jitter, is that if the player is moving the camera updates the tileset to be drawn and if the player steps to the right, the camera snaps that way. The movement is not smooth. I'm guessing this is occurring because of how I implemented the function to calculate the current viewable area or how my draw function works. I'm not entirely sure how to fix this. This camera system was entirely of my own creation and a first attempt at that, so it's very possible this is not a great way of doing things. My camera class, pulls information from the current tileset and calculates the viewable area. Right now I am targettng a resolution of 800 by 600. So I try to fit the appropriate amount of tiles for that resolution. My camera class, after calculating the current viewable tileset relative to the players location, returns a slice of the original tileset to be drawn. This tileset slice is updated every frame according to the players position. This slice is then passed to the map class, which draws the tile on screen. //Map Draw Function //This draw function currently matches the GID of the tile to it's location on the //PNG file of the tileset and then draws this portion on the screen void Draw(SDL_Surface* background, int[] _tileSet) { enforce( tilesetImage != null, "Tileset is null!"); enforce( background != null, "BackGround is null!"); int i = 0; int j = 0; SDL_Rect DestR, SrcR; SrcR.x = 0; SrcR.y = 0; SrcR.h = 32; SrcR.w = 32; foreach(tile; _tileSet) { //This code is matching the current tiles ID to the tileset image SrcR.x = cast(short)(tileWidth * (tile >= 11 ? (tile - ((tile / 10) * 10) - 1) : tile - 1)); SrcR.y = cast(short)(tileHeight * (tile > 10 ? (tile / 10) : 0)); //Applying the tile to the surface SDL_BlitSurface( tilesetImage, &SrcR, background, &DestR ); //this keeps track of what column/row we are on i++; if ( i == mapWidth ) { i = 0; j++; } DestR.x = cast(short)(i * tileWidth); DestR.y = cast(short)(j * tileHeight); } } //Camera Class class Camera { private: //A rectangle representing the view area SDL_Rect viewArea; //In number of tiles int viewAreaWidth; int viewAreaHeight; //This is the x and y coordinate of the camera in MAP SPACE IN PIXELS vect2 cameraCoordinates; //The player location in map space IN PIXELS vect2 playerLocation; //This is the players location in screen space; vect2 playerScreenLoc; int playerTileCol; int playerTileRow; int cameraTileCol; int cameraTileRow; //The map is stored in a single array with the tile ids //this corresponds to the index of the starting and ending tile int cameraStartTile, cameraEndTile; //This is a slice of the current tile set int[] tileSetCopy; int mapWidth; int mapHeight; int tileWidth; int tileHeight; public: this() { this.viewAreaWidth = 25; this.viewAreaHeight = 19; this.cameraCoordinates = vect2(0, 0); this.playerLocation = vect2(0, 0); this.viewArea = SDL_Rect (0, 0, 0, 0); this.tileWidth = 32; this.tileHeight = 32; } void Init(vect2 playerPosition, ref int[] tileSet, int mapWidth, int mapHeight ) { playerLocation = playerPosition; this.mapWidth = mapWidth; this.mapHeight = mapHeight; CalculateCurrentCameraPosition( tileSet, playerPosition ); //writeln( "Tile Set Copy: ", tileSetCopy ); //writeln( "Orginal Tile Set: ", tileSet ); } void CalculateCurrentCameraPosition( ref int[] tileSet, vect2 playerPosition ) { playerLocation = playerPosition; playerTileCol = cast(int)((playerLocation.x / tileWidth) + 1); playerTileRow = cast(int)((playerLocation.y / tileHeight) + 1); //writeln( "Player Tile (Column, Row): ","(", playerTileCol, ", ", playerTileRow, ")"); cameraTileCol = playerTileCol - (viewAreaWidth / 2); cameraTileRow = playerTileRow - (viewAreaHeight / 2); CameraMapBoundsCheck(); //writeln( "Camera Tile Start (Column, Row): ","(", cameraTileCol, ", ", cameraTileRow, ")"); cameraStartTile = ( (cameraTileRow - 1) * mapWidth ) + cameraTileCol - 1; //writeln( "Camera Start Tile: ", cameraStartTile ); cameraEndTile = cameraStartTile + ( viewAreaWidth * viewAreaHeight ) * 2; //writeln( "Camera End Tile: ", cameraEndTile ); tileSetCopy = tileSet[cameraStartTile..cameraEndTile]; } vect2 CalculatePlayerScreenLocation() { cameraCoordinates.x = cast(float)(cameraTileCol * tileWidth); cameraCoordinates.y = cast(float)(cameraTileRow * tileHeight); playerScreenLoc = playerLocation - cameraCoordinates + vect2(32, 32);; //writeln( "Camera Coordinates: ", cameraCoordinates ); //writeln( "Player Location (Map Space): ", playerLocation ); //writeln( "Player Location (Screen Space): ", playerScreenLoc ); return playerScreenLoc; } void CameraMapBoundsCheck() { if( cameraTileCol < 1 ) cameraTileCol = 1; if( cameraTileRow < 1 ) cameraTileRow = 1; if( cameraTileCol + 24 > mapWidth ) cameraTileCol = mapWidth - 24; if( cameraTileRow + 19 > mapHeight ) cameraTileRow = mapHeight - 19; } ref int[] GetTileSet() { return tileSetCopy; } int GetViewWidth() { return viewAreaWidth; } }

    Read the article

  • Constrained A* problem

    - by Ragekit
    I've got a little problem with an A* algorithm that I need to Constrained a little bit. Basically : I use an A* to find the shortest path between 2 randomly placed room in 3D space, and then build a corridor between them. The problem I found is that sometimes it makes chimney like corridors that are not ideal, so I constrict the A* so that if the last movement was up or down, you go sideways. Everything is fine, but in some corner cases, it fails to find a path (when there is obviously one). Like here between the blue and red dot : (i'm in unity btw, but i don't think it matters) Here is the code of the actual A* (a bit long, and some redundency) while(current != goal) { //add stair up / stair down foreach(Node<GridUnit> test in current.Neighbors) { if(!test.Data.empty && test != goal) continue; //bug at arrival; if(test == goal && penul !=null) { Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(currentDiff.y,0)) { //wanna drop on the last if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,to.Data.bounds.center)) { continue; } else { if(Mathf.Approximately(to.Data.bounds.center.x, current.Data.parentUnit.bounds.center.x) && Mathf.Approximately(to.Data.bounds.center.z, current.Data.parentUnit.bounds.center.z)) { continue; } } } } if(current.Data.parentUnit != null) { Vector3 previousDiff = current.Data.parentUnit.bounds.center - current.Data.bounds.center; Vector3 currentDiff = current.Data.bounds.center - test.Data.bounds.center; if(!Mathf.Approximately(previousDiff.y,0)) { if(!Mathf.Approximately(currentDiff.y,0)) { //you wanna drop now : continue; } if(current.Data.parentUnit.parentUnit != null) { if(!coplanar(test.Data.bounds.center,current.Data.bounds.center,current.Data.parentUnit.bounds.center,current.Data.parentUnit.parentUnit.bounds.center)) { continue; }else { if(Mathf.Approximately(test.Data.bounds.center.x, current.Data.parentUnit.parentUnit.bounds.center.x) && Mathf.Approximately(test.Data.bounds.center.z, current.Data.parentUnit.parentUnit.bounds.center.z)) { continue; } } } } } g = current.Data.g + HEURISTIC(current.Data,test.Data); h = HEURISTIC(test.Data,goal.Data); f = g + h; if(open.Contains(test) || closed.Contains(test)) { if(test.Data.f > f) { //found a shorter path going passing through that point test.Data.f = f; test.Data.g = g; test.Data.h = h; test.Data.parentUnit = current.Data; } } else { //jamais rencontré test.Data.f = f; test.Data.h = h; test.Data.g = g; test.Data.parentUnit = current.Data; open.Add(test); } } closed.Add (current); if(open.Count == 0) { Debug.Log("nothingfound"); //nothing more to test no path found, stay to from; List<GridUnit> r = new List<GridUnit>(); r.Add(from.Data); return r; } //sort open from small to biggest travel cost open.Sort(delegate(Node<GridUnit> x, Node<GridUnit> y) { return (int)(x.Data.f-y.Data.f); }); //get the smallest travel cost node; Node<GridUnit> smallest = open[0]; current = smallest; open.RemoveAt(0); } //build the path going backward; List<GridUnit> ret = new List<GridUnit>(); if(penul != null) { ret.Insert(0,to.Data); } GridUnit cur = goal.Data; ret.Insert(0,cur); do{ cur = cur.parentUnit; ret.Insert(0,cur); } while(cur != from.Data); return ret; You see at the start of the foreach i constrict the A* like i said. If you have any insight it would be cool. Thanks

    Read the article

  • 2012&ndash;The End Of The World Review

    - by Tim Murphy
    The end of the world must be coming.  Not because the Mayan calendar says so, but because Microsoft is innovating more than Apple.  It has been a crazy year, with pundits declaring not that the end of the world is coming, but that the end of Microsoft is coming.  Let’s take a look at what 2012 has brought us. The beginning of year is a blur.  I managed to get to TechEd in June which was the first time that I got to take a deep dive into Windows 8 and many other things that had been announced in 2011.  The promise I saw in these products was really encouraging.  The thought of being able to run Windows 8 from a thumb drive or have Hyper-V native to the OS told me that at least for developers good things were coming. I finally got my feet wet with Windows 8 with the developer preview just prior to the RTM.  While the initial experience was a bit of a culture shock I quickly grew to love it.  The media still seems to hold little love for the “reimagined” platform, but I think that once people spend some time with it they will enjoy the experience and what the FUD mongers say will fade into the background.  With the launch of the OS we finally got a look at the Surface.  I think this is a bold entry into the tablet market.  While I wish it was a little more affordable I am already starting to see them in the wild being used by non-techies. I was waiting for Windows Phone 8 at least as much as Windows 8, probably more.  The new hardware, better marketing and new OS features I think are going to finally push us to the point of having a real presence in the smartphone market.  I am seeing a number of iPhone users picking up a Nokia Lumia 920 and getting rid of their brand new iPhone 5.  The only real debacle that I saw around the launch was when they held back the SDK from general developers. Shortly after the launch events came Build 2012.  I was extremely disappointed that I didn’t make it to this year’s Build.  Even if they weren’t handing out Surface and Lumia devices I think the atmosphere and content were something that really needed to be experience in person.  Hopefully there will be a Build next year and it’s schedule will be announced soon.  As you would expect Windows 8 and Windows Phone 8 development were the mainstay of the conference, but improvements in Azure also played a key role.  This movement of services to the cloud will continue and we need to understand where it best fits into the solutions we build. Lower on the radar this year were Office 2013, SQL Server 2012, and Windows Server 2012.  Their glory stolen by the consumer OS and hardware announcements, these new releases are no less important.  Companies will see significant improvements in performance and capabilities if they upgrade.  At TechEd they had shown some of the new features of Windows Server 2012 around hardware integration and Hyper-V performance which absolutely blew me away.  It is our job to bring these important improvements to our company’s attention so that they can be leveraged. Personally, the consulting business in 2012 was the busiest it has been in a long time.  More companies were ready to attack new projects after several years of putting them on the back burner.  I also worked to bring back momentum to the Chicago Information Technology Architects Group.  Both the community and clients are excited about the new technologies that have come out in 2012 and now it is time to deliver. What does 2013 have in store.  I don’t see it be quite as exciting as 2012.  Microsoft will be releasing the Surface Pro in January and it seems that we will see more frequent OS update for Windows.  There are rumors that we may see a Surface phone in 2013.  It has also been announced that there will finally be a rework of the XBox next fall.  The new year will also be a time for us in the development community to take advantage of these new tools and devices.  After all, it is what we build on top of these platforms that will attract more consumers and corporations to using them. Just as I am 99.999% sure that the world is not going to end this year, I am also sure that Microsoft will move on and that most of this negative backlash from the media is actually fear and jealousy.  In the end I think we have a promising year ahead of us. del.icio.us Tags: Microsoft,Pundits,Mayans,Windows 8,Windows Phone 8,Surface

    Read the article

  • Using an alternate search platform in Commerce Server 2009

    - by Lewis Benge
    Although Microsoft Commerce Server 2009's architecture is built upon Microsoft SQL Server, and has the full power of the SQL Full Text Indexing Search Platform, there are time however when you may require a richer or alternate search platform. One of these scenarios if when you want to implement a faceted (refinement) search into your site, which provides dynamic refinements based on the search results dataset. Faceted search is becoming popular in most online retail environments as a way of providing an enhanced user experience when browsing a larger catalogue. This is powerful for two reasons, firstly with a traditional search it is down to a user to think of a search term suitable for the product they are trying to find. This typically will not return similar products or help in any way to refine a larger dataset. Faceted searches on the other hand provide a comprehensive list of product properties, grouped together by similarity to help the user narrow down the results returned, as the user progressively restricts the search criteria by selecting additional criteria to search again, these facets needs to continually refresh. The whole experience allows users to explore alternate brands, price-ranges, or find products they hadn't initially thought of or where looking for in a bid to enhance cross sell in the retail environment. The second advantage of this type of search from a business perspective is also to harvest the search result to start to profile your user. Even though anonymous users may routinely visit your site, and will not necessarily register or complete a transaction to build up marketing data- profiling, you can still achieve the same result by recording search facets used within the search sequence. Below is a faceted search scenario generated from eBay using the search term "server". By creating a search profile of clicking through Computer & Networking -> Servers -> Dell - > New and recording this information against my user profile you can start to predict with a lot more certainty what types of products I am interested in. This will allow you to apply shopping-cart analysis against your search data and provide great cross-sale or advertising opportunity, or personalise the user experience based on your prediction of what the user may be interested in. This type of search is extremely beneficial in e-Commerce environments but achieving it out of the box with Commerce Server and SQL Full Text indexing can be challenging. In many deployments it is often easier to use an alternate search platform such as Microsoft's FAST, Apache SOLR, or Endecca, however you still want these products to integrate natively into Commerce Server to ensure that up-to-date inventory information is presented, profile information is generated, and you provide a consistant API. To do so we make the most of the Commerce Server extensibilty points called operation sequence components. In this example I will be talking about Apache Solr hosted on Apache Tomcat, in this specific example I have used the SolrNet C# library to interface to the Java platform. Also I am not going to talk about Solr configuration of indexing – but in a production envionrment this would typically happen by using Powershell to call the Commerce Server management webservice to export your catalog as XML, apply an XSLT transform to the file to make it conform to SOLR and use a simple HTTP Post to send it to the search enginge for indexing. Essentially a sequance component is a step in a serial workflow used to call a data repository (which in most cases is usually the Commerce Server pipelines or databases) and map to and from a Commerce Entity object whilst enforcing any business rules. So the first step in the process is to add a new class library to your existing Commerce Server site. You will need to use a new library as Sequence Components will need to be strongly named to be deployed. Once you are inside of your new project, add a new class file and add a reference to the Microsoft.Commerce.Providers, Microsoft.Commerce.Contracts and the Microsoft.Commerce.Broker assemblies. Now make your new class derive from the base object Microsoft.Commerce.Providers.Components.OperationSequanceComponent and overide the ExecuteQueryMethod. Your screen will then look something similar ot this: As all we are doing on this component is conducting a search we are only interested in the ExecuteQuery method. This method accepts three arguments, queryOperation, operationCache, and response. The queryOperation will be the object in which we receive our search parameters, the cache allows access to the Commerce Server cache allowing us to store regulary accessed information, and the response object is the object which we will return the result of our search upon. Inside this method is simply where we are going to inject our logic for our third party search platform. As I am not going to explain the inner-workings of actually making a SOLR call, I'll simply provide the sample code here. I would highly recommend however looking at the SolrNet wiki as they have some great explinations of how the API works. What you will find however is that there are some further extensions required when attempting to integrate a custom search provider. Firstly you out of the box the CommerceQueryOperation you will receive into the method when conducting a search against a catalog is specifically geared towards a SQL Full Text Search with properties such as a Where clause. To make the operation you receive more relevant you will need to create another class, this time derived from Microsoft.Commerce.Contract.Messages.CommerceSearchCriteria and within this you need to detail the properties you will require to allow you to submit as parameters to the SOLR search API. My exmaple looks like this: [DataContract(Namespace = "http://schemas.microsoft.com/microsoft-multi-channel-commerce-foundation/types/2008/03")] public class CommerceCatalogSolrSearch : CommerceSearchCriteria { private Dictionary<string, string> _facetQueries;   public CommerceCatalogSolrSearch() { _facetQueries = new Dictionary<String, String>();   }     public Dictionary<String, String> FacetQueries { get { return _facetQueries; } set { _facetQueries = value; } }   public String SearchPhrase{ get; set; } public int PageIndex { get; set; } public int PageSize { get; set; } public IEnumerable<String> Facets { get; set; }   public string Sort { get; set; }   public new int FirstItemIndex { get { return (PageIndex-1)*PageSize; } }   public int LastItemIndex { get { return FirstItemIndex + PageSize; } } }  To allow you to construct a CommerceQueryOperation call within the API you will also need to construct another class to derived from Microsoft.Commerce.Common.MessageBuilders.CommerceSearchCriteriaBuilder and is simply used to construct an instance of the CommerceQueryOperation you have just created and expose the properties you want set. My Message builder looks like this: public class CommerceCatalogSolrSearchBuilder : CommerceSearchCriteriaBuilder { private CommerceCatalogSolrSearch _solrSearch;   public CommerceCatalogSolrSearchBuilder() { _solrSearch = new CommerceCatalogSolrSearch(); }   public String SearchPhrase { get { return _solrSearch.SearchPhrase; } set { _solrSearch.SearchPhrase = value; } }   public int PageIndex { get { return _solrSearch.PageIndex; } set { _solrSearch.PageIndex = value; } }   public int PageSize { get { return _solrSearch.PageSize; } set { _solrSearch.PageSize = value; } }   public Dictionary<String,String> FacetQueries { get { return _solrSearch.FacetQueries; } set { _solrSearch.FacetQueries = value; } }   public String[] Facets { get { return _solrSearch.Facets.ToArray(); } set { _solrSearch.Facets = value; } } public override CommerceSearchCriteria ToSearchCriteria() { return _solrSearch; } }  Once you have these two classes in place you can now safely cast the CommerceOperation you receive as an argument of the overidden ExecuteQuery method in the SequenceComponent to the CommerceCatalogSolrSearch operation you have just created, e.g. public CommerceCatalogSolrSearch TryGetSearchCriteria(CommerceOperation operation) { var searchCriteria = operation as CommerceQueryOperation; if (searchCriteria == null) throw new Exception("No search criteria present");   var local = (CommerceCatalogSolrSearch) searchCriteria.SearchCriteria; if (local == null) throw new Exception("Unexpected Search Criteria in Operation");   return local; }  Now you have all of your search parameters present, you can go off an call the external search platform API. You will of-course get proprietry objects returned, so the next step in the process is to convert the results being returned back into CommerceEntities. You do this via another extensibility point within the Commerce Server API called translatators. Translators are another separate class, this time derived inheriting the interface Microsoft.Commerce.Providers.Translators.IToCommerceEntityTranslator . As you can imaginge this interface is specific for the conversion of the object TO a CommerceEntity, you will need to implement a separate interface if you also need to go in the opposite direction. If you implement the required method for the interace you will get a single translate method which has a source onkect, destination CommerceEntity, and a collection of properties as arguments. For simplicity sake in this example I have hard-coded the mappings, however best practice would dictate you map the objects using your metadatadefintions.xml file . Once complete your translator would look something like the following: public class SolrEntityTranslator : IToCommerceEntityTranslator { #region IToCommerceEntityTranslator Members   public void Translate(object source, CommerceEntity destinationCommerceEntity, CommercePropertyCollection propertiesToReturn) { if (source.GetType().Equals(typeof (SearchProduct))) { var searchResult = (SearchProduct) source;   destinationCommerceEntity.Id = searchResult.ProductId; destinationCommerceEntity.SetPropertyValue("DisplayName", searchResult.Title); destinationCommerceEntity.ModelName = "Product";   } }  Once you have a translator in place you can then safely map the results of your search platform into Commerce Entities and attach them on to the CommerceResponse object in a fashion similar to this: foreach (SearchProduct result in matchingProducts) { var destinationEntity = new CommerceEntity(_returnModelName);   Translator.ToCommerceEntity(result, destinationEntity, _queryOperation.Model.Properties); response.CommerceEntities.Add(destinationEntity); }  In SOLR I actually have two objects being returned – a product, and a collection of facets so I have an additional translator for facet (which maps to a custom facet CommerceEntity) and my facet response from SOLR is passed into the Translator helper class seperatley. When all of this is pieced together you have sucessfully completed the extensiblity point coding. You would have created a new OperationSequanceComponent, a custom SearchCritiera object and message builder class, and translators to convert the objects into Commerce Entities. Now you simply need to configure them, and can start calling them in your code. Make sure you sign you assembly, compile it and identiy its signature. Next you need to put this a reference of your new assembly into the Channel.Config configuration file replacing that of the existing SQL Full Text component: You will also need to add your translators to the Translators node of your Channel.Config too: Lastly add any custom CommerceEntities you have developed to your MetaDataDefintions.xml file. Your configuration is now complete, and you should now be able to happily make a call to the Commerce Foundation API, which will act as a proxy to your third party search platform and return back CommerceEntities of your search results. If you require data to be enriched, or logged, or any other logic applied then simply add further sequence components into the OperationSequence (obviously keeping the search response first) to the node of your Channel.Config file. Now to call your code you simply request it as per any other CommerceQuery operation, but taking into account you may be receiving multiple types of CommerceEntity returned: public KeyValuePair<FacetCollection ,List<Product>> DoFacetedProductQuerySearch(string searchPhrase, string orderKey, string sortOrder, int recordIndex, int recordsPerPage, Dictionary<string, string> facetQueries, out int totalItemCount) { var products = new List<Product>(); var query = new CommerceQuery<CatalogEntity, CommerceCatalogSolrSearchBuilder>();   query.SearchCriteria.PageIndex = recordIndex; query.SearchCriteria.PageSize = recordsPerPage; query.SearchCriteria.SearchPhrase = searchPhrase; query.SearchCriteria.FacetQueries = facetQueries;     totalItemCount = 0; CommerceResponse response = SiteContext.ProcessRequest(query.ToRequest()); var queryResponse = response.OperationResponses[0] as CommerceQueryOperationResponse;   // No results. Return the empty list if (queryResponse != null && queryResponse.CommerceEntities.Count == 0) return new KeyValuePair<FacetCollection, List<Product>>();   totalItemCount = (int)queryResponse.TotalItemCount;   // Prepare a multi-operation to retrieve the product variants var multiOperation = new CommerceMultiOperation();     //Add products to results foreach (Product product in queryResponse.CommerceEntities.Where(x => x.ModelName == "Product")) { var productQuery = new CommerceQuery<Product>(Product.ModelNameDefinition); productQuery.SearchCriteria.Model.Id = product.Id; productQuery.SearchCriteria.Model.CatalogId = product.CatalogId;   var variantQuery = new CommerceQueryRelatedItem<Variant>(Product.RelationshipName.Variants);   productQuery.RelatedOperations.Add(variantQuery);   multiOperation.Add(productQuery); }   CommerceResponse variantsResponse = SiteContext.ProcessRequest(multiOperation.ToRequest()); foreach (CommerceQueryOperationResponse queryOpResponse in variantsResponse.OperationResponses) { if (queryOpResponse.CommerceEntities.Count() > 0) products.Add(queryOpResponse.CommerceEntities[0]); }   //Get facet collection FacetCollection facetCollection = queryResponse.CommerceEntities.Where(x => x.ModelName == "FacetCollection").FirstOrDefault();     return new KeyValuePair<FacetCollection, List<Product>>(facetCollection, products); }    ..And that is it – simply a few classes and some configuration will allow you to extend the Commerce Server query operations to call a third party search platform, whilst still maintaing a unifed API in the remainder of your code. This logic stands for any extensibility within CommerceServer, which requires excution in a serial fashioon such as call to LOB systems or web service to validate or enrich data. Feel free to use this example on other applications, and if you have any questions please feel free to e-mail and I'll help out where I can!

    Read the article

< Previous Page | 39 40 41 42 43 44 45 46 47 48  | Next Page >