Search Results

Search found 25974 results on 1039 pages for 'source routing'.

Page 450/1039 | < Previous Page | 446 447 448 449 450 451 452 453 454 455 456 457  | Next Page >

  • Company wants to write custom project management tool, rather then use third party product.

    - by Jason Evans
    At the company I work, we are really wanting to get into the agile methodology for developing software. One thing that I'm not excited about is the fact that management wants us to build a custom project management feature inside the company's Intranet. I think this is a total waste of time. There are many great third party tools available (e.g. Axosoft OnTime) that can do everything we need, and more. For how much development time it would cost us to build our own project management module, we could buy numerous licences for a third party product. One concern is that, whilst we are writing code for a client, and using our custom Intranet project management module, we find bugs in the module that need fixing ASAP. That means having to stop work on the client code to fix the Intranet. That just puts shivers down my spine. Another worry I have is lack of functionality. This custom module is going to be so basic, that it will just feel really crap to use. That might sound a bit snooty, but for goodness sake, many third party tools are so feature rich, that the idea of having to write our own tool makes feel very uneasy. In fact, I can't be bothered. What do you guys think? I'm going to raise this issue with my boss, since I feel it's such an important topic to talk about. EDIT: Thanks for the great responses, much appreciated. To summarize some of them: Money Naturally my boss does want to save money, by not forking out a few hundred £'s for licences. However, for us to write a custom tool, it will take x number of days, multiplied by approx £500, which is our costs. I don't see the business value in this. Management have mentioned that they want to sell the Intranet as a product in the future, but it's so custom to our needs (and downright basic), that in order to give it to another client, I can see us having to fork a version of the code and rebuild the majority of it anyway. So it's not like we're gaining anything there in reuse. Features Having our own custom module means not feature bloat - only the functionality we require will be in the product. My issue is that there are plenty of free, open-source project management tools out there with minimal features already. So even if cost is an issue, we could look into open-source. Again it all boils down to the fact that I don't see the point in writing a project management tool in this day and age. It's a bit like writing your own web browser - why?, what's the point? Although management are asking for this tool, just because they are, it does not mean I'm going to please them and do it just because they asked for it. If something does not make sense, then I will raise it as a concern. At the end of the day, it's the developers who write the code, it's the developers who make money for a business. Thus, as far I'm concerned, the devs have a very big role in deciding how a company should manage projects and what tools are used. "I am Spartan, argh!" :) Hmm, I've not been able to make this question a wiki for some reason, thus I'm going to have to pick an answer to accept. Cheers. Jas.

    Read the article

  • jtreg update, December 2012

    - by jjg
    There is a new version of jtreg available. The primary new feature is support for tests that have been written for use with TestNG, the popular open source testing framework. TestNG is supported by a variety of tools and plugins, which means that it is now possible to develop tests for OpenJDK using those tools, while still retaining the ability to have the tests be part of the OpenJDK test suite, and run with a single test harness, jtreg. jtreg can be downloaded from the OpenJDK jtreg page: http://openjdk.java.net/jtreg. TestNG support jtreg supports both single TestNG tests, which can be freely intermixed with other types of jtreg tests, and groups of TestNG tests. A single TestNG test class can be compiled and run by providing a test description using the new action tag: @run testng classname The test will be executed by using org.testng.TestNG. No main method is required. A group of TestNG tests organized in a standard package hierarchy can also be compiled and run by jtreg. Any such group must be identified by specifying the root directory of the package hierarchy. You can either do this in the top level TEST.ROOT file, or in a TEST.properties file in any subdirectory enclosing the group of tests. In either case, add a line to the file of the form: TestNG.dirs = dir ... Directories beginning with '/' are evaluated relative to the root directory of the test suite; otherwise they are evaluated relative to the directory containing the declaring file. In particular, note that you can simply use "TestNG.dirs = ." in a TEST.properties file in the root directory of the test group's package hierarchy. No additional test descriptions are necessary, but test descriptions containing information tags, such as @bug, @summary, etc are permitted. All the Java source files in the group will be compiled if necessary, before any of the tests in the group are run. The selected tests within the group will be run, one at a time, using org.testng.TestNG. Library classes The specification for the @library tag has been extended so that any paths beginning with '/' will be evaluated relative to the root directory of the test suite. In addition, some bugs have been fixed that prevented sharing the compiled versions of library classes between tests in different directories. Note: This has uncovered some issues in tests that use a combination of @build and @library tags, such that some tests may fail unexpectedly with ClassNotFoundException. The workaround for now is to ensure that library classes are listed before the test classes in any @build tags. To specify one or more library directories for a group of TestNG tests, add a line of the following form to the TEST.properties file in the root directory of the group's package hierarchy: lib.dirs = dir ... As before, directories beginning with '/' are evaluated relative to the root directory of the test suite; otherwise they are evaluated relative to the directory containing the declaring file. The libraries will be available to all classes in the group; you cannot specify different libraries for different tests within the group. Coming soon ... From this point on, jtreg development will be using the new jtreg repository in the OpenJDK code-tools project. There is a new email alias jtreg-dev at openjdk.java.net for discussions about jtreg development. The existing alias jtreg-use at openjdk.java.net will continue to be available for questions about using jtreg. For more information ... An updated version of the jtreg Tag Language Specification is being prepared, and will be made available when it is ready. In the meantime, you can find more information about the support for TestNG by executing the following command: $ jtreg -onlinehelp TestNG For more information on TestNG itself, visit testng.org.

    Read the article

  • Stepping outside Visual Studio IDE [Part 2 of 2] with Mono 2.6.4

    - by mbcrump
    Continuing part 2 of my Stepping outside the Visual Studio IDE, is the open-source Mono Project. Mono is a software platform designed to allow developers to easily create cross platform applications. Sponsored by Novell (http://www.novell.com/), Mono is an open source implementation of Microsoft's .NET Framework based on the ECMA standards for C# and the Common Language Runtime. A growing family of solutions and an active and enthusiastic contributing community is helping position Mono to become the leading choice for development of Linux applications. So, to clarify. You can use Mono to develop .NET applications that will run on Linux, Windows or Mac. It’s basically a IDE that has roots in Linux. Let’s first look at the compatibility: Compatibility If you already have an application written in .Net, you can scan your application with the Mono Migration Analyzer (MoMA) to determine if your application uses anything not supported by Mono. The current release version of Mono is 2.6. (Released December 2009) The easiest way to describe what Mono currently supports is: Everything in .NET 3.5 except WPF and WF, limited WCF. Here is a slightly more detailed view, by .NET framework version: Implemented C# 3.0 System.Core LINQ ASP.Net 3.5 ASP.Net MVC C# 2.0 (generics) Core Libraries 2.0: mscorlib, System, System.Xml ASP.Net 2.0 - except WebParts ADO.Net 2.0 Winforms/System.Drawing 2.0 - does not support right-to-left C# 1.0 Core Libraries 1.1: mscorlib, System, System.Xml ASP.Net 1.1 ADO.Net 1.1 Winforms/System.Drawing 1.1 Partially Implemented LINQ to SQL - Mostly done, but a few features missing WCF - silverlight 2.0 subset completed Not Implemented WPF - no plans to implement WF - Will implement WF 4 instead on future versions of Mono. System.Management - does not map to Linux System.EnterpriseServices - deprecated Links to documentation. The Official Mono FAQ’s Links to binaries. Mono IDE Latest Version is 2.6.4 That's it, nothing more is required except to compile and run .net code in Linux. Installation After landing on the mono project home page, you can select which platform you want to download. I typically pick the Virtual PC image since I spend all of my day using Windows 7. Go ahead and pick whatever version is best for you. The Virtual PC image comes with Suse Linux. Once the image is launch, you will see the following: I’m not going to go through each option but its best to start with “Start Here” icon. It will provide you with information on new projects or existing VS projects. After you get Mono installed, it's probably a good idea to run a quick Hello World program to make sure everything is setup properly. This allows you to know that your Mono is working before you try writing or running a more complex application. To write a "Hello World" program follow these steps: Start Mono Development Environment. Create a new Project: File->New->Solution Select "Console Project" in the category list. Enter a project name into the Project name field, for example, "HW Project". Click "Forward" Click “Packaging” then OK. You should have a screen very simular to a VS Console App. Click the "Run" button in the toolbar (Ctrl-F5). Look in the Application Output and you should have the “Hello World!” Your screen should look like the screen below. That should do it for a simple console app in mono. To test out an ASP.NET application, simply copy your code to a new directory in /srv/www/htdocs, then visit the following URL: http://localhost/directoryname/page.aspx where directoryname is the directory where you deployed your application and page.aspx is the initial page for your software. Databases You can continue to use SQL server database or use MySQL, Postgress, Sybase, Oracle, IBM’s DB2 or SQLite db. Conclusion I hope this brief look at the Mono IDE helps someone get acquainted with development outside of VS. As always, I welcome any suggestions or comments.

    Read the article

  • Unable to Sign in to the Microsoft Online Services Signin application from Windows 7 client located behind ISA firewall

    - by Ravindra Pamidi
    A while ago i helped a customer troubleshoot authentication problem with Microsoft Online Services Signin application.  This customer was evaluating Microsoft BPOS (Business Productivity Online Services) and was having trouble using the single sign on application behind ISA 2004 firewall.The network structure is fairly simple with single Windows 2003 Active Directory domain and Windows 7 clients. On a successful logon to the Microsoft Online Services Signin application, this application provides single signon functionality to all of Microsoft online services in the BPOS package. Symptoms:When trying to signin it fails with error "The service is currently unavailable. Please try again later. If problems continue, contact your service administrator". If ISA 2004 firewall is removed from the picture the authentication succeeds.Troubleshooting: Enabled ISA Server firewall logging along with Microsoft Network Monitor tool on the Windows 7 Client while reproducing the issue. Analysis of the ISA Server Firewall logs and Microsoft Network capture revealed that the Microsoft Online Services Sign In application when sending request to ISA Server does not send the domain credentials and as a result ISA Server responds with an error code of HTTP 407 Proxy authentication required listing out the supported authentication mechanisms.  The application in question is expected to send the credentials of the domain user in response to this request. However in this case, it fails to send the logged on user's domain credentials. Bit of researching on the Internet revealed that The "Microsoft Online Services Sign In" application by default does not support Outbound Internet Proxy authentication. In order for it to send the logged on user's domain credentials we had to make  changes to its configuration file "SignIn.exe.config" located under "Program Files\Microsoft Online Services\Sign In" folder. Step by Step details to configure the configuration file are documented on Microsoft TechNet website given below.  Configure your outbound authenticating proxy serverhttp://www.microsoft.com/online/help/en-us/helphowto/cc54100d-d149-45a9-8e96-f248ecb1b596.htm After the above problem was addressed we were still not able to use the "Microsoft Online Services Sign In" application and it failed with the same error.  Analysis of another network capture revealed that the application in question is now sending the required credentials and the connection seems to terminate at a later stage. Enabled verbose logging for the "Microsoft Online Services Sign In" application and then reproduced the problem. Analysis of the logs revealed a time difference between the local client and Microsoft Online services server of around seven minutes which is above the acceptable time skew of five minutes. Excerpt from Microsoft Online Services Sign In application verbose log:  1/26/2012 1:57:51 PM Verbose SingleSignOn.GetSSOGenericInterface SSO Interface URL: https://signinservice.apac.microsoftonline.com/ssoservice/UID1/26/2012 1:57:52 PM Exception SSOSignIn.SignIn The security timestamp is invalid because its creation time ('2012-01-26T08:34:52.767Z') is in the future. Current time is '2012-01-26T08:27:52.987Z' and allowed clock skew is '00:05:00'.1/26/2012 1:57:52 PM Exception SSOSignIn.SignIn  Although the Windows 7 Clients successfully synchronized time to the domain controller for the domain, the domain controller was not configured to synchronize time with external NTP servers. This caused a gradual drift in time on the network thus resulting in the above issue. Reconfigured the domain controller holding the PDC FSMO role to synchronize time with external time source ( time.nist.gov ) and edited the system policy on the ISA server firewall to allow NTP traffic to time.nist.gov Configure the time source for the forest:Windows Time Servicehttp://technet.microsoft.com/en-us/library/cc794937(WS.10).aspx Forced synchronization of Windows time using the command w32tm /resync on the domain controller and later on the clients each of which had corrected the seven minutes difference. This resolved the problem with logon to Microsoft Online Services Sign In.

    Read the article

  • How to get faster graphics in KVM? VNC is painfully slow with Haiku OS guest, Spice won't install and SDL doesn't work

    - by Don Quixote
    I've been coming up to speed on the Haiku operating system, an Open Source clone of BeOS 5 Pro. I'm using an Apple MacBook Pro as my development machine. Apple's BootCamp BIOS does not support more than four partitions on the internal hard drive. While I can set up extended and logical partitions, doing so will prevent any of the installed operating systems from booting. To run Haiku directly on the iron, I boot it off a USB stick. Using external storage is also helpful because I am perpetually out of filesystem space. While VirtualBox is documented to allow access to physical drives, I could not actually get it to work. Also VirtualBox can only use one of the host CPU's cores. While VB guests can be configured for more than one CPU, they are only emulated. A full build of the Haiku OS takes 4.5 under VB. I had the hope of reducing build times by using KVM instead, but it's not working nearly as well as VirtualBox did. The Linux Kernel Virtual Machine is broken in all manner of fundamental ways as seen from Haiku. But I'm a coder; maybe I could contribute to fixing some of those problems. The first problem I've got is that Haiku's video in virt-manager is quite painfully slow. When I drag Haiku windows around the desktop, they lag quite far behind where my mouse is. It's quite difficult to move a window to a precise position on the screen. Just imagine that the mouse was connected to the window title bar with a really stretchy spring. Also Haiku's mouse lags quite far behind where I have moved it. I found lots of Personal Package Archives that enable Spice from QEMU / KVM at the Ubuntu Personal Package Arhives. I tried a few of the PPAs but none of them worked; with one of them, the command "add-apt-repository" crashed with a traceback. There is a Wiki page about Spice, but it says that it only works on 64-bit. My Early 2006 MacBook Pro is 32-bit. Its Apple Model Identifier is MacBookPro1,1; these use Core Duos NOT Core 2 Duos. I don't mind building a source deb for 32-bit if I can expect it to work. Is there some reason that Spice should be 64-bit only? Does it need features of the x86_64 Instruction Set Architecture that x86 does not have? When I try using SDL from virt-manager, the configuration for Local SDL Window says "Xauth: /home/mike/.Xauthority". When I try to start my guest, virt-manager emits an error. When I Googled the error message, the usual solution was to make ~/.Xauthority readible. However, .Xauthorty does not exist in my home directory. Instead I have a $XAUTHORITY environment variable. There is no way to configure SDL in virt-manager to use $XAUTHORITY instead of ~/.Xauthority. Neither does it work to copy the value of $XAUTHORITY into the file. I am ready to scream, because I've been five fscking days trying to make KVM work for Haiku development. There is a whole lot more that is broken than the slow video. All I really want to do for now is speed up my full builds of Haiku by using "jam -j2" to use both cores in my CPU. I may try Xen next, but the last time I monkeyed with Xen it was far, far more broken than I am finding KVM to be. Just for now, I would be satisfied if there were some way to use my USB stick as a drive in VirtualBox. VB does allow me to configure /dev/sdb as a drive, but it always causes a fatal error when I try to launch the guest. Thank You For Any Advice You Can Give Me. -

    Read the article

  • The Best Data Integration for Exadata Comes from Oracle

    - by maria costanzo
    Oracle Data Integrator and Oracle GoldenGate offer unique and optimized data integration solutions for Oracle Exadata. For example, customers that choose to feed their data warehouse or reporting database with near real-time throughout the day, can do so without decreasing  performance or availability of source and target systems. And if you ask why real-time, the short answer is: in today’s fast-paced, always-on world, business decisions need to use more relevant, timely data to be able to act fast and seize opportunities. A longer response to "why real-time" question can be found in a related blog post. If we look at the solution architecture, as shown on the diagram below,  Oracle Data Integrator and Oracle GoldenGate are both uniquely designed to take full advantage of the power of the database and to eliminate unnecessary middle-tier components. Oracle Data Integrator (ODI) is the best bulk data loading solution for Exadata. ODI is the only ETL platform that can leverage the full power of Exadata, integrate directly on the Exadata machine without any additional hardware, and by far provides the simplest setup and fastest overall performance on an Exadata system. We regularly see customers achieving a 5-10 times boost when they move their ETL to ODI on Exadata. For  some companies the performance gain is even much higher. For example a large insurance company did a proof of concept comparing ODI vs a traditional ETL tool (one of the market leaders) on Exadata. The same process that was taking 5hrs and 11 minutes to complete using the competing ETL product took 7 minutes and 20 seconds with ODI. Oracle Data Integrator was 42 times faster than the conventional ETL when running on Exadata.This shows that Oracle's own data integration offering helps you to gain the most out of your Exadata investment with a truly optimized solution. GoldenGate is the best solution for streaming data from heterogeneous sources into Exadata in real time. Oracle GoldenGate can also be used together with Data Integrator for hybrid use cases that also demand non-invasive capture, high-speed real time replication. Oracle GoldenGate enables real-time data feeds from heterogeneous sources non-invasively, and delivers to the staging area on the target Exadata system. ODI runs directly on Exadata to use the database engine power to perform in-database transformations. Enterprise Data Quality is integrated with Oracle Data integrator and enables ODI to load trusted data into the data warehouse tables. Only Oracle can offer all these technical benefits wrapped into a single intelligence data warehouse solution that runs on Exadata. Compared to traditional ETL with add-on CDC this solution offers: §  Non-invasive data capture from heterogeneous sources and avoids any performance impact on source §  No mid-tier; set based transformations use database power §  Mini-batches throughout the day –or- bulk processing nightly which means maximum availability for the DW §  Integrated solution with Enterprise Data Quality enables leveraging trusted data in the data warehouse In addition to Starwood Hotels and Resorts, Morrison Supermarkets, United Kingdom’s fourth-largest food retailer, has seen the power of this solution for their new BI platform and shared their story with us. Morrisons needed to analyze data across a large number of manufacturing, warehousing, retail, and financial applications with the goal to achieve single view into operations for improved customer service. The retailer deployed Oracle GoldenGate and Oracle Data Integrator to bring new data into Oracle Exadata in near real-time and replicate the data into reporting structures within the data warehouse—extending visibility into operations. Using Oracle's data integration offering for Exadata, Morrisons produced financial reports in seconds, rather than minutes, and improved staff productivity and agility. You can read more about Morrison’s success story here and hear from Starwood here. From an Irem Radzik article.

    Read the article

  • Investigating on xVelocity (VertiPaq) column size

    - by Marco Russo (SQLBI)
      In January I published an article about how to optimize high cardinality columns in VertiPaq. In the meantime, VertiPaq has been rebranded to xVelocity: the official name is now “xVelocity in-memory analytics engine (VertiPaq)” but using xVelocity and VertiPaq when we talk about Analysis Services has the same meaning. In this post I’ll show how to investigate on columns size of an existing Tabular database so that you can find the most important columns to be optimized. A first approach can be looking in the DataDir of Analysis Services and look for the folder containing the database. Then, look for the biggest files in all subfolders and you will find the name of a file that contains the name of the most expensive column. However, this heuristic process is not very optimized. A better approach is using a DMV that provides the exact information. For example, by using the following query (open SSMS, open an MDX query on the database you are interested to and execute it) you will see all database objects sorted by used size in a descending way. SELECT * FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS ORDER BY used_size DESC You can look at the first rows in order to understand what are the most expensive columns in your tabular model. The interesting data provided are: TABLE_ID: it is the name of the object – it can be also a dictionary or an index COLUMN_ID: it is the column name the object belongs to – you can also see ID_TO_POS and POS_TO_ID in case they refer to internal indexes RECORDS_COUNT: it is the number of rows in the column USED_SIZE: it is the used memory for the object By looking at the ration between USED_SIZE and RECORDS_COUNT you can understand what you can do in order to optimize your tabular model. Your options are: Remove the column. Yes, if it contains data you will never use in a query, simply remove the column from the tabular model Change granularity. If you are tracking time and you included milliseconds but seconds would be enough, round the data source column to the nearest second. If you have a floating point number but two decimals are good enough (i.e. the temperature), round the number to the nearest decimal is relevant to you. Split the column. Create two or more columns that have to be combined together in order to produce the original value. This technique is described in VertiPaq optimization article. Sort the table by that column. When you read the data source, you might consider sorting data by this column, so that the compression will be more efficient. However, this technique works better on columns that don’t have too many distinct values and you will probably move the problem to another column. Sorting data starting from the lower density columns (those with a few number of distinct values) and going to higher density columns (those with high cardinality) is the technique that provides the best compression ratio. After the optimization you should be able to reduce the used size and improve the count/size ration you measured before. If you are interested in a longer discussion about internal storage in VertiPaq and you want understand why this approach can save you space (and time), you can attend my 24 Hours of PASS session “VertiPaq Under the Hood” on March 21 at 08:00 GMT.

    Read the article

  • Welcome To The Nashorn Blog

    - by jlaskey
    Welcome to all.  Time to break the ice and instantiate The Nashorn Blog.  I hope to contribute routinely, but we are very busy, at this point, preparing for the next development milestone and, of course, getting ready for open source. So, if there are long gaps between postings please forgive. We're just coming back from JavaOne and are stoked by the positive response to all the Nashorn sessions. It was great for the team to have the front and centre slide from Georges Saab early in the keynote. It seems we have support coming from all directions. Most of the session videos are posted. Check out the links. Nashorn: Optimizing JavaScript and Dynamic Language Execution on the JVM. Unfortunately, Marcus - the code generation juggernaut,  got saddled with the first session of the first day. Still, he had a decent turnout. The talk focused on issues relating to optimizations we did to get good performance from the JVM. Much yet to be done but looking good. Nashorn: JavaScript on the JVM. This was the main talk about Nashorn. I delivered the little bit of this and a little bit of that session with an overview, a follow up on the open source announcement, a run through a few of the Nashorn features and some demos. The room was SRO, about 250±. High points: Sam Pullara, from Twitter, came forward to describe how painless it was to get Mustache.js up and running (20x over Rhino), and,  John Ceccarelli, from NetBeans came forward to describe how Nashorn has become an integral part of Netbeans. A healthy Q & A at the end was very encouraging. Meet the Nashorn JavaScript Team. Michel, Attila, Marcus and myself hosted a Q & A. There was only a handful of people in the room (we assume it was because of a conflicting session ;-) .) Most of the questions centred around Node.jar, which leads me to believe, Nashorn + Node.jar is what has the most interest. Akhil, Mr. Node.jar, sitting in the audience, fielded the Node.jar questions. Nashorn, Node, and Java Persistence. Doug Clarke, Akhil and myself, discussed the title topics, followed by a lengthy Q & A (security had to hustle us out.) 80 or so in the room. Lots of questions about Node.jar. It was great to see Doug's use of Nashorn + JPA. Nashorn in action, with such elegance and grace. Putting the Metaobject Protocol to Work: Nashorn’s Java Bindings. Attila discussed how he applied Dynalink to Nashorn. Good turn out for this session as well. I have a feeling that once people discover and embrace this hidden gem, great things will happen for all languages running on the JVM. Finally, there were quite a few JavaOne sessions that focused on non-Java languages and their impact on the JVM. I've always believed that one's tool belt should carry a variety of programming languages, not just for domain/task applicability, but also to enhance your thinking and approaches to problem solving. For the most part, future blog entries will focus on 'how to' in Nashorn, but if you have any suggestions for topics you want discussed, please drop a line.  Cheers. 

    Read the article

  • Know your Data Lineage

    - by Simon Elliston Ball
    An academic paper without the footnotes isn’t an academic paper. Journalists wouldn’t base a news article on facts that they can’t verify. So why would anyone publish reports without being able to say where the data has come from and be confident of its quality, in other words, without knowing its lineage. (sometimes referred to as ‘provenance’ or ‘pedigree’) The number and variety of data sources, both traditional and new, increases inexorably. Data comes clean or dirty, processed or raw, unimpeachable or entirely fabricated. On its journey to our report, from its source, the data can travel through a network of interconnected pipes, passing through numerous distinct systems, each managed by different people. At each point along the pipeline, it can be changed, filtered, aggregated and combined. When the data finally emerges, how can we be sure that it is right? How can we be certain that no part of the data collection was based on incorrect assumptions, that key data points haven’t been left out, or that the sources are good? Even when we’re using data science to give us an approximate or probable answer, we cannot have any confidence in the results without confidence in the data from which it came. You need to know what has been done to your data, where it came from, and who is responsible for each stage of the analysis. This information represents your data lineage; it is your stack-trace. If you’re an analyst, suspicious of a number, it tells you why the number is there and how it got there. If you’re a developer, working on a pipeline, it provides the context you need to track down the bug. If you’re a manager, or an auditor, it lets you know the right things are being done. Lineage tracking is part of good data governance. Most audit and lineage systems require you to buy into their whole structure. If you are using Hadoop for your data storage and processing, then tools like Falcon allow you to track lineage, as long as you are using Falcon to write and run the pipeline. It can mean learning a new way of running your jobs (or using some sort of proxy), and even a distinct way of writing your queries. Other Hadoop tools provide a lot of operational and audit information, spread throughout the many logs produced by Hive, Sqoop, MapReduce and all the various moving parts that make up the eco-system. To get a full picture of what’s going on in your Hadoop system you need to capture both Falcon lineage and the data-exhaust of other tools that Falcon can’t orchestrate. However, the problem is bigger even that that. Often, Hadoop is just one piece in a larger processing workflow. The next step of the challenge is how you bind together the lineage metadata describing what happened before and after Hadoop, where ‘after’ could be  a data analysis environment like R, an application, or even directly into an end-user tool such as Tableau or Excel. One possibility is to push as much as you can of your key analytics into Hadoop, but would you give up the power, and familiarity of your existing tools in return for a reliable way of tracking lineage? Lineage and auditing should work consistently, automatically and quietly, allowing users to access their data with any tool they require to use. The real solution, therefore, is to create a consistent method by which to bring lineage data from these data various disparate sources into the data analysis platform that you use, rather than being forced to use the tool that manages the pipeline for the lineage and a different tool for the data analysis. The key is to keep your logs, keep your audit data, from every source, bring them together and use the data analysis tools to trace the paths from raw data to the answer that data analysis provides.

    Read the article

  • Ubuntu 12.04 LXC nat prerouting not working

    - by petermolnar
    I have a running Debian Wheezy setup I copied exactly to an Ubuntu 12.04 ( elementary OS, used as desktop as well ) While the Debian setup runs flawlessly, the Ubuntu version dies on the prerouting to containers ( or so it seems ) In short: lxc works containers work and run connecting to container from host OK ( including mixed ports & services ) connecting to outside world from container is fine What does not work is connecting from another box to the host on a port that should be NATed to a container. The setups: /etc/rc.local CMD_BRCTL=/sbin/brctl CMD_IFCONFIG=/sbin/ifconfig CMD_IPTABLES=/sbin/iptables CMD_ROUTE=/sbin/route NETWORK_BRIDGE_DEVICE_NAT=lxc-bridge HOST_NETDEVICE=eth0 PRIVATE_GW_NAT=192.168.42.1 PRIVATE_NETMASK=255.255.255.0 PUBLIC_IP=192.168.13.100 ${CMD_BRCTL} addbr ${NETWORK_BRIDGE_DEVICE_NAT} ${CMD_BRCTL} setfd ${NETWORK_BRIDGE_DEVICE_NAT} 0 ${CMD_IFCONFIG} ${NETWORK_BRIDGE_DEVICE_NAT} ${PRIVATE_GW_NAT} netmask ${PRIVATE_NETMASK} promisc up Therefore lxc network is 192.168.42.0/24 and the host eth0 ip is 192.168.13.100; setup via network manager as static address. iptables: *mangle :PREROUTING ACCEPT [0:0] :INPUT ACCEPT [0:0] :FORWARD ACCEPT [0:0] :OUTPUT ACCEPT [0:0] :POSTROUTING ACCEPT [0:0] COMMIT *filter :FORWARD ACCEPT [0:0] :INPUT DROP [0:0] :OUTPUT ACCEPT [0:0] # Accept traffic from internal interfaces -A INPUT -i lo -j ACCEPT # accept traffic from lxc network -A INPUT -d 192.168.42.1 -s 192.168.42.0/24 -j ACCEPT # Accept internal traffic Make sure NEW incoming tcp connections are SYN # packets; otherwise we need to drop them: -A INPUT -p tcp ! --syn -m state --state NEW -j DROP # Packets with incoming fragments drop them. This attack result into Linux server panic such data loss. -A INPUT -f -j DROP # Incoming malformed XMAS packets drop them: -A INPUT -p tcp --tcp-flags ALL ALL -j DROP # Incoming malformed NULL packets: -A INPUT -p tcp --tcp-flags ALL NONE -j DROP # Accept traffic with the ACK flag set -A INPUT -p tcp -m tcp --tcp-flags ACK ACK -j ACCEPT # Allow incoming data that is part of a connection we established -A INPUT -m state --state ESTABLISHED -j ACCEPT # Allow data that is related to existing connections -A INPUT -m state --state RELATED -j ACCEPT # Accept responses to DNS queries -A INPUT -p udp -m udp --dport 1024:65535 --sport 53 -j ACCEPT # Accept responses to our pings -A INPUT -p icmp -m icmp --icmp-type echo-reply -j ACCEPT # Accept notifications of unreachable hosts -A INPUT -p icmp -m icmp --icmp-type destination-unreachable -j ACCEPT # Accept notifications to reduce sending speed -A INPUT -p icmp -m icmp --icmp-type source-quench -j ACCEPT # Accept notifications of lost packets -A INPUT -p icmp -m icmp --icmp-type time-exceeded -j ACCEPT # Accept notifications of protocol problems -A INPUT -p icmp -m icmp --icmp-type parameter-problem -j ACCEPT # Respond to pings, but limit -A INPUT -m icmp -p icmp --icmp-type echo-request -m state --state NEW -m limit --limit 6/s -j ACCEPT # Allow connections to SSH server -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -m limit --limit 12/s -j ACCEPT COMMIT *nat :OUTPUT ACCEPT [0:0] :PREROUTING ACCEPT [0:0] :POSTROUTING ACCEPT [0:0] -A PREROUTING -d 192.168.13.100 -p tcp -m tcp --dport 2221 -m state --state NEW -m limit --limit 12/s -j DNAT --to-destination 192.168.42.11:22 -A PREROUTING -d 192.168.13.100 -p tcp -m tcp --dport 80 -m state --state NEW -m limit --limit 512/s -j DNAT --to-destination 192.168.42.11:80 -A PREROUTING -d 192.168.13.100 -p tcp -m tcp --dport 443 -m state --state NEW -m limit --limit 512/s -j DNAT --to-destination 192.168.42.11:443 -A POSTROUTING -d 192.168.42.0/24 -o eth0 -j SNAT --to-source 192.168.13.100 -A POSTROUTING -o eth0 -j MASQUERADE COMMIT sysctl: net.ipv4.conf.all.forwarding = 1 net.ipv4.conf.all.mc_forwarding = 0 net.ipv4.conf.default.forwarding = 1 net.ipv4.conf.default.mc_forwarding = 0 net.ipv4.ip_forward = 1 I've set up full iptables log on the container; none of the packets addressed to 192.168.13.100, port 80 is reaching the container. I've even tried different kernels ( server kernel, raring lts kernel, etc ), modprobe everything iptables & nat related, nothing. Any ideas?

    Read the article

  • Web Safe Area (optimal resolution) for web app design?

    - by M.A.X
    I'm in the process of designing a new web app and I'm wondering for what 'Web Safe Area' should I optimize the app layout and design. By Web Safe Area I mean the actual area available to display the website in the browser (which is influenced by monitor resolution as well as the space taken up by the browser and OS) I did some investigation and thinking on my own but wanted to share this to see what the general opinion is. Here is what I found: Optimal Display Resolution: w3schools web stats seems to be the most referenced source (however they state that these are results from their site and is biased towards tech savvy users) http://www.w3counter.com/globalstats.php (aggregate data from something like 15,000 different sites that use their tracking services) StatCounter Global Stats Display Resolution (Stats are based on aggregate data collected by StatCounter on a sample exceeding 15 billion pageviews per month collected from across the StatCounter network of more than 3 million websites) NetMarketShare Screen Resolutions (marketshare.hitslink.com) (a web analytics consulting firm, they get data from browsers of site visitors to their on-demand network of live stats customers. The data is compiled from approximately 160 million visitors per month) Display Resolution Summary: There is a bit of variation between the above sources but in general as of Jan 2011 looks like 1024x768 is about 20%, while ~85% have a higher resolution of at least 1280x768 (1280x800 is the most common of these with 15-20% of total web, depending on the source; 1280x1024 and 1366x768 follow behind with 9-14% of the share). My guess would be that the higher resolution values will be even more common if we filter on North America, and even higher if we filter on N.American corporate users (unfortunately I couldn't find any free geographically filtered statistics). Another point to note is that the 1024x768 desktop user population is likely lower than the aforementioned 20%, seeing as the iPad (1024x768 native display) is likely propping up those number (the app I'm designing is flash based, Apple mobile devices don't support flash so iPad support isn't a concern). My recommendation would be to optimize around the 1280x768 constraint (*note: 1280x768 is actually a relatively rare resolution, but I think it's a valid constraint range considering that 1366x768 is relatively common and 1280 is the most common horizontal resolution). Browser + OS Constraints: To further add to the constraints we have to subtract the space taken up by the browser (assuming IE, which is the most space consuming) and the OS (assuming WinXP-Win7): Win7 has the biggest taskbar footprint at a height of 40px (XP's and Vista's is 30px) The default IE8 view uses up 25px at the bottom of the screen with the status bar and a further 120px at the top of the screen with the windows title bar and the browser UI (assuming the default 'favorites' toolbar is present, it would instead be 91px without the favorites toolbar). Assuming no scrollbar, we also loose a total of 4px horizontally for the window outline. This means that we are left with 583px of vertical space and 1276px of horizontal. In other words, a Web Safe Area of 1276 x 583 Is this a correct line of thinking? I'm really surprised that I couldn't find this type of investigation anywhere on the web. Lots of websites talk about designing for 1024x768, but that's only half the equation! There is no mention of browser/OS influences on the actual area you have to display the site/app. Any help on this would be greatly appreciated! Thanks. EDIT Another caveat to my line of thinking above is that different browsers actually take up different amounts of pixels based on the OS they're running on. For example, under WinXP IE8 takes up 142px on top of the screen (instead the aforementioned 120px for Win7) because the file menu shows up by default on XP while in Win7 the file menu is hidden by default. So it looks like on WinXP + IE8 the Web Safe Area would be a mere 572px (768px-142-30-24=572)

    Read the article

  • Investigating on xVelocity (VertiPaq) column size

    - by Marco Russo (SQLBI)
      In January I published an article about how to optimize high cardinality columns in VertiPaq. In the meantime, VertiPaq has been rebranded to xVelocity: the official name is now “xVelocity in-memory analytics engine (VertiPaq)” but using xVelocity and VertiPaq when we talk about Analysis Services has the same meaning. In this post I’ll show how to investigate on columns size of an existing Tabular database so that you can find the most important columns to be optimized. A first approach can be looking in the DataDir of Analysis Services and look for the folder containing the database. Then, look for the biggest files in all subfolders and you will find the name of a file that contains the name of the most expensive column. However, this heuristic process is not very optimized. A better approach is using a DMV that provides the exact information. For example, by using the following query (open SSMS, open an MDX query on the database you are interested to and execute it) you will see all database objects sorted by used size in a descending way. SELECT * FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS ORDER BY used_size DESC You can look at the first rows in order to understand what are the most expensive columns in your tabular model. The interesting data provided are: TABLE_ID: it is the name of the object – it can be also a dictionary or an index COLUMN_ID: it is the column name the object belongs to – you can also see ID_TO_POS and POS_TO_ID in case they refer to internal indexes RECORDS_COUNT: it is the number of rows in the column USED_SIZE: it is the used memory for the object By looking at the ration between USED_SIZE and RECORDS_COUNT you can understand what you can do in order to optimize your tabular model. Your options are: Remove the column. Yes, if it contains data you will never use in a query, simply remove the column from the tabular model Change granularity. If you are tracking time and you included milliseconds but seconds would be enough, round the data source column to the nearest second. If you have a floating point number but two decimals are good enough (i.e. the temperature), round the number to the nearest decimal is relevant to you. Split the column. Create two or more columns that have to be combined together in order to produce the original value. This technique is described in VertiPaq optimization article. Sort the table by that column. When you read the data source, you might consider sorting data by this column, so that the compression will be more efficient. However, this technique works better on columns that don’t have too many distinct values and you will probably move the problem to another column. Sorting data starting from the lower density columns (those with a few number of distinct values) and going to higher density columns (those with high cardinality) is the technique that provides the best compression ratio. After the optimization you should be able to reduce the used size and improve the count/size ration you measured before. If you are interested in a longer discussion about internal storage in VertiPaq and you want understand why this approach can save you space (and time), you can attend my 24 Hours of PASS session “VertiPaq Under the Hood” on March 21 at 08:00 GMT.

    Read the article

  • Some PowerShell goodness

    - by KyleBurns
    Ever work somewhere where processes dump files into folders to maintain an archive?  Me too and Windows Explorer hates it.  Very often I find myself needing to organize these files into subfolders so that I can go after files without locking up Windows Explorer and my answer used to be to write a program in something like C# to do the job.  These programs will typically enumerate the files in a folder and move each file to a subdirectory named based on a datestamp.  The last such program I wrote had to use lower-level Win32 API calls to perform the enumeration because it appears the standard .Net calls make use of the same method of enumerating the directories that Windows Explorer chokes on when dealing with a large number of entries in a particular directory, so a simple task was accomplished with a lot of code. Of course, this little utility was just something I used to make my life easier and "not a production app", so it was in my local source folder and not source control when my hard drive died.  So... I was getting ready to re-create it and thought it might be a good idea to play with PowerShell a bit - something I had been wanting to do but had not yet met a requirement to make me do it.  The resulting script was amazingly succinct and even building the flexibility for parameterization and adding line breaks for readability was only about 25 lines long.  Here's the code with discussion following: param(     [Parameter(         Mandatory = $false,         Position = 0,         HelpMessage = "Root of the folders or share to archive.  Be sure to end with appropriate path separator"     )]     [String] $folderRoot="\\fileServer\pathToFolderWithLotsOfFiles\",       [Parameter(         Mandatory = $false,         Position = 1     )]     [int] $days = 1 ) dir $folderRoot|?{(!($_.PsIsContainer)) -and ((get-date) - $_.lastwritetime).totaldays -gt $days }|%{     [string]$year=$([string]$_.lastwritetime.year)     [string]$month=$_.lastwritetime.month     [string]$day=$_.lastwritetime.day     $dir=$folderRoot+$year+"\"+$month+"\"+$day     if(!(test-path $dir)){         new-item -type container $dir     }     Write-output $_     move-item $_.fullname $dir } The script starts by declaring two parameters.  The first parameter holds the path to the folder that I am going to be sorting into subdirectories.  The path separator is intended to be included in this argument because I didn't want to mess with determining whether this was local or UNC and picking the right separator in code, but this could be easily improved upon using Path.Combine since PowerShell has access to the full framework libraries.  The second parameter holds a minimum age in days for files to be removed from the root folder.  The script then pipes the dir command through a query to include only files (by excluding containers) and of those, only entries that meet the age requirement based on the last modified datestamp.  For each of those, the datestamp is used to construct a folder name in the format YYYY\MM\DD (if you're in an environment where even a day's worth of files need further divided, you could make this more granular) and the folder is created if it does not yet exist.  Finally, the file is moved into the directory. One of the things that was really cool about using PowerShell for this task is that the new-item command is smart enough to create the entire subdirectory structure with a single call.  In previous code that I have written to do this kind of thing, I would have to test the entire tree leading down to the subfolder I want, leading to a lot of branching code that detracted from being able to quickly look at the code and understand the job it performs. Overall, I have to say I'm really pleased with what has been done making PowerShell powerful and useful.

    Read the article

  • Searching for context in Silverlight applications

    - by PeterTweed
    A common behavior in business applications that have developed through the ages is for a user to be able to get information or execute commands in relation to some information/function displayed by right clicking the object in question and popping up a context menu that offers relevant options to choose. The Silverlight Toolkit April 2010 release introduced the context menu object.  This can be added to other UI objects and display options for the user to choose.  The menu items can be enabled or disabled as per your application logic and icons can be added to the menu items to add visual effect.  This post will walk you through how to use the context menu object from the Silverlight Toolkit. Steps: 1. Create a new Silverlight 4 application 2. Copy the following namespace definition to the user control object of the MainPage.xaml file: xmlns:my="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input.Toolkit"   3. Copy the following XAML into the LayoutRoot grid in MainPage.xaml:          <Border CornerRadius="15" Background="Blue" Width="400" Height="100">             <TextBlock Foreground="White" FontSize="20" Text="Context Menu In This Border...." HorizontalAlignment="Center" VerticalAlignment="Center" >             </TextBlock>             <my:ContextMenuService.ContextMenu>                 <my:ContextMenu >                     <my:MenuItem                 Header="Copy"                 Click="CopyMenuItem_Click" Name="copyMenuItem">                         <my:MenuItem.Icon>                             <Image Source="copy-icon-small.png"/>                         </my:MenuItem.Icon>                     </my:MenuItem>                     <my:Separator/>                     <my:MenuItem Name="pasteMenuItem"                 Header="Paste"                 Click="PasteMenuItem_Click">                         <my:MenuItem.Icon>                             <Image Source="paste-icon-small.png"/>                         </my:MenuItem.Icon>                     </my:MenuItem>                 </my:ContextMenu>             </my:ContextMenuService.ContextMenu>         </Border>   The above code associates a context menu with two menu items and a separator between them to the border object.  The menu items has icons associated with them to add visual appeal.  The menu items have click event handlers that will be added in the MainPage.xaml.cs code behind in a later step. 4. Add two icon sized images to the ClientBin directory of the web project hosting the Silverlight application, named copy-icon-small.png and paste-icon-small.jpg respectively.  I used copy and paste icons as the names suggest. 5. Add the following code to the class in MainPage.xaml.cs file:         private void CopyMenuItem_Click(object sender, RoutedEventArgs e)         {             MessageBox.Show("Copy selected");         }           private void PasteMenuItem_Click(object sender, RoutedEventArgs e)         {             MessageBox.Show("Paste selected");         }   This code adds the event handlers for the menu items defined in step 3. 6. Run the application, right click on the border and select a menu option and see the appropriate message box displayed. Congratulations it’s that easy!   Take the Slalom Challenge at www.slalomchallenge.com!

    Read the article

  • The five steps of business intelligence adoption: where are you?

    - by Red Gate Software BI Tools Team
    When I was in Orlando and New York last month, I spoke to a lot of business intelligence users. What they told me suggested a path of BI adoption. The user’s place on the path depends on the size and sophistication of their organisation. Step 1: A company with a database of customer transactions will often want to examine particular data, like revenue and unit sales over the last period for each product and territory. To do this, they probably use simple SQL queries or stored procedures to produce data on demand. Step 2: The results from step one are saved in an Excel document, so business users can analyse them with filters or pivot tables. Alternatively, SQL Server Reporting Services (SSRS) might be used to generate a report of the SQL query for display on an intranet page. Step 3: If these queries are run frequently, or business users want to explore data from multiple sources more freely, it may become necessary to create a new database structured for analysis rather than CRUD (create, retrieve, update, and delete). For example, data from more than one system — plus external information — may be incorporated into a data warehouse. This can become ‘one source of truth’ for the business’s operational activities. The warehouse will probably have a simple ‘star’ schema, with fact tables representing the measures to be analysed (e.g. unit sales, revenue) and dimension tables defining how this data is aggregated (e.g. by time, region or product). Reports can be generated from the warehouse with Excel, SSRS or other tools. Step 4: Not too long ago, Microsoft introduced an Excel plug-in, PowerPivot, which allows users to bring larger volumes of data into Excel documents and create links between multiple tables.  These BISM Tabular documents can be created by the database owners or other expert Excel users and viewed by anyone with Excel PowerPivot. Sometimes, business users may use PowerPivot to create reports directly from the primary database, bypassing the need for a data warehouse. This can introduce problems when there are misunderstandings of the database structure or no single ‘source of truth’ for key data. Step 5: Steps three or four are often enough to satisfy business intelligence needs, especially if users are sophisticated enough to work with the warehouse in Excel or SSRS. However, sometimes the relationships between data are too complex or the queries which aggregate across periods, regions etc are too slow. In these cases, it can be necessary to formalise how the data is analysed and pre-build some of the aggregations. To do this, a business intelligence professional will typically use SQL Server Analysis Services (SSAS) to create a multidimensional model — or “cube” — that more simply represents key measures and aggregates them across specified dimensions. Step five is where our tool, SSAS Compare, becomes useful, as it helps review and deploy changes from development to production. For us at Red Gate, the primary value of SSAS Compare is to establish a dialog with BI users, so we can develop a portfolio of products that support creation and deployment across a range of report and model types. For example, PowerPivot and the new BISM Tabular model create a potential customer base for tools that extend beyond BI professionals. We’re interested in learning where people are in this story, so we’ve created a six-question survey to find out. Whether you’re at step one or step five, we’d love to know how you use BI so we can decide how to build tools that solve your problems. So if you have a sixty seconds to spare, tell us on the survey!

    Read the article

  • Thinking Local, Regional and Global

    - by Apeksha Singh-Oracle
    The FIFA World Cup tournament is the biggest single-sport competition: it’s watched by about 1 billion people around the world. Every four years each national team’s manager is challenged to pull together a group players who ply their trade across the globe. For example, of the 23 members of Brazil’s national team, only four actually play for Brazilian teams, and the rest play in England, France, Germany, Spain, Italy and Ukraine. Each country’s national league, each team and each coach has a unique style. Getting all these “localized” players to work together successfully as one unit is no easy feat. In addition to $35 million in prize money, much is at stake – not least national pride and global bragging rights until the next World Cup in four years time. Achieving economic integration in the ASEAN region by 2015 is a bit like trying to create the next World Cup champion by 2018. The team comprises Brunei Darussalam, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam. All have different languages, currencies, cultures and customs, rules and regulations. But if they can pull together as one unit, the opportunity is not only great for business and the economy, but it’s also a source of regional pride. BCG expects by 2020 the number of firms headquartered in Asia with revenue exceeding $1 billion will double to more than 5,000. Their trade in the region and with the world is forecast to increase to 37% of an estimated $37 trillion of global commerce by 2020 from 30% in 2010. Banks offering transactional banking services to the emerging market place need to prepare to repond to customer needs across the spectrum – MSMEs, SMEs, corporates and multi national corporations. Customers want innovative, differentiated, value added products and services that provide: • Pan regional operational independence while enabling single source of truth at a regional level • Regional connectivity and Cash & Liquidity  optimization • Enabling Consistent experience for their customers  by offering standardized products & services across all ASEAN countries • Multi-channel & self service capabilities / access to real-time information on liquidity and cash flows • Convergence of cash management with supply chain and trade finance While enabling the above to meet customer demands, the need for a comprehensive and robust credit management solution for effective regional banking operations is a must to manage risk. According to BCG, Asia-Pacific wholesale transaction-banking revenues are expected to triple to $139 billion by 2022 from $46 billion in 2012. To take advantage of the trend, banks will have to manage and maximize their own growth opportunities, compete on a broader scale, manage the complexity within the region and increase efficiency. They’ll also have to choose the right operating model and regional IT platform to offer: • Account Services • Cash & Liquidity Management • Trade Services & Supply Chain Financing • Payments • Securities services • Credit and Lending • Treasury services The core platform should be able to balance global needs and local nuances. Certain functions need to be performed at a regional level, while others need to be performed on a country level. Financial reporting and regulatory compliance are a case in point. The ASEAN Economic Community is in the final lap of its preparations for the ultimate challenge: becoming a formidable team in the global league. Meanwhile, transaction banks are designing their own hat trick: implementing a world-class IT platform, positioning themselves to repond to customer needs and establishing a foundation for revenue generation for years to come. Anand Ramachandran Senior Director, Global Banking Solutions Practice Oracle Financial Services Global Business Unit

    Read the article

  • Gnome-shell fails to load on 12.10

    - by Githlar
    I'm usually the one answering questions, but in this I'm throughly stumped! My Setup: Ubuntu 12.10 (Dist upgrade form 12.04) ATI M96 [Mobility Radeon HD 4650] Upon the first installation of 12.10 I had all kinds of issues getting the Legacy ATI drivers to install (I guess the source for the drivers isn't kosher with kernel 3.5). So, I added the repository ppa:makson96/fglrx - which has a version of the ATI source patched to work with kernel 3.5. After installation of fglrx-legacy from that PPA, gnome-shell and all my graphics work fine... until today. The Problem I unsuspended my computer today and the screen was black (not off, the black from the gnome lock screen). I'd move my mouse/hit a key and the background would flash and then it'd go back to black. Restarted via VT1 Logged into Gnome (gnome-shell) session, but no gnome-shell! Investigation: First, I went to VT1 and tried export DISPLAY=:0;gnome-shell --replace. It appeared to work fine, switch back to X and nothing. Went back to VT1 and saw this error message: JS ERROR: !!! Exception was: TypeError: Object 0x7fc748129c30 is not a subclass of (null), it's a xO JS ERROR: !!! message = '"Object 0x7fc748129c30 is not a subclass of (null), it's a xO"' JS ERROR: !!! fileName = '"/usr/share/gnome-shell/js/ui/tweener.js"' JS ERROR: !!! lineNumber = '218' JS ERROR: !!! stack = '"()@/usr/share/gnome-shell/js/ui/tweener.js:218 wrapper()@/usr/share/gjs-1.0/lang.js:204 ()@/usr/share/gjs-1.0/lang.js:145 ()@/usr/share/gjs-1.0/lang.js:239 init()@/usr/share/gnome-shell/js/ui/tweener.js:49 init()@/usr/share/gnome-shell/js/ui/environment.js:96 @<main>:1 "' Window manager warning: Log level 32: Execution of main.js threw exception: TypeError: Object 0x7fc748129c30 is not a subclass of (null), it's a xO Note: Everywhere it says "it's a xO", xO is actually garbled and changes every time (I'm thinking memory corruption?) This error is thrown by line 96 of /usr/share/gnome-shell/js/ui/environment.js: tweener.Init() Did a purge of fglrx-legacy, reboot, reinstall fglrx-legacy, reboot... same thing. Did a ppa-purge of ppa:gnome3-team/gnome3, and reinstalled gnome-shell and ubuntu-desktop from the standard repositores... same thing. I'm really at a loss here. I love gnome-shell and after using it for nearly a year now gnome classic just seems so archaic. Additional Information Apt log from the day I first suspended my machine (these are upgrades from the gnome3-team/gnome3 ppa and ubuntu-wine/ppa ppa): Start-Date: 2012-11-24 17:30:28 Commandline: aptdaemon role='role-commit-packages' sender=':1.618' Install: gkbd-capplet:amd64 (3.6.0-0ubuntu1), gnome-control-center-unity:amd64 (1.0-0ubuntu1~ubuntu12.10.1) Upgrade: nautilus:amd64 (3.6.2-0ubuntu0.1~quantal1, 3.6.3-0ubuntu2~ubuntu12.10.1), libgnome-control-center1:amd64 (3.4.2-0ubuntu19, 3.6.3-0ubuntu6~ubuntu12.10.1), wine1.5-i386:i386 (1.5.17-0ubuntu4, 1.5.18-0ubuntu1), wine1.5:amd64 (1.5.17-0ubuntu4, 1.5.18-0ubuntu1), gnome-settings-daemon:amd64 (3.4.2-0ubuntu14, 3.6.3-0ubuntu1~ubuntu12.10.1), gnome-control-center-data:amd64 (3.4.2-0ubuntu19, 3.6.3-0ubuntu6~ubuntu12.10.1), gnome-accessibility-themes:amd64 (3.6.0.2-0ubuntu1, 3.6.2-0ubuntu2~ubuntu12.10.1), gnome-themes-standard:amd64 (3.6.0.2-0ubuntu1, 3.6.2-0ubuntu2~ubuntu12.10.1), wine1.5-amd64:amd64 (1.5.17-0ubuntu4, 1.5.18-0ubuntu1), nautilus-data:amd64 (3.6.2-0ubuntu0.1~quantal1, 3.6.3-0ubuntu2~ubuntu12.10.1), gnome-control-center:amd64 (3.4.2-0ubuntu19, 3.6.3-0ubuntu6~ubuntu12.10.1), libnautilus-extension1a:amd64 (3.6.2-0ubuntu0.1~quantal1, 3.6.3-0ubuntu2~ubuntu12.10.1) End-Date: 2012-11-24 17:31:32 fglrxinfo (driver appears to be working): display: :0 screen: 0 OpenGL vendor string: Advanced Micro Devices, Inc. OpenGL renderer string: ATI Mobility Radeon HD 4650 OpenGL version string: 3.3.11653 Compatibility Profile Context Does anybody have any further ideas?

    Read the article

  • Migrating VB6 to HTML5 is not a fiction - Customer success story

    - by Webgui
    All of you VB developers in the present or past would probably find it hard to believe that the old VB code can be migrated and modernized into the latest .NET based HTML5 without having to rewrite the application. But we have been working on such tools for the past couple of years and already have several real world applications that were fully 'transposed' from VB6. The solution is called Instant CloudMove and its main tool is called the TranspositionStudio. It is a unique solution that relies on the concept of transposition. Transposition comes from mathematics and music and refers to exchanging elements while everything else remains the same or moving an element as is from one environment to another. This means that we are taking the source code and put it in a modern technological environment with relatively few adjustments.The concept is based on a set of Mapping Expressions which are basically links between an element in the source environment and one in the target environment that has the same functionality. About 95% of the code is usually mapped out-of-the-box and the rest is handled with easy-to-use mapping tools designed for Visual Studio developers providing them with a familiar environment and concepts for completing the mapping and allowing them to extend and customize existing mapping expressions. The solution is also based on a circular workflow that enables developers to make any changes as required until the result is satisfying.As opposed to existing migration solutions that offer automation are usually a “black box” to the user, the transposition concept enables full visibility, flexibility and control over the code and process at all times allowing to also add/change functionalities or upgrade the UI within the process and tools.This is exactly the case with our customer’s aging VB6 PMS (Property Management System) which needed a technological update as well as a design refresh. The decision was to move the VB6 application which had about 1 million lines of code into the latest web technology. Since the application was initially written 13 years ago and had many upgrades since the code must be very patchy and includes unused sections. As a result, the company Mihshuv Group considered rewriting the entire application in Java since it already had the knowledge. Rewrite would allow starting with a clean slate and designing functionality, database architecture, UI without any constraints. On the other hand, rewrite entitles a long and detailed specification work as well as a thorough QA and this translates into a long project with high risk and costs.So the company looked for a migration solution as an alternative; the research lead to Gizmox and after examining the technology it was decided to perform a hybrid project which would include an automatic transposition of the core of the VB6 application (200,000 lines of code) while they redesigning the UI, adding new functionality, deleting unused code and rewriting about 140 reports with Crystal Reports will be done manually using Visual WebGui development tools.The migration part of the project was completed in 65 days by 3 developers from Mihshuv Group guided by Gizmox migration experts while the rewrite and UI upgrade tasks took about the same. So in only a few months period Mihshuv Group generated an up-to-date product, written in the latest Web technology with modern, friendly UI and improved functionality. Guest selection screen of the original VB6 PMS Guest selection screen on the new web–based PMS Compared to the initial plan to rewrite the entire application in Java, the hybrid migration/rewrite approach taken by Mihshuv Group using Gizmox technology proved as a great decision. In terms of time and cost there were substantial savings; from a project that was priced for at least a year (without taking into account the huge risk and uncertainty) it became a few months project only. More about this and other customer stories can be found here

    Read the article

  • Can anybody help me in designing my UITableView into MVC Pattern ?

    - by user2877880
    I have written a ViewController in which i get data from the internet and display it in a UItableview using a json parser which uses object for key to identify its objects. What i would like your help in is to convert it into MVC pattern to make it less clumsy instead of including everything in the same controller class. Please try explaining it to me in terms of my code. THANKS IN ADVANCE. The code is as given below #import "ViewController.h" #import "AFNetworking.h" #import "ModelTableArray.h" @implementation ViewController @synthesize tableView = _tableView, activityIndicatorView = _activityIndicatorView, movies = _movies; - (void)viewDidLoad { [super viewDidLoad]; // Setting Up Table View self.tableView = [[UITableView alloc] initWithFrame:CGRectMake(0.0, 0.0, self.view.bounds.size.width, self.view.bounds.size.height) style:UITableViewStylePlain]; self.tableView.dataSource = self; self.tableView.delegate = self; self.tableView.autoresizingMask = UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleHeight; self.tableView.hidden = YES; [self.view addSubview:self.tableView]; // Setting Up Activity Indicator View self.activityIndicatorView = [[UIActivityIndicatorView alloc] initWithActivityIndicatorStyle:UIActivityIndicatorViewStyleGray]; self.activityIndicatorView.hidesWhenStopped = YES; self.activityIndicatorView.center = self.view.center; [self.view addSubview:self.activityIndicatorView]; [self.activityIndicatorView startAnimating]; // Initializing Data Source self.movies = [[NSArray alloc] init]; NSURL *url = [[NSURL alloc] initWithString:@"http://itunes.apple.com/search?term=rocky&country=us&entity=movie"]; NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url]; UIRefreshControl *refreshControl = [[UIRefreshControl alloc] init]; [refreshControl addTarget:self action:@selector(refresh:) forControlEvents:UIControlEventValueChanged]; [self.tableView addSubview:refreshControl]; [refreshControl endRefreshing]; AFJSONRequestOperation *operation = [AFJSONRequestOperation JSONRequestOperationWithRequest:request success:^(NSURLRequest *request, NSHTTPURLResponse *response, id JSON) { self.movies = [JSON objectForKey:@"results"]; [self.activityIndicatorView stopAnimating]; [self.tableView setHidden:NO]; [self.tableView reloadData]; } failure:^(NSURLRequest *request, NSHTTPURLResponse *response, NSError *error, id JSON) { NSLog(@"Request Failed with Error: %@, %@", error, error.userInfo); }]; [operation start]; } - (void)refresh:(UIRefreshControl *)sender { NSURL *url = [[NSURL alloc] initWithString:@"http://itunes.apple.com/search?term=rambo&country=us&entity=movie"]; NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url]; AFJSONRequestOperation *operation = [AFJSONRequestOperation JSONRequestOperationWithRequest:request success:^(NSURLRequest *request, NSHTTPURLResponse *response, id JSON) { self.movies = [JSON objectForKey:@"results"]; [self.activityIndicatorView stopAnimating]; [self.tableView setHidden:NO]; [self.tableView reloadData]; } failure:^(NSURLRequest *request, NSHTTPURLResponse *response, NSError *error, id JSON) { NSLog(@"Request Failed with Error: %@, %@", error, error.userInfo); }]; [operation start]; [sender endRefreshing]; } - (void)viewDidUnload { [super viewDidUnload]; } - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { return YES; } // Table View Data Source Methods - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { if (self.movies && self.movies.count) { return self.movies.count; } else { return 0; } } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *cellID = @"Cell Identifier"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:cellID]; if (!cell) { cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:cellID]; } NSDictionary *movie = [self.movies objectAtIndex:indexPath.row]; cell.textLabel.text = [movie objectForKey:@"trackName"]; cell.detailTextLabel.text = [movie objectForKey:@"artistName"]; NSURL *url = [[NSURL alloc] initWithString:[movie objectForKey:@"artworkUrl100"]]; [cell.imageView setImageWithURL:url placeholderImage:[UIImage imageNamed:@"placeholder"]]; return cell; } @end

    Read the article

  • How do you go from a so so programmer to a great one? [closed]

    - by Cervo
    How do you go from being an okay programmer to being able to write maintainable clean code? For example David Hansson was writing Basecamp when in the process he created Rails as part of writing Basecamp in a clean/maintainable way. But how do you know when there is value in a side project like that? I have a bachelors in computer science, and I am about to get a masters and I will say that colleges teach you to write code to solve problems, not neatly or anything. Basically you think of a problem, come up with a solution, and write it down...not necessarily the most maintainable way in the world. Also my first job was in a startup, and now my third is in a small team in a large company where the attitude was/is get it done yesterday (also most of my jobs are mainly database development with SQL with a few ASP.NET web pages/.NET apps on the side). So of course cut/paste is more favored than making things more cleanly. And they would rather have something yesterday even if you have to rewrite it next month rather than to have something in a week that lasts for a year. Also spaghetti code turns up all over the place, and it takes very smart people to write/understand/maintain spaghetti code...However it would be better to do things so simple/clean that even a caveman/woman could do maintenance. Also I get very bored/unmotivated having to go modify the same things cut/pasted in a few locations. Is this the type of skill that you need to learn by working with a serious software organization that has an emphasis on maintenance and maybe even an architect who designs a system architecture and reviews code? Could you really learn it by volunteering on an open source project (it seems to me that a full time programmer job is way more practice than a few hours a week on an open source project)? Is there some course where you can learn this? I can attest that graduate school and undergraduate school do not really emphasize clean software at all. They just teach the structures/algorithms and then send you off into the world to solve problems. Overall I think the first thing is learning to write clean/maintainable code within the bounds of the project in order to become a good programmer. Then the next thing is learning when you need to do a side project (like a framework) to make things more maintainable/clean even while you still deliver things for the deadline in order to become a great programmer. For example, you are making an SQL report and someone gives you 100 calculations for individual columns. At what point does it make sense to construct a domain specific language to encode the rules in simply and then generate all the SQL as opposed to cut/pasting the query from the table a bunch of times and then adjusting each query to do the appropriate calculations. This is the type of thing I would say a great programmer would know. He/she would maybe even know ways to avoid the domain specific language and to still do all the calculations without creating an unmaintainable mess or a ton of repetitive code to cut/paste everywhere.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • MVC HTML.RenderAction – Error: Duration must be a positive number

    - by BarDev
    On my website I want the user to have the ability to login/logout from any page. When the user select login button a modal dialog will be present to the user for him to enter in his credentials. Since login will be on every page, I thought I would create a partial view for the login and add it to the layout page. But when I did this I got the following error: Exception Details: System.InvalidOperationException: Duration must be a positive number. There are other ways to work around this that would not using partial views, but I believe this should work. So to test this, I decided to make everything simple with the following code: Created a layout page with the following code @{Html.RenderAction("_Login", "Account");} In the AccountController: public ActionResult _Login() { return PartialView("_Login"); } Partial View _Login <a id="signin">Login</a> But when I run this simple version this I still get this error: Exception Details: System.InvalidOperationException: Duration must be a positive number. Source of error points to "@{Html.RenderAction("_Login", "Account");}" There are some conversations on the web that are similar to my problem, which identifies this as bug with MVC (see links below). But the links pertain to Caching, and I'm not doing any caching. OuputCache Cache Profile does not work for child actions http://aspnet.codeplex.com/workitem/7923 Asp.Net MVC 3 Partial Page Output Caching Not Honoring Config Settings Asp.Net MVC 3 Partial Page Output Caching Not Honoring Config Settings Caching ChildActions using cache profiles won't work? Caching ChildActions using cache profiles won't work? I'm not sure if this makes a difference, but I'll go ahead and add it here. I'm using MVC 3 with Razor. Update Stack Trace [InvalidOperationException: Duration must be a positive number.] System.Web.Mvc.OutputCacheAttribute.ValidateChildActionConfiguration() +624394 System.Web.Mvc.OutputCacheAttribute.OnActionExecuting(ActionExecutingContext filterContext) +127 System.Web.Mvc.ControllerActionInvoker.InvokeActionMethodFilter(IActionFilter filter, ActionExecutingContext preContext, Func1 continuation) +72 System.Web.Mvc.ControllerActionInvoker.InvokeActionMethodFilter(IActionFilter filter, ActionExecutingContext preContext, Func1 continuation) +784922 System.Web.Mvc.ControllerActionInvoker.InvokeActionMethodWithFilters(ControllerContext controllerContext, IList1 filters, ActionDescriptor actionDescriptor, IDictionary2 parameters) +314 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +784976 System.Web.Mvc.Controller.ExecuteCore() +159 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +335 System.Web.Mvc.<c_DisplayClassb.b_5() +62 System.Web.Mvc.Async.<c_DisplayClass1.b_0() +20 System.Web.Mvc.<c_DisplayClasse.b_d() +54 System.Web.Mvc.<c_DisplayClass4.b_3() +15 System.Web.Mvc.ServerExecuteHttpHandlerWrapper.Wrap(Func`1 func) +41 System.Web.HttpServerUtility.ExecuteInternal(IHttpHandler handler, TextWriter writer, Boolean preserveForm, Boolean setPreviousPage, VirtualPath path, VirtualPath filePath, String physPath, Exception error, String queryStringOverride) +1363 [HttpException (0x80004005): Error executing child request for handler 'System.Web.Mvc.HttpHandlerUtil+ServerExecuteHttpHandlerAsyncWrapper'.] System.Web.HttpServerUtility.ExecuteInternal(IHttpHandler handler, TextWriter writer, Boolean preserveForm, Boolean setPreviousPage, VirtualPath path, VirtualPath filePath, String physPath, Exception error, String queryStringOverride) +2419 System.Web.HttpServerUtility.Execute(IHttpHandler handler, TextWriter writer, Boolean preserveForm, Boolean setPreviousPage) +275 System.Web.HttpServerUtilityWrapper.Execute(IHttpHandler handler, TextWriter writer, Boolean preserveForm) +94 System.Web.Mvc.Html.ChildActionExtensions.ActionHelper(HtmlHelper htmlHelper, String actionName, String controllerName, RouteValueDictionary routeValues, TextWriter textWriter) +838 System.Web.Mvc.Html.ChildActionExtensions.RenderAction(HtmlHelper htmlHelper, String actionName, String controllerName, RouteValueDictionary routeValues) +56 ASP._Page_Views_Shared_SiteLayout_cshtml.Execute() in c:\Projects\Odat Projects\Odat\Source\Presentation\Odat.PublicWebSite\Views\Shared\SiteLayout.cshtml:80 System.Web.WebPages.WebPageBase.ExecutePageHierarchy() +280 System.Web.Mvc.WebViewPage.ExecutePageHierarchy() +104 System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) +173 System.Web.WebPages.WebPageBase.Write(HelperResult result) +89 System.Web.WebPages.WebPageBase.RenderSurrounding(String partialViewName, Action1 body) +234 System.Web.WebPages.WebPageBase.PopContext() +234 System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) +384 System.Web.Mvc.<>c__DisplayClass1c.<InvokeActionResultWithFilters>b__19() +33 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func1 continuation) +784900 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func1 continuation) +784900 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultWithFilters(ControllerContext controllerContext, IList1 filters, ActionResult actionResult) +265 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +784976 System.Web.Mvc.Controller.ExecuteCore() +159 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +335 System.Web.Mvc.<c_DisplayClassb.b_5() +62 System.Web.Mvc.Async.<c_DisplayClass1.b_0() +20 System.Web.Mvc.<c_DisplayClasse.b_d() +54 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +453 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +371 Update When I Break in Code, it errors at @{Html.RenderAction("_Login", "Account");} with the following exception. The inner exception Error executing child request for handler 'System.Web.Mvc.HttpHandlerUtil+ServerExecuteHttpHandlerAsyncWrapper'. at System.Web.HttpServerUtility.ExecuteInternal(IHttpHandler handler, TextWriter writer, Boolean preserveForm, Boolean setPreviousPage, VirtualPath path, VirtualPath filePath, String physPath, Exception error, String queryStringOverride) at System.Web.HttpServerUtility.Execute(IHttpHandler handler, TextWriter writer, Boolean preserveForm, Boolean setPreviousPage) at System.Web.HttpServerUtilityWrapper.Execute(IHttpHandler handler, TextWriter writer, Boolean preserveForm) at System.Web.Mvc.Html.ChildActionExtensions.ActionHelper(HtmlHelper htmlHelper, String actionName, String controllerName, RouteValueDictionary routeValues, TextWriter textWriter) at System.Web.Mvc.Html.ChildActionExtensions.RenderAction(HtmlHelper htmlHelper, String actionName, String controllerName, RouteValueDictionary routeValues) at ASP._Page_Views_Shared_SiteLayout_cshtml.Execute() in c:\Projects\Odat Projects\Odat\Source\Presentation\Odat.PublicWebSite\Views\Shared\SiteLayout.cshtml:line 80 at System.Web.WebPages.WebPageBase.ExecutePageHierarchy() at System.Web.Mvc.WebViewPage.ExecutePageHierarchy() at System.Web.WebPages.WebPageBase.ExecutePageHierarchy(WebPageContext pageContext, TextWriter writer, WebPageRenderingBase startPage) at System.Web.WebPages.WebPageBase.Write(HelperResult result) at System.Web.WebPages.WebPageBase.RenderSurrounding(String partialViewName, Action1 body) at System.Web.WebPages.WebPageBase.PopContext() at System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) at System.Web.Mvc.ControllerActionInvoker.<>c__DisplayClass1c.<InvokeActionResultWithFilters>b__19() at System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func1 continuation) Answer Thanks Darin Dimitrov Come to find out, my AccountController had the following attribute [System.Web.Mvc.OutputCache(NoStore =true, Duration = 0, VaryByParam = "*")]. I don't believe this should caused a problem, but when I removed the attribute everything worked. BarDev

    Read the article

  • Passing parameters between Silverlight and ASP.NET – Part 1

    - by mohanbrij
    While working with Silverlight applications, we may face some scenarios where we may need to embed Silverlight as a component, like for e.g in Sharepoint Webpars or simple we can have the same with ASP.NET. The biggest challenge comes when we have to pass the parameters from ASP.NET to Silverlight components or back from Silverlight to ASP.NET. We have lots of ways we can do this, like using InitParams, QueryStrings, using HTML objects in Silverlight, etc. All these different techniques have some advantages or disadvantages or limitations. Lets see one by one why we should choose one and what are the ways to achieve the same. 1. InitParams: Lets start with InitParams, Start your Visual Studio 2010 IDE, and Create a Silverlight Application, give any name. Now go to the ASP.NET WebProject which is used to Host the Silverlight XAP component. You will find lots of different tags are used by Silverlight object as <params> tags. To use InitParams, Silverlight provides us with a tag called InitParams which we can use to pass parameters to Silverlight object from ASP.NET. 1: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> 2: <param name="source" value="ClientBin/SilverlightApp.xap"/> 3: <param name="onError" value="onSilverlightError" /> 4: <param name="background" value="white" /> 5: <param name="minRuntimeVersion" value="4.0.50826.0" /> 6: <param name="initparams" id="initParams" runat="server" value=""/> 7: <param name="autoUpgrade" value="true" /> 8: <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> 9: <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> 10: </a> 11: </object> Here in the code above I have included a initParam as a param tag (line 6), now in the page load I will add a line 1: initParams.Attributes.Add("value", "key1=Brij, key2=Mohan"); This basically add a value parameter inside the initParam. So thats all we need in our ASP.NET side, now coming to the Silverlight Code open the code behind of App.xaml and add the following lines of code. 1: private string firstKey, secondKey; 2: private void Application_Startup(object sender, StartupEventArgs e) 3: { 4: if (e.InitParams.ContainsKey("key1")) 5: this.firstKey = e.InitParams["key1"]; 6: if (e.InitParams.ContainsKey("key2")) 7: this.secondKey = e.InitParams["key2"]; 8: this.RootVisual = new MainPage(firstKey, secondKey); 9: } This code fetch the init params and pass it to our MainPage.xaml constructor, in the MainPage.xaml we can use these variables according to our requirement, here in this example I am simply displaying the variables in a Message Box. 1: public MainPage(string param1, string param2) 2: { 3: InitializeComponent(); 4: MessageBox.Show("Welcome, " + param1 + " " + param2); 5: } This will give you a sample output as Limitations: Depending on the browsers you have some limitation on the overall string length of the parameters you can pass. To get more details on this limitation, you can refer to this link :http://www.boutell.com/newfaq/misc/urllength.html 2. QueryStrings To show this example I am taking the scenario where we have a default.aspx page and we are going to the SIlverlightTestPage.aspx, and we have to work with the parameters which was passed by default.aspx in the SilverlightTestPage.aspx Silverlight Component. So first I will add a new page in my application which contains a button with ID =btnNext, and on click of the button I will redirect my page to my SilverlightTestAppPage.aspx with the required query strings. Code of Default.aspx 1: protected void btnNext_Click(object sender, EventArgs e) 2: { 3: Response.Redirect("~/SilverlightAppTestPage.aspx?FName=Brij" + "&LName=Mohan"); 4: } Code of MainPage.xaml.cs 1: public partial class MainPage : UserControl 2: { 3: public MainPage() 4: { 5: InitializeComponent(); 6: this.Loaded += new RoutedEventHandler(MainPage_Loaded); 7: } 8: 9: void MainPage_Loaded(object sender, RoutedEventArgs e) 10: { 11: IDictionary<string, string> qString = HtmlPage.Document.QueryString; 12: string firstName = string.Empty; 13: string lastName = string.Empty; 14: foreach (KeyValuePair<string, string> keyValuePair in qString) 15: { 16: string key = keyValuePair.Key; 17: string value = keyValuePair.Value; 18: if (key == "FName") 19: firstName = value; 20: else if (key == "LName") 21: lastName = value; 22: } 23: MessageBox.Show("Welcome, " + firstName + " " + lastName); 24: } 25: } Set the Startup page as Default.aspx, now run the application. This will give you the following output: Since here also you are using the Query Strings to pass your parameters, so you are depending on the browser capabilities of the length of the query strings it can pass. Here also you can refer the limitation which I have mentioned in my previous example for the length of parameters you can use.   3. Using HtmlPage.Document Silverlight to ASP.NET <—> ASP.NET to Silverlight: To show this I setup a sample Silverlight Application with Buttons Get Data and Set Data with the Data Text Box. In ASP.NET page I kep a TextBox to Show how the values passed to and From Silverlight to ASP.NET reflects back. My page with Silverlight control looks like this. When I Say Get Data it pulls the data from ASP.NET to Silverlight Control Text Box, and When I say Set data it basically Set the Value from Silverlight Control TextBox to ASP.NET TextBox. Now let see the code how it is doing. This is my ASP.NET Source Code. Here I have just created a TextBox named : txtData 1: <body> 2: <form id="form1" runat="server" style="height:100%"> 3: <div id="silverlightControlHost"> 4: ASP.NET TextBox: <input type="text" runat="server" id="txtData" value="Some Data" /> 5: <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> 6: <param name="source" value="ClientBin/SilverlightApplication1.xap"/> 7: <param name="onError" value="onSilverlightError" /> 8: <param name="background" value="white" /> 9: <param name="minRuntimeVersion" value="4.0.50826.0" /> 10: <param name="autoUpgrade" value="true" /> 11: <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> 12: <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> 13: </a> 14: </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe> 15: </div> 16: </form> 17: </body> My actual logic for getting and setting the data lies in my Silverlight Control, this is my XAML code with TextBox and Buttons. 1: <Grid x:Name="LayoutRoot" Background="White" Height="100" Width="450" VerticalAlignment="Top"> 2: <Grid.ColumnDefinitions> 3: <ColumnDefinition Width="110" /> 4: <ColumnDefinition Width="110" /> 5: <ColumnDefinition Width="110" /> 6: <ColumnDefinition Width="110" /> 7: </Grid.ColumnDefinitions> 8: <TextBlock Text="Silverlight Text Box: " Grid.Column="0" VerticalAlignment="Center"></TextBlock> 9: <TextBox x:Name="DataText" Width="100" Grid.Column="1" Height="20"></TextBox> 10: <Button x:Name="GetData" Width="100" Click="GetData_Click" Grid.Column="2" Height="30" Content="Get Data"></Button> 11: <Button x:Name="SetData" Width="100" Click="SetData_Click" Grid.Column="3" Height="30" Content="Set Data"></Button> 12: </Grid> Now we have to write few lines of Button Events for Get Data and Set Data which basically make use of Windows.System.Browser namespace. 1: private void GetData_Click(object sender, RoutedEventArgs e) 2: { 3: DataText.Text = HtmlPage.Document.GetElementById("txtData").GetProperty("value").ToString(); 4: } 5:  6: private void SetData_Click(object sender, RoutedEventArgs e) 7: { 8: HtmlPage.Document.GetElementById("txtData").SetProperty("value", DataText.Text); 9: } That’s it so when we run this application my Form will look like this. 4. Using Object Serialization. This is a useful when we want to pass Objects of Data from our ASP.NET application to Silverlight Controls and back. This technique basically uses the above technique I mentioned in Pint 3 above. Since this itself is a length topic so details of this I am going to cover in Part 2 of this Post with Sample Code Example very soon.

    Read the article

  • Getting Started Building Windows 8 Store Apps with XAML/C#

    - by dwahlin
    Technology is fun isn’t it? As soon as you think you’ve figured out where things are heading a new technology comes onto the scene, changes things up, and offers new opportunities. One of the new technologies I’ve been spending quite a bit of time with lately is Windows 8 store applications. I posted my thoughts about Windows 8 during the BUILD conference in 2011 and still feel excited about the opportunity there. Time will tell how well it ends up being accepted by consumers but I’m hopeful that it’ll take off. I currently have two Windows 8 store application concepts I’m working on with one being built in XAML/C# and another in HTML/JavaScript. I really like that Microsoft supports both options since it caters to a variety of developers and makes it easy to get started regardless if you’re a desktop developer or Web developer. Here’s a quick look at how the technologies are organized in Windows 8: In this post I’ll focus on the basics of Windows 8 store XAML/C# apps by looking at features, files, and code provided by Visual Studio projects. To get started building these types of apps you’ll definitely need to have some knowledge of XAML and C#. Let’s get started by looking at the Windows 8 store project types available in Visual Studio 2012.   Windows 8 Store XAML/C# Project Types When you open Visual Studio 2012 you’ll see a new entry under C# named Windows Store. It includes 6 different project types as shown next.   The Blank App project provides initial starter code and a single page whereas the Grid App and Split App templates provide quite a bit more code as well as multiple pages for your application. The other projects available can be be used to create a class library project that runs in Windows 8 store apps, a WinRT component such as a custom control, and a unit test library project respectively. If you’re building an application that displays data in groups using the “tile” concept then the Grid App or Split App project templates are a good place to start. An example of the initial screens generated by each project is shown next: Grid App Split View App   When a user clicks a tile in a Grid App they can view details about the tile data. With a Split View app groups/categories are shown and when the user clicks on a group they can see a list of all the different items and then drill-down into them:   For the remainder of this post I’ll focus on functionality provided by the Blank App project since it provides a simple way to get started learning the fundamentals of building Windows 8 store apps.   Blank App Project Walkthrough The Blank App project is a great place to start since it’s simple and lets you focus on the basics. In this post I’ll focus on what it provides you out of the box and cover additional details in future posts. Once you have the basics down you can move to the other project types if you need the functionality they provide. The Blank App project template does exactly what it says – you get an empty project with a few starter files added to help get you going. This is a good option if you’ll be building an app that doesn’t fit into the grid layout view that you see a lot of Windows 8 store apps following (such as on the Windows 8 start screen). I ended up starting with the Blank App project template for the app I’m currently working on since I’m not displaying data/image tiles (something the Grid App project does well) or drilling down into lists of data (functionality that the Split App project provides). The Blank App project provides images for the tiles and splash screen (you’ll definitely want to change these), a StandardStyles.xaml resource dictionary that includes a lot of helpful styles such as buttons for the AppBar (a special type of menu in Windows 8 store apps), an App.xaml file, and the app’s main page which is named MainPage.xaml. It also adds a Package.appxmanifest that is used to define functionality that your app requires, app information used in the store, plus more. The App.xaml, App.xaml.cs and StandardStyles.xaml Files The App.xaml file handles loading a resource dictionary named StandardStyles.xaml which has several key styles used throughout the application: <Application x:Class="BlankApp.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="using:BlankApp"> <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <!-- Styles that define common aspects of the platform look and feel Required by Visual Studio project and item templates --> <ResourceDictionary Source="Common/StandardStyles.xaml"/> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Application.Resources> </Application>   StandardStyles.xaml has style definitions for different text styles and AppBar buttons. If you scroll down toward the middle of the file you’ll see that many AppBar button styles are included such as one for an edit icon. Button styles like this can be used to quickly and easily add icons/buttons into your application without having to be an expert in design. <Style x:Key="EditAppBarButtonStyle" TargetType="ButtonBase" BasedOn="{StaticResource AppBarButtonStyle}"> <Setter Property="AutomationProperties.AutomationId" Value="EditAppBarButton"/> <Setter Property="AutomationProperties.Name" Value="Edit"/> <Setter Property="Content" Value="&#xE104;"/> </Style> Switching over to App.xaml.cs, it includes some code to help get you started. An OnLaunched() method is added to handle creating a Frame that child pages such as MainPage.xaml can be loaded into. The Frame has the same overall purpose as the one found in WPF and Silverlight applications - it’s used to navigate between pages in an application. /// <summary> /// Invoked when the application is launched normally by the end user. Other entry points /// will be used when the application is launched to open a specific file, to display /// search results, and so forth. /// </summary> /// <param name="args">Details about the launch request and process.</param> protected override void OnLaunched(LaunchActivatedEventArgs args) { Frame rootFrame = Window.Current.Content as Frame; // Do not repeat app initialization when the Window already has content, // just ensure that the window is active if (rootFrame == null) { // Create a Frame to act as the navigation context and navigate to the first page rootFrame = new Frame(); if (args.PreviousExecutionState == ApplicationExecutionState.Terminated) { //TODO: Load state from previously suspended application } // Place the frame in the current Window Window.Current.Content = rootFrame; } if (rootFrame.Content == null) { // When the navigation stack isn't restored navigate to the first page, // configuring the new page by passing required information as a navigation // parameter if (!rootFrame.Navigate(typeof(MainPage), args.Arguments)) { throw new Exception("Failed to create initial page"); } } // Ensure the current window is active Window.Current.Activate(); }   Notice that in addition to creating a Frame the code also checks to see if the app was previously terminated so that you can load any state/data that the user may need when the app is launched again. If you’re new to the lifecycle of Windows 8 store apps the following image shows how an app can be running, suspended, and terminated.   If the user switches from an app they’re running the app will be suspended in memory. The app may stay suspended or may be terminated depending on how much memory the OS thinks it needs so it’s important to save state in case the application is ultimately terminated and has to be started fresh. Although I won’t cover saving application state here, additional information can be found at http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465099.aspx. Another method in App.xaml.cs named OnSuspending() is also included in App.xaml.cs that can be used to store state as the user switches to another application:   /// <summary> /// Invoked when application execution is being suspended. Application state is saved /// without knowing whether the application will be terminated or resumed with the contents /// of memory still intact. /// </summary> /// <param name="sender">The source of the suspend request.</param> /// <param name="e">Details about the suspend request.</param> private void OnSuspending(object sender, SuspendingEventArgs e) { var deferral = e.SuspendingOperation.GetDeferral(); //TODO: Save application state and stop any background activity deferral.Complete(); } The MainPage.xaml and MainPage.xaml.cs Files The Blank App project adds a file named MainPage.xaml that acts as the initial screen for the application. It doesn’t include anything aside from an empty <Grid> XAML element in it. The code-behind class named MainPage.xaml.cs includes a constructor as well as a method named OnNavigatedTo() that is called once the page is displayed in the frame.   /// <summary> /// An empty page that can be used on its own or navigated to within a Frame. /// </summary> public sealed partial class MainPage : Page { public MainPage() { this.InitializeComponent(); } /// <summary> /// Invoked when this page is about to be displayed in a Frame. /// </summary> /// <param name="e">Event data that describes how this page was reached. The Parameter /// property is typically used to configure the page.</param> protected override void OnNavigatedTo(NavigationEventArgs e) { } }   If you’re experienced with XAML you can switch to Design mode and start dragging and dropping XAML controls from the ToolBox in Visual Studio. If you prefer to type XAML you can do that as well in the XAML editor or while in split mode. Many of the controls available in WPF and Silverlight are included such as Canvas, Grid, StackPanel, and Border for layout. Standard input controls are also included such as TextBox, CheckBox, PasswordBox, RadioButton, ComboBox, ListBox, and more. MediaElement is available for rendering video or playing audio files. Some of the “common” XAML controls included out of the box are shown next:   Although XAML/C# Windows 8 store apps don’t include all of the functionality available in Silverlight 5, the core functionality required to build store apps is there with additional functionality available in open source projects such as Callisto (started by Microsoft’s Tim Heuer), Q42.WinRT, and others. Standard XAML data binding can be used to bind C# objects to controls, converters can be used to manipulate data during the data binding process, and custom styles and templates can be applied to controls to modify them. Although Visual Studio 2012 doesn’t support visually creating styles or templates, Expression Blend 5 handles that very well. To get started building the initial screen of a Windows 8 app you can start adding controls as mentioned earlier. Simply place them inside of the <Grid> element that’s included. You can arrange controls in a stacked manner using the StackPanel control, add a border around controls using the Border control, arrange controls in columns and rows using the Grid control, or absolutely position controls using the Canvas control. One of the controls that may be new to you is the AppBar. It can be used to add menu/toolbar functionality into a store app and keep the app clean and focused. You can place an AppBar at the top or bottom of the screen. A user on a touch device can swipe up to display the bottom AppBar or right-click when using a mouse. An example of defining an AppBar that contains an Edit button is shown next. The EditAppBarButtonStyle is available in the StandardStyles.xaml file mentioned earlier. <Page.BottomAppBar> <AppBar x:Name="ApplicationAppBar" Padding="10,0,10,0" AutomationProperties.Name="Bottom App Bar"> <Grid> <StackPanel x:Name="RightPanel" Orientation="Horizontal" Grid.Column="1" HorizontalAlignment="Right"> <Button x:Name="Edit" Style="{StaticResource EditAppBarButtonStyle}" Tag="Edit" /> </StackPanel> </Grid> </AppBar> </Page.BottomAppBar> Like standard XAML controls, the <Button> control in the AppBar can be wired to an event handler method in the MainPage.Xaml.cs file or even bound to a ViewModel object using “commanding” if your app follows the Model-View-ViewModel (MVVM) pattern (check out the MVVM Light package available through NuGet if you’re using MVVM with Windows 8 store apps). The AppBar can be used to navigate to different screens, show and hide controls, display dialogs, show settings screens, and more.   The Package.appxmanifest File The Package.appxmanifest file contains configuration details about your Windows 8 store app. By double-clicking it in Visual Studio you can define the splash screen image, small and wide logo images used for tiles on the start screen, orientation information, and more. You can also define what capabilities the app has such as if it uses the Internet, supports geolocation functionality, requires a microphone or webcam, etc. App declarations such as background processes, file picker functionality, and sharing can also be defined Finally, information about how the app is packaged for deployment to the store can also be defined. Summary If you already have some experience working with XAML technologies you’ll find that getting started building Windows 8 applications is pretty straightforward. Many of the controls available in Silverlight and WPF are available making it easy to get started without having to relearn a lot of new technologies. In the next post in this series I’ll discuss additional features that can be used in your Windows 8 store apps.

    Read the article

  • Java invalid stream header Problem

    - by David zsl
    Hi all, im writen a client-server app, and now i´m facing a problem that I dont know how to solve: This is the client: try { Socket socket = new Socket(ip, port); ObjectOutputStream ooos = new ObjectOutputStream(socket .getOutputStream()); SendMessage message = new SendMessage(); message.numDoc = value.numDoc; message.docFreq = value.docFreq; message.queryTerms = query; message.startIndex = startIndex; message.count = count; message.multiple = false; message.ips = null; message.ports = null; message.value = true; message.docFreq = value.docFreq; message.numDoc = value.numDoc; ooos.writeObject(message); ObjectInputStream ois = new ObjectInputStream(socket .getInputStream()); ComConstants mensajeRecibido; Object mensajeAux; String mensa = null; byte[] by = null; do { mensajeAux = ois.readObject(); if (mensajeAux instanceof ComConstants) { System.out.println("Thread by Thread has Search Results"); String test; ByteArrayOutputStream testo = new ByteArrayOutputStream(); mensajeRecibido = (ComConstants) mensajeAux; byte[] wag; testo.write( mensajeRecibido.fileContent, 0, mensajeRecibido.okBytes); wag = testo.toByteArray(); if (by == null) { by = wag; } else { int size = wag.length; System.arraycopy(wag, 0, by, 0, size); } } else { System.err.println("Mensaje no esperado " + mensajeAux.getClass().getName()); break; } } while (!mensajeRecibido.lastMessage); //ByteArrayInputStream bs = new ByteArrayInputStream(by.toByteArray()); // bytes es el byte[] ByteArrayInputStream bs = new ByteArrayInputStream(by); ObjectInputStream is = new ObjectInputStream(bs); QueryWithResult[] unObjetoSerializable = (QueryWithResult[])is.readObject(); is.close(); //AQUI TOCARIA METER EL QUICKSORT XmlConverter xce = new XmlConverter(unObjetoSerializable, startIndex, count); String serializedd = xce.runConverter(); tempFinal = serializedd; ois.close(); socket.close(); } catch (Exception e) { e.printStackTrace(); } i++; } And this is the sender: try { QueryWithResult[] outputLine; Operations op = new Operations(); boolean enviadoUltimo=false; ComConstants mensaje = new ComConstants(); mensaje.queryTerms = query; outputLine = op.processInput(query, value); //String c = new String(); //c = outputLine.toString(); //StringBuffer swa = sw.getBuffer(); ByteArrayOutputStream bs= new ByteArrayOutputStream(); ObjectOutputStream os = new ObjectOutputStream (bs); os.writeObject(outputLine); os.close(); byte[] mybytearray = bs.toByteArray(); ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(mybytearray); BufferedInputStream bis = new BufferedInputStream(byteArrayInputStream); int readed = bis.read(mensaje.fileContent,0,4000); while (readed > -1) { mensaje.okBytes = readed; if (readed < ComConstants.MAX_LENGTH) { mensaje.lastMessage = true; enviadoUltimo=true; } else mensaje.lastMessage = false; oos.writeObject(mensaje); if (mensaje.lastMessage) break; mensaje = new ComConstants(); mensaje.queryTerms = query; readed = bis.read(mensaje.fileContent); } if (enviadoUltimo==false) { mensaje.lastMessage=true; mensaje.okBytes=0; oos.writeObject(mensaje); } oos.close(); } catch (Exception e) { e.printStackTrace(); } } And this is the error log: Thread by Thread has Search Results java.io.StreamCorruptedException: invalid stream header: 20646520 at java.io.ObjectInputStream.readStreamHeader(Unknown Source) at java.io.ObjectInputStream.<init>(Unknown Source) at org.tockit.comunication.ServerThread.enviaFicheroMultiple(ServerThread.java:747) at org.tockit.comunication.ServerThread.run(ServerThread.java:129) at java.lang.Thread.run(Unknown Source) Where at org.tockit.comunication.ServerThread.enviaFicheroMultiple(ServerThread.java:747) is this line ObjectInputStream is = new ObjectInputStream(bs); on the 1st code just after while (!mensajeRecibido.lastMessage); Any ideas?

    Read the article

< Previous Page | 446 447 448 449 450 451 452 453 454 455 456 457  | Next Page >