Search Results

Search found 45441 results on 1818 pages for 'string to date'.

Page 450/1818 | < Previous Page | 446 447 448 449 450 451 452 453 454 455 456 457  | Next Page >

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • how do we access values stored in NSMutableArray of NSMutableDictionary ?

    - by srikanth rongali
    I have stored values in NsMutableDictionaries . ThenI stored all the dictionaries in NSMutable Array. I need to access the values ? How can I do that ? -(void)viewDidLoad { [super viewDidLoad]; self.title = @"Library"; self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc] initWithTitle:@"Close" style:UIBarButtonItemStyleBordered target:self action:@selector(close:)]; cells = [[NSMutableArray alloc] initWithObjects:@"dict1", @"dict2", @"dict3", @"dict4", @"dict5", @"dict6", nil]; dict1 = [[NSMutableDictionary alloc] initWithObjectsAndKeys:@"Mon, 01 Feb #2", @"date", @"0.7", @"time", @"1.2MB", @"size", @"200*200", @"pix", nil]; dict2 = [[NSMutableDictionary alloc] initWithObjectsAndKeys:@"Wed, 02 Mar #3", @"date", @"1.2", @"time", @"2.2MB", @"size", @"300*300", @"pix", nil]; dict3 = [[NSMutableDictionary alloc] initWithObjectsAndKeys:@"Tue, 03 Apr #5", @"date", @"1.7", @"time", @"2.5MB", @"size", @"240*240", @"pix", nil]; dict4 = [[NSMutableDictionary alloc] initWithObjectsAndKeys:@"Mon, 01 Feb #2", @"date", @"0.7", @"time", @"1.2MB", @"size", @"200*200", @"pix", nil]; dict5 = [[NSMutableDictionary alloc] initWithObjectsAndKeys:@"Mon, 10 Nov #5", @"date", @"2.7", @"time", @"4.2MB", @"size", @"200*400", @"pix", nil]; dict6 = [[NSMutableDictionary alloc] initWithObjectsAndKeys:@"Mon, 11 Dec #6", @"date", @"4.7", @"time", @"2.2MB", @"size", @"500*200", @"pix", nil]; //[cells addObject:dict1]; //[cells addObject:dict2]; //[cells addObject:dict3]; //[cells addObject:dict4]; //[cells addObject:dict5]; //[cells addObject:dict6]; } // Customize the number of rows in the table view. - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return [cells count]; } // Customize the appearance of table view cells. - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *CellIdentifier = @"Cell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero reuseIdentifier:CellIdentifier] autorelease]; //cell.contentView.frame = CGRectMake(0.0f, 0.0f, 320.0f, 80.0f); [cell setAccessoryType:UITableViewCellAccessoryDisclosureIndicator]; UIImageView *image1 = [[UIImageView alloc]init]; image1.frame = CGRectMake(0.0f, 0.0f, 80.0f, 80.0f); image1.tag = tag7; UILabel *dateLabel = [[UILabel alloc]init]; dateLabel.frame = CGRectMake(100.0f, 5.0f, 120.0f, 25.0f); dateLabel.font = [UIFont fontWithName:@"Georgia" size:10]; dateLabel.tag = tag1; UILabel *timeLabel = [[UILabel alloc] init]; timeLabel.frame = CGRectMake(100.0f, 30.0f, 40.0f, 25.0f); timeLabel.font = [UIFont fontWithName:@"Georgia" size:10]; timeLabel.tag = tag2; UILabel *sizeLabel = [[UILabel alloc] init]; sizeLabel.frame = CGRectMake(160.0f, 30.0f, 40.0f, 25.0f); sizeLabel.font = [UIFont fontWithName:@"Georgia" size:10]; sizeLabel.tag = tag3; UILabel *pixLabel = [[UILabel alloc] init]; pixLabel.frame = CGRectMake(220.0f, 30.0f, 40.0f, 25.0f); pixLabel.font = [UIFont fontWithName:@"Georgia" size:10]; pixLabel.tag = tag4; UILabel *shareLabel = [[UILabel alloc] init]; shareLabel.frame = CGRectMake(100.0f, 55.0f, 100.0f, 25.0f); shareLabel.font = [UIFont fontWithName:@"Georgia" size:10]; shareLabel.tag = tag5; UILabel *deleteLabel = [[UILabel alloc] init]; deleteLabel.frame = CGRectMake(220.0f, 55.0f, 100.0f, 25.0f); deleteLabel.font = [UIFont fontWithName:@"Georgia" size:10]; deleteLabel.tag = tag6; [cell.contentView addSubview:dateLabel]; [cell.contentView addSubview:timeLabel]; [cell.contentView addSubview:sizeLabel]; [cell.contentView addSubview:pixLabel]; [cell.contentView addSubview:shareLabel]; [cell.contentView addSubview:deleteLabel]; [cell.contentView addSubview:image1]; [dateLabel release]; [timeLabel release]; [sizeLabel release]; [pixLabel release]; [shareLabel release]; [deleteLabel release]; [image1 release]; } // Set up the cell... [(UILabel *)[cell viewWithTag:tag1] setText:[cells objectAtIndex:[dict1 objectForKey: @"date"]]]; [(UILabel *)[cell viewWithTag:tag2] setText:[cells objectAtIndex:[dict1 objectForKey: @"time"]]]; [(UILabel *)[cell viewWithTag:tag3] setText:[cells objectAtIndex:[dict1 objectForKey: @"size"]]]; [(UILabel *)[cell viewWithTag:tag4] setText:[cells objectAtIndex:[dict1 objectForKey: @"pix"]]]; [(UILabel *)[cell viewWithTag:tag5] setText:@"Share"]; [(UILabel *)[cell viewWithTag:tag6] setText:@"Delete"]; cell.imageView.image = [UIImage imageNamed:@"image2.png"]; return cell; } - (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)indexPath { return 80.0f; } I did in above way but it is not working. I know the mistake is at the accessing values. but, I could not get how to do it ? Thank You.

    Read the article

  • jQuery Toggle with Cookie

    - by Cameron
    I have the following toggle system, but I want it to remember what was open/closed using the jQuery cookie plugin. So for example if I open a toggle and then navigate away from the page, when I come back it should be still open. This is code I have so far, but it's becoming rather confusing, some help would be much appreciated thanks. jQuery.cookie = function (name, value, options) { if (typeof value != 'undefined') { options = options || {}; if (value === null) { value = ''; options = $.extend({}, options); options.expires = -1; } var expires = ''; if (options.expires && (typeof options.expires == 'number' || options.expires.toUTCString)) { var date; if (typeof options.expires == 'number') { date = new Date(); date.setTime(date.getTime() + (options.expires * 24 * 60 * 60 * 1000)); } else { date = options.expires; } expires = '; expires=' + date.toUTCString(); } var path = options.path ? '; path=' + (options.path) : ''; var domain = options.domain ? '; domain=' + (options.domain) : ''; var secure = options.secure ? '; secure' : ''; document.cookie = [name, '=', encodeURIComponent(value), expires, path, domain, secure].join(''); } else { var cookieValue = null; if (document.cookie && document.cookie != '') { var cookies = document.cookie.split(';'); for (var i = 0; i < cookies.length; i++) { var cookie = jQuery.trim(cookies[i]); if (cookie.substring(0, name.length + 1) == (name + '=')) { cookieValue = decodeURIComponent(cookie.substring(name.length + 1)); break; } } } return cookieValue; } }; // var showTop = $.cookie('showTop'); if ($.cookie('showTop') == 'collapsed') { $(".toggle_container").hide(); $(".trigger").toggle(function () { $(this).addClass("active"); }, function () { $(this).removeClass("active"); }); $(".trigger").click(function () { $(this).next(".toggle_container").slideToggle("slow,"); }); } else { $(".toggle_container").show(); $(".trigger").toggle(function () { $(this).addClass("active"); }, function () { $(this).removeClass("active"); }); $(".trigger").click(function () { $(this).next(".toggle_container").slideToggle("slow,"); }); }; $(".trigger").click(function () { if ($(".toggle_container").is(":hidden")) { $(this).next(".toggle_container").slideToggle("slow,"); $.cookie('showTop', 'expanded'); } else { $(this).next(".toggle_container").slideToggle("slow,"); $.cookie('showTop', 'collapsed'); } return false; }); and this is a snippet of the HTML it works with: <li> <label for="small"><input type="checkbox" id="small" /> Small</label> <a class="trigger" href="#">Toggle</a> <div class="toggle_container"> <p class="funding"><strong>Funding</strong></p> <ul class="childs"> <li class="child"> <label for="fully-funded1"><input type="checkbox" id="fully-funded1" /> Fully Funded</label> <a class="trigger" href="#">Toggle</a> <div class="toggle_container"> <p class="days"><strong>Days</strong></p> <ul class="days clearfix"> <li><label for="1pre16">Pre 16</label> <input type="text" id="1pre16" /></li> <li><label for="2post16">Post 16</label> <input type="text" id="2post16" /></li> <li><label for="3teacher">Teacher</label> <input type="text" id="3teacher" /></li> </ul> </div> </li>

    Read the article

  • When running UPDATE ... datetime = NOW(); will all rows updated have the same date/time?

    - by Darryl Hein
    When you run something similar to: UPDATE table SET datetime = NOW(); on a table with 1 000 000 000 records and the query takes 10 seconds to run, will all the rows have the exact same time (minutes and seconds) or will they have different times? In other words, will the time be when the query started or when each row is updated? I'm running MySQL, but I'm thinking this applies to all dbs.

    Read the article

  • Does my basic PHP Socket Server need optimization?

    - by Tom
    Like many people, I can do a lot of things with PHP. One problem I do face constantly is that other people can do it much cleaner, much more organized and much more structured. This also results in much faster execution times and much less bugs. I just finished writing a basic PHP Socket Server (the real core), and am asking you if you can tell me what I should do different before I start expanding the core. I'm not asking about improvements such as encrypted data, authentication or multi-threading. I'm more wondering about questions like "should I maybe do it in a more object oriented way (using PHP5)?", or "is the general structure of the way the script works good, or should some things be done different?". Basically, "is this how the core of a socket server should work?" In fact, I think that if I just show you the code here many of you will immediately see room for improvements. Please be so kind to tell me. Thanks! #!/usr/bin/php -q <? // config $timelimit = 180; // amount of seconds the server should run for, 0 = run indefintely $address = $_SERVER['SERVER_ADDR']; // the server's external IP $port = 9000; // the port to listen on $backlog = SOMAXCONN; // the maximum of backlog incoming connections that will be queued for processing // configure custom PHP settings error_reporting(1); // report all errors ini_set('display_errors', 1); // display all errors set_time_limit($timelimit); // timeout after x seconds ob_implicit_flush(); // results in a flush operation after every output call //create master IPv4 based TCP socket if (!($master = socket_create(AF_INET, SOCK_STREAM, SOL_TCP))) die("Could not create master socket, error: ".socket_strerror(socket_last_error())); // set socket options (local addresses can be reused) if (!socket_set_option($master, SOL_SOCKET, SO_REUSEADDR, 1)) die("Could not set socket options, error: ".socket_strerror(socket_last_error())); // bind to socket server if (!socket_bind($master, $address, $port)) die("Could not bind to socket server, error: ".socket_strerror(socket_last_error())); // start listening if (!socket_listen($master, $backlog)) die("Could not start listening to socket, error: ".socket_strerror(socket_last_error())); //display startup information echo "[".date('Y-m-d H:i:s')."] SERVER CREATED (MAXCONN: ".SOMAXCONN.").\n"; //max connections is a kernel variable and can be adjusted with sysctl echo "[".date('Y-m-d H:i:s')."] Listening on ".$address.":".$port.".\n"; $time = time(); //set startup timestamp // init read sockets array $read_sockets = array($master); // continuously handle incoming socket messages, or close if time limit has been reached while ((!$timelimit) or (time() - $time < $timelimit)) { $changed_sockets = $read_sockets; socket_select($changed_sockets, $write = null, $except = null, null); foreach($changed_sockets as $socket) { if ($socket == $master) { if (($client = socket_accept($master)) < 0) { echo "[".date('Y-m-d H:i:s')."] Socket_accept() failed, error: ".socket_strerror(socket_last_error())."\n"; continue; } else { array_push($read_sockets, $client); echo "[".date('Y-m-d H:i:s')."] Client #".count($read_sockets)." connected (connections: ".count($read_sockets)."/".SOMAXCONN.")\n"; } } else { $data = @socket_read($socket, 1024, PHP_NORMAL_READ); //read a maximum of 1024 bytes until a new line has been sent if ($data === false) { //the client disconnected $index = array_search($socket, $read_sockets); unset($read_sockets[$index]); socket_close($socket); echo "[".date('Y-m-d H:i:s')."] Client #".($index-1)." disconnected (connections: ".count($read_sockets)."/".SOMAXCONN.")\n"; } else { if ($data = trim($data)) { //remove whitespace and continue only if the message is not empty switch ($data) { case "exit": //close connection when exit command is given $index = array_search($socket, $read_sockets); unset($read_sockets[$index]); socket_close($socket); echo "[".date('Y-m-d H:i:s')."] Client #".($index-1)." disconnected (connections: ".count($read_sockets)."/".SOMAXCONN.")\n"; break; default: //for experimental purposes, write the given data back socket_write($socket, "\n you wrote: ".$data); } } } } } } socket_close($master); //close the socket echo "[".date('Y-m-d H:i:s')."] SERVER CLOSED.\n"; ?>

    Read the article

  • How to publish an ASP.NET MVC application to a free host

    - by Lirik
    Hi, I'm using a free web host (0000free) which supports ASP.NET MVC, but it uses Mono. This is the first time I deploy an MVC application, so I'm a little confused as to where I need to deploy it. I have Visual Studio 2010 and I used its Publish Feature (i.e. right click on the project name and click publish) and I tried several things: Publish method: FTP to the root folder. Publish method: FTP to the publich_html folder. Publish method: File System to the root folder. Publish method: File System to the publich_html folder. Publish method: File System to a local directory on my computer and then FTP to root and also tried the public_html folder. I went into the cPanel (control panel) to try and see if ASP.NET has to be added/enabled for my web site, but I didn't see anything there. I can't browse to Index.aspx nor can I redirect to it from index.html (as suggested from other posts on the host forum), right now I have a link from index.html to Index.aspx but it's not working either (see http://www.mydevarmy.com) I've also tried renaming Index.aspx to Default.aspx, but that doesn't work either. The search utility of the forum of the host is somewhat weak, so I use google to search their forum: http://www.google.com/search?q=publish+asp.net+site%3A0000free.com%2Fforum%2F&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a I've been reading Pro ASP.NET MVC Framework and they have a chapter about publishing, but it doesn't provide any specific information with respect to the location of publishing, this is all they say (and it's not very helpful in my case): Where Should I Put My Application? You can deploy your application to any folder on the server. When IIS first installs, it automatically creates a folder for a web site called Default Web Site at c:\Inetpub\wwwroot\, but you shouldn’t feel any obligation to put your application files there. It’s very common to host applications on a different physical drive from the operating system (e.g., in e:\websites\ example.com). It’s entirely up to you, and may be influenced by concerns such as how you plan to back up the server. Here is the exception I get when I try to view my Index.aspx page: Unrecognized attribute 'targetFramework'. (/home/devarmy/public_html/Web.config line 1) Description: HTTP 500. Error processing request. Stack Trace: System.Configuration.ConfigurationErrorsException: Unrecognized attribute 'targetFramework'. (/home/devarmy/public_html/Web.config line 1) at System.Configuration.ConfigurationElement.DeserializeElement (System.Xml.XmlReader reader, Boolean serializeCollectionKey) [0x00000] in <filename unknown>:0 at System.Configuration.ConfigurationSection.DoDeserializeSection (System.Xml.XmlReader reader) [0x00000] in <filename unknown>:0 at System.Configuration.ConfigurationSection.DeserializeSection (System.Xml.XmlReader reader) [0x00000] in <filename unknown>:0 at System.Configuration.Configuration.GetSectionInstance (System.Configuration.SectionInfo config, Boolean createDefaultInstance) [0x00000] in <filename unknown>:0 at System.Configuration.ConfigurationSectionCollection.get_Item (System.String name) [0x00000] in <filename unknown>:0 at System.Configuration.Configuration.GetSection (System.String path) [0x00000] in <filename unknown>:0 at System.Web.Configuration.WebConfigurationManager.GetSection (System.String sectionName, System.String path, System.Web.HttpContext context) [0x00000] in <filename unknown>:0 at System.Web.Configuration.WebConfigurationManager.GetSection (System.String sectionName, System.String path) [0x00000] in <filename unknown>:0 at System.Web.Configuration.WebConfigurationManager.GetWebApplicationSection (System.String sectionName) [0x00000] in <filename unknown>:0 at System.Web.Compilation.BuildManager.get_CompilationConfig () [0x00000] in <filename unknown>:0 at System.Web.Compilation.BuildManager.Build (System.Web.VirtualPath vp) [0x00000] in <filename unknown>:0 at System.Web.Compilation.BuildManager.GetCompiledType (System.Web.VirtualPath virtualPath) [0x00000] in <filename unknown>:0 at System.Web.Compilation.BuildManager.GetCompiledType (System.String virtualPath) [0x00000] in <filename unknown>:0 at System.Web.HttpApplicationFactory.InitType (System.Web.HttpContext context) [0x00000] in <filename unknown>:0

    Read the article

  • SBS2003 to SBS2011 Migration - Installation Error

    - by Shawn Gradwell
    Microsoft Small Business Server 2003 to 2011 Migration. I followed the Migration Guide from Microsoft and the source server had no errors when running the various tests prior to the migration. I have completed the destination server setup using the Answer File and the server is up and running. It all looks good, I can access Exchange and AD and the only problem is the error message when you log in stating that the setup did not complete and to check the logs. Because all looks good I am continuing the migration to the destination server. I also have to state that this client does not use Sharepoint at all. Do I have to redo everything? Herewith the logs: [4992] 121016.225454.5905: Task: Starting Add User or Group access VSS registry. [4992] 121016.225454.7645: TaskManagement: In TaskScheduler.RunTasks(): The "ConfigureSharePointVSSRegistryTask" Task threw an Exception during the Run() call:System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) [4992] 121016.225454.7655: Setup: An error was encountered on the TME thread: System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) [4956] 121016.225455.0685: Setup: _UnhandledExceptionHandler: Setup encountered an error: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.Reflection.TargetInvocationException: The TME thread failed (see the inner exception). ---> System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter.TasksCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(IRuntimeMethodInfo method, Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeType typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(IntPtr dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass._LaunchWizard() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.RealMain(String[] args) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.Main(String[] args) [4956] 121016.225455.0865: Setup: Removed the password. [4956] 121016.225455.0905: Setup: Deleting scheduled task at path Microsoft\Windows\Windows Small Business Server 2011 Standard with name Setup [4956] 121016.225455.8055: Setup: Removed SBSSetup from the RunOnce.

    Read the article

  • Is it possible to write C# code as below and send email using network in different country?

    - by kedar karthik
    Is it possible to write C# code as below and send email using mnetwork in different country? MSExchangeWebServiceURL = mail.something.com/ews/exchange.asmx its a web service URL ... sorry to correct my self //....this works great when i run the same code from home network, my friends home network ... anywhere around ... but when i run it from my clients location in columbia ... it fails I have a valid user name and password on that exchange server. Is there any configuration that I can set to achieve this? BTW this code below works when I run it within office network and any network within any home network ... i have tried atleast 5 friends network in Plano, Texas. I want this code to work when run from any network in another country. My client in columbia can connect to web service using a browser .. use the same user name and password ..... but when i run the code above ... it is not able to connect to our web service .... String cMSExchangeWebServiceURL = (String)System.Configuration.ConfigurationSettings.AppSettings["MSExchangeWebServiceURL"]; String cEmail = (String)System.Configuration.ConfigurationSettings.AppSettings["Cemail"]; String cPassword = (String)System.Configuration.ConfigurationSettings.AppSettings["Cpassword"]; String cTo = (String)System.Configuration.ConfigurationSettings.AppSettings["CTo"]; ExchangeServiceBinding esb = new ExchangeServiceBinding(); esb.Timeout = 1800000; esb.AllowAutoRedirect = true; esb.UseDefaultCredentials = false; esb.Credentials = new NetworkCredential(cEmail, cPassword); esb.Url = cMSExchangeWebServiceURL; ServicePointManager.ServerCertificateValidationCallback += delegate(object sender1, X509Certificate certificate, X509Chain chain, SslPolicyErrors sslPolicyErrors) { return true; }; // Create a CreateItem request object CreateItemType request = new CreateItemType(); // Setup the request: // Indicate that we only want to send the message. No copy will be saved. request.MessageDisposition = MessageDispositionType.SendOnly; request.MessageDispositionSpecified = true; // Create a message object and set its properties MessageType message = new MessageType(); message.Subject = subject; message.Body = new TestOutgoingEmailServer.com.cogniti.mail1.BodyType(); message.Body.BodyType1 = BodyTypeType.HTML; message.Body.Value = body; message.ToRecipients = new EmailAddressType[3]; message.ToRecipients[0] = new EmailAddressType(); //message.ToRecipients[1] = new EmailAddressType(); //message.ToRecipients[2] = new EmailAddressType(); message.ToRecipients[0].EmailAddress = "[email protected]"; message.ToRecipients[0].RoutingType = "SMTP"; //message.CcRecipients = new EmailAddressType[1]; //message.CcRecipients[0] = new EmailAddressType(); //message.CcRecipients[0].EmailAddress = toEmailAddress.ElementAt(1).ToString(); //message.CcRecipients[0].RoutingType = "SMTP"; //There are some more properties in MessageType object //you can set all according to your requirement // Construct the array of items to send request.Items = new NonEmptyArrayOfAllItemsType(); request.Items.Items = new ItemType[1]; request.Items.Items[0] = message; // Call the CreateItem EWS method. CreateItemResponseType response = esb.CreateItem(request);

    Read the article

  • Notification CeSetUserNotificationEx with custom sound

    - by inTagger
    Hail all! I want to display notification and play custom sound on my Windows Mobile 5/6 device. I have tried something like that, but my custom sound does not play, though message is displayed with standart sound. If i edit Wave key in [HKEY_CURRENT_USER\ControlPanel\Notifications{15F11F90-8A5F-454c-89FC-BA9B7AAB0CAD}] to sound file i need then it plays okay. But why there are flag NotificationAction.Sound and property UserNotification.Sound? It doesn't work. Also Vibration and Led don't work, if i use such flags. (You can obtain full project sources from http://dl.dropbox.com/u/1758206/Code/Thunder.zip) var trigger = new UserNotificationTrigger { StartTime = DateTime.Now + TimeSpan.FromSeconds(1), Type = NotificationType.ClassicTime }; var userNotification = new UserNotification { Sound = @"\Windows\Alarm1.wma", Text = "Hail from Penza, Russia!", Action = NotificationAction.Dialog | NotificationAction.Sound, Title = string.Empty, MaxSound = 16384 }; NotificationTools.SetUserNotification(0, trigger, userNotification); UserNotificationTrigger.cs: using System; using System.Runtime.InteropServices; namespace Thunder.Lib.ThunderMethod1 { /// <summary> /// Specifies the type of notification. /// </summary> public enum NotificationType { /// <summary> /// Equivalent to using the SetUserNotification function. /// The standard command line is supplied. /// </summary> ClassicTime = 4, /// <summary> /// System event notification. /// </summary> Event = 1, /// <summary> /// Time-based notification that is active for the time period between StartTime and EndTime. /// </summary> Period = 3, /// <summary> /// Time-based notification. /// </summary> Time = 2 } /// <summary> /// System Event Flags /// </summary> public enum NotificationEvent { None, TimeChange, SyncEnd, OnACPower, OffACPower, NetConnect, NetDisconnect, DeviceChange, IRDiscovered, RS232Detected, RestoreEnd, Wakeup, TimeZoneChange, MachineNameChange, RndisFNDetected, InternetProxyChange } /// <summary> /// Defines what event activates a notification. /// </summary> [StructLayout(LayoutKind.Sequential)] public class UserNotificationTrigger { internal int dwSize = 52; private int dwType; private int dwEvent; [MarshalAs(UnmanagedType.LPWStr)] private string lpszApplication = string.Empty; [MarshalAs(UnmanagedType.LPWStr)] private string lpszArguments; internal SYSTEMTIME stStartTime; internal SYSTEMTIME stEndTime; /// <summary> /// Specifies the type of notification. /// </summary> public NotificationType Type { get { return (NotificationType) dwType; } set { dwType = (int) value; } } /// <summary> /// Specifies the type of event should Type = Event. /// </summary> public NotificationEvent Event { get { return (NotificationEvent) dwEvent; } set { dwEvent = (int) value; } } /// <summary> /// Name of the application to execute. /// </summary> public string Application { get { return lpszApplication; } set { lpszApplication = value; } } /// <summary> /// Command line (without the application name). /// </summary> public string Arguments { get { return lpszArguments; } set { lpszArguments = value; } } /// <summary> /// Specifies the beginning of the notification period. /// </summary> public DateTime StartTime { get { return stStartTime.ToDateTime(); } set { stStartTime = SYSTEMTIME.FromDateTime(value); } } /// <summary> /// Specifies the end of the notification period. /// </summary> public DateTime EndTime { get { return stEndTime.ToDateTime(); } set { stEndTime = SYSTEMTIME.FromDateTime(value); } } } } UserNotification.cs: using System.Runtime.InteropServices; namespace Thunder.Lib.ThunderMethod1 { /// <summary> /// Contains information used for a user notification. /// </summary> [StructLayout(LayoutKind.Sequential)] public class UserNotification { private int ActionFlags; [MarshalAs(UnmanagedType.LPWStr)] private string pwszDialogTitle; [MarshalAs(UnmanagedType.LPWStr)] private string pwszDialogText; [MarshalAs(UnmanagedType.LPWStr)] private string pwszSound; private int nMaxSound; private int dwReserved; /// <summary> /// Any combination of the <see cref="T:Thunder.Lib.NotificationAction" /> members. /// </summary> /// <value>Flags which specifies the action(s) to be taken when the notification is triggered.</value> /// <remarks>Flags not valid on a given hardware platform will be ignored.</remarks> public NotificationAction Action { get { return (NotificationAction) ActionFlags; } set { ActionFlags = (int) value; } } /// <summary> /// Required if NotificationAction.Dialog is set, ignored otherwise /// </summary> public string Title { get { return pwszDialogTitle; } set { pwszDialogTitle = value; } } /// <summary> /// Required if NotificationAction.Dialog is set, ignored otherwise. /// </summary> public string Text { get { return pwszDialogText; } set { pwszDialogText = value; } } /// <summary> /// Sound string as supplied to PlaySound. /// </summary> public string Sound { get { return pwszSound; } set { pwszSound = value; } } public int MaxSound { get { return nMaxSound; } set { nMaxSound = value; } } } } NativeMethods.cs: using System; using System.Runtime.InteropServices; namespace Thunder.Lib.ThunderMethod1 { [StructLayout(LayoutKind.Sequential)] public struct SYSTEMTIME { public short wYear; public short wMonth; public short wDayOfWeek; public short wDay; public short wHour; public short wMinute; public short wSecond; public short wMillisecond; public static SYSTEMTIME FromDateTime(DateTime dt) { return new SYSTEMTIME { wYear = (short) dt.Year, wMonth = (short) dt.Month, wDayOfWeek = (short) dt.DayOfWeek, wDay = (short) dt.Day, wHour = (short) dt.Hour, wMinute = (short) dt.Minute, wSecond = (short) dt.Second, wMillisecond = (short) dt.Millisecond }; } public DateTime ToDateTime() { if ((((wYear == 0) && (wMonth == 0)) && ((wDay == 0) && (wHour == 0))) && ((wMinute == 0) && (wSecond == 0))) return DateTime.MinValue; return new DateTime(wYear, wMonth, wDay, wHour, wMinute, wSecond, wMillisecond); } } /// <summary> /// Specifies the action to take when a notification event occurs. /// </summary> [Flags] public enum NotificationAction { /// <summary> /// Displays the user notification dialog box. /// </summary> Dialog = 4, /// <summary> /// Flashes the LED. /// </summary> Led = 1, /// <summary> /// Dialog box z-order flag. /// Set if the notification dialog box should come up behind the password. /// </summary> Private = 32, /// <summary> /// Repeats the sound for 10–15 seconds. /// </summary> Repeat = 16, /// <summary> /// Plays the sound specified. /// </summary> Sound = 8, /// <summary> /// Vibrates the device. /// </summary> Vibrate = 2 } internal class NativeMethods { [DllImport("coredll.dll", CallingConvention = CallingConvention.Winapi, CharSet = CharSet.Unicode, SetLastError = true)] internal static extern int CeSetUserNotificationEx(int hNotification, UserNotificationTrigger lpTrigger, UserNotification lpUserNotification); } } NotificationTools.cs: using System.ComponentModel; using System.Runtime.InteropServices; namespace Thunder.Lib.ThunderMethod1 { public static class NotificationTools { /// <summary> /// This function modifies an existing user notification. /// </summary> /// <param name="handle">Handle of the Notification to be modified</param> /// <param name="trigger">A UserNotificationTrigger that defines what event activates a notification.</param> /// <param name="notification">A UserNotification that defines how the system should respond when a notification occurs.</param> /// <returns>Handle to the notification event if successful.</returns> public static int SetUserNotification(int handle, UserNotificationTrigger trigger, UserNotification notification) { int num = NativeMethods.CeSetUserNotificationEx(handle, trigger, notification); if (num == 0) throw new Win32Exception(Marshal.GetLastWin32Error(), "Error setting UserNotification"); return num; } } }

    Read the article

  • lnk2019 error in very simple c++ program

    - by Erin
    I have tried removing various parts and building, but nothing makes the lnk2019 error go away, or even produces any normal errors. Everything is in the one file at the moment (it won't be later when it is finished). The program has three lists of words and makes a jargon phrase out of them, and you are supposed to be able to add words, remove words, view the lists, restore defaults, save changes to file, and load changes from file. #include "stdafx.h" #include <iostream> #include <string.h> using namespace std; const int maxlist = 20; string adj1[maxlist], adj2[maxlist], noun[maxlist]; void defaultlist(int list) { if(list == 1) { adj1[0] = "green"; adj1[1] = "red"; adj1[2] = "yellow"; adj1[3] = "blue"; adj1[4] = "purple"; int i = 5; while(i != maxlist) { adj1[i] = ""; i = i + 1; } } if(list == 2) { adj2[0] = "shiny"; adj2[1] = "hard"; adj2[2] = "soft"; adj2[3] = "spiky"; adj2[4] = "furry"; int i = 5; while(i != maxlist) { adj2[i] = ""; i = i + 1; } } if(list == 3) { noun[0] = "cat"; noun[1] = "dog"; noun[2] = "desk"; noun[3] = "chair"; noun[4] = "door"; int i = 5; while(i != maxlist) { noun[i] = ""; i = i + 1; } } return; } void printlist(int list) { if(list == 1) { int i = 0; while(!(i == maxlist)) { cout << adj1[i] << endl; i = i + 1; } } if(list == 2) { int i = 0; while(!(i == maxlist)) { cout << adj2[i] << endl; i = i + 1; } } if(list == 3) { int i = 0; while(!(i == maxlist)) { cout << noun[i] << endl; i = i + 1; } } return; } string makephrase() { int num1 = rand()%maxlist; int num2 = rand()%maxlist; int num3 = rand()%maxlist; int num4 = rand()%1; string word1, word2, word3; if(num4 = 0) { word1 = adj1[num1]; word2 = adj2[num2]; } else { word1 = adj2[num1]; word2 = adj1[num2]; } word3 = noun[num3]; return word1 + " ," + word2 + " " + word3; } string addword(string word, int list) { string result; if(list == 1) { int i = 0; while(!(adj1[i] == "" || i == maxlist)) { i = i + 1; } if(i == maxlist) result = "List is full. Please try again."; if(adj1[i] == "") { adj1[i] = word; result = "Word was entered successfully."; } } if(list == 2) { int i = 0; while(!(adj2[i] == "" || i == maxlist)) { i = i + 1; } if(i == maxlist) result = "List is full. Please try again."; if(adj2[i] == "") { adj2[i] = word; result = "Word was entered successfully."; } } if(list == 3) { int i = 0; while(!(noun[i] == "" || i == maxlist)) { i = i + 1; } if(i == maxlist) result = "List is full. Please try again."; if(noun[i] == "") { noun[i] = word; result = "Word was entered successfully."; } } return result; } string removeword(string word, int list) { string result; if(list == 1) { int i = 0; while(!(adj1[i] == word || i == maxlist)) { i = i + 1; } if(i == maxlist) result = "Word is not on the list. Please try again."; if(adj1[i] == word) { adj1[i] = ""; result = "Word was removed successfully."; } } if(list == 2) { int i = 0; while(!(adj2[i] == word || i == maxlist)) { i = i + 1; } if(i == maxlist) result = "Word is not on the list. Please try again."; if(adj2[i] == word) { adj2[i] = ""; result = "Word was removed successfully."; } } if(list == 3) { int i = 0; while(!(noun[i] == word || i == maxlist)) { i = i + 1; } if(i == maxlist) result = "Word is not on the list. Please try again."; if(noun[i] == word) { noun[i] = ""; result = "Word was removed successfully."; } } return result; } /////////////////////////////main/////////////////////////////////// int main() { string mainselection; string makeselection; string phrase; defaultlist(1); defaultlist(2); defaultlist(3); cout << "This program generates jargon phrases made of two adjectives and one noun,"; cout << " on three lists. Each list may contain a maximum of " << maxlist << "elements."; cout << " Please choose from the following menu by typing the appropriate number "; cout << "and pressing enter." << endl; cout << endl; cout << "1. Make a jargon phrase." << endl; cout << "2. View a list." << endl; cout << "3. Add a word to a list." << endl; cout << "4. Remove a word from a list." << endl; cout << "5. Restore default lists." << endl; cout << "More options coming soon!." << endl; cin mainselection if(mainselection == 1) { phrase = makephrase(); cout << "Your phrase is " << phrase << "." << endl; cout << "To make another phrase, press 1. To go back to the main menu,"; cout << " press 2. To exit the program, press 3." << endl; cin makeselection; while(!(makeselection == "1" || makeselection == "2" || makeselection == "3")) { cout << "You have entered an invalid selection. Please try again." << endl; cin makeselection; } while(makeselection == "1") { phrase = makephrase(); cout << "To make another phrase, press 1. To go back to the main menu,"; cout << " press 2. To exit the program, press 3." << endl; } if(makeselection == "2") main(); if(makeselection == "3") return 0; } return 0; } //Rest of the options coming soon!

    Read the article

  • JavaFx 2.1, 2.2 TableView update issue

    - by Lewis Liu
    My application uses JPA read data into TableView then modify and display them. The table refreshed modified record under JavaFx 2.0.3. Under JavaFx 2.1, 2.2, the table wouldn't refresh the update anymore. I found other people have similar issue. My plan was to continue using 2.0.3 until someone fixes the issue under 2.1 and 2.2. Now I know it is not a bug and wouldn't be fixed. Well, I don't know how to deal with this. Following are codes are modified from sample demo to show the issue. If I add a new record or delete a old record from table, table refreshes fine. If I modify a record, the table wouldn't refreshes the change until a add, delete or sort action is taken. If I remove the modified record and add it again, table refreshes. But the modified record is put at button of table. Well, if I remove the modified record, add the same record then move the record to the original spot, the table wouldn't refresh anymore. Below is a completely code, please shine some light on this. import javafx.application.Application; import javafx.beans.property.SimpleStringProperty; import javafx.collections.FXCollections; import javafx.collections.ObservableList; import javafx.event.ActionEvent; import javafx.event.EventHandler; import javafx.geometry.HPos; import javafx.geometry.Insets; import javafx.geometry.Pos; import javafx.scene.Group; import javafx.scene.Scene; import javafx.scene.control.*; import javafx.scene.control.cell.PropertyValueFactory; import javafx.scene.layout.GridPane; import javafx.scene.layout.HBox; import javafx.scene.layout.VBox; import javafx.scene.text.Font; import javafx.stage.Modality; import javafx.stage.Stage; import javafx.stage.StageStyle; public class Main extends Application { private TextField firtNameField = new TextField(); private TextField lastNameField = new TextField(); private TextField emailField = new TextField(); private Stage editView; private Person fPerson; public static class Person { private final SimpleStringProperty firstName; private final SimpleStringProperty lastName; private final SimpleStringProperty email; private Person(String fName, String lName, String email) { this.firstName = new SimpleStringProperty(fName); this.lastName = new SimpleStringProperty(lName); this.email = new SimpleStringProperty(email); } public String getFirstName() { return firstName.get(); } public void setFirstName(String fName) { firstName.set(fName); } public String getLastName() { return lastName.get(); } public void setLastName(String fName) { lastName.set(fName); } public String getEmail() { return email.get(); } public void setEmail(String fName) { email.set(fName); } } private TableView<Person> table = new TableView<Person>(); private final ObservableList<Person> data = FXCollections.observableArrayList( new Person("Jacob", "Smith", "[email protected]"), new Person("Isabella", "Johnson", "[email protected]"), new Person("Ethan", "Williams", "[email protected]"), new Person("Emma", "Jones", "[email protected]"), new Person("Michael", "Brown", "[email protected]")); public static void main(String[] args) { launch(args); } @Override public void start(Stage stage) { Scene scene = new Scene(new Group()); stage.setTitle("Table View Sample"); stage.setWidth(535); stage.setHeight(535); editView = new Stage(); final Label label = new Label("Address Book"); label.setFont(new Font("Arial", 20)); TableColumn firstNameCol = new TableColumn("First Name"); firstNameCol.setCellValueFactory( new PropertyValueFactory<Person, String>("firstName")); firstNameCol.setMinWidth(150); TableColumn lastNameCol = new TableColumn("Last Name"); lastNameCol.setCellValueFactory( new PropertyValueFactory<Person, String>("lastName")); lastNameCol.setMinWidth(150); TableColumn emailCol = new TableColumn("Email"); emailCol.setMinWidth(200); emailCol.setCellValueFactory( new PropertyValueFactory<Person, String>("email")); table.setItems(data); table.getColumns().addAll(firstNameCol, lastNameCol, emailCol); //--- create a edit button and a editPane to edit person Button addButton = new Button("Add"); addButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { fPerson = null; firtNameField.setText(""); lastNameField.setText(""); emailField.setText(""); editView.show(); } }); Button editButton = new Button("Edit"); editButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { if (table.getSelectionModel().getSelectedItem() != null) { fPerson = table.getSelectionModel().getSelectedItem(); firtNameField.setText(fPerson.getFirstName()); lastNameField.setText(fPerson.getLastName()); emailField.setText(fPerson.getEmail()); editView.show(); } } }); Button deleteButton = new Button("Delete"); deleteButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { if (table.getSelectionModel().getSelectedItem() != null) { data.remove(table.getSelectionModel().getSelectedItem()); } } }); HBox addEditDeleteButtonBox = new HBox(); addEditDeleteButtonBox.getChildren().addAll(addButton, editButton, deleteButton); addEditDeleteButtonBox.setAlignment(Pos.CENTER_RIGHT); addEditDeleteButtonBox.setSpacing(3); GridPane editPane = new GridPane(); editPane.getStyleClass().add("editView"); editPane.setPadding(new Insets(3)); editPane.setHgap(5); editPane.setVgap(5); Label personLbl = new Label("Person:"); editPane.add(personLbl, 0, 1); GridPane.setHalignment(personLbl, HPos.LEFT); firtNameField.setPrefWidth(250); lastNameField.setPrefWidth(250); emailField.setPrefWidth(250); Label firstNameLabel = new Label("First Name:"); Label lastNameLabel = new Label("Last Name:"); Label emailLabel = new Label("Email:"); editPane.add(firstNameLabel, 0, 3); editPane.add(firtNameField, 1, 3); editPane.add(lastNameLabel, 0, 4); editPane.add(lastNameField, 1, 4); editPane.add(emailLabel, 0, 5); editPane.add(emailField, 1, 5); GridPane.setHalignment(firstNameLabel, HPos.RIGHT); GridPane.setHalignment(lastNameLabel, HPos.RIGHT); GridPane.setHalignment(emailLabel, HPos.RIGHT); Button saveButton = new Button("Save"); saveButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { if (fPerson == null) { fPerson = new Person( firtNameField.getText(), lastNameField.getText(), emailField.getText()); data.add(fPerson); } else { int k = -1; if (data.size() > 0) { for (int i = 0; i < data.size(); i++) { if (data.get(i) == fPerson) { k = i; } } } fPerson.setFirstName(firtNameField.getText()); fPerson.setLastName(lastNameField.getText()); fPerson.setEmail(emailField.getText()); data.set(k, fPerson); table.setItems(data); // The following will work, but edited person has to be added to the button // // data.remove(fPerson); // data.add(fPerson); // add and remove refresh the table, but now move edited person to original spot, // it failed again with the following code // while (data.indexOf(fPerson) != k) { // int i = data.indexOf(fPerson); // Collections.swap(data, i, i - 1); // } } editView.close(); } }); Button cancelButton = new Button("Cancel"); cancelButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { editView.close(); } }); HBox saveCancelButtonBox = new HBox(); saveCancelButtonBox.getChildren().addAll(saveButton, cancelButton); saveCancelButtonBox.setAlignment(Pos.CENTER_RIGHT); saveCancelButtonBox.setSpacing(3); VBox editBox = new VBox(); editBox.getChildren().addAll(editPane, saveCancelButtonBox); Scene editScene = new Scene(editBox); editView.setTitle("Person"); editView.initStyle(StageStyle.UTILITY); editView.initModality(Modality.APPLICATION_MODAL); editView.setScene(editScene); editView.close(); final VBox vbox = new VBox(); vbox.setSpacing(5); vbox.getChildren().addAll(label, table, addEditDeleteButtonBox); vbox.setPadding(new Insets(10, 0, 0, 10)); ((Group) scene.getRoot()).getChildren().addAll(vbox); stage.setScene(scene); stage.show(); } }

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

  • Read XML Files using LINQ to XML and Extension Methods

    - by psheriff
    In previous blog posts I have discussed how to use XML files to store data in your applications. I showed you how to read those XML files from your project and get XML from a WCF service. One of the problems with reading XML files is when elements or attributes are missing. If you try to read that missing data, then a null value is returned. This can cause a problem if you are trying to load that data into an object and a null is read. This blog post will show you how to create extension methods to detect null values and return valid values to load into your object. The XML Data An XML data file called Product.xml is located in the \Xml folder of the Silverlight sample project for this blog post. This XML file contains several rows of product data that will be used in each of the samples for this post. Each row has 4 attributes; namely ProductId, ProductName, IntroductionDate and Price. <Products>  <Product ProductId="1"           ProductName="Haystack Code Generator for .NET"           IntroductionDate="07/01/2010"  Price="799" />  <Product ProductId="2"           ProductName="ASP.Net Jumpstart Samples"           IntroductionDate="05/24/2005"  Price="0" />  ...  ...</Products> The Product Class Just as you create an Entity class to map each column in a table to a property in a class, you should do the same for an XML file too. In this case you will create a Product class with properties for each of the attributes in each element of product data. The following code listing shows the Product class. public class Product : CommonBase{  public const string XmlFile = @"Xml/Product.xml";   private string _ProductName;  private int _ProductId;  private DateTime _IntroductionDate;  private decimal _Price;   public string ProductName  {    get { return _ProductName; }    set {      if (_ProductName != value) {        _ProductName = value;        RaisePropertyChanged("ProductName");      }    }  }   public int ProductId  {    get { return _ProductId; }    set {      if (_ProductId != value) {        _ProductId = value;        RaisePropertyChanged("ProductId");      }    }  }   public DateTime IntroductionDate  {    get { return _IntroductionDate; }    set {      if (_IntroductionDate != value) {        _IntroductionDate = value;        RaisePropertyChanged("IntroductionDate");      }    }  }   public decimal Price  {    get { return _Price; }    set {      if (_Price != value) {        _Price = value;        RaisePropertyChanged("Price");      }    }  }} NOTE: The CommonBase class that the Product class inherits from simply implements the INotifyPropertyChanged event in order to inform your XAML UI of any property changes. You can see this class in the sample you download for this blog post. Reading Data When using LINQ to XML you call the Load method of the XElement class to load the XML file. Once the XML file has been loaded, you write a LINQ query to iterate over the “Product” Descendants in the XML file. The “select” portion of the LINQ query creates a new Product object for each row in the XML file. You retrieve each attribute by passing each attribute name to the Attribute() method and retrieving the data from the “Value” property. The Value property will return a null if there is no data, or will return the string value of the attribute. The Convert class is used to convert the value retrieved into the appropriate data type required by the Product class. private void LoadProducts(){  XElement xElem = null;   try  {    xElem = XElement.Load(Product.XmlFile);     // The following will NOT work if you have missing attributes    var products =         from elem in xElem.Descendants("Product")        orderby elem.Attribute("ProductName").Value        select new Product        {          ProductId = Convert.ToInt32(            elem.Attribute("ProductId").Value),          ProductName = Convert.ToString(            elem.Attribute("ProductName").Value),          IntroductionDate = Convert.ToDateTime(            elem.Attribute("IntroductionDate").Value),          Price = Convert.ToDecimal(elem.Attribute("Price").Value)        };     lstData.DataContext = products;  }  catch (Exception ex)  {    MessageBox.Show(ex.Message);  }} This is where the problem comes in. If you have any missing attributes in any of the rows in the XML file, or if the data in the ProductId or IntroductionDate is not of the appropriate type, then this code will fail! The reason? There is no built-in check to ensure that the correct type of data is contained in the XML file. This is where extension methods can come in real handy. Using Extension Methods Instead of using the Convert class to perform type conversions as you just saw, create a set of extension methods attached to the XAttribute class. These extension methods will perform null-checking and ensure that a valid value is passed back instead of an exception being thrown if there is invalid data in your XML file. private void LoadProducts(){  var xElem = XElement.Load(Product.XmlFile);   var products =       from elem in xElem.Descendants("Product")      orderby elem.Attribute("ProductName").Value      select new Product      {        ProductId = elem.Attribute("ProductId").GetAsInteger(),        ProductName = elem.Attribute("ProductName").GetAsString(),        IntroductionDate =            elem.Attribute("IntroductionDate").GetAsDateTime(),        Price = elem.Attribute("Price").GetAsDecimal()      };   lstData.DataContext = products;} Writing Extension Methods To create an extension method you will create a class with any name you like. In the code listing below is a class named XmlExtensionMethods. This listing just shows a couple of the available methods such as GetAsString and GetAsInteger. These methods are just like any other method you would write except when you pass in the parameter you prefix the type with the keyword “this”. This lets the compiler know that it should add this method to the class specified in the parameter. public static class XmlExtensionMethods{  public static string GetAsString(this XAttribute attr)  {    string ret = string.Empty;     if (attr != null && !string.IsNullOrEmpty(attr.Value))    {      ret = attr.Value;    }     return ret;  }   public static int GetAsInteger(this XAttribute attr)  {    int ret = 0;    int value = 0;     if (attr != null && !string.IsNullOrEmpty(attr.Value))    {      if(int.TryParse(attr.Value, out value))        ret = value;    }     return ret;  }   ...  ...} Each of the methods in the XmlExtensionMethods class should inspect the XAttribute to ensure it is not null and that the value in the attribute is not null. If the value is null, then a default value will be returned such as an empty string or a 0 for a numeric value. Summary Extension methods are a great way to simplify your code and provide protection to ensure problems do not occur when reading data. You will probably want to create more extension methods to handle XElement objects as well for when you use element-based XML. Feel free to extend these extension methods to accept a parameter which would be the default value if a null value is detected, or any other parameters you wish. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose “Tips & Tricks”, then "Read XML Files using LINQ to XML and Extension Methods" from the drop-down. Good Luck with your Coding,Paul D. Sheriff  

    Read the article

  • How to simulate inner join on very large files in java (without running out of memory)

    - by Constantin
    I am trying to simulate SQL joins using java and very large text files (INNER, RIGHT OUTER and LEFT OUTER). The files have already been sorted using an external sort routine. The issue I have is I am trying to find the most efficient way to deal with the INNER join part of the algorithm. Right now I am using two Lists to store the lines that have the same key and iterate through the set of lines in the right file once for every line in the left file (provided the keys still match). In other words, the join key is not unique in each file so would need to account for the Cartesian product situations ... left_01, 1 left_02, 1 right_01, 1 right_02, 1 right_03, 1 left_01 joins to right_01 using key 1 left_01 joins to right_02 using key 1 left_01 joins to right_03 using key 1 left_02 joins to right_01 using key 1 left_02 joins to right_02 using key 1 left_02 joins to right_03 using key 1 My concern is one of memory. I will run out of memory if i use the approach below but still want the inner join part to work fairly quickly. What is the best approach to deal with the INNER join part keeping in mind that these files may potentially be huge public class Joiner { private void join(BufferedReader left, BufferedReader right, BufferedWriter output) throws Throwable { BufferedReader _left = left; BufferedReader _right = right; BufferedWriter _output = output; Record _leftRecord; Record _rightRecord; _leftRecord = read(_left); _rightRecord = read(_right); while( _leftRecord != null && _rightRecord != null ) { if( _leftRecord.getKey() < _rightRecord.getKey() ) { write(_output, _leftRecord, null); _leftRecord = read(_left); } else if( _leftRecord.getKey() > _rightRecord.getKey() ) { write(_output, null, _rightRecord); _rightRecord = read(_right); } else { List<Record> leftList = new ArrayList<Record>(); List<Record> rightList = new ArrayList<Record>(); _leftRecord = readRecords(leftList, _leftRecord, _left); _rightRecord = readRecords(rightList, _rightRecord, _right); for( Record equalKeyLeftRecord : leftList ){ for( Record equalKeyRightRecord : rightList ){ write(_output, equalKeyLeftRecord, equalKeyRightRecord); } } } } if( _leftRecord != null ) { write(_output, _leftRecord, null); _leftRecord = read(_left); while(_leftRecord != null) { write(_output, _leftRecord, null); _leftRecord = read(_left); } } else { if( _rightRecord != null ) { write(_output, null, _rightRecord); _rightRecord = read(_right); while(_rightRecord != null) { write(_output, null, _rightRecord); _rightRecord = read(_right); } } } _left.close(); _right.close(); _output.flush(); _output.close(); } private Record read(BufferedReader reader) throws Throwable { Record record = null; String data = reader.readLine(); if( data != null ) { record = new Record(data.split("\t")); } return record; } private Record readRecords(List<Record> list, Record record, BufferedReader reader) throws Throwable { int key = record.getKey(); list.add(record); record = read(reader); while( record != null && record.getKey() == key) { list.add(record); record = read(reader); } return record; } private void write(BufferedWriter writer, Record left, Record right) throws Throwable { String leftKey = (left == null ? "null" : Integer.toString(left.getKey())); String leftData = (left == null ? "null" : left.getData()); String rightKey = (right == null ? "null" : Integer.toString(right.getKey())); String rightData = (right == null ? "null" : right.getData()); writer.write("[" + leftKey + "][" + leftData + "][" + rightKey + "][" + rightData + "]\n"); } public static void main(String[] args) { try { BufferedReader leftReader = new BufferedReader(new FileReader("LEFT.DAT")); BufferedReader rightReader = new BufferedReader(new FileReader("RIGHT.DAT")); BufferedWriter output = new BufferedWriter(new FileWriter("OUTPUT.DAT")); Joiner joiner = new Joiner(); joiner.join(leftReader, rightReader, output); } catch (Throwable e) { e.printStackTrace(); } } } After applying the ideas from the proposed answer, I changed the loop to this private void join(RandomAccessFile left, RandomAccessFile right, BufferedWriter output) throws Throwable { long _pointer = 0; RandomAccessFile _left = left; RandomAccessFile _right = right; BufferedWriter _output = output; Record _leftRecord; Record _rightRecord; _leftRecord = read(_left); _rightRecord = read(_right); while( _leftRecord != null && _rightRecord != null ) { if( _leftRecord.getKey() < _rightRecord.getKey() ) { write(_output, _leftRecord, null); _leftRecord = read(_left); } else if( _leftRecord.getKey() > _rightRecord.getKey() ) { write(_output, null, _rightRecord); _pointer = _right.getFilePointer(); _rightRecord = read(_right); } else { long _tempPointer = 0; int key = _leftRecord.getKey(); while( _leftRecord != null && _leftRecord.getKey() == key ) { _right.seek(_pointer); _rightRecord = read(_right); while( _rightRecord != null && _rightRecord.getKey() == key ) { write(_output, _leftRecord, _rightRecord ); _tempPointer = _right.getFilePointer(); _rightRecord = read(_right); } _leftRecord = read(_left); } _pointer = _tempPointer; } } if( _leftRecord != null ) { write(_output, _leftRecord, null); _leftRecord = read(_left); while(_leftRecord != null) { write(_output, _leftRecord, null); _leftRecord = read(_left); } } else { if( _rightRecord != null ) { write(_output, null, _rightRecord); _rightRecord = read(_right); while(_rightRecord != null) { write(_output, null, _rightRecord); _rightRecord = read(_right); } } } _left.close(); _right.close(); _output.flush(); _output.close(); } UPDATE While this approach worked, it was terribly slow and so I have modified this to create files as buffers and this works very well. Here is the update ... private long getMaxBufferedLines(File file) throws Throwable { long freeBytes = Runtime.getRuntime().freeMemory() / 2; return (freeBytes / (file.length() / getLineCount(file))); } private void join(File left, File right, File output, JoinType joinType) throws Throwable { BufferedReader leftFile = new BufferedReader(new FileReader(left)); BufferedReader rightFile = new BufferedReader(new FileReader(right)); BufferedWriter outputFile = new BufferedWriter(new FileWriter(output)); long maxBufferedLines = getMaxBufferedLines(right); Record leftRecord; Record rightRecord; leftRecord = read(leftFile); rightRecord = read(rightFile); while( leftRecord != null && rightRecord != null ) { if( leftRecord.getKey().compareTo(rightRecord.getKey()) < 0) { if( joinType == JoinType.LeftOuterJoin || joinType == JoinType.LeftExclusiveJoin || joinType == JoinType.FullExclusiveJoin || joinType == JoinType.FullOuterJoin ) { write(outputFile, leftRecord, null); } leftRecord = read(leftFile); } else if( leftRecord.getKey().compareTo(rightRecord.getKey()) > 0 ) { if( joinType == JoinType.RightOuterJoin || joinType == JoinType.RightExclusiveJoin || joinType == JoinType.FullExclusiveJoin || joinType == JoinType.FullOuterJoin ) { write(outputFile, null, rightRecord); } rightRecord = read(rightFile); } else if( leftRecord.getKey().compareTo(rightRecord.getKey()) == 0 ) { String key = leftRecord.getKey(); List<File> rightRecordFileList = new ArrayList<File>(); List<Record> rightRecordList = new ArrayList<Record>(); rightRecordList.add(rightRecord); rightRecord = consume(key, rightFile, rightRecordList, rightRecordFileList, maxBufferedLines); while( leftRecord != null && leftRecord.getKey().compareTo(key) == 0 ) { processRightRecords(outputFile, leftRecord, rightRecordFileList, rightRecordList, joinType); leftRecord = read(leftFile); } // need a dispose for deleting files in list } else { throw new Exception("DATA IS NOT SORTED"); } } if( leftRecord != null ) { if( joinType == JoinType.LeftOuterJoin || joinType == JoinType.LeftExclusiveJoin || joinType == JoinType.FullExclusiveJoin || joinType == JoinType.FullOuterJoin ) { write(outputFile, leftRecord, null); } leftRecord = read(leftFile); while(leftRecord != null) { if( joinType == JoinType.LeftOuterJoin || joinType == JoinType.LeftExclusiveJoin || joinType == JoinType.FullExclusiveJoin || joinType == JoinType.FullOuterJoin ) { write(outputFile, leftRecord, null); } leftRecord = read(leftFile); } } else { if( rightRecord != null ) { if( joinType == JoinType.RightOuterJoin || joinType == JoinType.RightExclusiveJoin || joinType == JoinType.FullExclusiveJoin || joinType == JoinType.FullOuterJoin ) { write(outputFile, null, rightRecord); } rightRecord = read(rightFile); while(rightRecord != null) { if( joinType == JoinType.RightOuterJoin || joinType == JoinType.RightExclusiveJoin || joinType == JoinType.FullExclusiveJoin || joinType == JoinType.FullOuterJoin ) { write(outputFile, null, rightRecord); } rightRecord = read(rightFile); } } } leftFile.close(); rightFile.close(); outputFile.flush(); outputFile.close(); } public void processRightRecords(BufferedWriter outputFile, Record leftRecord, List<File> rightFiles, List<Record> rightRecords, JoinType joinType) throws Throwable { for(File rightFile : rightFiles) { BufferedReader rightReader = new BufferedReader(new FileReader(rightFile)); Record rightRecord = read(rightReader); while(rightRecord != null){ if( joinType == JoinType.LeftOuterJoin || joinType == JoinType.RightOuterJoin || joinType == JoinType.FullOuterJoin || joinType == JoinType.InnerJoin ) { write(outputFile, leftRecord, rightRecord); } rightRecord = read(rightReader); } rightReader.close(); } for(Record rightRecord : rightRecords) { if( joinType == JoinType.LeftOuterJoin || joinType == JoinType.RightOuterJoin || joinType == JoinType.FullOuterJoin || joinType == JoinType.InnerJoin ) { write(outputFile, leftRecord, rightRecord); } } } /** * consume all records having key (either to a single list or multiple files) each file will * store a buffer full of data. The right record returned represents the outside flow (key is * already positioned to next one or null) so we can't use this record in below while loop or * within this block in general when comparing current key. The trick is to keep consuming * from a List. When it becomes empty, re-fill it from the next file until all files have * been consumed (and the last node in the list is read). The next outside iteration will be * ready to be processed (either it will be null or it points to the next biggest key * @throws Throwable * */ private Record consume(String key, BufferedReader reader, List<Record> records, List<File> files, long bufferMaxRecordLines ) throws Throwable { boolean processComplete = false; Record record = records.get(records.size() - 1); while(!processComplete){ long recordCount = records.size(); if( record.getKey().compareTo(key) == 0 ){ record = read(reader); while( record != null && record.getKey().compareTo(key) == 0 && recordCount < bufferMaxRecordLines ) { records.add(record); recordCount++; record = read(reader); } } processComplete = true; // if record is null, we are done if( record != null ) { // if the key has changed, we are done if( record.getKey().compareTo(key) == 0 ) { // Same key means we have exhausted the buffer. // Dump entire buffer into a file. The list of file // pointers will keep track of the files ... processComplete = false; dumpBufferToFile(records, files); records.clear(); records.add(record); } } } return record; } /** * Dump all records in List of Record objects to a file. Then, add that * file to List of File objects * * NEED TO PLACE A LIMIT ON NUMBER OF FILE POINTERS (check size of file list) * * @param records * @param files * @throws Throwable */ private void dumpBufferToFile(List<Record> records, List<File> files) throws Throwable { String prefix = "joiner_" + files.size() + 1; String suffix = ".dat"; File file = File.createTempFile(prefix, suffix, new File("cache")); BufferedWriter writer = new BufferedWriter(new FileWriter(file)); for( Record record : records ) { writer.write( record.dump() ); } files.add(file); writer.flush(); writer.close(); }

    Read the article

  • CodePlex Daily Summary for Friday, January 07, 2011

    CodePlex Daily Summary for Friday, January 07, 2011Popular ReleasesAutoLoL: AutoLoL v1.5.2: Implemented the Auto Updater Fix: Your settings will no longer be cleared with new releases of AutoLoL The mastery Editor and Browser now have their own tabs instead of nested tabs The Browser tab will only show the masteries matching ALL filters instead of just one Added a 'Browse' button in the Mastery Editor tab to open the Masteries Directory The Browser tab now shows a message when there are no mastery files in the Masteries Directory Fix: Fixed the Save As dialog again, for ...Ionics Isapi Rewrite Filter: 2.1 latest stable: V2.1 is stable, and is in maintenance mode. This is v2.1.1.25. It is a bug-fix release. There are no new features. 28629 29172 28722 27626 28074 29164 27659 27900 many documentation updates and fixes proper x64 build environment. This release includes x64 binaries in zip form, but no x64 MSI file. You'll have to manually install x64 servers, following the instructions in the documentation.StyleCop for ReSharper: StyleCop for ReSharper 5.1.14980.000: A considerable amount of work has gone into this release: Huge focus on performance around the violation scanning subsystem: - caching added to reduce IO operations around reading and merging of settings files - caching added to reduce creation of expensive objects Users should notice condsiderable perf boost and a decrease in memory usage. Bug Fixes: - StyleCop's new ObjectBasedEnvironment object does not resolve the StyleCop installation path, thus it does not return the correct path ...VivoSocial: VivoSocial 7.4.1: New release with bug fixes and updates for performance.SSH.NET Library: 2011.1.6: Fixes CommandTimeout default value is fixed to infinite. Port Forwarding feature improvements Memory leaks fixes New Features Add ErrorOccurred event to handle errors that occurred on different thread New and improve SFTP features SftpFile now has more attributes and some operations Most standard operations now available Allow specify encoding for command execution KeyboardInteractiveConnectionInfo class added for "keyboard-interactive" authentication. Add ability to specify bo....NET Extensions - Extension Methods Library for C# and VB.NET: Release 2011.03: Added lot's of new extensions and new projects for MVC and Entity Framework. object.FindTypeByRecursion Int32.InRange String.RemoveAllSpecialCharacters String.IsEmptyOrWhiteSpace String.IsNotEmptyOrWhiteSpace String.IfEmptyOrWhiteSpace String.ToUpperFirstLetter String.GetBytes String.ToTitleCase String.ToPlural DateTime.GetDaysInYear DateTime.GetPeriodOfDay IEnumberable.RemoveAll IEnumberable.Distinct ICollection.RemoveAll IList.Join IList.Match IList.Cast Array.IsNullOrEmpty Array.W...VidCoder: 0.8.0: Added x64 version. Made the audio output preview more detailed and accurate. If the chosen encoder or mixdown is incompatible with the source, the fallback that will be used is displayed. Added "Auto" to the audio mixdown choices. Reworked non-anamorphic size calculation to work better with non-standard pixel aspect ratios and cropping. Reworked Custom anamorphic to be more intuitive and allow display width to be set automatically (Thanks, Statick). Allowing higher bitrates for 6-ch....NET Voice Recorder: Auto-Tune Release: This is the source code and binaries to accompany the article on the Coding 4 Fun website. It is the Auto Tuner release of the .NET Voice Recorder application.BloodSim: BloodSim - 1.3.2.0: - Simulation Log is now automatically disabled and hidden when running 10 or more iterations - Hit and Expertise are now entered by Rating, and include option for a Racial Expertise bonus - Added option for boss to use a periodic magic ability (Dragon Breath) - Added option for boss to periodically Enrage, gaining a Damage/Attack Speed buffASP.NET MVC CMS ( Using CommonLibrary.NET ): CommonLibrary.NET CMS 0.9.5 Alpha: CommonLibrary CMSA simple yet powerful CMS system in ASP.NET MVC 2 using C# 4.0. ActiveRecord based components for Blogs, Widgets, Pages, Parts, Events, Feedback, BlogRolls, Links Includes several widgets ( tag cloud, archives, recent, user cloud, links twitter, blog roll and more ) Built using the http://commonlibrarynet.codeplex.com framework. ( Uses TDD, DDD, Models/Entities, Code Generation ) Can run w/ In-Memory Repositories or Sql Server Database See Documentation tab for Ins...AllNewsManager.NET: AllNewsManager.NET 1.2.1: AllNewsManager.NET 1.2.1 It is a minor update from version 1.2EnhSim: EnhSim 2.2.9 BETA: 2.2.9 BETAThis release supports WoW patch 4.03a at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 - Added in the Gobl...xUnit.net - Unit Testing for .NET: xUnit.net 1.7 Beta: xUnit.net release 1.7 betaBuild #1533 Important notes for Resharper users: Resharper support has been moved to the xUnit.net Contrib project. Important note for TestDriven.net users: If you are having issues running xUnit.net tests in TestDriven.net, especially on 64-bit Windows, we strongly recommend you upgrade to TD.NET version 3.0 or later. This release adds the following new features: Added support for ASP.NET MVC 3 Added Assert.Equal(double expected, double actual, int precision)...Json.NET: Json.NET 4.0 Release 1: New feature - Added Windows Phone 7 project New feature - Added dynamic support to LINQ to JSON New feature - Added dynamic support to serializer New feature - Added INotifyCollectionChanged to JContainer in .NET 4 build New feature - Added ReadAsDateTimeOffset to JsonReader New feature - Added ReadAsDecimal to JsonReader New feature - Added covariance to IJEnumerable type parameter New feature - Added XmlSerializer style Specified property support New feature - Added ...DbDocument: DbDoc Initial Version: DbDoc Initial versionASP .NET MVC CMS (Content Management System): Atomic CMS 2.1.2: Atomic CMS 2.1.2 release notes Atomic CMS installation guide N2 CMS: 2.1: N2 is a lightweight CMS framework for ASP.NET. It helps you build great web sites that anyone can update. Major Changes Support for auto-implemented properties ({get;set;}, based on contribution by And Poulsen) All-round improvements and bugfixes File manager improvements (multiple file upload, resize images to fit) New image gallery Infinite scroll paging on news Content templates First time with N2? Try the demo site Download one of the template packs (above) and open the proj...Mobile Device Detection and Redirection: 0.1.11.10: IMPORTANT CHANGESThis release changes the way some WURFL capabilities and attributes are exposed to .NET developers. If you cast MobileCapabilities to return some values then please read the Release Note before implementing this release. The following code snippet can be used to access any WURFL capability. For instance, if the device is a tablet: string capability = Request.Browser["is_tablet"]; SummaryNew attributes have been added to the redirect section: originalUrlAsQueryString If se...Wii Backup Fusion: Wii Backup Fusion 1.0: - Norwegian translation - French translation - German translation - WBFS dump for analysis - Scalable full HQ cover - Support for log file - Load game images improved - Support for image splitting - Diff for images after transfer - Support for scrubbing modes - Search functionality for log - Recurse depth for Files/Load - Show progress while downloading game cover - Supports more databases for cover download - Game cover loading routines improvedBlogEngine.NET: BlogEngine.NET 2.0: Get DotNetBlogEngine for 3 Months Free! Click Here for More Info 3 Months FREE – BlogEngine.NET Hosting – Click Here! If you want to set up and start using BlogEngine.NET right away, you should download the Web project. If you want to extend or modify BlogEngine.NET, you should download the source code. If you are upgrading from a previous version of BlogEngine.NET, please take a look at the Upgrading to BlogEngine.NET 2.0 instructions. To get started, be sure to check out our installatio...New Projects9192631770: This project is created for learning .net 3.5 personally. However it may not suffice for anyone to give a start point. (9192631770) is equivalent to 1 sec in atomic clock.AGS: AGSAll-In-One Code Framework Prerelease: All-In-One Code Framework PrereleaseAwait Events with "yield": This is a library that allows you to stop running the code wherever you want in order to await an event using the functionality of "yield" sentence. It's useful when you want to await asynchronous events or when you have to deal with many events in a sequential way.Battle.net SDK: This is a SDK that retrieves it's information from the Battle.Net community site. At the moment blizzard only supports this for World of Warcraft, so that's what our main aim is at the momeen.t C++ Hash Container Benchmark: C++ Hash Container Benchmark for STL map, C++0x unordered map, Boost unordered map, ATL map and ATL hash map for STL wide string and ATL CString.Colour Lovers .NET: A .NET library for the Colour Lovers API.DatingGame: Course to teach high-school aged girls basic T-SQL using a fun scenario - querying to find the hottest boys! Used at Microsoft DigiGirlz and TKP events. Included DDL script, CSV for bcp with data, PPTX, T-SQL Cheat Sheet and teaching tips. Enjoy!do-Dots open .NET SDK: The do-Dots open SDK brings developers a full set of classes that allow to build applications based on do-Dots, a framework for M2M communication. It's developed in C#. EFMVC - ASP.NET MVC 3 and EF Code First: Demo web app using ASP.NET MVC 3 and EF Code FirstGS1: D is a 2D game demo written in C++ and using an API : HAPI for the graphic part and the audio part. All the xml files are handled with tinyXML. It is a vertical scrolling shoot'em up where the player controls a dragon flying in Central Park.GS2: In Zombies, you are a wizard, the most powerful wizard in the world, and two days ago, the Devil forces began to attack our world. The only person capable of stopping them is you, this is why the Devil himself came to you and took your powers. You're now alone, without any weaponIPProvider: DFGiwtfly: ????iwtfly26050: iwtfly2Knowledge Exchange .Net: This is my learning experience with creating an enterprise scale .NET application with tools such as Tortoise SVN, NANT, and Linq to SQLLinqPad Data Context Driver for SharePoint: The SharePoint Data Context Driver for LinqPad makes it easer for SharePoint 2010 Developers to develop, maintain and just play around with Linq To SharePoint statements via LinqPad. It is developed in C# and enables SharePoint 2010 Support to LinqPad.MaxLeafWebSiteK3: MaxLeafWebSiteK3Open ASP.NET CMS: Open ASP.NET 3.5 CMS Plug 'N Play Settings Manager: Plug 'N Play Settings Manager will be an application to configure settings on a windows computer by waiting for a usb thumbstick with a configuration file to be inserted, the application would then read and apply those settings. The early focus will be applying network settings.project windy: Windy - enhanced window manager. windy does window management a breeze. It started as a windows alternative to divvy, but now it has evolved with into its own. Thanks to the generous feedback from you folks. whats different from divvy? - first - its free. - has divvy likeRiaMVVM : MVVM Friendly WCF Ria Services: Simple, light-weight, MVVM friendly access to WCF Ria Services. Written in C# for use with Silverlight 4.SharePoint Designer 2007 Policy: Enable or Disable SharePoint Designer 2007 per site web application and per site colleciton. Spruckus - SharePoint ReUsable Content Keystamp Usage Search: Adds a keystamp to all html type items in the SharePoint Reusable Content list and adds a context item to the reusable content list that will find usages of that reusable content in your site using search.Student Insiders: Student InsidersTea: Tea Web Operator SystemVegas.NET: Projeto teste de TransportadoraXNA 4 Game state management system: XNA 4 Game State Management??????: aa

    Read the article

  • How to make an excel formula which totals several agecent rows based on cell values

    - by Yishai
    I have an excel sheet with three columns: date, person and percentage. I would like to put in a data validation that flags cells if the total for a given data/person combination do not equal 100%. Is that possible? In other words, in the custom formula of a data validation, I would like to make the following type of formula. =if(sum( cells with a (date = the date on this row, person = person on this row))=1) Is there a function which will return the cells in a range conditioned on certain values, or will sum the cells. Note that if it is not possible to do two cells, I have no issue adding a cell which combines both values for the purpose of effecting the lookup.

    Read the article

  • What could be causing Windows to randomnly reset the system time to a random time?

    - by Jonathan Dumaine
    My Windows 7 machine infuriates me. It cannot hold a date. At one point it all worked fine, but now it will decide that it needs to change the system time to a random time and date either in the future or past. There seems to be no correlation or set interval of when it happens. To remedy it I have: Correctly set the time in bios. Replaced the motherboard battery with a new CR2032 (even checked it with a multimeter). Tried disabling automatic internet synchronizing via "Date and Time" dialog. Stopped, restarted, left disabled the Windows Time service. Yet with all of these actions, the time will continue to change. Any ideas?

    Read the article

  • Excel how to get an average for column for rows that meet multiple criteria

    - by Jess
    I would like to know the average days between open and close dates for an item with a close date in a particular month. So from the below example in Jan 2013 items 2,5 and 6 were closed (Closed can be RESOLVED or CANCELLED status), each were open for 26, 9 and 6 days respectivly. So of the jobs that have a closed date in Jan 2013 (between 01/01/2013 and 13/02/13) they have an average open time (between open and close date) of 13.67 days to 2dp. I have tried a few ways to get this to work and i think the issue I am having is with the AVERAGE function. First time using a forum so apologies if my question is unclear. Was unable to post image to have this comma seperated below Item_ID,Open_Date,Status,Close_Date 1,1/06/2012,RESOLVED,16/07/2012 2,20/12/2012,RESOLVED,16/01/2013 3,2/01/2013,IN PROGRESS, 4,3/01/2013,CANCELLED,7/05/2013 5,3/01/2013,RESOLVED,12/01/2013 6,4/01/2013,RESOLVED,10/01/2013 7,1/02/2013,RESOLVED,15/02/2013 8,2/02/2013,OPEN, 9,7/02/2013,CANCELLED,26/02/2013

    Read the article

  • sqlcmd backup script failing

    - by Bryan
    I'm trying to use a simple batch script to backup a local instance of SQL Express 2012, as follows: @echo off SET BACKUP_DIR=E:\BackupData SET SERVER=.\\sqlexpress set dom=%date:~0,2% set month=%date:~3,2% set year=%date:~6,4% set file=%year%-%month%-%dom% sqlcmd -S %SERVER% -d master -Q "exec sp_msforeachdb 'BACKUP DATABASE [?] TO DISK=''%BACKUP_DIR%\?.Full.%file%.bak''' The script is failing to run with the following error: Sqlcmd: Error: Microsoft SQL Server Native Client 10.0 : Client unable to establish connection due to prelogin failure. This is on Server 2008 R2, my SQL database (on localhost) instance is named SQLEXPRESS. There is an instance of SQL Express 2008 on the system (hence client 10.0). The database is configured to use a trusted connection, and the .net desktop software deployed on our network PCs is able to access the database without any problem. Am I missing something obvious here, I've done a fair amount of searching for this error message, and haven't found anything that has been particularly useful so far.

    Read the article

  • php file downloads instead of being processed with ajax on apache

    - by eagleon
    I have a small website where some content is displayed within a HTML tag using AJAX. The content is simply taken from another page on the same web site. However, sometimes instead of loading the parsed PHP file, the browser displays a download box instead. I downloaded the file and this is what it looks like a text file mixed with binary or gzipped data. I can't paste the binary stuff here, but here are some of the headers: Jul 2012 18:52:16 GMT Server: Apache/2 X-Powered-By: PHP/5.3.10 Content-Encoding: gzip Vary: Accept-Encoding,User-Agent Keep-Alive: timeout=1, max=95 Connection: Keep-Alive Transfer-Encoding: chunked Content-Type: text/html HTTP/1.1 304 Not Modified Date: Sun, 01 Jul 2012 18:52:16 GMT Server: Apache/2 Connection: Keep-Alive Keep-Alive: timeout=1, max=93 ETag: "2fc857-409-4c39691c59b40" HTTP/1.1 304 Not Modified Date: Sun, 01 Jul 2012 18:52:16 GMT Server: Apache/2 Connection: Keep-Alive Keep-Alive: timeout=1, max=92 ETag: "2fc854-3e5-4c39691b65900" HTTP/1.1 304 Not Modified Date: Sun, 01 Jul 2012 18:52:16 GMT Server: Apache/2 Connection: Keep-Alive Keep-Alive: timeout=1, max=91 ETag: "2fc847-3e3-4c3969197d480" and large blocks of stuff like this: µàl]&BaËÜk#ìÏ

    Read the article

  • Upgrading existing Windows 7 Pro licenses to Ent?

    - by Alex
    From our license info page from MS: Agreement Info: MOLP-Z Std ... License Date: 2011-03-02 Microsoft Invoice No: 91.... Reorder/Upgrade End Date: 2013-03-31 MS Win Pro 7 Sngl Open 1 License Part no: FQC-02872 Qty: 120 MS Win Server CAL 2008 Sng Open 1 Part no: R18-02709 Qty: 120 Now we want to upgrade to Enteprise but the reseller says "Sorry, you need to buy new licenses, 120x Win7Pro (FQC-02872) and 120x SoftwareAssurance (FQC-02368). Are they trying to rip us off?? "Upgrade End Date" still not here and why do we need to re-order exactly same part number (FQC-02872) only 1 year later?

    Read the article

  • Evolution Gmail Mashup + Fixing Time stamp

    - by Dan
    I wanted to migrate my university email (including subfolders) to my gmail account. Since gmail only imports POP3 which doesn't have subfolders, I had to connect to both gmail and my university mail using an email client (I am using Evolution) and then drag each folder from my university account to my gmail account. This worked for the most part, but the time stamp on every email I dragged over from my university account to gmail reads as todays date, when it was dragged over. If I enter the email and hit details it shows the actual sent date. How can I get it to not overwrite the received date when transferring? (as I assume this is what is happening). Thanks

    Read the article

< Previous Page | 446 447 448 449 450 451 452 453 454 455 456 457  | Next Page >