Search Results

Search found 23901 results on 957 pages for 'mysql stored procedure'.

Page 467/957 | < Previous Page | 463 464 465 466 467 468 469 470 471 472 473 474  | Next Page >

  • Windows 8 : support des disques durs de plus de 3 téraoctets

    Windows 8 : simplification de la procédure d'installation qui pourra se faire en 11 clics Mise à jour du 22/11/11 Steven Sinofsky, président de la division en charge du développement de Windows, vient de livrer sur le blog officiel Windows 8, les modifications qui ont été apportées au système d'exploitation. La firme fournit des détails sur la procédure d'installation de l'OS, qui a été optimisée et rationalisée pour fournir à l'utilisateur une meilleure expérience. Windows 8 offrira une configuration simplifiée, via un exécutable (Web ou DVD), et une configuration avancée qui sera accessible via un support de d...

    Read the article

  • Updated sp_indexinfo

    - by TiborKaraszi
    It was time to give sp_indexinfo some love. The procedure is meant to be the "ultimate" index information procedure, providing lots of information about all indexes in a database or all indexes for a certain table. Here is what I did in this update: Changed the second query that retrieves missing index information so it generates the index name (based on schema name, table name and column named - limited to 128 characters). Re-arranged and shortened column names to make output more compact and more...(read more)

    Read the article

  • Maintenance plans love story

    - by Maria Zakourdaev
    There are about 200 QA and DEV SQL Servers out there.  There is a maintenance plan on many of them that performs a backup of all databases and removes the backup history files. First of all, I must admit that I’m no big fan of maintenance plans in particular or the SSIS packages in general.  In this specific case, if I ever need to change anything in the way backup is performed, such as the compression feature or perform some other change, I have to open each plan one by one. This is quite a pain. Therefore, I have decided to replace the maintenance plans with a stored procedure that will perform exactly the same thing.  Having such a procedure will allow me to open multiple server connections and just execute an ALTER PROCEDURE whenever I need to change anything in it. There is nothing like good ole T-SQL. The first challenge was to remove the unneeded maintenance plans. Of course, I didn’t want to do it server by server.  I found the procedure msdb.dbo.sp_maintplan_delete_plan, but it only has a parameter for the maintenance plan id and it has no other parameters, like plan name, which would have been much more useful. Now I needed to find the table that holds all maintenance plans on the server. You would think that it would be msdb.dbo.sysdbmaintplans but, unfortunately, regardless of the number of maintenance plans on the instance, it contains just one row.    After a while I found another table: msdb.dbo.sysmaintplan_subplans. It contains the plan id that I was looking for, in the plan_id column and well as the agent’s job id which is executing the plan’s package: That was all I needed and the rest turned out to be quite easy.  Here is a script that can be executed against hundreds of servers from a multi-server query window to drop the specific maintenance plans. DECLARE @PlanID uniqueidentifier   SELECT @PlanID = plan_id FROM msdb.dbo.sysmaintplan_subplans Where name like ‘BackupPlan%’   EXECUTE msdb.dbo.sp_maintplan_delete_plan @plan_id=@PlanID   The second step was to create a procedure that will perform  all of the old maintenance plan tasks: create a folder for each database, backup all databases on the server and clean up the old files. The script is below. Enjoy.   ALTER PROCEDURE BackupAllDatabases                                   @PrintMode BIT = 1 AS BEGIN          DECLARE @BackupLocation VARCHAR(500)        DECLARE @PurgeAferDays INT        DECLARE @PurgingDate VARCHAR(30)        DECLARE @SQLCmd  VARCHAR(MAX)        DECLARE @FileName  VARCHAR(100)               SET @PurgeAferDays = -14        SET @BackupLocation = '\\central_storage_servername\BACKUPS\'+@@servername               SET @PurgingDate = CONVERT(VARCHAR(19), DATEADD (dd,@PurgeAferDays,GETDATE()),126)               SET @FileName = '?_full_'+                      + REPLACE(CONVERT(VARCHAR(19), GETDATE(),126),':','-')                      +'.bak';          SET @SQLCmd = '               IF ''?'' <> ''tempdb'' BEGIN                      EXECUTE master.dbo.xp_create_subdir N'''+@BackupLocation+'\?\'' ;                        BACKUP DATABASE ? TO  DISK = N'''+@BackupLocation+'\?\'+@FileName+'''                      WITH NOFORMAT, NOINIT,  SKIP, REWIND, NOUNLOAD, COMPRESSION,  STATS = 10 ;                        EXECUTE master.dbo.xp_delete_file 0,N'''+@BackupLocation+'\?\'',N''bak'',N'''+@PurgingDate+''',1;               END'          IF @PrintMode = 1 BEGIN               PRINT @SQLCmd        END               EXEC sp_MSforeachdb @SQLCmd        END

    Read the article

  • Restructuring a large Chrome Extension/WebApp

    - by A.M.K
    I have a very complex Chrome Extension that has gotten too large to maintain in its current format. I'd like to restructure it, but I'm 15 and this is the first webapp or extension of it's type I've built so I have no idea how to do it. TL;DR: I have a large/complex webapp I'd like to restructure and I don't know how to do it. Should I follow my current restructure plan (below)? Does that sound like a good starting point, or is there a different approach that I'm missing? Should I not do any of the things I listed? While it isn't relevant to the question, the actual code is on Github and the extension is on the webstore. The basic structure is as follows: index.html <html> <head> <link href="css/style.css" rel="stylesheet" /> <!-- This holds the main app styles --> <link href="css/widgets.css" rel="stylesheet" /> <!-- And this one holds widget styles --> </head> <body class="unloaded"> <!-- Low-level base elements are "hardcoded" here, the unloaded class is used for transitions and is removed on load. i.e: --> <div class="tab-container" tabindex="-1"> <!-- Tab nav --> </div> <!-- Templates for all parts of the application and widgets are stored as elements here. I plan on changing these to <script> elements during the restructure since <template>'s need valid HTML. --> <template id="template.toolbar"> <!-- Template content --> </template> <!-- Templates end --> <!-- Plugins --> <script type="text/javascript" src="js/plugins.js"></script> <!-- This contains the code for all widgets, I plan on moving this online and downloading as necessary soon. --> <script type="text/javascript" src="js/widgets.js"></script> <!-- This contains the main application JS. --> <script type="text/javascript" src="js/script.js"></script> </body> </html> widgets.js (initLog || (window.initLog = [])).push([new Date().getTime(), "A log is kept during page load so performance can be analyzed and errors pinpointed"]); // Widgets are stored in an object and extended (with jQuery, but I'll probably switch to underscore if using Backbone) as necessary var Widgets = { 1: { // Widget ID, this is set here so widgets can be retreived by ID id: 1, // Widget ID again, this is used after the widget object is duplicated and detached size: 3, // Default size, medium in this case order: 1, // Order shown in "store" name: "Weather", // Widget name interval: 300000, // Refresh interval nicename: "weather", // HTML and JS safe widget name sizes: ["tiny", "small", "medium"], // Available widget sizes desc: "Short widget description", settings: [ { // Widget setting specifications stored as an array of objects. These are used to dynamically generate widget setting popups. type: "list", nicename: "location", label: "Location(s)", placeholder: "Enter a location and press Enter" } ], config: { // Widget settings as stored in the tabs object (see script.js for storage information) size: "medium", location: ["San Francisco, CA"] }, data: {}, // Cached widget data stored locally, this lets it work offline customFunc: function(cb) {}, // Widgets can optionally define custom functions in any part of their object refresh: function() {}, // This fetches data from the web and caches it locally in data, then calls render. It gets called after the page is loaded for faster loads render: function() {} // This renders the widget only using information from data, it's called on page load. } }; script.js (initLog || (window.initLog = [])).push([new Date().getTime(), "These are also at the end of every file"]); // Plugins, extends and globals go here. i.e. Number.prototype.pad = .... var iChrome = function(refresh) { // The main iChrome init, called with refresh when refreshing to not re-run libs iChrome.Status.log("Starting page generation"); // From now on iChrome.Status.log is defined, it's used in place of the initLog iChrome.CSS(); // Dynamically generate CSS based on settings iChrome.Tabs(); // This takes the tabs stored in the storage (see fetching below) and renders all columns and widgets as necessary iChrome.Status.log("Tabs rendered"); // These will be omitted further along in this excerpt, but they're used everywhere // Checks for justInstalled => show getting started are run here /* The main init runs the bare minimum required to display the page, this sets all non-visible or instantly need things (such as widget dragging) on a timeout */ iChrome.deferredTimeout = setTimeout(function() { iChrome.deferred(refresh); // Pass refresh along, see above }, 200); }; iChrome.deferred = function(refresh) {}; // This calls modules one after the next in the appropriate order to finish rendering the page iChrome.Search = function() {}; // Modules have a base init function and are camel-cased and capitalized iChrome.Search.submit = function(val) {}; // Methods within modules are camel-cased and not capitalized /* Extension storage is async and fetched at the beginning of plugins.js, it's then stored in a variable that iChrome.Storage processes. The fetcher checks to see if processStorage is defined, if it is it gets called, otherwise settings are left in iChromeConfig */ var processStorage = function() { iChrome.Storage(function() { iChrome.Templates(); // Templates are read from their elements and held in a cache iChrome(); // Init is called }); }; if (typeof iChromeConfig == "object") { processStorage(); } Objectives of the restructure Memory usage: Chrome apparently has a memory leak in extensions, they're trying to fix it but memory still keeps on getting increased every time the page is loaded. The app also uses a lot on its own. Code readability: At this point I can't follow what's being called in the code. While rewriting the code I plan on properly commenting everything. Module interdependence: Right now modules call each other a lot, AFAIK that's not good at all since any change you make to one module could affect countless others. Fault tolerance: There's very little fault tolerance or error handling right now. If a widget is causing the rest of the page to stop rendering the user should at least be able to remove it. Speed is currently not an issue and I'd like to keep it that way. How I think I should do it The restructure should be done using Backbone.js and events that call modules (i.e. on storage.loaded = init). Modules should each go in their own file, I'm thinking there should be a set of core files that all modules can rely on and call directly and everything else should be event based. Widget structure should be kept largely the same, but maybe they should also be split into their own files. AFAIK you can't load all templates in a folder, therefore they need to stay inline. Grunt should be used to merge all modules, plugins and widgets into one file. Templates should also all be precompiled. Question: Should I follow my current restructure plan? Does that sound like a good starting point, or is there a different approach that I'm missing? Should I not do any of the things I listed? Do applications written with Backbone tend to be more intensive (memory and speed) than ones written in Vanilla JS? Also, can I expect to improve this with a proper restructure or is my current code about as good as can be expected?

    Read the article

  • A follow up to yesterday

    - by GrumpyOldDBA
    As I have been asked,  here to tidy up yesterdays post is the procedure my startup procedure calls along with the logging table deployed in the DBA database. Just to muddy the water further I have routines for remotely calling the DBAMessages table through a remote server to send out email from a central server!! Just to explain that I have been ( previously ) limited to only using one Server to send email alerts for multiple Servers so I attempt to code to deal with all possible circumstances...(read more)

    Read the article

  • Can't install Dual Boot from USB live - crash and nouvea problem

    - by user215064
    I just got a new laptop with Windows 8 pre-installed and I'm trying to make a dual boot with Ubuntu on my other hard drive but I can't make the Live USB work. I followed all the procedure for disabling the Security Boot and the UEFI setting but still doesn't work. It seems to start the installing procedure but I never get to choose anything: after a few seconds the screen turns black with an error message [18.707838] divide error: 0000 [#1] SMP (it goes on for several lines quoting some nouveau problem). Any ideas?

    Read the article

  • Replicating A Volume Of Large Data via Transactional Replication

    During weekend maintenance, members of the support team executed an UPDATE statement against the database on the OLTP Server. This database was a part of Transactional Replication, and once the UPDATE statement was executed the Replication procedure came to a halt with an error message. Satnam Singh decided to work on this case and try to find an efficient solution to rebuild the procedure without significant downtime.

    Read the article

  • xp_cmdshell for Non-System Admin Individuals

    There may be times when you want to allow non-System Admin logins to be able to execute the xp_cmdshell extended stored procedure. In this articleGreg Larson will show you how to setup xp_cmdshell so non-System Admins can use this extended stored procedure. ‘10 Tips for Efficient Disaster Recovery’Steve Jones gives the final lesson in the ‘Top 5 Hard-earned Lessons of a DBA’. Read now and learn from the best.

    Read the article

  • System.Data.Sqlclient.Sqlexception: Line1 incorrect syntax ...

    - by marocanu2001
    Given a SqlConnection, a SqlCommand if you need to execute a stored procedure it is enough to specify the stored procedure name as the CommandText and it will work. Now the surprise is that if you also add parametres, you get this creepy error: SqlException: Line 1 incorrect syntax near [storedProcedureName]. The quick fix is to specify the CommandType to be StoredProcedure.

    Read the article

  • Updated sp_indexinfo

    - by TiborKaraszi
    It was time to give sp_indexinfo some love. The procedure is meant to be the "ultimate" index information procedure, providing lots of information about all indexes in a database or all indexes for a certain table. Here is what I did in this update: Changed the second query that retrieves missing index information so it generates the index name (based on schema name, table name and column named - limited to 128 characters). Re-arranged and shortened column names to make output more compact and more...(read more)

    Read the article

  • Making a more reliable and flexible sp_MSforeachdb

    While the system procedure sp_MSforeachdb is neither documented nor officially supported, most SQL Server professionals have used it at one time or another. This is typically for ad hoc maintenance tasks, but many people (myself included) have used this type of looping activity in permanent routines. Sadly, I have discovered instances where, under heavy load and/or with a large number of databases, the procedure can actually skip multiple catalogs with no error or warning message. Since this situation is not easily reproducible, and since Microsoft typically has no interest in fixing unsupported objects, this may be happening in your environment right now

    Read the article

  • Problem inserting in two different tables [closed]

    - by imvarunkmr
    I have written an insert statement which inserts a record into Table1. Table1 has a column "ID" which is an auto_increment(Identity) primary key. How can I fetch the newly generated "ID" and as I need to Insert this value as foreign key in Table2? Note : I have written INSERT statement in a stored procedure and I am calling this procedure using C# Alternative suggestions to link both tables are also welcomed :)

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • DirectX9 dynamic rendering

    - by gardian06
    What I am planning to do is have the models (or maybe just an identifier for the model to be used) stored outside of the directX9 framework, and so in nature have completely dynamic rendering. All of the information that I have found contains static rendering (rendering models that are stored in memory at specific positions) I would like information on how to take a model (or identifier for a model type) that is stored outside of the framework, and render it to the screen. I am expected to take a container that holds all the relevant data to be rendered. The information outside would hold the position, orientation (quaternion, though I am told that I can also get a rotation matrix if I prefer), and dimensions (scale)

    Read the article

  • Good PHP books for starters, any recommendations?

    - by Goma
    I started reading some PHP books. Most of them in their introduction say that this book , unlike other books, it follows a good habits and practices. Now, I do not know which book tells the truth, and which writer is the most experienced in PHP. These are the books that I had a quick look to their first chapter: PHP and MySQL Web Development (Developer's Library) by Luke Welling and Laura Thomson. Build Your Own Database Driven Web Site Using PHP & MySQL by Kevin Yank. PHP and MySQL for Dummies by Janet Valade. Now, it's your time to advise me and tell me about the excellent one that follows best practices, please give an advice from your experience. (It could be any other book!). Regards,

    Read the article

  • Good PHP BOOKS for starters!

    - by Goma
    I started reading some PHP books. Most of them in their introduction say that this book , unlike other books, it follows a good habits and practices. Now, I do not know which book tells the truth, and which writer is the most experienced in PHP. These are the books that I had a quick look to their first chapter: PHP and MySQL Web Development (Developer's Library) by Luke Welling and Laura Thomson. Build Your Own Database Driven Web Site Using PHP & MySQL by Kevin Yank. PHP and MySQL for Dummies by Janet Valade. Now, it's your time to advise me and tell me about the excellent one that follows best practices, please give an advice from your experience. (It could be any other book!). Regards,

    Read the article

  • Game thread, render thread, animation/inverse kinematics, and synchronization

    - by user782220
    In a multithreaded setup with a game logic thread and a render thread, with some kind of skin mesh animation with inverse kinematics plus etc how does animation work? Does the game logic thread just update a number saying time T in the animation and then the render thread infers Who owns the skin mesh animation, the game logic thread or the render thread? How is it stored in the scene graph if it is stored there at all? When the game logic updates does it do the computation of the skin mesh animation and the computation of the inverse kinematics and then store the result directly in the scene graph or is it stored indirectly and the render thread does the computation?

    Read the article

  • Setup CRON weekly backup

    - by sadmicrowave
    I want to make a backup of my /var/lib/mysql and /var/www folders and save them as tar.gz files to my mounted network file server (uslons001). Here is my bash file located in: /etc/cron.weekly/mysqlbackup.sh #!/bin/bash mkdir ~/uslons001/`date +%d%m%y` tar -czf ~/uslons001/`date +%d%m%y`/mysql.tar.gz /var/lib/mysql tar -czf ~/uslons001/`date +%d%m%y`/www.tar.gz /var/www tar -czf ~/uslons001/`date +%d%m%y`.tar.gz ~/uslons001/`date +%d%m%y` echo Backup Completed `date` >> ~/backuplog Which works PERFECTLY fine when I execute it in a cmd shell but when I setup the cron job it never runs, so I'm not setting the cron job up properly. My cron job looks like this. 30 7 * * fri /etc/cron.weekly/mysqlbackup.sh Which should execute at 7:30AM every Friday... What am I doing wrong? UPDATE1 - change the cron job line to the following: 44 8 * * 5 /etc/cron.weekly/mysqlbackup.sh with still no luck...is there a cron error log file that I can read to help pin point where the problem is?

    Read the article

  • SQL Server 2008: Table Valued Parameters

    In SQL Server 2005 and earlier, it is not possible to pass a table variable as a parameter to a stored procedure. When multiple rows of data to SQL Server need to send multiple rows of data to SQL Server, developers either had to send one row at a time or come up with other workarounds to meet requirements. While a VB.Net developer recently informed me that there is a SQLBulkCopy object available in .Net to send multiple rows of data to SQL Server at once, the data still can not be passed to a stored proc.Possibly the most anticipated T-SQL feature of SQL Server 2008 is the new Table-Valued Parameters. This is the ability to easily pass a table to a stored procedure from T-SQL code or from an application as a parameter.

    Read the article

  • System that splits passwords across two servers

    - by Burning the Codeigniter
    I stumbled upon this news article on BBC, RSA splits passwords in two to foil hackers' attacks tl;dr - a (randomized) password is split in half and is stored across two separate servers, to foil hackers that gained access to either server upon a security breach. Now the main question is, how would this kind of system would be made... codespeaking, for PHP which I commonly develop on my web applications, the database password is normally stored in a configuration file, i.e. config.php with the username and password, in that case it is understandable that the passwords can be stolen if the security was compromised. However when splitting and sending the other half to the other server, how would this go on when making a communication to the other server (keeping in mind with PHP) since the other server password would be stored in a configuration file, wouldn't it? In terms of security is to keep the other server password away from the main one, just exactly how would the main server communicate, without exposing any other password, apart from the first server. This certainly makes me think...

    Read the article

  • How to get files that have been added/modifed in a batch file

    - by Chris L
    I have the following batch file which concatenates all of the files in a folder that have a .sql ending. set func=%~dp0%Stored Procedures\*.sql for %%i in (%func%) do type "%%i" >>InstallScript.sql We use SVN as our repository, and we're using branching. Currently the script concatenates all the .sql files, even the ones that haven't changed. I'd like to change it so it only concatenates files that have been modified and/or created after the branch was created. We can do that by looking at the datetime on the .svn folder in each folder(there's a Stored Procedure, View, Function subfolders). But I don't know how to do that with batch files. Ideally something like this(psuedo code): set func=%~dp0%Stored Procedures\*.sql set branchDateTime=GetDateTime(%~dp0%.svn) <- Gets the datetime when the .svn folder was created for %%i in (%func%) { if(%%i.LastModifiedOrCreated > branchDateTime) do type "%%i" >> InstallScript.sql }

    Read the article

  • Where can I learn to write my own database?

    - by Buttons840
    I'm interested in writing my own database - a triple-store. Are there any good resources to help with the challenges of such a project? Or more generally: How can I learn to write my own database? Some specific issues I'm unsure of: How is the data actually stored on the file-system? A flat-file seems easy enough, but a database is a lot more then a flat-file. What kinds of things are typically stored (or cached) in memory? How are indexes created and stored? How is ACID compliance achieved? Etc. This is a big topic, but knowing how to store large amounts of data in a reliable way is good to know. (My investigation into existing triple-stores was summarized back in 2008; not much has changed in 4 years it seems. This is why I want write my own.)

    Read the article

  • Are "skip deltas" unique to svn?

    - by echinodermata
    The good folks who created the SVN version control system use a structure they refer to as "skip deltas" to store the revision history of files internally. A revision is stored as a delta against an earlier revision. However, revision N is not necessarily stored as a delta against revision N-1, like this: 0 <- 1 <- 2 <- 3 <- 4 <- 5 <- 6 <- 7 <- 8 <- 9 Instead, revision N is stored as a delta against N-f(N), where f(N) is the greatest power of two that divides N: 0 <- 1 2 <- 3 4 <- 5 6 <- 7 0 <------ 2 4 <------ 6 0 <---------------- 4 0 <------------------------------------ 8 <- 9 (Superficially it looks like a skip list but really it's not that similar - for instance, skip deltas are not interested in supporting insertion in the middle of the list.) You can read more about it here. My question is: Do other systems use skip deltas? Were skip deltas known/used/published before SVN, or did the creators of SVN invent it themselves?

    Read the article

  • How to deal with meta data with drop downs?

    - by Mangesh Jogade
    Please advise how to handle following scenario in web application. I have a drop-down which is populated using meta-data from table A. When form is submitted this drop down data is stored in table B. While displaying existing data, it is populated using data stored in table B. While copying existing data, it is copied using data stored in table B. I want to achieve following goals: While displaying existing data I must display data irrespective of current meta data (to explain, even if some options are removed from metadata I still display them). When I copy existing data only current data should be copied(that is if some options are removed from metadata I should not copy them). I understand that I can do this by scanning metadata every time I copy existing data, however if there are thousands of such drop down exist, it is definitely not desirable to scan complete metadata for every drop down. How can I handle such situation in web application?

    Read the article

  • SSRS optional parameters settings

    - by Natasa Gavrilovic
    Recently I had to create couple SQL Server Reports (SSRS) with optional parameters built in. It took me a while to refresh memory how this can be done. It was very simple to create reports and processes behind, but connecting these two were are little bit challenging – stored procedure was tested and worked fine, but when the report was passing optional parameters it didn’t returned expected results. After tweaking SQL stored procedures and reports parameter options, the following approach turn to be the winning one. 1) Defining report parameters: From Menu bar select ‘View’ and ‘Report Data’ Newly open window should have ‘Parameters’ folder display Right click on this folder and select ‘Add new parameter...’                             Default values need to be added from a query                 A query values need to include ‘’ (empty string) – as highlighted                   2) SQL stored procedure should have CASE statements inside WHERE and it was the only way that a report was getting correct results back.

    Read the article

< Previous Page | 463 464 465 466 467 468 469 470 471 472 473 474  | Next Page >