Search Results

Search found 6479 results on 260 pages for 'distribution lists'.

Page 49/260 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • How can I resolve gstreamer dependencies in Ubuntu

    - by michael
    Hi, Can you please tell me how can I resolve these dependencies on ubuntu: checking for GSTREAMER... configure: error: Package requirements (gstreamer-0.10 >= 0.10 gstreamer-app-0.10 gstreamer-base-0.10 gstreamer-pbutils-0.10 gstreamer-plugins-base-0.10 >= 0.10.25 gstreamer-video-0.10) were not met: No package 'gstreamer-app-0.10' found No package 'gstreamer-pbutils-0.10' found No package 'gstreamer-plugins-base-0.10' found No package 'gstreamer-video-0.10' found I have tried: $ sudo apt-get install *gstreamer-video* Reading package lists... Done Building dependency tree Reading state information... Done E: Regex compilation error - Invalid preceding regular expression $ sudo apt-get install *gstreamer-app* Reading package lists... Done Building dependency tree Reading state information... Done E: Regex compilation error - Invalid preceding regular expression $ sudo apt-get install *gstreamer-base* Reading package lists... Done Building dependency tree Reading state information... Done E: Regex compilation error - Invalid preceding regular expression

    Read the article

  • Word list sources

    - by warren
    I am looking for a source of nouns, adverbs, adjectives, and verbs in several languages. I'd like the lists to already be split apart, and not have to go through the OED (and non-English equivalents) by hand re-creating said lists. I don't really care about definitions, and I understand some words can be multiple parts of speech - that's fine - words like "many" could be a noun or adjective, and can appear in both lists. Does anyone here know of such a source? If not, might someone be able to point me in the right direction?

    Read the article

  • Temporary "Backup" of SharePoint Content During Feature and Solution Deployment

    - by ccomet
    I need to decide on a method for storing a subset of the content in a SharePoint site, so that when I delete and recreate certain lists as part of a feature activation, I can re-insert all of this content back where it should belong. I have an idea myself, but I don't know if it's the only method and more importantly, the right method. My client has me creating a SharePoint system for them to communicate with their clients. The business process has maybe 5 stages in it (maybe it's more, I don't even know because they don't tell me everything), and the current system I've written over the past months is maybe 2 stages through. This meets our deadline of completing those systems by Monday next week... but at that point my client is planning on making the site live from that point. In effect, their work with their clients will be running parallel with my work for them. As I complete my own work on a separate test server, I'll push each following stage of the process onto the live server. Scheduled downtimes during non-business times (like a weekend) will be available for me to perform these pushes. Keeping pace so that my development is faster than the actual business process is my own problem and off-topic... so let's get back to the problem I stated at the start of this post. In this system, we have sets of features which will create lists for their associated content types and field types when activated, and delete these lists when the feature is deactivated. Most updates don't need to deactivate and reactivate these features, such as workflow changes, custom actions, custom forms, and similar ilk. But there are some parts which do require this. On my test server, it's okay for me to obliterate lists, but once the site is live and there's real correspondence data, it's absolutely unacceptable to do this. So when I need to implement a new change in functionality, I need to be able to store the currently present data in several lists, deactivate the feature, reactivate the feature, and restore all of this data. Perhaps I have hoist myself by my own petard with the feature system I implemented. Unfortunately, the necessity to later on make several of these "project sites" meant I had to do a lot of my code with the concept of "Can be deployed repeatedly" in mind. My current plan is to run through lists and libraries which will be affected by the particular feature that is to be reset. Files and all of their versions will be saved in a directory on the server. Then, a set of text files will be used to store all of the important field values for the items. This includes a lot of cross-list reference lookups that will need to be maintained, but that's simple enough. Then, I deactivate the feature, deploy the new solution, and reactivate the feature. We upload all of the files in the order specified by their versions and update them with the stored fields for those versions, so that we retain the version structure. As each one is first uploaded, the new ID is picked out, and all relevant lookups in the rest of the files are updated (in some manner that I make sure I don't re-update it later with an incorrect value, of course). After that, we run through all the rest of the items in the order most conducive to keeping the relational data correct. This roughly summarizes what my current plan is. To my advantage, there are no long running workflows in the system that will be affected by this, so there's nothing I will have to worry about making sure nothing is "still running" when I do this stuff. I don't really know all the cons of this approach... I can imagine they're quite hefty. But I'm unsure what other choices I even have, and my searches haven't turned up anything. Is there anyone who can think of a better idea? Or will anyone just tell me that I really have no other choice? Thanks in advance!

    Read the article

  • Histogram matching - image processing - c/c++

    - by Raj
    Hello I have two histograms. int Hist1[10] = {1,4,3,5,2,5,4,6,3,2}; int Hist1[10] = {1,4,3,15,12,15,4,6,3,2}; Hist1's distribution is of type multi-modal; Hist2's distribution is of type uni-modal with single prominent peak. My questions are Is there any way that i could determine the type of distribution programmatically? How to quantify whether these two histograms are similar/dissimilar? Thanks

    Read the article

  • Understanding List formatting in MSWord

    - by John
    I've never understood how formatting works in MSWord for lists... it mostly just works but sometimes becomes incredibly stubborn about enforcing styles you don't want, especially when copy-pasting into a list and working with multiple, multi-layer lists. What are some good ways to understand how it works, so one can work with Word, instead of fighting against it? Here's an example... I want a list like: 1)first test CHECK: a)something b)another thing 2)another test CHECK: a)it works b)it doesn't crash I find Word really doesn't like this... I try creating one mini-list and copy pasting but typically the numbering on the sub-lists doesn't re-start automatically, etc. I'm using Word 2007 but I remember it being this way in earlier versions too.

    Read the article

  • How can I get my setup.py to use a relative path to my files?

    - by Chris B.
    I'm trying to build a Python distribution with distutils. Unfortunately, my directory structure looks like this: /code /mypackage __init__.py file1.py file2.py /subpackage __init__.py /build setup.py Here's my setup.py file: from distutils.core import setup setup( name = 'MyPackage', description = 'This is my package', packages = ['mypackage', 'mypackage.subpackage'], package_dir = { 'mypackage' : '../mypackage' }, version = '1', url = 'http://www.mypackage.org/', author = 'Me', author_email = '[email protected]', ) When I run python setup.py sdist it correctly generates the manifest file, but doesn't include my source files in the distribution. Apparently, it creates a directory to contain the source files (i.e. mypackage1) then copies each of the source files to mypackage1/../mypackage which puts them outside of the distribution. How can I correct this, without forcing my directory structure to conform to what distutils expects?

    Read the article

  • Cross-match a number of worksheets to one master worksheet

    - by Carter
    Hopefully the title is not too confusing. Basically, I have a master list of addresses and those addresses are listed in multiple columns (Column A - street number, Column B - street name, Column C - street type etc) and I get a another set of addresses on a daily basis with the same address formatting. What I need to do is cross-match the daily changing list of addresses to the first list to remove any matching entries. So, for example, if the first list has 123 Main St on it, I have to ensure that there are no entries of 123 Main St on any subsequent daily lists. I'm using one address as an example but the lists contain upwards of 10000 addresses that have to be cross matched. I don't need them flagged or highlighted, just deleted from the daily lists (though if they have to be flagged or highlighted, I could work with that) Any help here would be much appreciated.

    Read the article

  • read file and print in specific format c++

    - by 3yoon af
    Dear all, I have a program that i should write a code using c++ lauguage and i don't used this laugauge before.. I now how to write it in java or c#, but i should write it in c++ !! the code should read a text file (i do this step) and then print the output in specific format using the array (i don't now how to do this step) For example: The file has the following: Task distribution duration dependence A Normal 2,10 - B UNIF 2,7 A The code will print the following: The task A is a normal distribution and it is duration between 2 and 10. It doesn't depend on any task. Task B is unif distribution and ...... etc .. Can someone help me, please?

    Read the article

  • Histrogram matching - image processing - c/c++

    - by Raj
    Hello I have two histograms. int Hist1[10] = {1,4,3,5,2,5,4,6,3,2}; int Hist1[10] = {1,4,3,15,12,15,4,6,3,2}; Hist1's distribution is of type multi-modal; Hist2's distribution is of type uni-modal with single prominent peak. My questions are Is there any way that i could determine the type of distribution programmatically? How to quantify whether these two histograms are similar/dissimilar? Thanks

    Read the article

  • Choose between multiple options with defined probability

    - by Sijin
    I have a scenario where I need to show a different page to a user for the same url based on a probability distribution, so for e.g. for 3 pages the distribution might be page 1 - 30% of all users page 2 - 50% of all users page 3 - 20% of all users When deciding what page to load for a given user, what technique can I use to ensure that the overall distribution matches the above? I am thinking I need a way to choose an object at "random" from a set X { x1, x2....xn } except that instead of all objects being equally likely the probability of an object being selected is defined beforehand.

    Read the article

  • Problems when trying to submit iphone app

    - by ryug
    I'm a fairly new developer. When I try to submit my iphone app with xcode, I've got error as follows; Code Sign error: The identity 'iPhone Distribution' doesn't match any valid, non-expired certificate/private key pair in the default keychain After searching, I found out that I have to create a Distribution Provisioning Profile. However, my distribution provisioning profile doesn't work, even though my Development Provisioning Profile works perfectly. Could someone please help me with this problem? I'm stuck all day... and please forgive me that my English is not great. Thank you in advance.

    Read the article

  • Scene Graph for Deferred Rendering Engine

    - by Roy T.
    As a learning exercise I've written a deferred rendering engine. Now I'd like to add a scene graph to this engine but I'm a bit puzzled how to do this. On a normal (forward rendering engine) I would just add all items (All implementing IDrawable and IUpdateAble) to my scene graph, than travel the scene-graph breadth first and call Draw() everywhere. However in a deferred rendering engine I have to separate draw calls. First I have to draw the geometry, then the shadow casters and then the lights (all to different render targets), before I combine them all. So in this case I can't just travel over the scene graph and just call draw. The way I see it I either have to travel over the entire scene graph 3 times, checking what kind of object it is that has to be drawn, or I have to create 3 separate scene graphs that are somehow connected to each other. Both of these seem poor solutions, I'd like to handle scene objects more transparent. One other solution I've thought of was traveling trough the scene graph as normal and adding items to 3 separate lists, separating geometry, shadow casters and lights, and then iterating these lists to draw the correct stuff, is this better, and is it wise to repopulate 3 lists every frame?

    Read the article

  • Why are some checkboxes in Software Updater disabled?

    - by Drew Noakes
    In Ubuntu 13.04, the Software Updater shows some apps as having updates, but they're non-selectable: It's not clear why they're greyed out. On the command line: $ sudo apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done The following packages have been kept back: gnuplot-nox gnuplot-x11 nvidia-current 0 upgraded, 0 newly installed, 0 to remove and 3 not upgraded. Note too that running apt-get dist-upgrade does not cause them to be installed either, as it sometimes does with packages that are kept back. Here's the output: $ sudo apt-get dist-upgrade Reading package lists... Done Building dependency tree Reading state information... Done Calculating upgrade... Done The following packages have been kept back: gnuplot-nox gnuplot-x11 nvidia-current 0 upgraded, 0 newly installed, 0 to remove and 3 not upgraded. I took @quidage's suggestion, which gives the following. However subsequent upgrades show the same message: $ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 3 not upgraded.

    Read the article

  • How to fix a dpkg broken by the Brother MFC-7340 deb driver

    - by Roman A. Taycher
    I'm getting an apt-get error that says E: The package brmfc7340lpr needs to be reinstalled, but I can't find an archive for it. (the brmfc7340lpr is a printer driver) its a local deb file, doing an dpkg or apt-get purge doesn't work, neither does apt-get install -f How do I reinstall a package from a local deb file? P.S. box-name% sudo apt-get upgrade [sudo] password for username: Reading package lists... Done Building dependency tree Reading state information... Done E: The package brmfc7340lpr needs to be reinstalled, but I can't find an archive for it. box-name% sudo apt-get purge brmfc7340lpr Reading package lists... Done Building dependency tree Reading state information... Done E: The package brmfc7340lpr needs to be reinstalled, but I can't find an archive for it. box-name% sudo dpkg --purge brmfc7340lpr dpkg: error processing brmfc7340lpr (--purge): Package is in a very bad inconsistent state - you should reinstall it before attempting a removal. Errors were encountered while processing: brmfc7340lpr box-name% sudo dpkg --install brmfc7340lpr-2.0.2-1.i386.deb Selecting previously deselected package brmfc7340lpr. (Reading database ... 725204 files and directories currently installed.) Preparing to replace brmfc7340lpr 2.0.2-1 (using .../brmfc7340lpr-2.0.2-1.i386.deb) ... Unpacking replacement brmfc7340lpr ... start: Unknown job: lpd dpkg: warning: subprocess old post-removal script returned error exit status 1 dpkg - trying script from the new package instead ... start: Unknown job: lpd dpkg: error processing brmfc7340lpr-2.0.2-1.i386.deb (--install): subprocess new post-removal script returned error exit status 1 start: Unknown job: lpd dpkg: error while cleaning up: subprocess new post-removal script returned error exit status 1 Errors were encountered while processing: brmfc7340lpr-2.0.2-1.i386.deb box-name% sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done E: The package brmfc7340lpr needs to be reinstalled, but I can't find an archive for it. box-name%

    Read the article

  • apt-get failed install of libg15, all package management is failing

    - by Stifle
    I was trying to get my Logitech G510 keyboard's back-lights working so I went into the Synaptic Package Manager and marked LibG15, G15daemon, and all the other associated packages. Synaptic reported a failed install. Now all Package management is failing due to libg15 being "halfway installed." Some commands I have tried to fix the problem follow. . . root@bt:~# apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done E: The package libg15 needs to be reinstalled, but I can't find an archive for it. root@bt:~# sudo apt-get autoremove Reading package lists... Done Building dependency tree Reading state information... Done E: The package libg15 needs to be reinstalled, but I can't find an archive for it. root@bt:~# sudo apt-get -f purge libg15 Reading package lists... Done Building dependency tree Reading state information... Done E: The package libg15 needs to be reinstalled, but I can't find an archive for it. root@bt:~# sudo dpkg --configure -a dpkg: dependency problems prevent configuration of g15macro: g15macro depends on g15daemon; however: Package g15daemon is not configured yet. dpkg: error processing g15macro (--configure): dependency problems - leaving unconfigured dpkg: dependency problems prevent configuration of g15stats: g15stats depends on g15daemon; however: Package g15daemon is not configured yet. dpkg: error processing g15stats (--configure): dependency problems - leaving unconfigured Errors were encountered while processing: g15macro g15stats I'm not too computer savvy. Any help would be much appreciated!!! Note: I'm using Ubuntu 10.04 under Backtrack 5 R3.

    Read the article

  • Limitations of the SharePoint join using CAML

    - by ybbest
    Limitation One In SharePoint 2010, you can join the primary list to a foreign list and include more than one field from the foreign list. However, the limitation is that the included fields from foreign list have to be the following type: Calculated (treated as plain text) ContentTypeId Counter Currency DateTime Guid Integer Note (one-line only) Number Text The above limitation also explains why you cannot include some types of the fields from the remote list when creating a lookup. Limitation Two When using CAML query to join SharePoint lists, there can be joins to multiple lists, multiple joins to the same list, and chains of joins. However, the limitations are only inner and left outer joins are permitted and the field in the primary list must be a Lookup type field that looks up to the field in the foreign list. Limitation Three The support for writing the JOIN query in CAML is very limited.I have to hand-code the CAML query to join the lists,not fun at all.Although some blogs post mentioned about using LINQ to SharePoint and get the CAML code from there , but I never get it to work.You can check this blog post  for this.Let me know if it works for you. References: http://msdn.microsoft.com/en-us/library/ee535502.aspx http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.spquery.joins.aspx

    Read the article

  • Why can't I install from software center?

    - by user64720
    There was a problem upgrading to Firefox 13. This error kept returning: /var/cache/apt/archives/firefox_13.0+build1-0ubuntu0.12.04.1_i386.deb W: Waited for dpkg --assert-multi-arch but was not there - dpkgGo (10: There are no "child" processes). Now it seems that there is some problem with dpkg and I can't install anything from software center. I already tried to clean previous packages with sudo rm /var/lib/apt/lists/* -vf and then sudo apt-get update, it didn't work. When running sudo dpkg --configure -a, I get this: dpkg: problems with dependencies prevent the configuration of firefox-globalmenu: firefox-globalmenu depends on firefox (= 13.0+build1-0ubuntu0.12.04.1); however: The package is not installed. dpkg: error while processing firefox-globalmenu (--configure): problems com dependencies - leaving unconfigured There has been found errors while processing: firefox-globalmenu What should I do to fix this?? EDIT: I don't have the necessary expertise to understand why what I did worked and what was causing the conflict, but anyway, since there was a problem with firefox-globalmenu:, I went to synaptics package manager, I removed this particular package and reinstalled it. After that, I was able to install Firefox from synaptics and also any other applications from software center. However, still there was a problem, when running sudo apt-get update, the following kept returning: Failed to get gzip:/var/lib/apt/lists/partial/archive.ubuntu.com_ubuntu_dists_precise_main_binary-i386_Packages Verification code hash doesn't match. E: Some archives index failed at being downloaded. They have been ignored, or older copies are used instead. So I typed sudo rm /var/lib/apt/lists/* -vf in terminal and then again sudo apt-get update and everything is fine now. I did this before an answer was posted, anyway I agree the problem was that particular package and its removal. So I'll mark the below answer as accepted.

    Read the article

  • Installing latest version of R-base

    - by Student
    I have been unsuccessfully trying to install the latest version (2.15.2) of r-base. Apparently, R package "Rcpp" would not install for R version 2.14.1 - the version that installs for me. I am not sure what/how/where to change my installation attempts which appear below. Please note that I am using ubuntu-12.04.1-server-i386. (1) ------------ The current installed version is R version 2.14.1 (2011-12-22) sudo apt-get install r-base Reading package lists... Done Building dependency tree Reading state information... Done r-base is already the newest version. (2) ------------ Including version information doesn't help: sudo apt-get install r-base=2.15.1-5ubuntu1 Reading package lists... Done Building dependency tree Reading state information... Done E: Version '2.15.1-5ubuntu1' for 'r-base' was not found (3) ------------- Changes based on CRAN Ubuntu instructions http://cran.r-project.org/bin/linux/ubuntu/README 3.1: Added to /etc/apt/sources.list deb http://lib.stat.cmu.edu/R/CRAN/bin/linux/ubuntu quantal/ 3.2: sudo apt-get update 3.3: sudo apt-get install r-base Reading package lists... Done Building dependency tree Reading state information... Done Some packages could not be installed. This may mean that you have requested an impossible situation or if you are using the unstable distribution that some required packages have not yet been created or been moved out of Incoming. The following information may help to resolve the situation: The following packages have unmet dependencies: r-base : Depends: r-base-core (= 2.15.2-1quantal2) but it is not going to be installed Depends: r-recommended (= 2.15.2-1quantal2) but it is not going to be installed Recommends: r-base-html but it is not going to be installed E: Unable to correct problems, you have held broken packages.

    Read the article

  • Trouble installing gnome-shell-extensions-user-theme, dependency/PPA conflict?

    - by Drex
    I installed gnome tweak tool, and am trying to set up custom themes and whatnot. So, trying to install gnome-shell-extensions-user-theme. me@computer:~$ sudo apt-get install gnome-shell-extensions-user-theme [sudo] password for me: Reading package lists... Done Building dependency tree Reading state information... Done Some packages could not be installed. This may mean that you have requested an impossible situation or if you are using the unstable distribution that some required packages have not yet been created or been moved out of Incoming. The following information may help to resolve the situation: The following packages have unmet dependencies: gnome-shell-extensions-user-theme : Depends: gnome-shell-extensions-common but it is not going to be installed E: Unable to correct problems, you have held broken packages. Not going to be installed? Okay, let's see about that... me@computer:~$ sudo apt-get install gnome-shell-extensions-common Reading package lists... Done Building dependency tree Reading state information... Done gnome-shell-extensions-common is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. Wait, what? Broken packages? Ruh Roh! Seems to me it might be a PPA contradiction problem or something, but I'm tired of trashing my installs. Kinda lost here. Any ideas? Output of sudo apt-get install -f drex@U110:~$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

    Read the article

  • Java consistent synchronization

    - by ring0
    We are facing the following problem in a Spring service, in a multi-threaded environment: three lists are freely and independently accessed for Read once in a while (every 5 minutes), they are all updated to new values. There are some dependencies between the lists, making that, for instance, the third one should not be read while the second one is being updated and the first one already has new values ; that would break the three lists consistency. My initial idea is to make a container object having the three lists as properties. Then the synchronization would be first on that object, then one by one on each of the three lists. Some code is worth a thousands words... so here is a draft private class Sync { final List<Something> a = Collections.synchronizedList(new ArrayList<Something>()); final List<Something> b = Collections.synchronizedList(new ArrayList<Something>()); final List<Something> c = Collections.synchronizedList(new ArrayList<Something>()); } private Sync _sync = new Sync(); ... void updateRunOnceEveryFiveMinutes() { final List<Something> newa = new ArrayList<Something>(); final List<Something> newb = new ArrayList<Something>(); final List<Something> newc = new ArrayList<Something>(); ...building newa, newb and newc... synchronized(_sync) { synchronized(_sync.a) { _synch.a.clear(); _synch.a.addAll(newa); } synchronized(_sync.b) { ...same with newb... } synchronized(_sync.c) { ...same with newc... } } // Next is accessed by clients public List<Something> getListA() { return _sync.a; } public List<Something> getListB() { ...same with b... } public List<Something> getListC() { ...same with c... } The question would be, is this draft safe (no deadlock, data consistency)? would you have a better implementation suggestion for that specific problem? update Changed the order of _sync synchronization and newa... building. Thanks

    Read the article

  • An Honest look at SharePoint Web Services

    - by juanlarios
    INTRODUCTION If you are a SharePoint developer you know that there are two basic ways to develop against SharePoint. 1) The object Model 2) Web services. SharePoint object model has the advantage of being quite rich. Anything you can do through the SharePoint UI as an administrator or end user, you can do through the object model. In fact everything that is done through the UI is done through the object model behind the scenes. The major disadvantage to getting at SharePoint this way is that the code needs to run on the server. This means that all web parts, event receivers, features, etc… all of this is code that is deployed to the server. The second way to get to SharePoint is through the built in web services. There are many articles on how to manipulate web services, how to authenticate to them and interact with them. The basic idea is that a remote application or process can contact SharePoint through a web service. Lots has been written about how great these web services are. This article is written to document the limitations, some of the issues and frustrations with working with SharePoint built in web services. Ultimately, for the tasks I was given to , SharePoint built in web services did not suffice. My evaluation of SharePoint built in services was compared against creating my own WCF Services to do what I needed. The current project I'm working on right now involved several "integration points". A remote application, installed on a separate server was to contact SharePoint and perform an task or operation. So I decided to start up Visual Studio and built a DLL and basically have 2 layers of logic. An integration layer and a data layer. A good friend of mine pointed me to SOLID principles and referred me to some videos and tutorials about it. I decided to implement the methodology (although a lot of the principles are common sense and I already incorporated in my coding practices). I was to deliver this dll to the application team and they would simply call the methods exposed by this dll and voila! it would do some task or operation in SharePoint. SOLUTION My integration layer implemented an interface that defined some of the basic integration tasks that I was to put together. My data layer was about the same, it implemented an interface with some of the tasks that I was going to develop. This gave me the opportunity to develop different data layers, ultimately different ways to get at SharePoint if I needed to. This is a classic SOLID principle. In this case it proved to be quite helpful because I wrote one data layer completely implementing SharePoint built in Web Services and another implementing my own WCF Service that I wrote. I should mention there is another layer underneath the data layer. In referencing SharePoint or WCF services in my visual studio project I created a class for every web service call. So for example, if I used List.asx. I created a class called "DocumentRetreival" this class would do the grunt work to connect to the correct URL, It would perform the basic operation of contacting the service and so on. If I used a view.asmx, I implemented a class called "ViewRetrieval" with the same idea as the last class but it would now interact with all he operations in view.asmx. This gave my data layer the ability to perform multiple calls without really worrying about some of the grunt work each class performs. This again, is a classic SOLID principle. So, in order to compare them side by side we can look at both data layers and with is involved in each. Lets take a look at the "Create Project" task or operation. The integration point is described as , "dll is to provide a way to create a project in SharePoint". Projects , in this case are basically document libraries. I am to implement a way in which a remote application can create a document library in SharePoint. Easy enough right? Use the list.asmx Web service in SharePoint. So here we go! Lets take a look at the code. I added the List.asmx web service reference to my project and this is the class that contacts it:  class DocumentRetrieval     {         private ListsSoapClient _service;      d   private bool _impersonation;         public DocumentRetrieval(bool impersonation, string endpt)         {             _service = new ListsSoapClient();             this.SetEndPoint(string.Format("{0}/{1}", endpt, ConfigurationManager.AppSettings["List"]));             _impersonation = impersonation;             if (_impersonation)             {                 _service.ClientCredentials.Windows.ClientCredential.Password = ConfigurationManager.AppSettings["password"];                 _service.ClientCredentials.Windows.ClientCredential.UserName = ConfigurationManager.AppSettings["username"];                 _service.ClientCredentials.Windows.AllowedImpersonationLevel =                     System.Security.Principal.TokenImpersonationLevel.Impersonation;             }     private void SetEndPoint(string p)          {             _service.Endpoint.Address = new EndpointAddress(p);          }          /// <summary>         /// Creates a document library with specific name and templateID         /// </summary>         /// <param name="listName">New list name</param>         /// <param name="templateID">Template ID</param>         /// <returns></returns>         public XmlElement CreateLibrary(string listName, int templateID, ref ExceptionContract exContract)         {             XmlDocument sample = new XmlDocument();             XmlElement viewCol = sample.CreateElement("Empty");             try             {                 _service.Open();                 viewCol = _service.AddList(listName, "", templateID);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/CreateLibrary", ex.GetType(), "Connection Error", ex.StackTrace, ExceptionContract.ExceptionCode.error);                             }finally             {                 _service.Close();             }                                      return viewCol;         } } There was a lot more in this class (that I am not including) because i was reusing the grunt work and making other operations with LIst.asmx, For example, updating content types, changing or configuring lists or document libraries. One of the first things I noticed about working with the built in services is that you are really at the mercy of what is available to you. Before creating a document library (Project) I wanted to expose a IsProjectExisting method. This way the integration or data layer could recognize if a library already exists. Well there is no service call or method available to do that check. So this is what I wrote:   public bool DocLibExists(string listName, ref ExceptionContract exContract)         {             try             {                 var allLists = _service.GetListCollection();                                return allLists.ChildNodes.OfType<XmlElement>().ToList().Exists(x => x.Attributes["Title"].Value ==listName);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/GetList/GetListWSCall", ex.GetType(), "Unable to Retrieve List Collection", ex.StackTrace, ExceptionContract.ExceptionCode.error);             }             return false;         } This really just gets an XMLElement with all the lists. It was then up to me to sift through the clutter and noise and see if Document library already existed. This took a little bit of getting used to. Now instead of working with code, you are working with XMLElement response format from web service. I wrote a LINQ query to go through and find if the attribute "Title" existed and had a value of the listname then it would return True, if not False. I didn't particularly like working this way. Dealing with XMLElement responses and then having to manipulate it to get at the exact data I was looking for. Once the check for the DocLibExists, was done, I would either create the document library or send back an error indicating the document library already existed. Now lets examine the code that actually creates the document library. It does what you are really after, it creates a document library. Notice how the template ID is really an integer. Every document library template in SharePoint has an ID associated with it. Document libraries, Image Library, Custom List, Project Tasks, etc… they all he a unique integer associated with it. Well, that's great but the client came back to me and gave me some specifics that each "project" or document library, should have. They specified they had 3 types of projects. Each project would have unique views, about 10 views for each project. Each Project specified unique configurations (auditing, versioning, content types, etc…) So what turned out to be a simple implementation of creating a document library as a repository for a project, turned out to be quite involved.  The first thing I thought of was to create a template for document library. There are other ways you can do this too. Using the web Service call, you could configure views, versioning, even content types, etc… the only catch is, you have to be working quite extensively with CAML. I am not fond of CAML. I can do it and work with it, I just don't like doing it. It is quite touchy and at times it is quite tough to understand where errors were made with CAML statements. Working with Web Services and CAML proved to be quite annoying. The service call would return a generic error message that did not particularly point me to a CAML statement syntax error, or even a CAML error. I was not sure if it was a security , performance or code based issue. It was quite tough to work with. At times it was difficult to work with because of the way SharePoint handles metadata. There are "Names", "Display Name", and "StaticName" fields. It was quite tough to understand at times, which one to use. So it took a lot of trial and error. There are tools that can help with CAML generation. There is also now intellisense for CAML statements in Visual Studio that might help but ultimately I'm not fond of CAML with Web Services.   So I decided on the template. So my plan was to create create a document library, configure it accordingly and then use The Template Builder that comes with the SharePoint SDK. This tool allows you to create site templates, list template etc… It is quite interesting because it does not generate an STP file, it actually generates an xml definition and a feature you can activate and make that template available on a site or site collection. The first issue I experienced with this is that one of the specifications to this template was that the "All Documents" view was to have 2 web parts on it. Well, it turns out that using the template builder , it did not include the web parts as part of the list template definition it generated. It backed up the settings, the views, the content types but not the custom web parts. I still decided to try this even without the web parts on the page. This new template defined a new Document library definition with a unique ID. The problem was that the service call accepts an int but it only has access to the built in library int definitions. Any new ones added or created will not be available to create. So this made it impossible for me to approach the problem this way.     I should also mention that one of the nice features about SharePoint is the ability to create list templates, back them up and then create lists based on that template. It can all be done by end user administrators. These templates are quite unique because they are saved as an STP file and not an xml definition. I also went this route and tried to see if there was another service call where I could create a document library based no given template name. Nope! none.      After some thinking I decide to implement a WCF service to do this creation for me. I was quite certain that the object model would allow me to create document libraries base on a template in which an ID was required and also templates saved as STP files. Now I don't want to bother with posting the code to contact WCF service because it's self explanatory, but I will post the code that I used to create a list with custom template. public ServiceResult CreateProject(string name, string templateName, string projectId)         {             string siteurl = SPContext.Current.Site.Url;             Guid webguid = SPContext.Current.Web.ID;                        using (SPSite site = new SPSite(siteurl))             {                 using (SPWeb rootweb = site.RootWeb)                 {                     SPListTemplateCollection temps = site.GetCustomListTemplates(rootweb);                     ProcessWeb(siteurl, webguid, web => Act_CreateProject(web, name, templateName, projectId, temps));                 }//SpWeb             }//SPSite              return _globalResult;                   }         private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                             try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                                       }        private void ProcessWeb(string siteurl, Guid webguid, Action<SPWeb> action) {                        using (SPSite sitecollection = new SPSite(siteurl)) {                 using (SPWeb web = sitecollection.AllWebs[webguid]) {                     action(web);                 }                     }                  } This code is actually some of the code I implemented for the service. there was a lot more I did on Project Creation which I will cover in my next blog post. I implemented an ACTION method to process the web. This allowed me to properly dispose the SPWEb and SPSite objects and not rewrite this code over and over again. So I implemented a WCF service to create projects for me, this allowed me to do a lot more than just create a document library with a template, it now gave me the flexibility to do just about anything the client wanted at project creation. Once this was implemented , the client came back to me and said, "we reference all our projects with ID's in our application. we want SharePoint to do the same". This has been something I have been doing for a little while now but I do hope that SharePoint 2010 can have more of an answer to this and address it properly. I have been adding metadata to SPWebs through property bag. I believe I have blogged about it before. This time it required metadata added to a document library. No problem!!! I also mentioned these web parts that were to go on the "All Documents" View. I took the opportunity to configure them to the appropriate settings. There were two settings that needed to be set on these web parts. One of them was a Project ID configured in the webpart properties. The following code enhances and replaces the "Act_CreateProject " method above:  private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                 SPLimitedWebPartManager wpmgr = null;                               try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     SPFolder rootFolder = newList.RootFolder;                     rootFolder.Properties.Add(KEY, projectId);                     rootFolder.Update();                     if (rootFolder.ParentWeb != targetsite)                         rootFolder.ParentWeb.Dispose();                     if (!templateName.Contains("Natural"))                     {                         SPView alldocumentsview = newList.Views.Cast<SPView>().FirstOrDefault(x => x.Title.Equals(ALLDOCUMENTS));                         SPFile alldocfile = targetsite.GetFile(alldocumentsview.ServerRelativeUrl);                         wpmgr = alldocfile.GetLimitedWebPartManager(PersonalizationScope.Shared);                         ConfigureWebPart(wpmgr, projectId, CUSTOMWPNAME);                                              alldocfile.Update();                     }                                        if (newList.ParentWeb != targetsite)                         newList.ParentWeb.Dispose();                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                 finally                 {                     if (wpmgr != null)                     {                         wpmgr.Web.Dispose();                         wpmgr.Dispose();                     }                 }             }                         }       private void ConfigureWebPart(SPLimitedWebPartManager mgr, string prjId, string webpartname)         {             var wp = mgr.WebParts.Cast<System.Web.UI.WebControls.WebParts.WebPart>().FirstOrDefault(x => x.DisplayTitle.Equals(webpartname));             if (wp != null)             {                           (wp as ListRelationshipWebPart.ListRelationshipWebPart).ProjectID = prjId;                 mgr.SaveChanges(wp);             }         }   This Shows you how I was able to set metadata on the document library. It has to be added to the RootFolder of the document library, Unfortunately, the SPList does not have a Property bag that I can add a key\value pair to. It has to be done on the root folder. Now everything in the integration will reference projects by ID's and will not care about names. My, "DocLibExists" will now need to be changed because a web service is not set up to look at property bags.  I had to write another method on the Service to do the equivalent but with ID's instead of names.  The second thing you will notice about the code is the use of the Webpartmanager. I have seen several examples online, and also read a lot about memory leaks, The above code does not produce memory leaks. The web part manager creates an SPWeb, so just dispose it like I did. CONCLUSION This is a long long post so I will stop here for now, I will continue with more comparisons and limitations in my next post. My conclusion for this example is that Web Services will do the trick if you can suffer through CAML and if you are doing some simple operations. For Everything else, there's WCF! **** fireI apologize for the disorganization of this post, I was on a bus on a 12 hour trip to IOWA while I wrote it, I was half asleep and half awake, hopefully it makes enough sense to someone.

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • SQL SERVER – Data Pages in Buffer Pool – Data Stored in Memory Cache

    - by pinaldave
    This will drop all the clean buffers so we will be able to start again from there. Now, run the following script and check the execution plan of the query. Have you ever wondered what types of data are there in your cache? During SQL Server Trainings, I am usually asked if there is any way one can know how much data in a table is stored in the memory cache? The more detailed question I usually get is if there are multiple indexes on table (and used in a query), were the data of the single table stored multiple times in the memory cache or only for a single time? Here is a query you can run to figure out what kind of data is stored in the cache. USE AdventureWorks GO SELECT COUNT(*) AS cached_pages_count, name AS BaseTableName, IndexName, IndexTypeDesc FROM sys.dm_os_buffer_descriptors AS bd INNER JOIN ( SELECT s_obj.name, s_obj.index_id, s_obj.allocation_unit_id, s_obj.OBJECT_ID, i.name IndexName, i.type_desc IndexTypeDesc FROM ( SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id ,allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id AND (au.type = 1 OR au.type = 3) UNION ALL SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id, allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.partition_id AND au.type = 2 ) AS s_obj LEFT JOIN sys.indexes i ON i.index_id = s_obj.index_id AND i.OBJECT_ID = s_obj.OBJECT_ID ) AS obj ON bd.allocation_unit_id = obj.allocation_unit_id WHERE database_id = DB_ID() GROUP BY name, index_id, IndexName, IndexTypeDesc ORDER BY cached_pages_count DESC; GO Now let us run the query above and observe the output of the same. We can see in the above query that there are four columns. Cached_Pages_Count lists the pages cached in the memory. BaseTableName lists the original base table from which data pages are cached. IndexName lists the name of the index from which pages are cached. IndexTypeDesc lists the type of index. Now, let us do one more experience here. Please note that you should not run this test on a production server as it can extremely reduce the performance of the database. DBCC DROPCLEANBUFFERS This will drop all the clean buffers and we will be able to start again from there. Now run following script and check the execution plan for the same. USE AdventureWorks GO SELECT UnitPrice, ModifiedDate FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID BETWEEN 1 AND 100 GO The execution plans contain the usage of two different indexes. Now, let us run the script that checks the pages cached in SQL Server. It will give us the following output. It is clear from the Resultset that when more than one index is used, datapages related to both or all of the indexes are stored in Memory Cache separately. Let me know what you think of this article. I had a great pleasure while writing this article because I was able to write on this subject, which I like the most. In the next article, we will exactly see what data are cached and those that are not cached, using a few undocumented commands. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >