Search Results

Search found 257 results on 11 pages for 'idisposable'.

Page 5/11 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >

  • .NET Programmatically invoke screenclick doesn't work?

    - by ropstah
    I'm trying to programmatically invoke an onclick event however the click is not received/handled. Am I missing something, or is security preventing the click to be executed? I have a forms application which is invisible. Basically I would like to say: DoDoubleClick(wait, x, y) This should raise two click (mousedown+mouseup) events on screen with the specified wait interval. However the click isn't received in a Flash application in Firefox (which is running at that moment). Here's my code: Form: Public Class Form1 Private WithEvents gmh As GlobalMouseHook Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load gmh = New GlobalMouseHook() Me.Visible = false gmh.DoDoubleClick(50, 800, 600) End Sub Private Sub Form1_FormClosed(ByVal sender As System.Object, ByVal e As System.Windows.Forms.FormClosedEventArgs) Handles MyBase.FormClosed gmh.Dispose() End Sub Private Sub gmh_MouseDown(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles gmh.MouseDown End Sub Private Sub gmh_MouseMove(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles gmh.MouseMove End Sub Private Sub gmh_MouseUp(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles gmh.MouseUp End Sub End Class GlobalMouseHook class: Friend Class GlobalMouseHook Implements IDisposable Private hhk As IntPtr = IntPtr.Zero Private disposedValue As Boolean = False Public Event MouseDown As MouseEventHandler Public Event MouseUp As MouseEventHandler Public Event MouseMove As MouseEventHandler Public Sub New() Hook() End Sub Private Sub Hook() Dim hInstance As IntPtr = LoadLibrary("User32") hhk = SetWindowsHookEx(WH_MOUSE_LL, AddressOf Me.HookProc, hInstance, 0) End Sub Private Sub Unhook() UnhookWindowsHookEx(hhk) End Sub Public Sub DoDoubleClick(ByVal wait As Integer, ByVal x As Integer, ByVal y As Integer) RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Left, 1, x, y, 0)) RaiseEvent MouseUp(Me, Nothing) System.Threading.Thread.Sleep(wait) RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Left, 1, x, y, 0)) RaiseEvent MouseUp(Me, Nothing) End Sub Private Function HookProc(ByVal nCode As Integer, ByVal wParam As UInteger, ByRef lParam As MSLLHOOKSTRUCT) As Integer If nCode >= 0 Then Select Case wParam Case WM_LBUTTONDOWN RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Left, 0, lParam.pt.x, lParam.pt.y, 0)) Case WM_RBUTTONDOWN RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Right, 0, lParam.pt.x, lParam.pt.y, 0)) Case WM_MBUTTONDOWN RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Middle, 0, lParam.pt.x, lParam.pt.y, 0)) Case WM_LBUTTONUP, WM_RBUTTONUP, WM_MBUTTONUP RaiseEvent MouseUp(Nothing, Nothing) Case WM_MOUSEMOVE RaiseEvent MouseMove(Nothing, Nothing) Case WM_MOUSEWHEEL, WM_MOUSEHWHEEL Case Else Console.WriteLine(wParam) End Select End If Return CallNextHookEx(hhk, nCode, wParam, lParam) End Function Private Structure API_POINT Public x As Integer Public y As Integer End Structure Private Structure MSLLHOOKSTRUCT Public pt As API_POINT Public mouseData As UInteger Public flags As UInteger Public time As UInteger Public dwExtraInfo As IntPtr End Structure Private Const WM_MOUSEWHEEL As UInteger = &H20A Private Const WM_MOUSEHWHEEL As UInteger = &H20E Private Const WM_MOUSEMOVE As UInteger = &H200 Private Const WM_LBUTTONDOWN As UInteger = &H201 Private Const WM_LBUTTONUP As UInteger = &H202 Private Const WM_MBUTTONDOWN As UInteger = &H207 Private Const WM_MBUTTONUP As UInteger = &H208 Private Const WM_RBUTTONDOWN As UInteger = &H204 Private Const WM_RBUTTONUP As UInteger = &H205 Private Const WH_MOUSE_LL As Integer = 14 Private Delegate Function LowLevelMouseHookProc(ByVal nCode As Integer, ByVal wParam As UInteger, ByRef lParam As MSLLHOOKSTRUCT) As Integer Private Declare Auto Function LoadLibrary Lib "kernel32" (ByVal lpFileName As String) As IntPtr Private Declare Auto Function SetWindowsHookEx Lib "user32.dll" (ByVal idHook As Integer, ByVal lpfn As LowLevelMouseHookProc, ByVal hInstance As IntPtr, ByVal dwThreadId As UInteger) As IntPtr Private Declare Function CallNextHookEx Lib "user32" (ByVal hhk As IntPtr, ByVal nCode As Integer, ByVal wParam As UInteger, ByRef lParam As MSLLHOOKSTRUCT) As Integer Private Declare Function UnhookWindowsHookEx Lib "user32" (ByVal hhk As IntPtr) As Boolean ' IDisposable Protected Overridable Sub Dispose(ByVal disposing As Boolean) If Not Me.disposedValue Then If disposing Then ' TODO: free other state (managed objects). End If Unhook() End If Me.disposedValue = True End Sub ' This code added by Visual Basic to correctly implement the disposablepattern. Public Sub Dispose() Implements IDisposable.Dispose ' Do not change this code. Put cleanup code in Dispose(ByValdisposing As Boolean) above. Dispose(True) GC.SuppressFinalize(Me) End Sub End Class

    Read the article

  • The Return Of __FILE__ And __LINE__ In .NET 4.5

    - by Alois Kraus
    Good things are hard to kill. One of the most useful predefined compiler macros in C/C++ were __FILE__ and __LINE__ which do expand to the compilation units file name and line number where this value is encountered by the compiler. After 4.5 versions of .NET we are on par with C/C++ again. It is of course not a simple compiler expandable macro it is an attribute but it does serve exactly the same purpose. Now we do get CallerLineNumberAttribute  == __LINE__ CallerFilePathAttribute        == __FILE__ CallerMemberNameAttribute  == __FUNCTION__ (MSVC Extension)   The most important one is CallerMemberNameAttribute which is very useful to implement the INotifyPropertyChanged interface without the need to hard code the name of the property anymore. Now you can simply decorate your change method with the new CallerMemberName attribute and you get the property name as string directly inserted by the C# compiler at compile time.   public string UserName { get { return _userName; } set { _userName=value; RaisePropertyChanged(); // no more RaisePropertyChanged(“UserName”)! } } protected void RaisePropertyChanged([CallerMemberName] string member = "") { var copy = PropertyChanged; if(copy != null) { copy(new PropertyChangedEventArgs(this, member)); } } Nice and handy. This was obviously the prime reason to implement this feature in the C# 5.0 compiler. You can repurpose this feature for tracing to get your hands on the method name of your caller along other stuff very fast now. All infos are added during compile time which is much faster than other approaches like walking the stack. The example on MSDN shows the usage of this attribute with an example public static void TraceMessage(string message, [CallerMemberName] string memberName = "", [CallerFilePath] string sourceFilePath = "", [CallerLineNumber] int sourceLineNumber = 0) { Console.WriteLine("Hi {0} {1} {2}({3})", message, memberName, sourceFilePath, sourceLineNumber); }   When I do think of tracing I do usually want to have a API which allows me to Trace method enter and leave Trace messages with a severity like Info, Warning, Error When I do print a trace message it is very useful to print out method and type name as well. So your API must either be able to pass the method and type name as strings or extract it automatically via walking back one Stackframe and fetch the infos from there. The first glaring deficiency is that there is no CallerTypeAttribute yet because the C# compiler team was not satisfied with its performance.   A usable Trace Api might therefore look like   enum TraceTypes { None = 0, EnterLeave = 1 << 0, Info = 1 << 1, Warn = 1 << 2, Error = 1 << 3 } class Tracer : IDisposable { string Type; string Method; public Tracer(string type, string method) { Type = type; Method = method; if (IsEnabled(TraceTypes.EnterLeave,Type, Method)) { } } private bool IsEnabled(TraceTypes traceTypes, string Type, string Method) { // Do checking here if tracing is enabled return false; } public void Info(string fmt, params object[] args) { } public void Warn(string fmt, params object[] args) { } public void Error(string fmt, params object[] args) { } public static void Info(string type, string method, string fmt, params object[] args) { } public static void Warn(string type, string method, string fmt, params object[] args) { } public static void Error(string type, string method, string fmt, params object[] args) { } public void Dispose() { // trace method leave } } This minimal trace API is very fast but hard to maintain since you need to pass in the type and method name as hard coded strings which can change from time to time. But now we have at least CallerMemberName to rid of the explicit method parameter right? Not really. Since any acceptable usable trace Api should have a method signature like Tracexxx(… string fmt, params [] object args) we not able to add additional optional parameters after the args array. If we would put it before the format string we would need to make it optional as well which would mean the compiler would need to figure out what our trace message and arguments are (not likely) or we would need to specify everything explicitly just like before . There are ways around this by providing a myriad of overloads which in the end are routed to the very same method but that is ugly. I am not sure if nobody inside MS agrees that the above API is reasonable to have or (more likely) that the whole talk about you can use this feature for diagnostic purposes was not a core feature at all but a simple byproduct of making the life of INotifyPropertyChanged implementers easier. A way around this would be to allow for variable argument arrays after the params keyword another set of optional arguments which are always filled by the compiler but I do not know if this is an easy one. The thing I am missing much more is the not provided CallerType attribute. But not in the way you would think of. In the API above I did add some filtering based on method and type to stay as fast as possible for types where tracing is not enabled at all. It should be no more expensive than an additional method call and a bool variable check if tracing for this type is enabled at all. The data is tightly bound to the calling type and method and should therefore become part of the static type instance. Since extending the CLR type system for tracing is not something I do expect to happen I have come up with an alternative approach which allows me basically to attach run time data to any existing type object in super fast way. The key to success is the usage of generics.   class Tracer<T> : IDisposable { string Method; public Tracer(string method) { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public void Dispose() { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public static void Info(string fmt, params object[] args) { } /// <summary> /// Every type gets its own instance with a fresh set of variables to describe the /// current filter status. /// </summary> /// <typeparam name="T"></typeparam> internal class TraceData<UsingType> { internal static TraceData<UsingType> Instance = new TraceData<UsingType>(); public bool IsInitialized = false; // flag if we need to reinit the trace data in case of reconfigured trace settings at runtime public TraceTypes Enabled = TraceTypes.None; // Enabled trace levels for this type } } We do not need to pass the type as string or Type object to the trace Api. Instead we define a generic Api that accepts the using type as generic parameter. Then we can create a TraceData static instance which is due to the nature of generics a fresh instance for every new type parameter. My tests on my home machine have shown that this approach is as fast as a simple bool flag check. If you have an application with many types using tracing you do not want to bring the app down by simply enabling tracing for one special rarely used type. The trace filter performance for the types which are not enabled must be therefore the fasted code path. This approach has the nice side effect that if you store the TraceData instances in one global list you can reconfigure tracing at runtime safely by simply setting the IsInitialized flag to false. A similar effect can be achieved with a global static Dictionary<Type,TraceData> object but big hash tables have random memory access semantics which is bad for cache locality and you always need to pay for the lookup which involves hash code generation, equality check and an indexed array access. The generic version is wicked fast and allows you to add more features to your tracing Api with minimal perf overhead. But it is cumbersome to write the generic type argument always explicitly and worse if you do refactor code and move parts of it to other classes it might be that you cannot configure tracing correctly. I would like therefore to decorate my type with an attribute [CallerType] class Tracer<T> : IDisposable to tell the compiler to fill in the generic type argument automatically. class Program { static void Main(string[] args) { using (var t = new Tracer()) // equivalent to new Tracer<Program>() { That would be really useful and super fast since you do not need to pass any type object around but you do have full type infos at hand. This change would be breaking if another non generic type exists in the same namespace where now the generic counterpart would be preferred. But this is an acceptable risk in my opinion since you can today already get conflicts if two generic types of the same name are defined in different namespaces. This would be only a variation of this issue. When you do think about this further you can add more features like to trace the exception in your Dispose method if the method is left with an exception with that little trick I did write some time ago. You can think of tracing as a super fast and configurable switch to write data to an output destination or to execute alternative actions. With such an infrastructure you can e.g. Reconfigure tracing at run time. Take a memory dump when a specific method is left with a specific exception. Throw an exception when a specific trace statement is hit (useful for testing error conditions). Execute a passed delegate which e.g. dumps additional state when enabled. Write data to an in memory ring buffer and dump it when specific events do occur (e.g. method is left with an exception, triggered from outside). Write data to an output device. …. This stuff is really useful to have when your code is in production on a mission critical server and you need to find the root cause of sporadic crashes of your application. It could be a buggy graphics card driver which throws access violations into your application (ok with .NET 4 not anymore except if you enable a compatibility flag) where you would like to have a minidump or you have reached after two weeks of operation a state where you need a full memory dump at a specific point in time in the middle of an transaction. At my older machine I do get with this super fast approach 50 million traces/s when tracing is disabled. When I do know that tracing is enabled for this type I can walk the stack by using StackFrameHelper.GetStackFramesInternal to check further if a specific action or output device is configured for this method which is about 2-3 times faster than the regular StackTrace class. Even with one String.Format I am down to 3 million traces/s so performance is not so important anymore since I do want to do something now. The CallerMemberName feature of the C# 5 compiler is nice but I would have preferred to get direct access to the MethodHandle and not to the stringified version of it. But I really would like to see a CallerType attribute implemented to fill in the generic type argument of the call site to augment the static CLR type data with run time data.

    Read the article

  • CA2000 passing object reference to base constructor in C#

    - by Timothy
    I receive a warning when I run some code through Visual Studio's Code Analysis utility which I'm not sure how to resolve. Perhaps someone here has come across a similar issue, resolved it, and is willing to share their insight. I'm programming a custom-painted cell used in a DataGridView control. The code resembles: public class DataGridViewMyCustomColumn : DataGridViewColumn { public DataGridViewMyCustomColumn() : base(new DataGridViewMyCustomCell()) { } It generates the following warning: CA2000 : Microsoft.Reliability : In method 'DataGridViewMyCustomColumn.DataGridViewMyCustomColumn()' call System.IDisposable.Dispose on object 'new DataGridViewMyCustomCell()' before all references to it are out of scope. I understand it is warning me DataGridViewMyCustomCell (or a class that it inherits from) implements the IDisposable interface and the Dispose() method should be called to clean up any resources claimed by DataGridViewMyCustomCell when it is no longer. The examples I've seen on the internet suggest a using block to scope the lifetime of the object and have the system automatically dispose it, but base isn't recognized when moved into the body of the constructor so I can't write a using block around it... which I'm not sure I'd want to do anyway, since wouldn't that instruct the run time to free the object which could still be used later inside the base class? My question then, is the code okay as is? Or, how could it be refactored to resolve the warning? I don't want to suppress the warning unless it is truly appropriate to do so.

    Read the article

  • wcf configuration for this code

    - by user208081
    I have the following code and would like to convert a lot of code into configuration settings for WCF. As you can see, the code is using wshttpbinding. I appreciate any help on this. try { // Provides a unique network address that a client uses to communicate with a service endpoint. EndpointAddress endpointAddress = new EndpointAddress(new Uri(FAXServiceSettings.Default.FAXReceiveServiceURL)); // Specify the protocols, transports, and message encoders used for communication between the client and the service. // WSHttpBinding represents an interoperable binding that supports distributed transactions and secure, reliable sessions. // Spefically, SOAP message security is enabled for secure transmission of the message content. WSHttpBinding clientBinding = new WSHttpBinding(SecurityMode.Message); clientBinding.OpenTimeout = TimeSpan.FromSeconds(FAXServiceSettings.Default.FAXReceiveServiceOpenTimeoutInSeconds); clientBinding.SendTimeout = TimeSpan.FromSeconds(FAXServiceSettings.Default.FAXReceiveServiceOpenTimeoutInSeconds); // Use the ChannelFactory to enable the creation of channels to the binding and endpoint. using (ChannelFactory<IReceiveFAX> channelFactory = new ChannelFactory<IReceiveFAX>(clientBinding, endpointAddress)) { // Creates a channel of a specified type to a specified endpoint address. IReceiveFAX channel = channelFactory.CreateChannel(); if (channel != null) { try { // Submit the FaxSchedule instance for routing. channel.SubmitFAXForRouting(CreateNewFaxScheduleContainerInstance()); // Explicitly close the channel using the IClientChannel interface. CloseChannel((channel as IClientChannel)); } finally { // Explicitly dispose of the channel using IDisposable interface. DisposeOfChannel((channel as IDisposable)); channel = null; } } // This method causes a CommunicationObject to gracefully transition from any state, other than the Closed state, into the Closed state. The Close method allows any // unfinished work to be completed before returning. For example, finish sending any buffered messages. channelFactory.Close(); } } catch { throw; } Pratik

    Read the article

  • How to find that Mutex in C# is acquired?

    - by TN
    How can I find from mutex handle in C# that a mutex is acquired? When mutex.WaitOne(timeout) timeouts, it returns false. However, how can I find that from the mutex handle? (Maybe using p/invoke.) UPDATE: public class InterProcessLock : IDisposable { readonly Mutex mutex; public bool IsAcquired { get; private set; } public InterProcessLock(string name, TimeSpan timeout) { bool created; var security = new MutexSecurity(); security.AddAccessRule(new MutexAccessRule(new SecurityIdentifier(WellKnownSidType.WorldSid, null), MutexRights.Synchronize | MutexRights.Modify, AccessControlType.Allow)); mutex = new Mutex(false, name, out created, security); IsAcquired = mutex.WaitOne(timeout); } #region IDisposable Members public void Dispose() { if (IsAcquired) mutex.ReleaseMutex(); } #endregion } Currently, I am using my own property IsAcquired to determine whether I should release a mutex. Not essential but clearer, would be not to use a secondary copy of the information represented by IsAcquired property, but rather to ask directly the mutex whether it is acquired by me. Since calling mutex.ReleaseMutex() throws an exception if it is not acquired by me. (By acquired state I mean that the mutex is in not-signaled state when I am owning the mutex.)

    Read the article

  • What is the Difference between GC.GetTotalMemory(false) and GC.GetTotalMemory(true)

    - by somaraj
    Hi, Could some one tell me the difference between GC.GetTotalMemory(false) and GC.GetTotalMemory(true); I have a small program and when i compared the results the first loop gives an put put < loop count 0 Diff = 32 for GC.GetTotalMemory(true); and < loop count 0 Diff = 0 for GC.GetTotalMemory(false); but shouldnt it be the otherway ? Smilarly rest of the loops prints some numbers ,which are different for both case. what does this number indicate .why is it changing as the loop increase. struct Address { public string Streat; } class Details { public string Name ; public Address address = new Address(); } class emp :IDisposable { public Details objb = new Details(); bool disposed = false; #region IDisposable Members public void Dispose() { Disposing(true); } void Disposing(bool disposing) { if (!disposed) disposed = disposing; objb = null; GC.SuppressFinalize(this); } #endregion } class Program { static void Main(string[] args) { long size1 = GC.GetTotalMemory(false); emp empobj = null; for (int i = 0; i < 200;i++ ) { // using (empobj = new emp()) //------- (1) { empobj = new emp(); //------- (2) empobj.objb.Name = "ssssssssssssssssss"; empobj.objb.address.Streat = "asdfasdfasdfasdf"; } long size2 = GC.GetTotalMemory(false); Console.WriteLine( "loop count " +i + " Diff = " +(size2-size1)); } } } }

    Read the article

  • Using Reflection.Emit to emit a "using (x) { ... }" block?

    - by Lasse V. Karlsen
    I'm trying to use Reflection.Emit in C# to emit a using (x) { ... } block. At the point I am in code, I need to take the current top of the stack, which is an object that implements IDisposable, store this away in a local variable, implement a using block on that variable, and then inside it add some more code (I can deal with that last part.) Here's a sample C# piece of code I tried to compile and look at in Reflector: public void Test() { TestDisposable disposable = new TestDisposable(); using (disposable) { throw new Exception("Test"); } } This looks like this in Reflector: .method public hidebysig instance void Test() cil managed { .maxstack 2 .locals init ( [0] class LVK.Reflection.Tests.UsingConstructTests/TestDisposable disposable, [1] class LVK.Reflection.Tests.UsingConstructTests/TestDisposable CS$3$0000, [2] bool CS$4$0001) L_0000: nop L_0001: newobj instance void LVK.Reflection.Tests.UsingConstructTests/TestDisposable::.ctor() L_0006: stloc.0 L_0007: ldloc.0 L_0008: stloc.1 L_0009: nop L_000a: ldstr "Test" L_000f: newobj instance void [mscorlib]System.Exception::.ctor(string) L_0014: throw L_0015: ldloc.1 L_0016: ldnull L_0017: ceq L_0019: stloc.2 L_001a: ldloc.2 L_001b: brtrue.s L_0024 L_001d: ldloc.1 L_001e: callvirt instance void [mscorlib]System.IDisposable::Dispose() L_0023: nop L_0024: endfinally .try L_0009 to L_0015 finally handler L_0015 to L_0025 } I have no idea how to deal with that ".try ..." part at the end there when using Reflection.Emit. Can someone point me in the right direction?

    Read the article

  • Is there a better way to throttle a high throughput job?

    - by ChaosPandion
    I created a simple class that shows what I am trying to do without any noise. Feel free to bash away at my code. That's why I posted it here. public class Throttled : IDisposable { private readonly Action work; private readonly Func<bool> stop; private readonly ManualResetEvent continueProcessing; private readonly Timer throttleTimer; private readonly int throttlePeriod; private readonly int throttleLimit; private int totalProcessed; public Throttled(Action work, Func<bool> stop, int throttlePeriod, int throttleLimit) { this.work = work; this.stop = stop; this.throttlePeriod = throttlePeriod; this.throttleLimit = throttleLimit; continueProcessing = new ManualResetEvent(true); throttleTimer = new Timer(ThrottleUpdate, null, throttlePeriod, throttlePeriod); } public void Dispose() { throttleTimer.Dispose(); ((IDisposable)continueProcessing).Dispose(); } public void Execute() { while (!stop()) { if (Interlocked.Increment(ref totalProcessed) > throttleLimit) { lock (continueProcessing) { continueProcessing.Reset(); } if (!continueProcessing.WaitOne(throttlePeriod)) { throw new TimeoutException(); } } work(); } } private void ThrottleUpdate(object state) { Interlocked.Exchange(ref totalProcessed, 0); lock (continueProcessing) { continueProcessing.Set(); } } }

    Read the article

  • Excel I have a .Net object compiled as a tlb but cant not access any methods apart from Dispose.

    - by Mark O'Grady
    Hi This is ongoing issue to something I posted yesterday. I have a .net object that I want to use in Excel. I have an existing VBA script that i need to alter to call this the object from. I have then converted the object to a TLB. I've not really touched on this area before so any help will be appreciated. I have created an interface [Guid("0F700B48-E0CA-446b-B87E-555BCC317D74"),InterfaceType(ComInterfaceType.InterfaceIsDual)] [ComVisible(true)] public interface IOfficeCOMInterface { [DispId(1)] void ResetOrder(); [DispId(2)] void SetDeliveryAddress(string PostalName, string AddressLine1, string AddressLine2, string AddressLine3, string AddressLine4, string PostCode, string CountryCode, string TelephoneNo, string FaxNo, string EmailAddress); } I have also created an class that inherits that object. [ClassInterface(ClassInterfaceType.None), ProgId("NAMESPACE.OfficeCOMInterface"), Guid("9D9723F9-8CF1-4834-BE69-C3FEAAAAB530"), ComVisible(true)] public class OfficeCOMInterface : IOfficeCOMInterface, IDisposable { public void ResetSOPOrder() { } public void SetDeliveryAddress(string PostalName, string AddressLine1, string AddressLine2, string AddressLine3, string AddressLine4, string PostCode, string CountryCode, string TelephoneNo, string FaxNo, string EmailAddress) { try { SalesOrder.AmendDeliveryAddress(PostalName, AddressLine1, AddressLine2, AddressLine3, AddressLine4, PostCode); MessageBox.Show("Delivery address set"); } catch (Exception ex) { throw ex; } } } I can't access the object methods apart from dispose, I guess IDisposable is working fine. Is there anything I need to my Interface?

    Read the article

  • Detecting Idle Time with Global Mouse and Keyboard Hooks in WPF

    - by jdanforth
    Years and years ago I wrote this blog post about detecting if the user was idle or active at the keyboard (and mouse) using a global hook. Well that code was for .NET 2.0 and Windows Forms and for some reason I wanted to try the same in WPF and noticed that a few things around the keyboard and mouse hooks didn’t work as expected in the WPF environment. So I had to change a few things and here’s the code for it, working in .NET 4. I took the liberty and refactored a few things while at it and here’s the code now. I’m sure I will need it in the far future as well. using System; using System.Diagnostics; using System.Runtime.InteropServices; namespace Irm.Tim.Snapper.Util { public class ClientIdleHandler : IDisposable { public bool IsActive { get; set; } int _hHookKbd; int _hHookMouse; public delegate int HookProc(int nCode, IntPtr wParam, IntPtr lParam); public event HookProc MouseHookProcedure; public event HookProc KbdHookProcedure; //Use this function to install thread-specific hook. [DllImport("user32.dll", CharSet = CharSet.Auto, CallingConvention = CallingConvention.StdCall)] public static extern int SetWindowsHookEx(int idHook, HookProc lpfn, IntPtr hInstance, int threadId); //Call this function to uninstall the hook. [DllImport("user32.dll", CharSet = CharSet.Auto, CallingConvention = CallingConvention.StdCall)] public static extern bool UnhookWindowsHookEx(int idHook); //Use this function to pass the hook information to next hook procedure in chain. [DllImport("user32.dll", CharSet = CharSet.Auto, CallingConvention = CallingConvention.StdCall)] public static extern int CallNextHookEx(int idHook, int nCode, IntPtr wParam, IntPtr lParam); //Use this hook to get the module handle, needed for WPF environment [DllImport("kernel32.dll", CharSet = CharSet.Auto)] public static extern IntPtr GetModuleHandle(string lpModuleName); public enum HookType : int { GlobalKeyboard = 13, GlobalMouse = 14 } public int MouseHookProc(int nCode, IntPtr wParam, IntPtr lParam) { //user is active, at least with the mouse IsActive = true; Debug.Print("Mouse active"); //just return the next hook return CallNextHookEx(_hHookMouse, nCode, wParam, lParam); } public int KbdHookProc(int nCode, IntPtr wParam, IntPtr lParam) { //user is active, at least with the keyboard IsActive = true; Debug.Print("Keyboard active"); //just return the next hook return CallNextHookEx(_hHookKbd, nCode, wParam, lParam); } public void Start() { using (var currentProcess = Process.GetCurrentProcess()) using (var mainModule = currentProcess.MainModule) { if (_hHookMouse == 0) { // Create an instance of HookProc. MouseHookProcedure = new HookProc(MouseHookProc); // Create an instance of HookProc. KbdHookProcedure = new HookProc(KbdHookProc); //register a global hook _hHookMouse = SetWindowsHookEx((int)HookType.GlobalMouse, MouseHookProcedure, GetModuleHandle(mainModule.ModuleName), 0); if (_hHookMouse == 0) { Close(); throw new ApplicationException("SetWindowsHookEx() failed for the mouse"); } } if (_hHookKbd == 0) { //register a global hook _hHookKbd = SetWindowsHookEx((int)HookType.GlobalKeyboard, KbdHookProcedure, GetModuleHandle(mainModule.ModuleName), 0); if (_hHookKbd == 0) { Close(); throw new ApplicationException("SetWindowsHookEx() failed for the keyboard"); } } } } public void Close() { if (_hHookMouse != 0) { bool ret = UnhookWindowsHookEx(_hHookMouse); if (ret == false) { throw new ApplicationException("UnhookWindowsHookEx() failed for the mouse"); } _hHookMouse = 0; } if (_hHookKbd != 0) { bool ret = UnhookWindowsHookEx(_hHookKbd); if (ret == false) { throw new ApplicationException("UnhookWindowsHookEx() failed for the keyboard"); } _hHookKbd = 0; } } #region IDisposable Members public void Dispose() { if (_hHookMouse != 0 || _hHookKbd != 0) Close(); } #endregion } } The way you use it is quite simple, for example in a WPF application with a simple Window and a TextBlock: <Window x:Class="WpfApplication2.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="350" Width="525"> <Grid> <TextBlock Name="IdleTextBox"/> </Grid> </Window> And in the code behind we wire up the ClientIdleHandler and a DispatcherTimer that ticks every second: public partial class MainWindow : Window { private DispatcherTimer _dispatcherTimer; private ClientIdleHandler _clientIdleHandler; public MainWindow() { InitializeComponent(); } private void Window_Loaded(object sender, RoutedEventArgs e) { //start client idle hook _clientIdleHandler = new ClientIdleHandler(); _clientIdleHandler.Start(); //start timer _dispatcherTimer = new DispatcherTimer(); _dispatcherTimer.Tick += TimerTick; _dispatcherTimer.Interval = new TimeSpan(0, 0, 0, 1); _dispatcherTimer.Start(); } private void TimerTick(object sender, EventArgs e) { if (_clientIdleHandler.IsActive) { IdleTextBox.Text = "Active"; //reset IsActive flag _clientIdleHandler.IsActive = false; } else IdleTextBox.Text = "Idle"; } } Remember to reset the ClientIdleHandle IsActive flag after a check.

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Single Responsibility Principle: Responsibility unknown

    - by lurkerbelow
    I store sessions in a SessionManager. The session manager has a dependency to ISessionPersister. SessionManager private readonly ISessionPersister sessionPersister; public SessionManager(ISessionPersister sessionPersister) { this.sessionPersister = sessionPersister; } ISessionPersister public interface ISessionPersister : IDisposable { void PersistSessions(Dictionary<string, ISession> sessions); } Q: If my application shuts down how / where do I call PersistSessions? Who is responsible? First Approach: Use Dispose in SessionManager protected virtual void Dispose(bool disposing) { if (disposing) { if (this.sessionPersister != null && this.sessionMap != null && this.sessionMap.Count > 0) { this.sessionPersister.PersistSessions(this.sessionMap); } } } Is that the way to go or are there any better solutions?

    Read the article

  • TPL v/s Reactive Framework

    - by Abhijeet Patel
    When would one choose to use Rx over TPL or are the 2 frameworks orthogonal? From what I understand Rx is primarily intended to provide an abstraction over events and allow composition but it also allows for providing an abstraction over async operations. using the Createxx overloads and the Fromxxx overloads and cancellation via disposing the IDisposable returned. TPL also provides an abstraction for operations via Task and cancellation abilities. My dilemma is when to use which and for what scenarios?

    Read the article

  • NHibernate with StructureMap for a Non-Web Application

    - by Yoann. B
    Hi, What is best pratices for inject and manage Session/Transaction for NHibernate using StructureMap for a Non Web Application like an Windows Service ? In a web context, we use PerRequest Session management lifecycle using the Hybrid Lifecycle of StructureMap but for a Windows Service, i can't handle IDisposable UnitOfWork ... Thanks.

    Read the article

  • Advantage of creating a generic repository vs. specific repository for each object?

    - by LuckyLindy
    We are developing an ASP.NET MVC application, and are now building the repository/service classes. I'm wondering if there are any major advantages to creating a generic IRepository interface that all repositories implement, vs. each Repository having its own unique interface and set of methods. For example: a generic IRepository interface might look like (taken from this answer): public interface IRepository : IDisposable { T[] GetAll<T>(); T[] GetAll<T>(Expression<Func<T, bool>> filter); T GetSingle<T>(Expression<Func<T, bool>> filter); T GetSingle<T>(Expression<Func<T, bool>> filter, List<Expression<Func<T, object>>> subSelectors); void Delete<T>(T entity); void Add<T>(T entity); int SaveChanges(); DbTransaction BeginTransaction(); } Each Repository would implement this interface (e.g. CustomerRepository:IRepository, ProductRepository:IRepository, etc). The alternate that we've followed in prior projects would be: public interface IInvoiceRepository : IDisposable { EntityCollection<InvoiceEntity> GetAllInvoices(int accountId); EntityCollection<InvoiceEntity> GetAllInvoices(DateTime theDate); InvoiceEntity GetSingleInvoice(int id, bool doFetchRelated); InvoiceEntity GetSingleInvoice(DateTime invoiceDate, int accountId); //unique InvoiceEntity CreateInvoice(); InvoiceLineEntity CreateInvoiceLine(); void SaveChanges(InvoiceEntity); //handles inserts or updates void DeleteInvoice(InvoiceEntity); void DeleteInvoiceLine(InvoiceLineEntity); } In the second case, the expressions (LINQ or otherwise) would be entirely contained in the Repository implementation, whoever is implementing the service just needs to know which repository function to call. I guess I don't see the advantage of writing all the expression syntax in the service class and passing to the repository. Wouldn't this mean easy-to-messup LINQ code is being duplicated in many cases? For example, in our old invoicing system, we call InvoiceRepository.GetSingleInvoice(DateTime invoiceDate, int accountId) from a few different services (Customer, Invoice, Account, etc). That seems much cleaner than writing the following in multiple places: rep.GetSingle(x => x.AccountId = someId && x.InvoiceDate = someDate.Date); The only disadvantage I see to using the specific approach is that we could end up with many permutations of Get* functions, but this still seems preferable to pushing the expression logic up into the Service classes. What am I missing?

    Read the article

  • Finalizing a COM object

    - by Neverrav
    I'm trying to implement a singleton class, that holds a com object inside it. Class implements IDisposable interface, but when I try to implement a finalization method, I get an exception of access to com object from another thread. This happens because clr uses a different thread when finalizes objects. Is there any way to implement such a thing or maybe I just doing something wrong?

    Read the article

  • Few doubts regarding Bitmaps , Images & `using` blocks

    - by imageWorker
    I caught up in this problem. http://stackoverflow.com/questions/2559826/garbage-collector-not-doing-its-job-memory-consumption-1-5gb-outofmemory-exc I feel that there is something wrong in my understanding. Please clarify these things. Destructor & IDisposable.Dispose are two methods for freeing resources that are not not under the control of .NET. Which means, everything except memory. right? using blocks are just better way of calling IDisposable.Dispose() method of an object. This is the main code I'm referring to. class someclass { static someMethod(Bitmap img) { Bitmap bmp = new Bitmap(img); //statement1 // some code here and return } } here is class I'm using for testing: class someotherClass { public static voide Main() { foreach (string imagePath in imagePathsArray) { using (Bitmap img1 = new Bitmap(imagePath)) { someclass.someMethod(img1); // does some more processing on `img1` } } } } Is there any memory leak with statement1? Question1: If each image size is say 10MB. Then does this bmp object occupy atleast 10MB? What I mean is, will it make completely new copy of entire image? or just refer to it? Question2:should I or should I not put the statement1 in using block? My Argument: We should not. Because using is not for freeing memory but for freeing the resources (file handle in this case). If I use it in using block. It closes file handle here encapsulated by this bmp object. It means we are also closing filehandle for the caller's img1 object. Which is not correct? As of the memory leak. No there is no scope of memory leak here. Because reference bmp is destroyed when this method is returned. Which leaves memory it refered without any pointer. So, its garbage collected. Am I right? Edit: class someclass { static Bitmap someMethod(Bitmap img) { Bitmap bmp = new Bitmap(img); //can I use `using` block on this enclosing `return bmp`; ??? // do some processing on bmp here return bmp; } }

    Read the article

  • Dispose a Web Service Proxy class?

    - by Matt
    When you create and use a Web Service proxy class in the ASP.Net framework, the class ultimately inherits from Component, which implements IDisposable. I have never seen one example online where people dispose of a web proxy class, but was wondering if it really needs to be done. When I call only one method, I normally wrap it in a using statement, but if I have a need to call it several times throughout the page, I might end up using the same instance, and just wondered what the ramifications are of not disposing it.

    Read the article

  • how do i know how many clients are calling my WCF service function

    - by ZhengZhiren
    i am writing a program to test WCF service performance in high concurrency circumstance. On client side, i start many threads to call a WCF service function which returns a long list of data object. On server side, in that function called by my client, i need to know the number of clients calling the function. For doing that, i set a counter variable. In the beginning of the function, i add the counter by 1, but how can i decrease it after the funtion has returned the result? int clientCount=0; public DataObject[] GetData() { Interlocked.Increment(ref clientCount); List<DataObject> result = MockDb.GetData(); return result.ToArray(); Interlocked.Decrement(ref clientCount); //can't run to here... } i have seen a way in c++. Create a new class named counter. In the constructor of the counter class, increase the variable. And decrease it in the destructor. In the function, make a counter object so that its constructor will be called. And after the function returns, its destructor will be called. Like this: class counter { public: counter(){++clientCount; /* not simply like this, need to be atomic*/} ~counter(){--clientCount; /* not simply like this, need to be atomic*/} }; ... myfunction() { counter c; //do something return something; } In c# i think i can do so with the following codes, but not for sure. public class Service1 : IService1 { static int clientCount = 0; private class ClientCounter : IDisposable { public ClientCounter() { Interlocked.Increment(ref clientCount); } public void Dispose() { Interlocked.Decrement(ref clientCount); } } public DataObject[] GetData() { using (ClientCounter counter = new ClientCounter()) { List<DataObject> result = MockDb.GetData(); return result.ToArray(); } } } i write a counter class implement the IDisposable interface. And put my function codes into a using block. But it seems that it doesn't work so good. No matter how many threads i start, the clientCount variable is up to 3. Any advise would be appreciated.

    Read the article

  • Why is this simple Mobile Form not closed when using the player

    - by ajhvdb
    Hi, I created this simple sample Form with the close button. Everything is working as expected when NOT using the Interop.WMPLib.dll I've seen other applications using this without problems but why isn't the Form process closed when I just add the line: SoundPlayer myPlayer = new SoundPlayer(); and of course dispose it: if (myPlayer != null) { myPlayer.Dispose(); myPlayer = null; } The Form closes but the debugger VS2008 is still active. The Form project and the dll are still active. If you send me an email to [email protected], I can send you the zipped project. Below is the class for the dll: using System; using System.Collections.Generic; using System.Text; using System.Threading; using System.Runtime.InteropServices; using WMPLib; namespace WindowsMobile.Utilities { public delegate void SoundPlayerStateChanged(SoundPlayer sender, SoundPlayerState newState); public enum SoundPlayerState { Stopped, Playing, Paused, } public class SoundPlayer : IDisposable { [DllImport("coredll")] public extern static int waveOutSetVolume(int hwo, uint dwVolume); [DllImport("coredll")] public extern static int waveOutGetVolume(int hwo, out uint dwVolume); WindowsMediaPlayer myPlayer = new WindowsMediaPlayer(); public SoundPlayer() { myPlayer.uiMode = "invisible"; myPlayer.settings.volume = 100; } string mySoundLocation = string.Empty; public string SoundLocation { get { return mySoundLocation; } set { mySoundLocation = value; } } public void Pause() { myPlayer.controls.pause(); } public void PlayLooping() { Stop(); myPlayer.URL = mySoundLocation; myPlayer.settings.setMode("loop", true); } public int Volume { get { return myPlayer.settings.volume; } set { myPlayer.settings.volume = value; } } public void Play() { Stop(); myPlayer.URL = mySoundLocation; myPlayer.controls.play(); } public void Stop() { myPlayer.controls.stop(); myPlayer.close(); } #region IDisposable Members public void Dispose() { try { Stop(); } catch (Exception) { } // need this otherwise the process won't exit?! try { int ret = Marshal.FinalReleaseComObject(myPlayer); } catch (Exception) { } myPlayer = null; GC.Collect(); } #endregion } }

    Read the article

  • Call Dispose() on a WindowsIdentity object? C#

    - by Andy
    I am retrieving a WindowsIdentity object by calling: win_id = System.Security.Principal.WindowsIdentity.GetCurrent(); with the intention of getting the currently logged on user name, which works fine. WindowsIdentity implements IDisposable, but since I din't create the object myself, do I still need to call .Dispose() on it when I am finished with it or not? Thanks.

    Read the article

  • F# constructor syntax - overiding and augmenting new

    - by Benjol
    I have a non-disposable class with Open/Close syntax that I'd like to be able to use, so I'm trying to inherit from it, and work the Open into the new and the Close into Dispose. The second part is ok, but I can't work out how to do the Open: type DisposableOpenCloseClass(openargs) = inherit OpenCloseClass() //do this.Open(openargs) <-- compiler no like interface IDisposable with member this.Dispose() = this.Close() (cf. this question which I asked a long time ago, but I can't join the dots to this one)

    Read the article

  • Why do I get a WCF timeout even though my service call and callback are successful?

    - by KallDrexx
    I'm playing around with hooking up an in-game console to a WCF interface, so an external application can send console commands and receive console output. To accomplish this I created the following service contracts: public interface IConsoleNetworkCallbacks { [OperationContract(IsOneWay = true)] void NewOutput(IEnumerable<string> text, string category); } [ServiceContract(SessionMode = SessionMode.Required, CallbackContract = typeof(IConsoleNetworkCallbacks))] public interface IConsoleInterface { [OperationContract] void ProcessInput(string input); [OperationContract] void ChangeCategory(string category); } On the server I implemented it with: public class ConsoleNetworkInterface : IConsoleInterface, IDisposable { public ConsoleNetworkInterface() { ConsoleManager.Instance.RegisterOutputUpdateHandler(OutputHandler); } public void Dispose() { ConsoleManager.Instance.UnregisterOutputHandler(OutputHandler); } public void ProcessInput(string input) { ConsoleManager.Instance.ProcessInput(input); } public void ChangeCategory(string category) { ConsoleManager.Instance.UnregisterOutputHandler(OutputHandler); ConsoleManager.Instance.RegisterOutputUpdateHandler(OutputHandler, category); } protected void OutputHandler(IEnumerable<string> text, string category) { var callbacks = OperationContext.Current.GetCallbackChannel<IConsoleNetworkCallbacks>(); callbacks.NewOutput(text, category); } } On the client I implemented the callback with: public class Callbacks : IConsoleNetworkCallbacks { public void NewOutput(IEnumerable<string> text, string category) { MessageBox.Show(string.Format("{0} lines received for '{1}' category", text.Count(), category)); } } Finally, I establish the service host with the following class: public class ConsoleServiceHost : IDisposable { protected ServiceHost _host; public ConsoleServiceHost() { _host = new ServiceHost(typeof(ConsoleNetworkInterface), new Uri[] { new Uri("net.pipe://localhost") }); _host.AddServiceEndpoint(typeof(IConsoleInterface), new NetNamedPipeBinding(), "FrbConsolePipe"); _host.Open(); } public void Dispose() { _host.Close(); } } and use the following code on my client to establish the connection: protected Callbacks _callbacks; protected IConsoleInterface _proxy; protected void ConnectToConsoleServer() { _callbacks = new Callbacks(); var factory = new DuplexChannelFactory<IConsoleInterface>(_callbacks, new NetNamedPipeBinding(), new EndpointAddress("net.pipe://localhost/FrbConsolePipe")); _proxy = factory.CreateChannel(); _proxy.ProcessInput("Connected"); } So what happens is that my ConnectToConsoleServer() is called and then it gets all the way to _proxy.ProcessInput("Connected");. In my game (on the server) I immediately see the output caused by the ProcessInput call, but the client is still stalled on the _proxy.ProcessInput() call. After a minute my client gets a JIT TimeoutException however at the same time my MessageBox message appears. So obviously not only is my command being sent immediately, my callback is being correctly called. So why am I getting a timeout exception? Note: Even removing the MessageBox call, I still have this issue, so it's not an issue of the GUI blocking the callback response.

    Read the article

  • Object relationships

    - by Hammerstein
    This stems from a recent couple of posts I've made on events and memory management in general. I'm making a new question as I don't think the software I'm using has anything to do with the overall problem and I'm trying to understand a little more about how to properly manage things. This is ASP.NET. I've been trying to understand the needs for Dispose/Finalize over the past few days and believe that I've got to a stage where I'm pretty happy with when I should/shouldn't implement the Dispose/Finalize. 'If I have members that implement IDisposable, put explicit calls to their dispose in my dispose method' seems to be my understanding. So, now I'm thinking maybe my understanding of object lifetimes and what holds on to what is just wrong! Rather than come up with some sample code that I think will illustrate my point, I'm going to describe as best I can actual code and see if someone can talk me through it. So, I have a repository class, in it I have a DataContext that I create when the repository is created. I implement IDisposable, and when my calling object is done, I call Dispose on my repository and explicitly call DataContext.Dispose( ). Now, one of the methods of this class creates and returns a list of objects that's handed back to my front end. Front End - Controller - Repository - Controller - Front End. (Using Redgate Memory Profiler, I take a snapshot of my software when the page is first loaded). My front end creates a controller object on page load and then makes a request to the repository sending back a list of items. When the page is finished loading, I call Dispose on the controller which in turn calls dispose on the context. In my mind, that should mean that my connection is closed and that I have no instances of my controller class. If I then refresh the page, it jumps to two 'Live' instances of the controller class. If I look at the object retention graph, the objects I created in my call to the list are being held onto ultimately by what looks like Linq. The controller/repository aside, if I create a list of objects somewhere, or I create an object and return it somewhere, am I safe to just assume that .NET will eventually come and clean things up for me or is there a best practice? The 'Live' instances suggest to me that these are still in memory and active objects, the fact that RMP apparently forces GC doesn't mean anything?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >