In the book Programming Collective Intelligence I found the following function to compute the PageRank:
def calculatepagerank(self,iterations=20):
    # clear out the current PageRank tables
    self.con.execute("drop table if exists pagerank")
    self.con.execute("create table pagerank(urlid primary key,score)")
    self.con.execute("create index prankidx on pagerank(urlid)")
    # initialize every url with a PageRank of 1.0
    self.con.execute("insert into pagerank select rowid,1.0 from urllist")
    self.dbcommit()
    for i in range(iterations):
        print "Iteration %d" % i
        for (urlid,) in self.con.execute("select rowid from urllist"):
            pr=0.15
            # Loop through all the pages that link to this one
            for (linker,) in self.con.execute("select distinct fromid from link where toid=%d" % urlid):
                # Get the PageRank of the linker
                linkingpr=self.con.execute("select score from pagerank where urlid=%d" % linker).fetchone()[0]
                # Get the total number of links from the linker
                linkingcount=self.con.execute("select count(*) from link where fromid=%d" % linker).fetchone()[0]
                pr+=0.85*(linkingpr/linkingcount)
            self.con.execute("update pagerank set score=%f where urlid=%d" % (pr,urlid))
        self.dbcommit()
However, this function is very slow, because of all the SQL queries in every iteration
>>> import cProfile
>>> cProfile.run("crawler.calculatepagerank()")
         2262510 function calls in 136.006 CPU seconds
   Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000  136.006  136.006 <string>:1(<module>)
     1   20.826   20.826  136.006  136.006 searchengine.py:179(calculatepagerank)
    21    0.000    0.000    0.528    0.025 searchengine.py:27(dbcommit)
    21    0.528    0.025    0.528    0.025 {method 'commit' of 'sqlite3.Connecti
     1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler
1339864  112.602    0.000  112.602    0.000 {method 'execute' of 'sqlite3.Connec 
922600    2.050    0.000    2.050    0.000 {method 'fetchone' of 'sqlite3.Cursor' 
     1    0.000    0.000    0.000    0.000 {range}
So I optimized the function and came up with this:
def calculatepagerank2(self,iterations=20):
    # clear out the current PageRank tables
    self.con.execute("drop table if exists pagerank")
    self.con.execute("create table pagerank(urlid primary key,score)")
    self.con.execute("create index prankidx on pagerank(urlid)")
    # initialize every url with a PageRank of 1.0
    self.con.execute("insert into pagerank select rowid,1.0 from urllist")
    self.dbcommit()
    inlinks={}
    numoutlinks={}
    pagerank={}
    for (urlid,) in self.con.execute("select rowid from urllist"):
        inlinks[urlid]=[]
        numoutlinks[urlid]=0
        # Initialize pagerank vector with 1.0
        pagerank[urlid]=1.0
        # Loop through all the pages that link to this one
        for (inlink,) in self.con.execute("select distinct fromid from link where toid=%d" % urlid):
            inlinks[urlid].append(inlink)
            # get number of outgoing links from a page        
            numoutlinks[urlid]=self.con.execute("select count(*) from link where fromid=%d" % urlid).fetchone()[0]            
    for i in range(iterations):
        print "Iteration %d" % i
        for urlid in pagerank:
            pr=0.15
            for link in inlinks[urlid]:
                linkpr=pagerank[link]
                linkcount=numoutlinks[link]
                pr+=0.85*(linkpr/linkcount)
            pagerank[urlid]=pr
            for urlid in pagerank:
                self.con.execute("update pagerank set score=%f where urlid=%d" % (pagerank[urlid],urlid))
            self.dbcommit()
This function is 20 times faster (but uses a lot more memory for all the temporary dictionaries) because it avoids the unnecessary SQL queries in every iteration:
>>> cProfile.run("crawler.calculatepagerank2()")
     64802 function calls in 6.950 CPU seconds
Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.004    0.004    6.950    6.950 <string>:1(<module>)
     1    1.004    1.004    6.946    6.946 searchengine.py:207(calculatepagerank2
     2    0.000    0.000    0.104    0.052 searchengine.py:27(dbcommit)
 23065    0.012    0.000    0.012    0.000 {meth 'append' of 'list' objects}
     2    0.104    0.052    0.104    0.052 {meth 'commit' of 'sqlite3.Connection
     1    0.000    0.000    0.000    0.000 {meth 'disable' of '_lsprof.Profiler' 
 31298    5.809    0.000    5.809    0.000 {meth 'execute' of 'sqlite3.Connectio 
 10431    0.018    0.000    0.018    0.000 {method 'fetchone' of 'sqlite3.Cursor' 
     1    0.000    0.000    0.000    0.000 {range}
But is it possible to further reduce the number of SQL queries to speed up the function even more?