Search Results

Search found 41789 results on 1672 pages for 'software development'.

Page 543/1672 | < Previous Page | 539 540 541 542 543 544 545 546 547 548 549 550  | Next Page >

  • Tile-based 2D collision detection problems

    - by Vee
    I'm trying to follow this tutorial http://www.tonypa.pri.ee/tbw/tut05.html to implement real-time collisions in a tile-based world. I find the center coordinates of my entities thanks to these properties: public float CenterX { get { return X + Width / 2f; } set { X = value - Width / 2f; } } public float CenterY { get { return Y + Height / 2f; } set { Y = value - Height / 2f; } } Then in my update method, in the player class, which is called every frame, I have this code: public override void Update() { base.Update(); int downY = (int)Math.Floor((CenterY + Height / 2f - 1) / 16f); int upY = (int)Math.Floor((CenterY - Height / 2f) / 16f); int leftX = (int)Math.Floor((CenterX + Speed * NextX - Width / 2f) / 16f); int rightX = (int)Math.Floor((CenterX + Speed * NextX + Width / 2f - 1) / 16f); bool upleft = Game.CurrentMap[leftX, upY] != 1; bool downleft = Game.CurrentMap[leftX, downY] != 1; bool upright = Game.CurrentMap[rightX, upY] != 1; bool downright = Game.CurrentMap[rightX, downY] != 1; if(NextX == 1) { if (upright && downright) CenterX += Speed; else CenterX = (Game.GetCellX(CenterX) + 1)*16 - Width / 2f; } } downY, upY, leftX and rightX should respectively find the lowest Y position, the highest Y position, the leftmost X position and the rightmost X position. I add + Speed * NextX because in the tutorial the getMyCorners function is called with these parameters: getMyCorners (ob.x+ob.speed*dirx, ob.y, ob); The GetCellX and GetCellY methods: public int GetCellX(float mX) { return (int)Math.Floor(mX / SGame.Camera.TileSize); } public int GetCellY(float mY) { return (int)Math.Floor(mY / SGame.Camera.TileSize); } The problem is that the player "flickers" while hitting a wall, and the corner detection doesn't even work correctly since it can overlap walls that only hit one of the corners. I do not understand what is wrong. In the tutorial the ob.x and ob.y fields should be the same as my CenterX and CenterY properties, and the ob.width and ob.height should be the same as Width / 2f and Height / 2f. However it still doesn't work. Thanks for your help.

    Read the article

  • ParticleSystem in Slick2d (with MarteEngine)

    - by Bro Kevin D.
    First of all, sorry if this sounds very newbie-ish. I'm stuck at making a ParticleSystem I made using Pedigree to work in my game. It's basically an explosion that I want to display whenever an enemy dies. The ParticleSystem has two emitters, smoke and explosion I tried putting it in my Enemy (extends Entity) class Enemy extends Entity class @Override public void update(GameContainer gc, int delta) throws SlickException { super.update(gc, delta); /** bunch of codes */ explosionSystem.update(delta); } @Override public void render(GameContainer gc, Graphics gfx) throws SlickException { super.render(gc, gfx); if(isDestroyed) { explosionSystem.render(x,y); if(explosionSystem.getEmitter(1).completed()) { this.destroy(); } } } And it does not render. I'm not sure if this is the proper way of implementing it, as I've considered creating an Entity to serve as controller for all the Enemies. Right now, I'm just adding enemies every second. So how do I render the ParticleSystem when the enemy dies? If anyone can point me to the right direction. Thank you for your time.

    Read the article

  • BlitzMax - generating 2D neon glowing line effect to png file

    - by zanlok
    Originally asked on StackOverflow, but it became tumbleweed. I'm looking to create a glowing line effect in BlitzMax, something like a Star Wars lightsaber or laserbeam. Doesn't have to be realtime, but just to TImage objects and then maybe saved to PNG for later use in animation. I'm happy to use 3D features, but it will be for use in a 2D game. Since it will be on black/space background, my strategy is to draw a series of white blurred lines with color and high transparency, then eventually central lines less blurred and more white. What I want to draw is actually bezier curved lines. Drawing curved lines is easy enough, but I can't use the technique above to create a good laser/neon effect because it comes out looking very segmented. So, I think it may be better to use a blur effect/shader on what does render well, which is a 1-pixel bezier curve. The problems I've been having are: Applying a shader to just a certain area of the screen where lines are drawn. If there's a way to do draw lines to a texture and then blur that texture and save the png, that would be great to hear about. There's got to be a way to do this, but I just haven't gotten the right elements working together yet. Any help from someone familiar with this stuff would be greatly appreciated. Using just 2D calls could be advantageous, simpler to understand and re-use. It would be very nice to know how to save a PNG that preserves the transparency/alpha stuff. p.s. I've reviewed this post (and many many others on the Blitz site), have samples working, and even developed my own 5x5 frag shaders. But, it's 3D and a scene-wide thing that doesn't seem to convert to 2D or just a certain area very well. I'd rather understand how to apply shading to a 2D scene, especially using the specifics of BlitzMax.

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • How to code a 4x shader/filter which emulates arcade crt display behavior?

    - by Arthur Wulf White
    I want to write a shader/filer probably in adobe Pixel Bender that will do the best job possible in emulating the fill of an oldskul monochromatic arcade CRT screen. Much like this here: http://filthypants.blogspot.com/2012/07/customizing-cgwgs-crt-pixel-shader.html Here are some attributes I know will exist in this filter: It will take in a low res image 160 x 120 and return a medium res image 640 x 480. It will add scanlines It will blur the color channels to create that color bleeding effect It will distort the shape of the image from a perfect rectangle into a rounder shape. The question is, could you please provide any other attributes that are beneficial to emulating an arcade CRT feel and links and resources on coding these effects. Thanks

    Read the article

  • Recommended main loop style

    - by Frootmig-H
    I've just begun attempting an FPS with JMonkeyEngine, but I'm currently stuck as to the best way to implement the main loop - especially with regards to non-instantaneous user actions. By that, I mean things like reloading a weapon. The user starts the action, and it continues for a while with an animation and some sound, and when it completes, game state updates. (I should mention that it's not technically a loop, it's an update method, called as often as possible. Is that different? Me no understand terminology). So, far I've considered : Animation driven Player presses reload Start reload animation If user stars another action, abort animation, start new action. When the animation_complete event is received (JMonkeyEngine provides this), update ammo counters. Event driven Player presses reload Start reload animation Queue up a out-of-thread method to be called at time t + (duration of reload animation) If user starts another action, cancel both animation and queued method. When queued method executes, update ammo. This avoids relying on the animation event (JMonkeyEngine has a particular quirk), but brings in the possibility of thread problems. 'Blocking' (not sure of the correct term) Player presses reload Start reloading animation reloading = true reloadedStartTime = now while (reloading && ((now - reloadingStartTime) < reloadingDuration)) { If user starts another action, break and cancel reloading. } Update ammo counters reloading = false My main concern is that actions can interrupt each other. Reloading can be interrupted by firing, or by dropping or changing weapon, crouching can be interrupted by running, etc. What's the recommended way to handle this? What are the advantages and disadvantages of each method? I'm leaning towards event-driven, even though it requires more care; failing that, blocking.

    Read the article

  • How do I consistently re-size my game window and elements?

    - by Milo
    In my 2D game, I have a flow layout. Inside the flow layout are tables. I have a slider that lets the user make the tables larger or smaller. This makes the background larger or smaller too. Everything should scale proportionally which means the background should stay at the same position when I make things larger, and it almost does. When the scrollbar is at 0, it does exactly this. As the scrollbar gets further down problems arise. I'll toggle the slider maybe 3 times and on the fourth time, the background jumps a little lower on the Y axis. In order to be efficient, I only start rendering the background near the parent of the flow layout. Here it is: void LobbyTableManager::renderBG( GraphicsContext* g, agui::Rectangle& absRect, agui::Rectangle& childRect ) { int cx, cy, cw, ch; g->getClippingRect(cx,cy,cw,ch); g->setClippingRect(absRect.getX(),absRect.getY(),absRect.getWidth(),absRect.getHeight()); float scale = 0.35f; int w = m_bgSprite->getWidth() * getTableScale() * scale; int h = m_bgSprite->getHeight() * getTableScale() * scale; int numX = ceil(absRect.getWidth() / (float)w) + 2; int numY = ceil(absRect.getHeight() / (float)h) + 2; float offsetX = m_activeTables[0]->getLocation().getX() - w; float offsetY = m_activeTables[0]->getLocation().getY() - h; int startY = childRect.getY(); if(moo) { std::cout << "S=" << startY << ","; } int numAttempts = 0; while(startY + h < absRect.getY() && numAttempts < 1000) { startY += h; if(moo) { std::cout << startY << ","; } numAttempts++; } if(moo) { std::cout << "\n"; moo = false; } g->holdDrawing(); for(int i = 0; i < numX; ++i) { for(int j = 0; j < numY; ++j) { g->drawScaledSprite(m_bgSprite,0,0,m_bgSprite->getWidth(),m_bgSprite->getHeight(), absRect.getX() + (i * w) + (offsetX),absRect.getY() + (j * h) + startY,w,h,0); } } g->unholdDrawing(); g->setClippingRect(cx,cy,cw,ch); } The numeric problem seems to be in the value of startY. I outputted startY figuring out its value: As you can see here, this is me only zooming in, pay attention to the final number before the next s=. You'll notice that, what should happen is, the numbers should be linear, ex: -40, -38, -36, -34, -32, -30, etc. As you'll notice, the start numbers linearly correlate ex: 62k, 64k, 66k, 68k, 70k etc.. but the end result is wrong every third or 4th time. Here is most of the resize code: void LobbyTableManager::setTableScale( float scale ) { scale += 0.3f; scale *= 2.0f; agui::Gui* gotGui = getGui(); float scrollRel = m_vScroll->getRelativeValue(); setScale(scale); rescaleTables(); resizeFlow(); if(gotGui) { gotGui->toggleWidgetLocationChanged(false); } updateScrollBars(); float newVal = scrollRel * m_vScroll->getMaxValue(); if((int)(newVal + 0.5f) > (int)newVal) { newVal++; } m_vScroll->setValue(newVal); static int x = 0; x++; moo = true; //std::cout << m_vScroll->getValue() << std::endl; if(gotGui) { gotGui->toggleWidgetLocationChanged(true); } if(gotGui) { gotGui->_widgetLocationChanged(); } } void LobbyTableManager::valueChanged( agui::VScrollBar* source,int val ) { if(getGui()) { getGui()->toggleWidgetLocationChanged(false); } m_flow->setLocation(0,-val); if(getGui()) { getGui()->toggleWidgetLocationChanged(true); getGui()->_widgetLocationChanged(); } }

    Read the article

  • Input handling between game loops

    - by user48023
    This may be obvious and trivial for you but as I am a newbie in programming I come with a specific question. I have three loops in my game engine which are input-loop, update-loop and render-loop. Update-loop is set to 10 ticks per second with a fixed timestep, render-loop is capped at around 60 fps and the input-loop runs as fast as possible. I am using one of the Javascript frameworks which provide such things but it doesn't really matter. Let's say I am rendering a tile map and the view of which elements are rendered depends on camera-like movement variables which are modified during key pressing. This is only about camera/viewport and rendering, no game physics involved here. And now, how can I handle input events among these loops to keep consistent engine reaction? Am I supposed to read the current variable modified with input and do some needed calculations in a update-loop and share the result so it could be interpolated in a render-loop? Or read the input effect directly inside the render-loop and put needed calculations inside? I thought interpreting user input inside an update-loop with a low tick rate would be inaccurate and kind of unresponsive while rendering with interpolation in the final view. How it is done properly in games overall?

    Read the article

  • Loading sound in XNA without the Content Pipeline

    - by David Gouveia
    I'm working on a "Game Maker"-type of application for Windows where the user imports his own assets to be used in the game. I need to be able to load this content at runtime on the engine side. However I don't want the user to have to install anything more than the XNA runtime, so calling the content pipeline at runtime is out. For images I'm doing fine using Texture2D.FromStream. I've also noticed that XNA 4.0 added a FromStream method to the SoundEffect class but it only accepts PCM wave files. I'd like to support more than wave files though, at least MP3. Any recommendations? Perhaps some C# library that would do the decoding to PCM wave format.

    Read the article

  • How to set TextureFilter to Point to make example Bloom filter work?

    - by Mr Bell
    I have simple app that renders some particles and now I am trying to apply the bloom shader from the xna samplers ( http://create.msdn.com/en-US/education/catalog/sample/bloom ) to it, but I am running into this exception: "XNA Framework HiDef profile requires TextureFilter to be Point when using texture format Vector4." When the BloomComponent tries to end the sprite batch in the DrawFullscreenQuad method: spriteBatch.Begin(0, BlendState.Opaque, SamplerState.PointWrap, null, null, effect); spriteBatch.Draw(texture, new Rectangle(0, 0, width, height), Color.White); spriteBatch.End(); //<------- Exception thrown here It seems to be related to the pixel shaders that I am using to animate the particle. In a nutshell, I have a texture2d in vector4 format that holds particle positions, and another one for velocities. Here is a snippet from that area: GraphicsDevice.SetRenderTarget(tempRenderTarget); animationEffect.CurrentTechnique = animationEffect.Techniques[technique]; spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.Opaque, SamplerState.PointWrap, DepthStencilState.DepthRead, RasterizerState.CullNone, animationEffect); spriteBatch.Draw(randomValues, new Rectangle(0, 0, width, height), Color.White); spriteBatch.End(); What I comment out the code that calls the particle animation pixel shaders the bloom component runs fine. Is there some state that I need to reset to make the bloom work?

    Read the article

  • JOGL hardware based shadow mapping - computing the texture matrix

    - by axel22
    I am implementing hardware shadow mapping as described here. I've rendered the scene successfully from the light POV, and loaded the depth buffer of the scene into a texture. This texture has correctly been loaded - I check this by rendering a small thumbnail, as you can see in the screenshot below, upper left corner. The depth of the scene appears to be correct - objects further away are darker, and that are closer to the light are lighter. However, I run into trouble while rendering the scene from the camera's point of view using the depth texture - the texture on the polygons in the scene is rendered in a weird, nondeterministic fashion, as shown in the screenshot. I believe I am making an error while computing the texture transformation matrix, but I am unsure where exactly. Since I have no matrix utilities in JOGL other then the gl[Load|Mult]Matrix procedures, I multiply the matrices using them, like this: void calcTextureMatrix() { glPushMatrix(); glLoadIdentity(); glLoadMatrixf(biasmatrix, 0); glMultMatrixf(lightprojmatrix, 0); glMultMatrixf(lightviewmatrix, 0); glGetFloatv(GL_MODELVIEW_MATRIX, shadowtexmatrix, 0); glPopMatrix(); } I obtained these matrices by using the glOrtho and gluLookAt procedures: glLoadIdentity() val wdt = width / 45 val hgt = height / 45 glOrtho(wdt, -wdt, -hgt, hgt, -45.0, 45.0) glGetFloatv(GL_MODELVIEW_MATRIX, lightprojmatrix, 0) glLoadIdentity() glu.gluLookAt( xlook + lightpos._1, ylook + lightpos._2, lightpos._3, xlook, ylook, 0.0f, 0.f, 0.f, 1.0f) glGetFloatv(GL_MODELVIEW_MATRIX, lightviewmatrix, 0) My bias matrix is: float[] biasmatrix = new float[16] { 0.5f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.f, 0.5f, 0.5f, 0.5f, 1.f } After applying the camera projection and view matrices, I do: glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR) glTexGenfv(GL_S, GL_EYE_PLANE, shadowtexmatrix, 0) glEnable(GL_TEXTURE_GEN_S) for each component. Does anybody know why the texture is not being rendered correctly? Thank you.

    Read the article

  • ContentManager in XNA cant find any XML

    - by user36385
    Im making a game in XNA 4 and this is the first time I'm using the Content loader to initialize a simple class with a XML file, but no matter how many guide I follow, or how simple or complicated is my XML File the ContentManager cant find the file; the Debug keep telling me: "A first chance exception of type 'Microsoft.Xna.Framework.Content.ContentLoadException' occurred in Microsoft.Xna.Framework.dll". I'm really confuse because I can load SpriteFonts and Texture2D without a problem ... I create the following XML (the most basic Xna XML): <?xml version="1.0" encoding="utf-8" ?> <XnaContent> <Asset Type="System.String">Hello</Asset> </XnaContent> and I try to load it in the LoadContent method in my main class like this: System.String hello = Content.Load<System.String>("NewXmlFile"); There is something I'm doing wrong? I really appreciate your help

    Read the article

  • Python rpg adivce? [closed]

    - by nikita.utiu
    I have started coding an text rpg engine in python. I have basic concepts laid down, like game state saving, input, output etc. I was wondering how certain scripted game mechanics(eg. debuffs that increase damage received from a certain player or multiply damage by the number of hits received, overriding of the mobs default paths for certain events etc) are implemented usually implemented. Some code bases or some other source code would be useful(not necessarily python). Thanks in advance.

    Read the article

  • How do i start Game programming in windows phone xna?

    - by Ankit Rathod
    Hello, I am very much interested in Game programming in Xna. However during my college days i did not take Physics or Maths. Does that mean i can't create games in xna? I just know basics of trignometry. Can you all point me to few links where i can learn xna as well as the basic stuff of Maths that is bound to be required in most of the games? Are all game programmers excellent in Maths and Physics ? Thanks in advance :)

    Read the article

  • MD5 vertex skinning problem extending to multi-jointed skeleton (GPU Skinning)

    - by Soapy
    Currently I'm trying to implement GPU skinning in my project. So far I have achieved single joint translation and rotation, and multi-jointed translation. The problem arises when I try to rotate a multi-jointed skeleton. The image above shows the current progress. The left image shows how the model should deform. The middle image shows how it deforms in my project. The right shows a better deform (still not right) inverting a certain value, which I will explain below. The way I get my animation data is by exporting it to the MD5 format (MD5mesh for mesh data and MD5anim for animation data). When I come to parse the animation data, for each frame, I check if the bone has a parent, if not, the data is passed in as is from the MD5anim file. If it does have a parent, I transform the bones position by the parents orientation, and the add this with the parents translation. Then the parent and child orientations get concatenated. This is covered at this website. if (Parent < 0){ ... // Save this data without editing it } else { Math3::vec3 rpos; Math3::quat pq = Parent.Quaternion; Math3::quat pqi(pq); pqi.InvertUnitQuat(); pqi.Normalise(); Math3::quat::RotateVector3(rpos, pq, jv); Math3::vec3 npos(rpos + Parent.Pos); this->Translation = npos; Math3::quat nq = pq * jq; nq.Normalise(); this->Quaternion = nq; } And to achieve the image to the right, all I need to do is to change Math3::quat::RotateVector3(rpos, pq, jv); to Math3::quat::RotateVector3(rpos, pqi, jv);, why is that? And this is my skinning shader. SkinningShader.vert #version 330 core smooth out vec2 vVaryingTexCoords; smooth out vec3 vVaryingNormals; smooth out vec4 vWeightColor; uniform mat4 MV; uniform mat4 MVP; uniform mat4 Pallete[55]; uniform mat4 invBindPose[55]; layout(location = 0) in vec3 vPos; layout(location = 1) in vec2 vTexCoords; layout(location = 2) in vec3 vNormals; layout(location = 3) in int vSkeleton[4]; layout(location = 4) in vec3 vWeight; void main() { vec4 wpos = vec4(vPos, 1.0); vec4 norm = vec4(vNormals, 0.0); vec4 weight = vec4(vWeight, (1.0f-(vWeight[0] + vWeight[1] + vWeight[2]))); normalize(weight); mat4 BoneTransform; for(int i = 0; i < 4; i++) { if(vSkeleton[i] != -1) { if(i == 0) { // These are interchangable for some reason // BoneTransform = ((invBindPose[vSkeleton[i]] * Pallete[vSkeleton[i]]) * weight[i]); BoneTransform = ((Pallete[vSkeleton[i]] * invBindPose[vSkeleton[i]]) * weight[i]); } else { // These are interchangable for some reason // BoneTransform += ((invBindPose[vSkeleton[i]] * Pallete[vSkeleton[i]]) * weight[i]); BoneTransform += ((Pallete[vSkeleton[i]] * invBindPose[vSkeleton[i]]) * weight[i]); } } } wpos = BoneTransform * wpos; vWeightColor = weight; vVaryingTexCoords = vTexCoords; vVaryingNormals = normalize(vec3(vec4(vNormals, 0.0) * MV)); gl_Position = wpos * MVP; } The Pallete matrices are the matrices calculated using the above code (a rotation and translation matrix get created from the translation and quaternion). The invBindPose matrices are simply the inverted matrices created from the joints in the MD5mesh file. Update 1 I looked at GLM to compare the values I get with my own implementation. They turn out to be exactly the same. So now i'm checking if there's a problem with matrix creation... Update 2 Looked at GLM again to compare matrix creation using quaternions. Turns out that's not the problem either.

    Read the article

  • Create edges in Blender

    - by Mikey
    I've worked with 3DS Max in Uni and am trying to learn Blender. My problem is I know a lot of simple techniques from 3DS max that I'm having trouble translating into Blender. So my question is: Say I have a poly in the middle of a mesh and I want to split it in two. Simply adding an edge between two edges. This would cause a two 5gons either side. It's a simple technique I use every now and then when I want to modify geometry. It's called "Edge connect" in 3DS Max. In Blender the only edge connect method I can find is to create edge loops, not helpful when aiming at low poly iPhone games. Is there an equivalent in blender?

    Read the article

  • How should I replan A*?

    - by Gregory Weir
    I've got a pathfinding boss enemy that seeks the player using the A* algorithm. It's a pretty complex environment, and I'm doing it in Flash, so the search can get a bit slow when it's searching over long distances. If the player was stationary, I could just search once, but at the moment I'm searching every frame. This takes long enough that my framerate is suffering. What's the usual solution to this? Is there a way to "replan" A* without redoing the entire search? Should I just search a little less often (every half-second or second) and accept that there will be a little inaccuracy in the path?

    Read the article

  • 2D Selective Gaussian Blur

    - by Joshua Thomas
    I am attempting to use Gaussian blur on a 2D platform game, selectively blurring specific types of platforms with different amounts. I am currently just messing around with simple test code, trying to get it to work correctly. What I need to eventually do is create three separate render targets, leave one normal, blur one slightly, and blur the last heavily, then recombine on the screen. Where I am now is I have successfully drawn into a new render target and performed the gaussian blur on it, but when I draw it back to the screen everything is purple aside from the platforms I drew to the target. This is my .fx file: #define RADIUS 7 #define KERNEL_SIZE (RADIUS * 2 + 1) //----------------------------------------------------------------------------- // Globals. //----------------------------------------------------------------------------- float weights[KERNEL_SIZE]; float2 offsets[KERNEL_SIZE]; //----------------------------------------------------------------------------- // Textures. //----------------------------------------------------------------------------- texture colorMapTexture; sampler2D colorMap = sampler_state { Texture = <colorMapTexture>; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; //----------------------------------------------------------------------------- // Pixel Shaders. //----------------------------------------------------------------------------- float4 PS_GaussianBlur(float2 texCoord : TEXCOORD) : COLOR0 { float4 color = float4(0.0f, 0.0f, 0.0f, 0.0f); for (int i = 0; i < KERNEL_SIZE; ++i) color += tex2D(colorMap, texCoord + offsets[i]) * weights[i]; return color; } //----------------------------------------------------------------------------- // Techniques. //----------------------------------------------------------------------------- technique GaussianBlur { pass { PixelShader = compile ps_2_0 PS_GaussianBlur(); } } This is the code I'm using for the gaussian blur: public Texture2D PerformGaussianBlur(Texture2D srcTexture, RenderTarget2D renderTarget1, RenderTarget2D renderTarget2, SpriteBatch spriteBatch) { if (effect == null) throw new InvalidOperationException("GaussianBlur.fx effect not loaded."); Texture2D outputTexture = null; Rectangle srcRect = new Rectangle(0, 0, srcTexture.Width, srcTexture.Height); Rectangle destRect1 = new Rectangle(0, 0, renderTarget1.Width, renderTarget1.Height); Rectangle destRect2 = new Rectangle(0, 0, renderTarget2.Width, renderTarget2.Height); // Perform horizontal Gaussian blur. game.GraphicsDevice.SetRenderTarget(renderTarget1); effect.CurrentTechnique = effect.Techniques["GaussianBlur"]; effect.Parameters["weights"].SetValue(kernel); effect.Parameters["colorMapTexture"].SetValue(srcTexture); effect.Parameters["offsets"].SetValue(offsetsHoriz); spriteBatch.Begin(0, BlendState.Opaque, null, null, null, effect); spriteBatch.Draw(srcTexture, destRect1, Color.White); spriteBatch.End(); // Perform vertical Gaussian blur. game.GraphicsDevice.SetRenderTarget(renderTarget2); outputTexture = (Texture2D)renderTarget1; effect.Parameters["colorMapTexture"].SetValue(outputTexture); effect.Parameters["offsets"].SetValue(offsetsVert); spriteBatch.Begin(0, BlendState.Opaque, null, null, null, effect); spriteBatch.Draw(outputTexture, destRect2, Color.White); spriteBatch.End(); // Return the Gaussian blurred texture. game.GraphicsDevice.SetRenderTarget(null); outputTexture = (Texture2D)renderTarget2; return outputTexture; } And this is the draw method affected: public void Draw(SpriteBatch spriteBatch) { device.SetRenderTarget(maxBlur); spriteBatch.Begin(); foreach (Brick brick in blueBricks) brick.Draw(spriteBatch); spriteBatch.End(); blue = gBlur.PerformGaussianBlur((Texture2D) maxBlur, helperTarget, maxBlur, spriteBatch); spriteBatch.Begin(); device.SetRenderTarget(null); foreach (Brick brick in redBricks) brick.Draw(spriteBatch); foreach (Brick brick in greenBricks) brick.Draw(spriteBatch); spriteBatch.Draw(blue, new Rectangle(0, 0, blue.Width, blue.Height), Color.White); foreach (Brick brick in purpleBricks) brick.Draw(spriteBatch); spriteBatch.End(); } I'm sorry about the massive brick of text and images(or not....new user, I tried, it said no), but I wanted to get my problem across clearly as I have been searching for an answer to this for quite a while now. As a side note, I have seen the bloom sample. Very well commented, but overly complicated since it deals in 3D; I was unable to take what I needed to learn form it. Thanks for any and all help.

    Read the article

  • How can I estimate cost of creating tile-set similar to HoM&M 2?

    - by Alexey Petrushin
    How to estimate cost of creating tile-set similar to HoM&M 2? I'm mostly interested in the tile-set graphics only, no animation needed, the big images of town and creatures can be done as quick and dirty pensil sketches. The quality of tiles and its amount should be roughly the same as in HoM&M 2. Can You please give a rough estimate how much it will take man-hours and how much will it cost?

    Read the article

  • OpenGL 2D Depth Perception

    - by Stephen James
    This is the first time i have ever commented on a forum about programming, so sorry if I'm not specific enough. Here's my problem: I have a 2D RPG game written in Java using LWJGL. All works fine, but at the moment I'm having trouble deciding what the best way to do depth perception is. So , for example, if the player goes in front of the tree/enemy (lower than the objects y-coordinate) then show the player in front), if the player goes behind the tree/enemy (higher than the objects specific y-coordinate), then show the player behind the object. I have tried writing a block of code to deal with this, and it works quite well for the trees, but not for the enemies yet. Is there a simpler way of doing this in LWJGL that I'm missing? Thanks :)

    Read the article

  • Oscillating Sprite Movement in XNA

    - by Nick Van Hoogenstyn
    I'm working on a 2d game and am looking to make a sprite move horizontally across the screen in XNA while oscillating vertically (basically I want the movement to look like a sin wave). Currently for movement I'm using two vectors, one for speed and one for direction. My update function for sprites just contains this: Position += direction * speed * (float)t.ElapsedGameTime.TotalSeconds; How could I utilize this setup to create the desired movement? I'm assuming I'd call Math.Sin or Math.Cos, but I'm unsure of where to start to make this sort of thing happened. My attempt looked like this: public override void Update(GameTime t) { double msElapsed = t.TotalGameTime.Milliseconds; mDirection.Y = (float)Math.Sin(msElapsed); if (mDirection.Y >= 0) mSpeed.Y = moveSpeed; else mSpeed.Y = -moveSpeed; base.Update(t, mSpeed, mDirection); } moveSpeed is just some constant positive integer. With this, the sprite simply just continuously moves downward until it's off screen. Can anyone give me some info on what I'm doing wrong here? I've never tried something like this so if I'm doing things completely wrong, let me know!

    Read the article

  • Timestep schemes for physics simulations

    - by ktodisco
    The operations used for stepping a physics simulation are most commonly: Integrate velocity and position Collision detection and resolution Contact resolution (in advanced cases) A while ago I came across this paper from Stanford that proposed an alternative scheme, which is as follows: Collision detection and resolution Integrate velocity Contact resolution Integrate position It's intriguing because it allows for robust solutions to the stacking problem. So it got me wondering... What, if any, alternative schemes are available, either simple or complex? What are their benefits, drawbacks, and performance considerations?

    Read the article

  • Best way to go about sorting 2D sprites in a "RPG Maker" styled RPG

    - by Aaron Stewart
    I am trying to come up with the best way to create overlapping sprites without having any issues. I was thinking of having a SortedDictionary and setting the Entity's key to it's Y position relative to the max bound of the simulation, aka the Z value. I'd update the "Z" value in the update method each frame, if the entity's position has changed at all. For those who don't know what I mean, I want characters who are standing closer in front of another character to be drawn on top, and if they are behind the character, they are drawn behind. I'm leery of using SpriteBatch back to front or front to back, I've been doing some searching and have been under the impression they are a bad idea. and want to know exactly how other people are dealing with their depth sorting. Just ultimately trying to come up with the best method of sorting for good practice before I get too far in to refactor the system effectively.

    Read the article

  • OpenGL 2D Depth Perception

    - by Stephen James
    I have a 2D RPG game written in Java using LWJGL. All works fine, but at the moment I'm having trouble deciding what the best way to do depth perception is. So , for example, if the player goes in front of the tree/enemy (lower than the objects y-coordinate) then show the player in front), if the player goes behind the tree/enemy (higher than the objects specific y-coordinate), then show the player behind the object. I have tried writing a block of code to deal with this, and it works quite well for the trees, but not for the enemies yet. Is there a simpler way of doing this in LWJGL that I'm missing?

    Read the article

  • Adding Vertices to a dynamic mesh via Method Call

    - by Raven Dreamer
    I have a C# Struct with a static method, "Get Shape" which populates a List with the vertices of a polyhedron. Method Signature: public static void GetShape(Block b, int x, int y, int z, List<Vector3> vertices, List<int> triangles, List<Vector2> uvs, List<Vector2> uv2s) Adding directly to the vertices list (via vertices.Add(vector3) ), the code works as expected, and the new polyhedron appears when I trigger the method. However, I want to do some processing on the vertices I'm adding (a rotation), and the most sensible way I can think to do that is by creating a separate list of Vector3s, and then combining the lists when I'm done. However, vertices.AddRange(newVerts) does not add the shape to the mesh, nor does a foreach loop with verts.Add(vertices[i]). And this is before I've added in any of the processing! I have a feeling this might stem from passing the list of vertices in as a parameter, rather than returning a list and then adding to the vertices in the calling object, but since I'm filling 4 lists, I was trying to avoid having to create a data struct to return all four at once. Any ideas? The working version of the method is reprinted below, in full: public static void GetShape(Block b, int x, int y, int z, List<Vector3> vertices, List<int> triangles, List<Vector2> uvs, List<Vector2> uv2s) { //List<Vector3> vertices = new List<Vector3>(); int l_blockShape = b.blockShape; int l_blockType = b.blockType; //CheckFace checks if the block is empty //if this block is empty, don't draw anything. int vertexIndex; //only y faces need to be hidden. //if((l_blockShape & BlockShape.NegZFace) == BlockShape.NegZFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.2f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //XY Z+1 face //if((l_blockShape & BlockShape.PosZFace) == BlockShape.PosZFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZY face //if((l_blockShape & BlockShape.NegXFace) == BlockShape.NegXFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.2f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZY X+1 face // if((l_blockShape & BlockShape.PosXFace) == BlockShape.PosXFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZX face if((l_blockShape & BlockShape.NegYFace) == BlockShape.NegYFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex); // second triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+1); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZX + 1 face if((l_blockShape & BlockShape.PosYFace) == BlockShape.PosYFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y+1 , z+.2f)); vertices.Add(new Vector3(x+.8f, y+1 , z+.8f)); vertices.Add(new Vector3(x+.2f, y+1 , z+.8f)); vertices.Add(new Vector3(x+.2f, y+1 , z+.2f)); // first triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex); // second triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+1); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } }

    Read the article

< Previous Page | 539 540 541 542 543 544 545 546 547 548 549 550  | Next Page >