Search Results

Search found 97161 results on 3887 pages for 'custom code'.

Page 552/3887 | < Previous Page | 548 549 550 551 552 553 554 555 556 557 558 559  | Next Page >

  • I am making a maze type of game using javascript and HTML and need some questions answered [on hold]

    - by Timothy Bilodeau
    First off, i am a noob to JavaScript but am willing to learn. :) I found a simple JavaScript moment engine created by another member on this site. Using that i made it so my character can walk around within a rectangle/square shaped room. I want to make it so the character can walk through a "doorway" within a wall to the next room. Either that or make it so if the character moves over a certain image within the room it will take the player to another webpage in which the character "spawns" into the room and so on and so fourth. Here is a link to what i have made so far as to get an idea. http://bit.ly/1fSMesA Any help would be much appreciated. Here is the javascript code for the character movement and boundaries. <script type='text/javascript'> // movement vars var xpos = 100; var ypos = 100; var xspeed = 1; var yspeed = 0; var maxSpeed = 5; // boundary var minx = 37; var miny = 41; var maxx = 187; // 10 pixels for character's width var maxy = 178; // 10 pixels for character's width // controller vars var upPressed = 0; var downPressed = 0; var leftPressed = 0; var rightPressed = 0; function slowDownX() { if (xspeed > 0) xspeed = xspeed - 1; if (xspeed < 0) xspeed = xspeed + 1; } function slowDownY() { if (yspeed > 0) yspeed = yspeed - 1; if (yspeed < 0) yspeed = yspeed + 1; } function gameLoop() { // change position based on speed xpos = Math.min(Math.max(xpos + xspeed,minx),maxx); ypos = Math.min(Math.max(ypos + yspeed,miny),maxy); // or, without boundaries: // xpos = xpos + xspeed; // ypos = ypos + yspeed; // change actual position document.getElementById('character').style.left = xpos; document.getElementById('character').style.top = ypos; // change speed based on keyboard events if (upPressed == 1) yspeed = Math.max(yspeed - 1,-1*maxSpeed); if (downPressed == 1) yspeed = Math.min(yspeed + 1,1*maxSpeed) if (rightPressed == 1) xspeed = Math.min(xspeed + 1,1*maxSpeed); if (leftPressed == 1) xspeed = Math.max(xspeed - 1,-1*maxSpeed); // deceleration if (upPressed == 0 && downPressed == 0) slowDownY(); if (leftPressed == 0 && rightPressed == 0) slowDownX(); // loop setTimeout("gameLoop()",10); } function keyDown(e) { var code = e.keyCode ? e.keyCode : e.which; if (code == 38) upPressed = 1; if (code == 40) downPressed = 1; if (code == 37) leftPressed = 1; if (code == 39) rightPressed = 1; } function keyUp(e) { var code = e.keyCode ? e.keyCode : e.which; if (code == 38) upPressed = 0; if (code == 40) downPressed = 0; if (code == 37) leftPressed = 0; if (code == 39) rightPressed = 0; } </script> here is the HTML code to follow <!-- The Level --> <img src="room1.png" /> <!-- The Character --> <img id='character' src='../texture packs/characters/snazgel.png' style='position:absolute;left:100;top:100;height:40;width:26;'/>

    Read the article

  • Version Assemblies with TFS 2010 Continuous Integration

    - by Steve Michelotti
    When I first heard that TFS 2010 had moved to Workflow Foundation for Team Build, I was *extremely* skeptical. I’ve loved MSBuild and didn’t quite understand the reasons for this change. In fact, given that I’ve been exclusively using Cruise Control for Continuous Integration (CI) for the last 5+ years of my career, I was skeptical of TFS for CI in general. However, after going through the learning process for TFS 2010 recently, I’m starting to become a believer. I’m also starting to see some of the benefits with Workflow Foundation for the overall processing because it gives you constructs not available in MSBuild such as parallel tasks, better control flow constructs, and a slightly better customization story. The first customization I had to make to the build process was to version the assemblies of my solution. This is not new. In fact, I’d recommend reading Mike Fourie’s well known post on Versioning Code in TFS before you get started. This post describes several foundational aspects of versioning assemblies regardless of your version of TFS. The main points are: 1) don’t use source control operations for your version file, 2) use a schema like <Major>.<Minor>.<IncrementalNumber>.0, and 3) do not keep AssemblyVersion and AssemblyFileVersion in sync. To do this in TFS 2010, the best post I’ve found has been Jim Lamb’s post of building a custom TFS 2010 workflow activity. Overall, this post is excellent but the primary issue I have with it is that the assembly version numbers produced are based in a date and look like this: “2010.5.15.1”. This is definitely not what I want. I want to be able to communicate to the developers and stakeholders that we are producing the “1.1 release” or “1.2 release” – which would have an assembly version number of “1.1.317.0” for example. In this post, I’ll walk through the process of customizing the assembly version number based on this method – customizing the concepts in Lamb’s post to suit my needs. I’ll also be combining this with the concepts of Fourie’s post – particularly with regards to the standards around how to version the assemblies. The first thing I’ll do is add a file called SolutionAssemblyVersionInfo.cs to the root of my solution that looks like this: 1: using System; 2: using System.Reflection; 3: [assembly: AssemblyVersion("1.1.0.0")] 4: [assembly: AssemblyFileVersion("1.1.0.0")] I’ll then add that file as a Visual Studio link file to each project in my solution by right-clicking the project, “Add – Existing Item…” then when I click the SolutionAssemblyVersionInfo.cs file, making sure I “Add As Link”: Now the Solution Explorer will show our file. We can see that it’s a “link” file because of the black arrow in the icon within all our projects. Of course you’ll need to remove the AssemblyVersion and AssemblyFileVersion attributes from the AssemblyInfo.cs files to avoid the duplicate attributes since they now leave in the SolutionAssemblyVersionInfo.cs file. This is an extremely common technique so that all the projects in our solution can be versioned as a unit. At this point, we’re ready to write our custom activity. The primary consideration is that I want the developer and/or tech lead to be able to easily be in control of the Major.Minor and then I want the CI process to add the third number with a unique incremental number. We’ll leave the fourth position always “0” for now – it’s held in reserve in case the day ever comes where we need to do an emergency patch to Production based on a branched version.   Writing the Custom Workflow Activity Similar to Lamb’s post, I’m going to write two custom workflow activities. The “outer” activity (a xaml activity) will be pretty straight forward. It will check if the solution version file exists in the solution root and, if so, delegate the replacement of version to the AssemblyVersionInfo activity which is a CodeActivity highlighted in red below:   Notice that the arguments of this activity are the “solutionVersionFile” and “tfsBuildNumber” which will be passed in. The tfsBuildNumber passed in will look something like this: “CI_MyApplication.4” and we’ll need to grab the “4” (i.e., the incremental revision number) and put that in the third position. Then we’ll need to honor whatever was specified for Major.Minor in the SolutionAssemblyVersionInfo.cs file. For example, if the SolutionAssemblyVersionInfo.cs file had “1.1.0.0” for the AssemblyVersion (as shown in the first code block near the beginning of this post), then we want to resulting file to have “1.1.4.0”. Before we do anything, let’s put together a unit test for all this so we can know if we get it right: 1: [TestMethod] 2: public void Assembly_version_should_be_parsed_correctly_from_build_name() 3: { 4: // arrange 5: const string versionFile = "SolutionAssemblyVersionInfo.cs"; 6: WriteTestVersionFile(versionFile); 7: var activity = new VersionAssemblies(); 8: var arguments = new Dictionary<string, object> { 9: { "tfsBuildNumber", "CI_MyApplication.4"}, 10: { "solutionVersionFile", versionFile} 11: }; 12:   13: // act 14: var result = WorkflowInvoker.Invoke(activity, arguments); 15:   16: // assert 17: Assert.AreEqual("1.2.4.0", (string)result["newAssemblyFileVersion"]); 18: var lines = File.ReadAllLines(versionFile); 19: Assert.IsTrue(lines.Contains("[assembly: AssemblyVersion(\"1.2.0.0\")]")); 20: Assert.IsTrue(lines.Contains("[assembly: AssemblyFileVersion(\"1.2.4.0\")]")); 21: } 22: 23: private void WriteTestVersionFile(string versionFile) 24: { 25: var fileContents = "using System.Reflection;\n" + 26: "[assembly: AssemblyVersion(\"1.2.0.0\")]\n" + 27: "[assembly: AssemblyFileVersion(\"1.2.0.0\")]"; 28: File.WriteAllText(versionFile, fileContents); 29: }   At this point, the code for our AssemblyVersion activity is pretty straight forward: 1: [BuildActivity(HostEnvironmentOption.Agent)] 2: public class AssemblyVersionInfo : CodeActivity 3: { 4: [RequiredArgument] 5: public InArgument<string> FileName { get; set; } 6:   7: [RequiredArgument] 8: public InArgument<string> TfsBuildNumber { get; set; } 9:   10: public OutArgument<string> NewAssemblyFileVersion { get; set; } 11:   12: protected override void Execute(CodeActivityContext context) 13: { 14: var solutionVersionFile = this.FileName.Get(context); 15: 16: // Ensure that the file is writeable 17: var fileAttributes = File.GetAttributes(solutionVersionFile); 18: File.SetAttributes(solutionVersionFile, fileAttributes & ~FileAttributes.ReadOnly); 19:   20: // Prepare assembly versions 21: var majorMinor = GetAssemblyMajorMinorVersionBasedOnExisting(solutionVersionFile); 22: var newBuildNumber = GetNewBuildNumber(this.TfsBuildNumber.Get(context)); 23: var newAssemblyVersion = string.Format("{0}.{1}.0.0", majorMinor.Item1, majorMinor.Item2); 24: var newAssemblyFileVersion = string.Format("{0}.{1}.{2}.0", majorMinor.Item1, majorMinor.Item2, newBuildNumber); 25: this.NewAssemblyFileVersion.Set(context, newAssemblyFileVersion); 26:   27: // Perform the actual replacement 28: var contents = this.GetFileContents(newAssemblyVersion, newAssemblyFileVersion); 29: File.WriteAllText(solutionVersionFile, contents); 30:   31: // Restore the file's original attributes 32: File.SetAttributes(solutionVersionFile, fileAttributes); 33: } 34:   35: #region Private Methods 36:   37: private string GetFileContents(string newAssemblyVersion, string newAssemblyFileVersion) 38: { 39: var cs = new StringBuilder(); 40: cs.AppendLine("using System.Reflection;"); 41: cs.AppendFormat("[assembly: AssemblyVersion(\"{0}\")]", newAssemblyVersion); 42: cs.AppendLine(); 43: cs.AppendFormat("[assembly: AssemblyFileVersion(\"{0}\")]", newAssemblyFileVersion); 44: return cs.ToString(); 45: } 46:   47: private Tuple<string, string> GetAssemblyMajorMinorVersionBasedOnExisting(string filePath) 48: { 49: var lines = File.ReadAllLines(filePath); 50: var versionLine = lines.Where(x => x.Contains("AssemblyVersion")).FirstOrDefault(); 51:   52: if (versionLine == null) 53: { 54: throw new InvalidOperationException("File does not contain [assembly: AssemblyVersion] attribute"); 55: } 56:   57: return ExtractMajorMinor(versionLine); 58: } 59:   60: private static Tuple<string, string> ExtractMajorMinor(string versionLine) 61: { 62: var firstQuote = versionLine.IndexOf('"') + 1; 63: var secondQuote = versionLine.IndexOf('"', firstQuote); 64: var version = versionLine.Substring(firstQuote, secondQuote - firstQuote); 65: var versionParts = version.Split('.'); 66: return new Tuple<string, string>(versionParts[0], versionParts[1]); 67: } 68:   69: private string GetNewBuildNumber(string buildName) 70: { 71: return buildName.Substring(buildName.LastIndexOf(".") + 1); 72: } 73:   74: #endregion 75: }   At this point the final step is to incorporate this activity into the overall build template. Make a copy of the DefaultTempate.xaml – we’ll call it DefaultTemplateWithVersioning.xaml. Before the build and labeling happens, drag the VersionAssemblies activity in. Then set the LabelName variable to “BuildDetail.BuildDefinition.Name + "-" + newAssemblyFileVersion since the newAssemblyFileVersion was produced by our activity.   Configuring CI Once you add your solution to source control, you can configure CI with the build definition window as shown here. The main difference is that we’ll change the Process tab to reflect a different build number format and choose our custom build process file:   When the build completes, we’ll see the name of our project with the unique revision number:   If we look at the detailed build log for the latest build, we’ll see the label being created with our custom task:     We can now look at the history labels in TFS and see the project name with the labels (the Assignment activity I added to the workflow):   Finally, if we look at the physical assemblies that are produced, we can right-click on any assembly in Windows Explorer and see the assembly version in its properties:   Full Traceability We now have full traceability for our code. There will never be a question of what code was deployed to Production. You can always see the assembly version in the properties of the physical assembly. That can be traced back to a label in TFS where the unique revision number matches. The label in TFS gives you the complete snapshot of the code in your source control repository at the time the code was built. This type of process for full traceability has been used for many years for CI – in fact, I’ve done similar things with CCNet and SVN for quite some time. This is simply the TFS implementation of that pattern. The new features that TFS 2010 give you to make these types of customizations in your build process are quite easy once you get over the initial curve.

    Read the article

  • Web Matrix released

    - by TATWORTH
    Microsoft have now released Web Matrix (and ASP.NET MVC3 if you so inclined!) One signifcant utility is IIS Express which will replace Cassini It is worth noting that SP1 for VS2010 should be out in Q1. Links: http://www.hanselman.com/blog/ASPNETMVC3WebMatrixNuGetIISExpressAndOrchardReleasedTheMicrosoftJanuaryWebReleaseInContext.aspx http://www.hanselman.com/blog/LinkRollupNewDocumentationAndTutorialsFromWebPlatformAndTools.aspx http://arstechnica.com/microsoft/news/2011/01/microsoft-releases-free-webmatrix-web-development-tool.ars I am impressed by the copious tutorials on MVC, which I include below: Intro to ASP.NET MVC 3 onboarding series. Scott Hanselman and Rick Anderson collaboration and Mike Pope (Editor) Both C# and VB versions: Intro to ASP.NET MVC 3 Adding a Controller Adding a View Entity Framework Code-First Development Accessing your Model's Data from a Controller Adding a Create Method and Create View Adding Validation to the Model Adding a New Field to the Movie Model and Table Implementing Edit, Details and Delete Source code for this series MVC 3 Updated and new tutorials/ API Reference on MSDN Rick Anderson (Lead Programming Writer), Keith Newman and Mike Pope (Editor) ASP.NET MVC 3 Content Map ASP.NET MVC Overview MVC Framework and Application Structure Understanding MVC Application Execution Compatibility of ASP.NET Web Forms and MVC Walkthrough: Creating a Basic ASP.NET MVC Project Walkthrough: Using Forms Authentication in ASP.NET MVC Controllers and Action Methods in ASP.NET MVC Applications Using an Asynchronous Controller in ASP.NET MVC Views and UI Rendering in ASP.NET MVC Applications Rendering a Form Using HTML Helpers Passing Data in an ASP.NET MVC Application Walkthrough: Using Templated Helpers to Display Data in ASP.NET MVC Creating an ASP.NET MVC View by Calling Multiple Actions Models and Validation in ASP.NET MVC How to: Validate Model Data Using DataAnnotations Attributes Walkthrough: Using MVC View Templates How to: Implement Remote Validation in ASP.NET MVC Walkthrough: Adding AJAX Scripting Walkthrough: Organizing an Application using Areas Filtering in ASP.NET MVC Creating Custom Action Filters How to: Create a Custom Action Filter Unit Testing in ASP.NET MVC Applications Walkthrough: Using TDD with ASP.NET MVC How to: Add a Custom ASP.NET MVC Test Framework in Visual Studio ASP.NET MVC 3 Reference System.Web.Mvc System.Web.Mvc.Ajax System.Web.Mvc.Async System.Web.Mvc.Html System.Web.Mvc.Razor

    Read the article

  • jQuery Templates and Data Linking (and Microsoft contributing to jQuery)

    - by ScottGu
    The jQuery library has a passionate community of developers, and it is now the most widely used JavaScript library on the web today. Two years ago I announced that Microsoft would begin offering product support for jQuery, and that we’d be including it in new versions of Visual Studio going forward. By default, when you create new ASP.NET Web Forms and ASP.NET MVC projects with VS 2010 you’ll find jQuery automatically added to your project. A few weeks ago during my second keynote at the MIX 2010 conference I announced that Microsoft would also begin contributing to the jQuery project.  During the talk, John Resig -- the creator of the jQuery library and leader of the jQuery developer team – talked a little about our participation and discussed an early prototype of a new client templating API for jQuery. In this blog post, I’m going to talk a little about how my team is starting to contribute to the jQuery project, and discuss some of the specific features that we are working on such as client-side templating and data linking (data-binding). Contributing to jQuery jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community. As an example, when working with the jQuery community to improve support for templating to jQuery my team followed the following steps: We created a proposal for templating and posted the proposal to the jQuery developer forum (http://forum.jquery.com/topic/jquery-templates-proposal and http://forum.jquery.com/topic/templating-syntax ). After receiving feedback on the forums, the jQuery team created a prototype for templating and posted the prototype at the Github code repository (http://github.com/jquery/jquery-tmpl ). We iterated on the prototype, creating a new fork on Github of the templating prototype, to suggest design improvements. Several other members of the community also provided design feedback by forking the templating code. There has been an amazing amount of participation by the jQuery community in response to the original templating proposal (over 100 posts in the jQuery forum), and the design of the templating proposal has evolved significantly based on community feedback. The jQuery team is the ultimate determiner on what happens with the templating proposal – they might include it in jQuery core, or make it an official plugin, or reject it entirely.  My team is excited to be able to participate in the open source process, and make suggestions and contributions the same way as any other member of the community. jQuery Template Support Client-side templates enable jQuery developers to easily generate and render HTML UI on the client.  Templates support a simple syntax that enables either developers or designers to declaratively specify the HTML they want to generate.  Developers can then programmatically invoke the templates on the client, and pass JavaScript objects to them to make the content rendered completely data driven.  These JavaScript objects can optionally be based on data retrieved from a server. Because the jQuery templating proposal is still evolving in response to community feedback, the final version might look very different than the version below. This blog post gives you a sense of how you can try out and use templating as it exists today (you can download the prototype by the jQuery core team at http://github.com/jquery/jquery-tmpl or the latest submission from my team at http://github.com/nje/jquery-tmpl).  jQuery Client Templates You create client-side jQuery templates by embedding content within a <script type="text/html"> tag.  For example, the HTML below contains a <div> template container, as well as a client-side jQuery “contactTemplate” template (within the <script type="text/html"> element) that can be used to dynamically display a list of contacts: The {{= name }} and {{= phone }} expressions are used within the contact template above to display the names and phone numbers of “contact” objects passed to the template. We can use the template to display either an array of JavaScript objects or a single object. The JavaScript code below demonstrates how you can render a JavaScript array of “contact” object using the above template. The render() method renders the data into a string and appends the string to the “contactContainer” DIV element: When the page is loaded, the list of contacts is rendered by the template.  All of this template rendering is happening on the client-side within the browser:   Templating Commands and Conditional Display Logic The current templating proposal supports a small set of template commands - including if, else, and each statements. The number of template commands was deliberately kept small to encourage people to place more complicated logic outside of their templates. Even this small set of template commands is very useful though. Imagine, for example, that each contact can have zero or more phone numbers. The contacts could be represented by the JavaScript array below: The template below demonstrates how you can use the if and each template commands to conditionally display and loop the phone numbers for each contact: If a contact has one or more phone numbers then each of the phone numbers is displayed by iterating through the phone numbers with the each template command: The jQuery team designed the template commands so that they are extensible. If you have a need for a new template command then you can easily add new template commands to the default set of commands. Support for Client Data-Linking The ASP.NET team recently submitted another proposal and prototype to the jQuery forums (http://forum.jquery.com/topic/proposal-for-adding-data-linking-to-jquery). This proposal describes a new feature named data linking. Data Linking enables you to link a property of one object to a property of another object - so that when one property changes the other property changes.  Data linking enables you to easily keep your UI and data objects synchronized within a page. If you are familiar with the concept of data-binding then you will be familiar with data linking (in the proposal, we call the feature data linking because jQuery already includes a bind() method that has nothing to do with data-binding). Imagine, for example, that you have a page with the following HTML <input> elements: The following JavaScript code links the two INPUT elements above to the properties of a JavaScript “contact” object that has a “name” and “phone” property: When you execute this code, the value of the first INPUT element (#name) is set to the value of the contact name property, and the value of the second INPUT element (#phone) is set to the value of the contact phone property. The properties of the contact object and the properties of the INPUT elements are also linked – so that changes to one are also reflected in the other. Because the contact object is linked to the INPUT element, when you request the page, the values of the contact properties are displayed: More interesting, the values of the linked INPUT elements will change automatically whenever you update the properties of the contact object they are linked to. For example, we could programmatically modify the properties of the “contact” object using the jQuery attr() method like below: Because our two INPUT elements are linked to the “contact” object, the INPUT element values will be updated automatically (without us having to write any code to modify the UI elements): Note that we updated the contact object above using the jQuery attr() method. In order for data linking to work, you must use jQuery methods to modify the property values. Two Way Linking The linkBoth() method enables two-way data linking. The contact object and INPUT elements are linked in both directions. When you modify the value of the INPUT element, the contact object is also updated automatically. For example, the following code adds a client-side JavaScript click handler to an HTML button element. When you click the button, the property values of the contact object are displayed using an alert() dialog: The following demonstrates what happens when you change the value of the Name INPUT element and click the Save button. Notice that the name property of the “contact” object that the INPUT element was linked to was updated automatically: The above example is obviously trivially simple.  Instead of displaying the new values of the contact object with a JavaScript alert, you can imagine instead calling a web-service to save the object to a database. The benefit of data linking is that it enables you to focus on your data and frees you from the mechanics of keeping your UI and data in sync. Converters The current data linking proposal also supports a feature called converters. A converter enables you to easily convert the value of a property during data linking. For example, imagine that you want to represent phone numbers in a standard way with the “contact” object phone property. In particular, you don’t want to include special characters such as ()- in the phone number - instead you only want digits and nothing else. In that case, you can wire-up a converter to convert the value of an INPUT element into this format using the code below: Notice above how a converter function is being passed to the linkFrom() method used to link the phone property of the “contact” object with the value of the phone INPUT element. This convertor function strips any non-numeric characters from the INPUT element before updating the phone property.  Now, if you enter the phone number (206) 555-9999 into the phone input field then the value 2065559999 is assigned to the phone property of the contact object: You can also use a converter in the opposite direction also. For example, you can apply a standard phone format string when displaying a phone number from a phone property. Combining Templating and Data Linking Our goal in submitting these two proposals for templating and data linking is to make it easier to work with data when building websites and applications with jQuery. Templating makes it easier to display a list of database records retrieved from a database through an Ajax call. Data linking makes it easier to keep the data and user interface in sync for update scenarios. Currently, we are working on an extension of the data linking proposal to support declarative data linking. We want to make it easy to take advantage of data linking when using a template to display data. For example, imagine that you are using the following template to display an array of product objects: Notice the {{link name}} and {{link price}} expressions. These expressions enable declarative data linking between the SPAN elements and properties of the product objects. The current jQuery templating prototype supports extending its syntax with custom template commands. In this case, we are extending the default templating syntax with a custom template command named “link”. The benefit of using data linking with the above template is that the SPAN elements will be automatically updated whenever the underlying “product” data is updated.  Declarative data linking also makes it easier to create edit and insert forms. For example, you could create a form for editing a product by using declarative data linking like this: Whenever you change the value of the INPUT elements in a template that uses declarative data linking, the underlying JavaScript data object is automatically updated. Instead of needing to write code to scrape the HTML form to get updated values, you can instead work with the underlying data directly – making your client-side code much cleaner and simpler. Downloading Working Code Examples of the Above Scenarios You can download this .zip file to get with working code examples of the above scenarios.  The .zip file includes 4 static HTML page: Listing1_Templating.htm – Illustrates basic templating. Listing2_TemplatingConditionals.htm – Illustrates templating with the use of the if and each template commands. Listing3_DataLinking.htm – Illustrates data linking. Listing4_Converters.htm – Illustrates using a converter with data linking. You can un-zip the file to the file-system and then run each page to see the concepts in action. Summary We are excited to be able to begin participating within the open-source jQuery project.  We’ve received lots of encouraging feedback in response to our first two proposals, and we will continue to actively contribute going forward.  These features will hopefully make it easier for all developers (including ASP.NET developers) to build great Ajax applications. Hope this helps, Scott P.S. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu]

    Read the article

  • Silverlight 4 Training Kit

    - by ScottGu
    We recently released a new free Silverlight 4 Training Kit that walks you through building business applications with Silverlight 4.  You can browse the training kit online or alternatively download an entire offline version of the training kit.  The training material is structured on teaching how to use the new Silverlight 4 features to build an end to end business application. The training kit includes 8 modules, 25 videos, and several hands on labs. Below is a breakdown and links to all of the content. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Module 1: Introduction Click here to watch this module. In this video John Papa and Ian Griffiths discuss the key areas that the Building Business Applications with Silverlight 4 course focuses on. This module is the overview of the course and covers many key scenarios that are faced when building business applications, and how Silverlight can help address them. Module 2: WCF RIA Services Click here to explore this module. In this lab, you will create a web site for managing conferences that will be the basis for the other labs in this course. Don’t worry if you don’t complete a particular lab in the series – all lab manual instructions are accompanied by completed solutions, so you can either build your own solution from start to finish, or dive straight in at any point using the solutions provided as a starting point. In this lab you will learn how to set up WCF RIA Services, create bindings to the domain context, filter using the domain data source, and create domain service queries. Online Link Download Source Download Lab Document Videos Module 2.1 - WCF RIA Services Ian Griffiths sets up the Entity Framework and WCF RIA Services for the sample Event Manager application for the course. He covers how to set up the services, how the Domain Services work and the role that the DomainContext plays in the sample application. He also reviews the metadata classes and integrating the navigation framework. Module 2.2 – Using WCF RIA Services to Edit Entities Ian Griffiths discusses how he adds the ability to edit and create individual entities with the features built into WCF RIA Services into the sample Event Manager application. He covers data binding fundamentals, IQueryable, LINQ, the DomainDataSource, navigation to a single entity using the navigation framework, and how to use the Visual Studio designer to do much of the work . Module 2.3 – Showing Master/Details Records Using WCF RIA Services Ian Griffiths reviews how to display master/detail records for the sample Event Manager application using WCF RIA Services. He covers how to use the Include attribute to indicate which elements to serialize back to the client. Ian also demonstrates how to use the Data Sources window in the designer to add and bind controls to specific data elements. He wraps up by showing how to create custom services to the Domain Services. Module 3 – Authentication, Validation, MVVM, Commands, Implicit Styles and RichTextBox Click here to visit this module. This lab demonstrates how to build a login screen, integrate ASP.NET authentication, and perform validation on data elements. Model-View-ViewModel (MVVM) is introduced and used in this lab as a pattern to help separate the UI and business logic. You will also learn how to use implicit styling and the new RichTextBox control. Online Link Download Source Download Lab Document Videos Module 3.1 – Authentication Ian Griffiths covers how to integrate a login screen and authentication into the sample Event Manager application. Ian shows how to use the ASP.NET authentication and integrate it into WCF RIA Services and the Silverlight presentation layer. Module 3.2 – MVVM Ian Griffiths covers how to Model-View-ViewModel (MVVM) patterns into the sample Event Manager application. He discusses why MVVM exists, what separated presentation means, and why it is important. He shows how to connect the View to the ViewModel, why data binding is important in this symbiosis, and how everything fits together in the overall application. Module 3.3 –Validation Ian Griffiths discusses how validation of user input can be integrated into the sample Event Manager application. He demonstrates how to use the DataAnnotations, the INotifyDataErrorInfo interface, binding markup extensions, and WCF RIA Services in concert to achieve great validation in the sample application. He discusses how this technique allows for property level validation, entity level validation, and asynchronous server side validation. Module 3.4 – Implicit Styles Ian Griffiths discusses how why implicit styles are important and how they can be integrated into the sample Event Manager application. He shows how implicit styles defined in a resource dictionary can be applied to all elements of a particular kind throughout the application. Module 3.5 – RichTextBox Ian Griffiths discusses how the new RichTextBox control and it can be integrated into the sample Event Manager application. He demonstrates how the RichTextBox can provide editing for the event information and how it can display the rich text for selection and copying. Module 4 – User Profiles, Drop Targets, Webcam and Clipboard Click here to visit this module. This lab builds new features into the sample application to take the user's photo. It teaches you how to use the webcam to capture an image, use Silverlight as a drop target, and take advantage of programmatic access to the clipboard. Link Download Source Download Lab Document Videos Module 4.1 – Webcam Ian Griffiths demonstrates how the webcam adds value to the sample Event Manager application by capturing an image of the attendee. He discusses the VideoCaptureDevice, the CaptureDviceConfiguration, and the CaptureSource classes and how they allow audio and video to be captured so you can grab an image from the capture device and save it. Module 4.2 - Drag and Drop in Silverlight Ian Griffiths demonstrates how to capture and handle the Drop in the sample Event Manager application so the user can drag a photo from a file and drop it into the application. Ian reviews the AllowDrop property, the Drop event, how to access the file that can be dropped, and the other drag related events. He also reviews how to make this work across browsers and the challenges for this. Module 5 – Schedule Planner and Right Mouse Click Click here to visit this module. This lab builds on the application to allow grouping in the DataGrid and implement right mouse click features to add context menu support. Link Download Source Download Lab Document Videos Module 5.1 – Grouping and Binding Ian Griffiths demonstrates how to use the grouping features for data binding in the DataGrid and how it applies to the sample Event Manager application. He reviews the role of the CollectionViewSource in grouping, customizing the templates for headers, and how to work with grouping with ItemsControls. Module 5.2 – Layout Visual States Ian Griffiths demonstrates how to use the Fluid UI animation support for visual states in the ListBox control DataGrid and how it applies to the sample Event Manager application. He reviews the 3 visual states of BeforeLoaded, AfterLoaded, and BeforeUnloaded. Module 5.3 – Right Mouse Click Ian Griffiths demonstrates how to add support for handling the right mouse button click event to display a context menu for the Event Manager application. He demonstrates how to handle the event, show a custom context menu control, and integrate it into the scheduling portion of the application. Module 6 – Printing the Schedule Click here to visit this module. This lab teaches how to use the new printing features in Silverlight 4. The lab walks through the PrintDocument class and the ViewBox control, while showing how to print multiple pages of content using them. Link Download Source Download Lab Document Videos Module 6.1 – Printing and the Viewbox Ian Griffiths demonstrates how to add the ability to print the schedule to the sample Event Manager application. He walks through the importance of the PrintDocument class and its members. He also shows how to handle printing the visual tree and how the ViewBox control can help. Module 6.2 – Multi Page Printing Ian Griffiths expands on his printing discussion by showing how to handle printing multiple pages of content for the sample Event Manager application. He shows how to paginate the content and points out various tips to keep in mind when determining the printable area. Module 7 – Running the Event Dashboard Out of Browser Click here to visit this module. This lab builds a dashboard for the sample application while explaining the fundamentals of the out of browser features, how to handle authentication, displaying notifications (toasts), and how to use native integration to use COM Interop with Silverlight. Link Download Source Download Lab Document Videos Module 7.1 – Out of Browser Ian Griffiths discusses the role of an Out of Browser application for administrators to manage the events and users in the sample Event Manager application. He discusses several reasons why out of browser applications may better suit your needs including custom chrome, toasts, window placement, cross domain access, and file access. He demonstrates the basic technique to take your application and make it work out of browser using the tools. Module 7.2 – NotificationWindow (Toasts) for Elevated Trust Out of Browser Applications Ian Griffiths discusses the how toasts can be used in the sample Event Manager application to show information that may require the user's attention. Ian covers how to create a toast using the NotificationWindow, security implications, and how to make the toast appear as needed. Module 7.3 – Out of Browser Window Placement Ian Griffiths discusses the how to manage the window positioning when building an out of browser application, handling the windows state, and controlling and handling activation of the window. Module 7.4 – Out of Browser Elevated Trust Application Overview Ian Griffiths discusses the implications of creating trusted out of browser application for the Event Manager sample application. He reviews why you might want to use elevated trust, what features is opens to you, and how to take advantage of them. Topics Ian covers include the dynamic keyword in C# 4, the AutomationFactory class, the API to check if you are in a trusted application, and communicating with Excel. Module 8 – Advanced Out of Browser and MEF Click here to visit this module. This hands-on lab walks through the creation of a trusted out of browser application and the new functionality that comes with that. You will learn to use COM Automation, handle the window closing event, set custom window chrome, digitally sign your Silverlight out of browser trusted application, create a silent install option, and take advantage of MEF. Link Download Source Download Lab Document Videos Module 8.1 – Custom Window Chrome for Elevated Trust Out of Browser Applications Ian Griffiths discusses how to replace the standard operating system window chrome with customized chrome for an elevated trusted out of browser application. He covers how it is important to handle close, resize, minimize, and maximize events. Ian mentions that the tooling was not ready when he shot this video, but the good news is that the tooling now supports setting the custom chrome directly from the property page for the Silverlight application. Module 8.2 – Window Closing Event for Out of Browser Applications Ian Griffiths discusses the WindowClosing event and how to handle and optionally cancel the event. Module 8.3 – Silent Install of Out of Browser Applications Ian Griffiths discusses how to use the SLLauncher executable to install an out of browser application. He discusses the optional command line switches that can be set including how the emulate switch can help you emulate the install process. Ian also shows how to setup a shortcut for the application and tell the application where it should look for future updates online. Module 8.4 – Digitally Signing Out of Browser Application Ian Griffiths discusses how and why to digitally sign an out of browser application using the signtool program. He covers what trusted certificates are, the implications of signing (or not signing), and the effect on the user experience. Module 8.5 – The Value of MEF with Silverlight Ian Griffiths discusses what MEF is, how your application can benefit from it, and the fundamental features it puts at your disposal. He covers the 3 step import, export and compose process as well as how to dynamically import XAP files using MEF. Summary As you can probably tell from the long list above – this series contains a ton of great content, and hopefully provides a nice end-to-end walkthrough that helps explain how to take advantage of Silverlight 4 (and all its new features).  Hope this helps, Scott

    Read the article

  • SharePoint and COMException (0x80004005): Cannot complete this action

    - by Damon
    I ran into a small issue today working on a deployment.  We were moving a custom ASP.NET control from my development environment into a SharePoint layout page on a staging environment .  I was expecting some minor issues to arise since I had developed the control in an ASP.NET website project, but after getting everything moved over we got an obscure COMException error the that looked like this: Cannot complete this action. Please try again. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Runtime.InteropServices.COMException: Cannot complete this action. [COMException (0x80004005): Cannot complete this action. .Lengthy stack trace goes here. Everything in the custom control was built using managed code, so we weren't sure why a COMException would suddenly appear. The control made use of an ITemplate to define its UI, so there was a lot of markup and binding code inside the template. As such, we started taking chunks of the template out of the layout page and eventually the error went away.  It was being caused by a section of code where we were calling a custom utility method inside some binding code: <%# WebUtility.FormatDecimal(.) %> Solution: It turns out that we were missing an Assembly and Import directive at the top of the page to let the page know where to find this method.  After adding these to the page, the error went away and everything worked great.  So a COMException (0x80004005) Cannot complete this action error is just SharePoint's friendly way of letting you know you're missing an assembly or imports reference.

    Read the article

  • What’s new in SQL Prompt 6.3?

    - by Tom Crossman
    This post describes some of the improvements we’ve made in the latest version of SQL Prompt. Code suggestions In recent months, the focus of the SQL Prompt development team has been to remove annoyances and improve code suggestions. Here’s just a few of the improvements to code suggestions we’ve made in SQL Prompt 6.3: The suggestions box is no longer shown when there are no suggestions Suggestions are now shown if you continue to type a half-completed word More suggestions for new SQL Server 2014 syntax Improvements to partial match suggestions Improved suggestion ordering As well as improving suggestions, we’ve also added some new features. Select in Object Explorer You can now use SQL Prompt to select an object in the Object Explorer from a query window. This is useful because many SSMS features are available from an object’s Object Explorer context menu (eg select top 1000 rows, design, script as). To select an object in the Object Explorer, place the cursor over the object you want to select and press Ctrl + F12: Here’s a short video of the feature in action. $SELECTIONSTART$ and $SELECTIONEND$ placeholders You can now use $SELECTIONSTART$ and $SELECTIONEND$ placeholders in your snippet code. The code between these placeholders is selected when you insert the snippet. For example, the following snippet: $SELECTIONSTART$SELECT TOP 100 * FROM Table1$SELECTIONEND$ is inserted as: You can then press F5 to run the selected snippet code. For the full list of snippet placeholders you can use, see the documentation. Highlighting matching parentheses If your cursor is next to an opening or closing parenthesis in a query, SQL Prompt now automatically highlights the matching parenthesis: You can then use the SSMS and Visual Studio shortcut Ctrl + ] to move between parentheses. More improvements Those are just a few of the improvements in SQL Prompt 6.3. For the full list of features and bug fixes, see the release notes.

    Read the article

  • C#.NET vs VB.NET, Which language is better?

    Features I cannot say any language good or bad as long as it's compiler can produce MSIL can run under .NET CLR. If someone says C# has more futures, you can understand that those new features are of C# compiler but not .NET, because if C# has a specific future then CLR cannot understand them. So the new features of C# will have to convert to the code understood by CLR eventually. that means the new features are developed for C# compiler basically to facilitates the developer to write their code in better way. so that means no difference in feature list between C# and VB.NET if you think in CLR perspective. Ease of writing Code I feel writing code in C# is easy, because my background is C and C++, Java, syntaxes very are similar. I assume most developers feel the same. Readability But some people say VB.NET code most readable for the members who are from non technical background, because keywords are generally in English rather special charectors. No of Projects in Market I assume 80 percent of market uses C# in their .NET development. for example in my company many projects are there .nET and all are using C#. Productivity & Experience though the feature list is same, generally developers wants to write code in their familiar languages. because it increase the productivity. Hope this helps to choose the language which suits for you. span.fullpost {display:none;}

    Read the article

  • ASP.NET MVC localization DisplayNameAttribute alternatives: a good way

    - by Brian Schroer
    The ASP.NET MVC HTML helper methods like .LabelFor and .EditorFor use model metadata to autogenerate labels for model properties. By default it uses the property name for the label text, but if that’s not appropriate, you can use a DisplayName attribute to specify the desired label text: [DisplayName("Remember me?")] public bool RememberMe { get; set; } I’m working on a multi-language web site, so the labels need to be localized. I tried pointing the DisplayName attribute to a resource string: [DisplayName(MyResource.RememberMe)] public bool RememberMe { get; set; } …but that results in the compiler error "An attribute argument must be a constant expression, typeof expression or array creation expression of an attribute parameter type”. I got around this by creating a custom LocalizedDisplayNameAttribute class that inherits from DisplayNameAttribute: 1: public class LocalizedDisplayNameAttribute : DisplayNameAttribute 2: { 3: public LocalizedDisplayNameAttribute(string resourceKey) 4: { 5: ResourceKey = resourceKey; 6: } 7:   8: public override string DisplayName 9: { 10: get 11: { 12: string displayName = MyResource.ResourceManager.GetString(ResourceKey); 13:   14: return string.IsNullOrEmpty(displayName) 15: ? string.Format("[[{0}]]", ResourceKey) 16: : displayName; 17: } 18: } 19:   20: private string ResourceKey { get; set; } 21: } Instead of a display string, it takes a constructor argument of a resource key. The DisplayName method is overridden to get the display string from the resource file (line 12). If the key is not found, I return a formatted string containing the key (e.g. “[[RememberMe]]”) so I can tell by looking at my web pages which resource keys I haven’t defined yet (line 15). The usage of my custom attribute in the model looks like this: [LocalizedDisplayName("RememberMe")] public bool RememberMe { get; set; } That was my first attempt at localized display names, and it’s a technique that I still use in some cases, but in my next post I’ll talk about the method that I now prefer, a custom DataAnnotationsModelMetadataProvider class…

    Read the article

  • Oracle B2B 11g - Transport Layer Acknowledgement

    - by Nitesh Jain Oracle
    In Health Care Industry,Acknowledgement or Response should be sent back very fast. Once any message received, Acknowledgement should be sent back to TP. Oracle B2B provides a solution to send acknowledgement or Response from transport layer of mllp that is called as immediate acknowledgment. Immediate acknowledgment is generated and transmitted in the transport layer. It is an alternative to the functional acknowledgment, which generates after processing/validating the data in document layer. Oracle B2B provides four types of immediate acknowledgment: Default: Oracle B2B parses the incoming HL7 message and generates an acknowledgment from it. This mode uses the details from incoming payload and generate the acknowledgement based on incoming HL7 message control number, sender and application identification. By default, an Immediate ACK is a generic ACK. Trigger event can also sent back by using Map Trigger Event property. If mapping the MSH.10 of the ACK with the MSH.10 of the incoming business message is required, then enable the Map ACK Control ID property. Simple: B2B sends the predefined acknowledgment message to the sender without parsing the incoming message. Custom: Custom immediate Ack/Response mode gives a user to define their own response/acknowledgement. This is configurable using file in the Custom Immediate ACK File property. Negative: In this case, immediate ACK will be returned only in the case of exceptions.

    Read the article

  • Dotfuscator Deep Dive with WP7

    - by Bil Simser
    I thought I would share some experience with code obfuscation (specifically the Dotfuscator product) and Windows Phone 7 apps. These days twitter is a buzz with black hat and white operations coming out about how the marketplace is insecure and Microsoft failed, blah, blah, blah. So it’s that much more important to protect your intellectual property. You should protect it no matter what when releasing apps into the wild but more so when someone is paying for them. You want to protect the time and effort that went into your code and have some comfort that the casual hacker isn’t going to usurp your next best thing. Enter code obfuscation. Code obfuscation is one tool that can help protect your IP. Basically it goes into your compiled assemblies, rewrites things at an IL level (like renaming methods and classes and hiding logic flow) and rewrites it back so that the assembly or executable is still fully functional but prying eyes using a tool like ILDASM or Reflector can’t see what’s going on.  You can read more about code obfuscation here on Wikipedia. A word to the wise. Code obfuscation isn’t 100% secure. More so on the WP7 platform where the OS expects certain things to be as they were meant to be. So don’t expect 100% obfuscation of every class and every method and every property. It’s just not going to happen. What this does do is give you some level of protection but don’t put all your eggs in one basket and call it done. Like I said, this is just one step in the process. There are a few tools out there that provide code obfuscation and support the Windows Phone 7 platform (see links to other tools at the end of this post). One such tool is Dotfuscator from PreEmptive solutions. The thing about Dotfuscator is that they’ve struck a deal with Microsoft to provide a *free* copy of their commercial product for Windows Phone 7. The only drawback is that it only runs until March 31, 2010. However it’s a good place to start and the focus of this article. Getting Started When you fire up Dotfuscator you’re presented with a dialog to start a new project or load a previous one. We’ll start with a new project. You’re then looking at a somewhat blank screen that shows an Input tab (among others) and you’re probably wondering what to do? Click on the folder icon (first one) and browse to where your xap file is. At this point you can save the project and click on the arrow to start the process. Bam! You’re done. Right? Think again. The program did indeed run and create a new version of your xap (doing it’s thing and rewriting back your *obfuscated* assemblies) but let’s take a look at the assembly in Reflector to see the end result. Remember a xap file is really just a glorified zip file (or cab file if you prefer). When you ran Dotfuscator for the first time with the default settings you’ll see it created a new version of your xap in a folder under “My Documents” called “Dotfuscated” (you can configure the output directory in settings). Here’s the new xap file. Since a xap is just a zip, rename it to .cab or .zip or something and open it with your favorite unarchive program (I use WinRar but it doesn’t matter as long as it can unzip files). If you already have the xap file associated with your unarchive tool the rename isn’t needed. Once renamed extract the contents of the xap to your hard drive: Now you’ll have a folder with the contents of the xap file extracted: Double click or load up your assembly (WindowsPhoneDataBoundApplication1.dll in the example) in Reflector and let’s see the results: Hmm. That doesn’t look right. I can see all the methods and the code is all there for my LoadData method I wanted to protect. Product failure. Let’s return it for a refund. Hold your horses. We need to check out the settings in the program first. Remember when we loaded up our xap file. It started us on the Input tab but there was a settings tab before that. Wonder what it does? Here’s the default settings: Renaming Taking a closer look, all of the settings in Feature are disabled. WTF? Yeah, it leaves me scratching my head why an obfuscator by default doesn’t obfuscate. However it’s a simple fix to change these settings. Let’s enable Renaming as it sounds like a good start. Renaming obscures code by renaming methods and fields to names that are not understandable. Great. Run the tool again and go through the process of unzipping the updated xap and let’s take a look in Reflector again at our project. This looks a lot better. Lots of methods named a, b, c, d, etc. That’ll help slow hackers down a bit. What about our logic that we spent days weeks on? Let’s take a look at the LoadData method: What gives? We have renaming enabled but all of our code is still there. If you look through all your methods you’ll find it’s still sitting there out in the open. Control Flow Back to the settings page again. Let’s enable Control Flow now. Control Flow obfuscation synthesizes branching, conditional, and iterative constructs (such as if, for, and while) that produce valid executable logic, but yield non-deterministic semantic results when decompilation is attempted. In other words, the code runs as before, but decompilers cannot reproduce the original code. Do the dance again and let’s see the results in Reflector. Ahh, that’s better. Methods renamed *and* nobody can look at our LoadData method now. Life is good. More than Minimum This is the bare minimum to obfuscate your xap to at least a somewhat comfortable level. However I did find that while this worked in my Hello World demo, it didn’t work on one of my real world apps. I had to do some extra tweaking with that. Below are the screens that I used on one app that worked. I’m not sure what it was about the app that the approach above didn’t work with (maybe the extra assembly?) but it works and I’m happy with it. YMMV. Remember to test your obfuscated app on your device first before submitting to ensure you haven’t obfuscated the obfuscator. settings tab: rename tab: string encryption tab: premark tab: A few final notes Play with the settings and keep bumping up the bar to try to get as much obfuscation as you can. The more the better but remember you can overdo it. Always (always, always, always) deploy your obfuscated xap to your device and test it before submitting to the marketplace. I didn’t and got rejected because I had gone overboard with the obfuscation so the app wouldn’t launch at all. Not everything is going to be obfuscated. Specifically I don’t see a way to obfuscate auto properties and a few other language features. Again, if you crank the settings up you might hide these but I haven’t spent a lot of time optimizing the process. Some people might say to obfuscate your xaml using string encryption but again, test, test, test. Xaml is picky so too much obfuscation (or any) might disable your app or produce odd rendering effets. Remember, obfuscation is not 100% secure! Don’t rely on it as a sole way of protecting your assets. Other Tools Dotfuscator is one just product and isn’t the end-all be-all to obfuscation so check out others below. For example, Crypto can make it so Reflector doesn’t even recognize the app as a .NET one and won’t open it. Others can encrypt resources and Xaml markup files. Here are some other obfuscators that support the Windows Phone 7 platform. Feel free to give them a try and let people know your experience with them! Dotfuscator Windows Phone Edition Crypto Obfuscator for .NET DeepSea Obfuscation

    Read the article

  • Metro: Understanding the default.js File

    - by Stephen.Walther
    The goal of this blog entry is to describe — in painful detail — the contents of the default.js file in a Metro style application written with JavaScript. When you use Visual Studio to create a new Metro application then you get a default.js file automatically. The file is located in a folder named \js\default.js. The default.js file kicks off all of your custom JavaScript code. It is the main entry point to a Metro application. The default contents of the default.js file are included below: // For an introduction to the Blank template, see the following documentation: // http://go.microsoft.com/fwlink/?LinkId=232509 (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { if (eventObject.detail.previousExecutionState !== Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) { // TODO: This application has been newly launched. Initialize // your application here. } else { // TODO: This application has been reactivated from suspension. // Restore application state here. } WinJS.UI.processAll(); } }; app.oncheckpoint = function (eventObject) { // TODO: This application is about to be suspended. Save any state // that needs to persist across suspensions here. You might use the // WinJS.Application.sessionState object, which is automatically // saved and restored across suspension. If you need to complete an // asynchronous operation before your application is suspended, call // eventObject.setPromise(). }; app.start(); })(); There are several mysterious things happening in this file. The purpose of this blog entry is to dispel this mystery. Understanding the Module Pattern The first thing that you should notice about the default.js file is that the entire contents of this file are enclosed within a self-executing JavaScript function: (function () { ... })(); Metro applications written with JavaScript use something called the module pattern. The module pattern is a common pattern used in JavaScript applications to create private variables, objects, and methods. Anything that you create within the module is encapsulated within the module. Enclosing all of your custom code within a module prevents you from stomping on code from other libraries accidently. Your application might reference several JavaScript libraries and the JavaScript libraries might have variables, objects, or methods with the same names. By encapsulating your code in a module, you avoid overwriting variables, objects, or methods in the other libraries accidently. Enabling Strict Mode with “use strict” The first statement within the default.js module enables JavaScript strict mode: 'use strict'; Strict mode is a new feature of ECMAScript 5 (the latest standard for JavaScript) which enables you to make JavaScript more strict. For example, when strict mode is enabled, you cannot declare variables without using the var keyword. The following statement would result in an exception: hello = "world!"; When strict mode is enabled, this statement throws a ReferenceError. When strict mode is not enabled, a global variable is created which, most likely, is not what you want to happen. I’d rather get the exception instead of the unwanted global variable. The full specification for strict mode is contained in the ECMAScript 5 specification (look at Annex C): http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf Aliasing the WinJS.Application Object The next line of code in the default.js file is used to alias the WinJS.Application object: var app = WinJS.Application; This line of code enables you to use a short-hand syntax when referring to the WinJS.Application object: for example,  app.onactivated instead of WinJS.Application.onactivated. The WinJS.Application object  represents your running Metro application. Handling Application Events The default.js file contains an event handler for the WinJS.Application activated event: app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { if (eventObject.detail.previousExecutionState !== Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) { // TODO: This application has been newly launched. Initialize // your application here. } else { // TODO: This application has been reactivated from suspension. // Restore application state here. } WinJS.UI.processAll(); } }; This WinJS.Application class supports the following events: · loaded – Happens after browser DOMContentLoaded event. After this event, the DOM is ready and you can access elements in a page. This event is raised before external images have been loaded. · activated – Triggered by the Windows.UI.WebUI.WebUIApplication activated event. After this event, the WinRT is ready. · ready – Happens after both loaded and activated events. · unloaded – Happens before application is unloaded. The following default.js file has been modified to capture each of these events and write a message to the Visual Studio JavaScript Console window: (function () { "use strict"; var app = WinJS.Application; WinJS.Application.onloaded = function (e) { console.log("Loaded"); }; WinJS.Application.onactivated = function (e) { console.log("Activated"); }; WinJS.Application.onready = function (e) { console.log("Ready"); } WinJS.Application.onunload = function (e) { console.log("Unload"); } app.start(); })(); When you execute the code above, a message is written to the Visual Studio JavaScript Console window when each event occurs with the exception of the Unload event (presumably because the console is not attached when that event is raised).   Handling Different Activation Contexts The code for the activated handler in the default.js file looks like this: app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { if (eventObject.detail.previousExecutionState !== Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) { // TODO: This application has been newly launched. Initialize // your application here. } else { // TODO: This application has been reactivated from suspension. // Restore application state here. } WinJS.UI.processAll(); } }; Notice that the code contains a conditional which checks the Kind of the event (the value of e.detail.kind). The startup code is executed only when the activated event is triggered by a Launch event, The ActivationKind enumeration has the following values: · launch · search · shareTarget · file · protocol · fileOpenPicker · fileSavePicker · cacheFileUpdater · contactPicker · device · printTaskSettings · cameraSettings Metro style applications can be activated in different contexts. For example, a camera application can be activated when modifying camera settings. In that case, the ActivationKind would be CameraSettings. Because we want to execute our JavaScript code when our application first launches, we verify that the kind of the activation event is an ActivationKind.Launch event. There is a second conditional within the activated event handler which checks whether an application is being newly launched or whether the application is being resumed from a suspended state. When running a Metro application with Visual Studio, you can use Visual Studio to simulate different application execution states by taking advantage of the Debug toolbar and the new Debug Location toolbar.  Handling the checkpoint Event The default.js file also includes an event handler for the WinJS.Application checkpoint event: app.oncheckpoint = function (eventObject) { // TODO: This application is about to be suspended. Save any state // that needs to persist across suspensions here. You might use the // WinJS.Application.sessionState object, which is automatically // saved and restored across suspension. If you need to complete an // asynchronous operation before your application is suspended, call // eventObject.setPromise(). }; The checkpoint event is raised when your Metro application goes into a suspended state. The idea is that you can save your application data when your application is suspended and reload your application data when your application resumes. Starting the Application The final statement in the default.js file is the statement that gets everything going: app.start(); Events are queued up in a JavaScript array named eventQueue . Until you call the start() method, the events in the queue are not processed. If you don’t call the start() method then the Loaded, Activated, Ready, and Unloaded events are never raised. Summary The goal of this blog entry was to describe the contents of the default.js file which is the JavaScript file which you use to kick off your custom code in a Windows Metro style application written with JavaScript. In this blog entry, I discussed the module pattern, JavaScript strict mode, handling first chance exceptions, WinJS Application events, and activation contexts.

    Read the article

  • My View on ASP.NET Web Forms versus MVC

    - by Ricardo Peres
    Introduction A lot has been said on Web Forms and MVC, but since I was recently asked about my opinion on the subject, here it is. First, I have to say that I really like both technologies and I don’t think any is going away – just remember SharePoint, which is built on top of Web Forms. I see them as complementary, targeting different needs and leveraging different skills. Let’s go through some of their differences. Rapid Application Development Rapid Application Development (RAD) is the development process by which you have an Integrated Development Environment (IDE), a visual design surface and a toolbox, and you drag components from the toolbox to the design surface and set their properties through a property inspector. It was introduced with some of the earliest Windows graphical IDEs such as Visual Basic and Delphi. With Web Forms you have RAD out of the box. Visual Studio offers a generally good (and extensible) designer for the layout of pages and web user controls. Designing a page may simply be about dragging controls from the toolbox, setting their properties and wiring up some events to event handlers, which are implemented in code behind .NET classes. Most people will be familiar with this kind of development and enjoy it. You can see what you are doing from the beginning. MVC also has designable pages – called views in MVC terminology – the problem is that they can be built using different technologies, some of which, at the moment (MVC 4) do not support RAD – Razor, for example. I believe it is just a matter of time for that to be implemented in Visual Studio, but it will mostly consist on HTML editing, and until that day comes, you have to live with source editing. Development Model Web Forms features the same development model that you are used to from Windows Forms and other similar technologies: events fired by controls and automatic persistence of their properties between postbacks. For that, it uses concepts such as view state, which some may love and others may hate, because it may be misused quite easily, but otherwise does its job well. Another fundamental concept is data binding, by which a collection of data can be fed to a control and have it render that data somehow – just thing of the GridView control. The focus is on the page, that’s where it all starts, and you can place everything in the same code behind class: data access, business logic, layout, etc. The controls take care of generating a great part of the HTML and JavaScript for you. With MVC there is no free lunch when it comes to data persistence between requests, you have to implement it yourself. As for event handling, that is at the core of MVC, in the form of controllers and action methods, you just don’t think of them as event handlers. In MVC you need to think more in HTTP terms, so action methods such as POST and GET are relevant to you, and may write actions to handle one or the other. Also of crucial importance is model binding: the way by which MVC converts your posted data into a .NET class. This is something that ASP.NET 4.5 Web Forms has introduced as well, but it is a cornerstone in MVC. MVC also has built-in validation of these .NET classes, which out of the box uses the Data Annotations API. You have full control of the generated HTML - except for that coming from the helper methods, usually small fragments - which requires a greater familiarity with the specifications. You normally rely much more on JavaScript APIs, they are even included in the Visual Studio template, that is because much less is done for you. Reuse It is difficult to accept a professional company/project that does not employ reuse. It can save a lot of time thus cutting costs significantly. Code reused in several projects matures as time goes by and helps developers learn from past experiences. ASP.NET Web Forms was built with reuse in mind, in the form of controls. Controls encapsulate functionality and are generally portable from project to project (with the notable exception of web user controls, those with an associated .ASCX markup file). ASP.NET has dozens of controls and it is very easy to develop new ones, so I believe this is a great advantage. A control can inject JavaScript code and external references as well as generate HTML an CSS. MVC on the other hand does not use controls – it is possible to use them, with some view engines like ASPX, but it is just not advisable because it breaks the flow – where do Init, Load, PreRender, etc, fit? The most similar to controls is extension methods, or helpers. They serve the same purpose – generating HTML, CSS or JavaScript – and can be reused between different projects. What differentiates them from controls is that there is no inheritance and no context – an extension method is just a static method which doesn’t know where it is being called. You also have partial views, which you can reuse in the same project, but there is no inheritance as well. This, in my view, is a weakness of MVC. Architecture Both technologies are highly extensible. I have writtenstarted writing a series of posts on ASP.NET Web Forms extensibility and will probably write another series on MVC extensibility as well. A number of scenarios are covered in any of these models, and some extensibility points apply to both, because, of course both stand upon ASP.NET. With Web Forms, if you’re like me, you start by defining you master pages, pages and controls, with some helper classes to glue everything. You may as well throw in some JavaScript, but probably you’re main work will be with plain old .NET code. The controls you define have the chance to inject JavaScript code and references, through either the ScriptManager or the page’s ClientScript object, as well as generating HTML and CSS code. The master page and page model with code behind classes offer a number of “hooks” by which you can change the normal way of things, for example, in a page you can access any control on the master page, add script or stylesheet references to its head and even change the page’s title. Also, with Web Forms, you typically have URLs in the form “/SomePath/SomePage.aspx?SomeParameter=SomeValue”, which isn’t really SEO friendly, no to mention the HTML that some controls produce, far from standards, optimization and best practices. In MVC, you also normally start by defining the master page (or layout) and views, which are the visible parts, and then define controllers on separate files. These controllers do not know anything about the views, except the names and types of the parameters that will be passed to and from them. The controller will be responsible for the data access and business logic, eventually relying on additional classes for this purpose. On a controller you only receive parameters and return a result, which may be a request for the rendering of a view, a redirection to another URL or a JSON object, to name just a few. The controller class does not know anything about the web, so you can effectively reuse it in a non-web project. This separation and the lack of programmatic access to the UI elements, makes it very difficult to implement, for example, something like SharePoint with MVC. OK, I know about Orchard, but it isn’t really a general purpose development framework, but instead, a CMS that happens to use MVC. Not having controls render HTML for you gives you in turn much more control over it – it is your responsibility to create it, which you can either consider a blessing or a curse, in the later case, you probably shouldn’t be using MVC at all. Also MVC URLs tend to be much more SEO-oriented, if you design your controllers and actions properly. Testing In a well defined architecture, you should separate business logic, data access logic and presentation logic, because these are all different things and it might even be the need to switch one implementation for another: for example, you might design a system which includes a data access layer, a business logic layer and two presentation layers, one on top of ASP.NET and the other with WPF; and the data access layer might be implemented first using NHibernate and later on switched for Entity Framework Code First. These changes are not that rare, so care should be taken in designing the system to make them possible. Web Forms are difficult to test, because it relies on event handlers which are only fired in web contexts, when a form is submitted or a page is requested. You can call them with reflection, but you have to set up a number of mocking objects first, HttpContext.Current first coming to my mind. MVC, on the other hand, makes testing controllers a breeze, so much that it even includes a template option for generating boilerplate unit test classes up from start. A well designed – from the unit test point of view - controller will receive everything it needs to work as parameters to its action methods, so you can pass whatever values you need very easily. That doesn’t mean, of course, that everything can be tested: views, for instance, are difficult to test without actually accessing the site, but MVC offers the possibility to compile views at build time, so that, at least, you know you don’t have syntax errors beforehand. Myths Some popular but unfounded myths around MVC include: You cannot use controls in MVC: not true, actually, you can, at least with the Web Forms (ASPX) view engine; the declaration and usage is exactly the same as with Web Forms; You cannot specify a base class for a view: with the ASPX view engine you can use the Inherits Page directive, with this and all the others you can use the pageBaseType and userControlBaseType attributes of the <page> element; MVC shields you from doing “bad things” on your views: well, you can place any code on a code block, at least with the ASPX view engine (you may be starting to see a pattern here), even data access code; The model is the entity model, tied to an O/RM: the model is actually any class that you use to pass values to a view, including (but generally not recommended) an entity model; Unit tests come with no cost: unit tests generally don’t cover the UI, although there are frameworks just for that (see WatiN, for example); also, for some tests, you will have to mock or replace either the HttpContext.Current property or the HttpContextBase class yourself; Everything is testable: views aren’t, without accessing the site; MVC relies on HTML5/some_cool_new_javascript_framework: there is no relation whatsoever, MVC renders whatever you want it to render and does not require any framework to be present. The thing is, the subsequent releases of MVC happened in a time when Microsoft has become much more involved in standards, so the files and technologies included in the Visual Studio templates reflect this, and it just happens to work well with jQuery, for example. Conclusion Well, this is how I see it. Some folks may think that I am being too rude on MVC, probably because I don’t like it, but that’s not true: like I said, I do like MVC and I am starting my new projects with it. I just don’t want to go along with that those that say that MVC is much superior to Web Forms, in fact, some things you can do much more easily with Web Forms than with MVC. I will be more than happy to hear what you think on this!

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • Bash script throws, "syntax error near unexpected token `}'" when ran

    - by Tab00
    I am trying to write a script to monitor some battery statuses on a laptop running as a server. To accomplish this, I have already started to write this code: #! /bin/bash # A script to monitor battery statuses and send out email notifications #take care of looping the script for (( ; ; )) do #First, we check to see if the battery is present... if(cat /proc/acpi/battery/BAT0/state | grep 'present: *' == present: yes) { #Code to execute if battery IS present #No script needed for our application #you may add scripts to run } else { #if the battery IS NOT present, run this code sendemail -f [email protected] -t 214*******@txt.att.net -u NTA TV Alert -m "The battery from the computer is either missing, or removed. Please check ASAP." -s smtp.gmail.com -o tls=yes -xu [email protected] -xp *********** } #Second, we check into the current state of the battery if(cat /proc/acpi/battery/BAT0/state | grep 'charging state: *' == 'charging state: charging') { #Code to execute if battery is charging sendemail -f [email protected] -t 214*******@txt.att.net -u NTA TV Alert -m "The battery from the computer is charging. This MIGHT mean that something just happened" -s smtp.gmail.com -o tls=yes -xu [email protected] -xp *********** } #If it isn't charging, is it discharging? else if(cat /proc/acpi/battery/BAT0/state | grep 'charging state: *' == 'charging state: discharging') { #Code to run if the battery is discharging sendemail -f [email protected] -t 214*******@txt.att.net -u NTA TV Alert -m "The battery from the computer is discharging. This shouldn't be happening. Please check ASAP." -s smtp.gmail.com -o tls=yes -xu [email protected] -xp *********** } #If it isn't charging or discharging, is it charged? else if(cat /proc/acpi/battery/BAT0/state | grep 'charging state: *' == 'charging state: charged') { #Code to run if battery is charged } done I'm pretty sure that most of the other stuff works correctly, but I haven't been able to try it because it will not run. whenever I try and run the script, this is the error that I get: ./BatMon.sh: line 15: syntax error near unexpected token `}' ./BatMon.sh: ` }' is the error something super simple like a forgotten semicolon? Thanks -Tab00

    Read the article

  • C#.NET vs VB.NET, Which language is better?

    Features I cannot say any language good or bad as long as it's compiler can produce MSIL can run under .NET CLR. If someone says C# has more futures, you can understand that those new features are of C# compiler but not .NET, because if C# has a specific future then CLR cannot understand them. So the new features of C# will have to convert to the code understood by CLR eventually. that means the new features are developed for C# compiler basically to facilitates the developer to write their code in better way. so that means no difference in feature list between C# and VB.NET if you think in CLR perspective. Ease of writing Code I feel writing code in C# is easy, because my background is C and C++, Java, syntaxes very are similar. I assume most developers feel the same. Readability But some people say VB.NET code most readable for the members who are from non technical background, because keywords are generally in English rather special charectors. No of Projects in Market I assume 80 percent of market uses C# in their .NET development. for example in my company many projects are there .nET and all are using C#. Productivity & Experience though the feature list is same, generally developers wants to write code in their familiar languages. because it increase the productivity. Hope this helps to choose the language which suits for you. span.fullpost {display:none;}

    Read the article

  • Cool SQL formatter tool

    - by AndyScott
    I have to deal with all types of code that was written by people from different organizations, different countries, using different languages, obviously standards are different across these sources.  One of the biggest headaches that I ahve come across is how people differ in the formatting of their SQL statements, specifically stored procs.  When you regularly get over 500 lines in a sproc, if the code is not formatted correctly, you can get lost trying to figure out where one nested BEGIN begins, and another nested END ends.  One of my co-workers showed me this site today that does a pretty damn good job of making sense of that type of code: http://www.dpriver.com/pp/sqlformat.htm.   This is a free website that offers a box to enter your nasty code, and click "Format SQL" and have it clean it for you.  I am sure that there are situations where this may not work, but given the code that I have been working with recently, it does a really good job.  There is a pay version with more options, including VS add-in, desktop component (with quickkeys to clean text in programs like notepad), the ability to output in HTML, and other stuff.  Heck, I watched a demo where the purchased version will take formatted SQL code and turn it into a generic Stringbuilder object embedded in a formatted. Yes, this seems like a shameless plug, but no, I have no relation/knowledge of anyone involved in the development of this product, it just seems useful.  Either way, I recommend checking out the free version.

    Read the article

  • Set-Cookie Headers getting stripped in ASP.NET HttpHandlers

    - by Rick Strahl
    Yikes, I ran into a real bummer of an edge case yesterday in one of my older low level handler implementations (for West Wind Web Connection in this case). Basically this handler is a connector for a backend Web framework that creates self contained HTTP output. An ASP.NET Handler captures the full output, and then shoves the result down the ASP.NET Response object pipeline writing out the content into the Response.OutputStream and seperately sending the HttpHeaders in the Response.Headers collection. The headers turned out to be the problem and specifically Http Cookies, which for some reason ended up getting stripped out in some scenarios. My handler works like this: Basically the HTTP response from the backend app would return a full set of HTTP headers plus the content. The ASP.NET handler would read the headers one at a time and then dump them out via Response.AppendHeader(). But I found that in some situations Set-Cookie headers sent along were simply stripped inside of the Http Handler. After a bunch of back and forth with some folks from Microsoft (thanks Damien and Levi!) I managed to pin this down to a very narrow edge scenario. It's easiest to demonstrate the problem with a simple example HttpHandler implementation. The following simulates the very much simplified output generation process that fails in my handler. Specifically I have a couple of headers including a Set-Cookie header and some output that gets written into the Response object.using System.Web; namespace wwThreads { public class Handler : IHttpHandler { /* NOTE: * * Run as a web.config set handler (see entry below) * * Best way is to look at the HTTP Headers in Fiddler * or Chrome/FireBug/IE tools and look for the * WWHTREADSID cookie in the outgoing Response headers * ( If the cookie is not there you see the problem! ) */ public void ProcessRequest(HttpContext context) { HttpRequest request = context.Request; HttpResponse response = context.Response; // If ClearHeaders is used Set-Cookie header gets removed! // if commented header is sent... response.ClearHeaders(); response.ClearContent(); // Demonstrate that other headers make it response.AppendHeader("RequestId", "asdasdasd"); // This cookie gets removed when ClearHeaders above is called // When ClearHEaders is omitted above the cookie renders response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); // *** This always works, even when explicit // Set-Cookie above fails and ClearHeaders is called //response.Cookies.Add(new HttpCookie("WWTHREADSID", "ThisIsTheValue")); response.Write(@"Output was created.<hr/> Check output with Fiddler or HTTP Proxy to see whether cookie was sent."); } public bool IsReusable { get { return false; } } } } In order to see the problem behavior this code has to be inside of an HttpHandler, and specifically in a handler defined in web.config with: <add name=".ck_handler" path="handler.ck" verb="*" type="wwThreads.Handler" preCondition="integratedMode" /> Note: Oddly enough this problem manifests only when configured through web.config, not in an ASHX handler, nor if you paste that same code into an ASPX page or MVC controller. What's the problem exactly? The code above simulates the more complex code in my live handler that picks up the HTTP response from the backend application and then peels out the headers and sends them one at a time via Response.AppendHeader. One of the headers in my app can be one or more Set-Cookie. I found that the Set-Cookie headers were not making it into the Response headers output. Here's the Chrome Http Inspector trace: Notice, no Set-Cookie header in the Response headers! Now, running the very same request after removing the call to Response.ClearHeaders() command, the cookie header shows up just fine: As you might expect it took a while to track this down. At first I thought my backend was not sending the headers but after closer checks I found that indeed the headers were set in the backend HTTP response, and they were indeed getting set via Response.AppendHeader() in the handler code. Yet, no cookie in the output. In the simulated example the problem is this line:response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); which in my live code is more dynamic ( ie. AppendHeader(token[0],token[1[]) )as it parses through the headers. Bizzaro Land: Response.ClearHeaders() causes Cookie to get stripped Now, here is where it really gets bizarre: The problem occurs only if: Response.ClearHeaders() was called before headers are added It only occurs in Http Handlers declared in web.config Clearly this is an edge of an edge case but of course - knowing my relationship with Mr. Murphy - I ended up running smack into this problem. So in the code above if you remove the call to ClearHeaders(), the cookie gets set!  Add it back in and the cookie is not there. If I run the above code in an ASHX handler it works. If I paste the same code (with a Response.End()) into an ASPX page, or MVC controller it all works. Only in the HttpHandler configured through Web.config does it fail! Cue the Twilight Zone Music. Workarounds As is often the case the fix for this once you know the problem is not too difficult. The difficulty lies in tracking inconsistencies like this down. Luckily there are a few simple workarounds for the Cookie issue. Don't use AppendHeader for Cookies The easiest and obvious solution to this problem is simply not use Response.AppendHeader() to set Cookies. Duh! Under normal circumstances in application level code there's rarely a reason to write out a cookie like this:response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); but rather create the cookie using the Response.Cookies collection:response.Cookies.Add(new HttpCookie("WWTHREADSID", "ThisIsTheValue")); Unfortunately, in my case where I dynamically read headers from the original output and then dynamically  write header key value pairs back  programmatically into the Response.Headers collection, I actually don't look at each header specifically so in my case the cookie is just another header. My first thought was to simply trap for the Set-Cookie header and then parse out the cookie and create a Cookie object instead. But given that cookies can have a lot of different options this is not exactly trivial, plus I don't really want to fuck around with cookie values which can be notoriously brittle. Don't use Response.ClearHeaders() The real mystery in all this is why calling Response.ClearHeaders() prevents a cookie value later written with Response.AppendHeader() to fail. I fired up Reflector and took a quick look at System.Web and HttpResponse.ClearHeaders. There's all sorts of resetting going on but nothing that seems to indicate that headers should be removed later on in the request. The code in ClearHeaders() does access the HttpWorkerRequest, which is the low level interface directly into IIS, and so I suspect it's actually IIS that's stripping the headers and not ASP.NET, but it's hard to know. Somebody from Microsoft and the IIS team would have to comment on that. In my application it's probably safe to simply skip ClearHeaders() in my handler. The ClearHeaders/ClearContent was mainly for safety but after reviewing my code there really should never be a reason that headers would be set prior to this method firing. However, if for whatever reason headers do need to be cleared, it's easy enough to manually clear the headers out:private void RemoveHeaders(HttpResponse response) { List<string> headers = new List<string>(); foreach (string header in response.Headers) { headers.Add(header); } foreach (string header in headers) { response.Headers.Remove(header); } response.Cookies.Clear(); } Now I can replace the call the Response.ClearHeaders() and I don't get the funky side-effects from Response.ClearHeaders(). Summary I realize this is a total edge case as this occurs only in HttpHandlers that are manually configured. It looks like you'll never run into this in any of the higher level ASP.NET frameworks or even in ASHX handlers - only web.config defined handlers - which is really, really odd. After all those frameworks use the same underlying ASP.NET architecture. Hopefully somebody from Microsoft has an idea what crazy dependency was triggered here to make this fail. IAC, there are workarounds to this should you run into it, although I bet when you do run into it, it'll likely take a bit of time to find the problem or even this post in a search because it's not easily to correlate the problem to the solution. It's quite possible that more than cookies are affected by this behavior. Searching for a solution I read a few other accounts where headers like Referer were mysteriously disappearing, and it's possible that something similar is happening in those cases. Again, extreme edge case, but I'm writing this up here as documentation for myself and possibly some others that might have run into this. © Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   IIS7   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • BDD (Behavior-Driven Development) tools for .Net

    - by tikrimi
    For several years, I use TDD (Test-Driven Development) to produce code. I no longer plans to work without using TDD. The use of TDD significantly increases code quality, but does not guarantee that the code is the code that corresponds to the requirements specifications (write the "right code" with BDD as opposed to the write "code right" with BDD). Dan North has described in an article in published in 2006 the foundations of the BDD (Behavior-Driven Development). In this article, he introduces the formalism "When Given Then". This formalism is used in all tools dedicated to BDD. This is a short list of open source BDD tools that you can use with .Net : SpecFlow: Here you can find an article in MSDN Magazine and 2 webcasts (http://channel9.msdn.com/posts/ASPNET-MVC-With-Community-Tools-Part-2-Spec-Flow-and-WatiN and http://channel9.msdn.com/posts/ASPNET-MVC-With-Community-Tools-Part-3-More-Spec-Flow-and-WatiN) published on Chanel9. NSpec: This is certainly the most used project. There are many examples on the web. StoryQ: This project is hosted on Codeplex. This small project is very simple to implement and very useful.

    Read the article

  • "Integratable" but not "integrated" GPL

    - by mgibsonbr
    There has been much debate over whether or not merely linking to a piece of code makes it a derivative work. I know FSF says "yes", so according to them I can't dynamically link a non-GPL compatible program to a GPL library and distribute the whole. But I could do that for private use, as long as no code is released to the public. That made me wonder: what if I don't redistribute the GPL code at all? If my program can work alone (reinforcing my claim that it's not a derivative work), but can do more if the GPL library is also installed to the system, couldn't I just release my application under my own licensing terms - without including any GPL code - and post instructions for anyone interested to separately download the GPL code and do the integration "for their private use"? I know it's against the "spirit" of the GPL, so I'm not suggesting it's a good idea to do that. However, this question is bugging me for some time, specially because of the implications of each answer: If I can not do that: can I write another library with a similar API? (before answering "of course you can", remember that having the same API would allow both libraries to be swapped at will by my customers - so I don't need to work too hard on my library or even make it "working". How to determine if a similar program is just similar or is a circumvention attempt?) If I can do that: can I also be paid to perform the service of installing the GPL library for a customer? (I sell them my program, install it in their machines, download and install the GPL library too) can I put the two programs in the same website? In two different CDs? (I know I said the idea was not to redistribute the GPL code, I'm just thinking in excuses people could use to claim they're not redistributing even though they are)

    Read the article

  • What's the term for re-implementing an old API in terms of a newer API

    - by dodgy_coder
    The reason for doing it is to solve the case when a newer API is no longer backwards compatible with an older API. To explain, just say that there is an old API v1.0. The maker of this API decides it is broken and works on a new API v1.1 that intentionally breaks compatibility with the old API v1.0. Now, any programs written against the old API cannot be recompiled as-is with the new API. Then lets say there is a large app written against the old API and the developer doesn't have access to the source code. A solution would be to re-implement a "custom" old API v1.0 in terms of the new API v1.1 calls. So the "custom" v1.0 API is actually keeping the same interface/methods as the v1.0 API but inside its implementation it is actually making calls to the new API v1.1 methods. So the large app can be then compiled and linked against the "custom" v1.0 API and the new v1.1 API without any major source code changes. Is there a term for this practice? There's a recent example of this happening in Jamie Zawinski's port of XScreenSaver to the iPhone - he re-implemented the OpenGL 1.3 API in terms of the OpenGL ES 1.1 API. In this case, OpenGL 1.3 represents the "old" API and OpenGL ES 1.1 represents the "new" API.

    Read the article

  • When too much encapsulation was reached

    - by Samuel
    Recently, I read a lot of gook articles about how to do a good encapsulation. And when I say "good encapsulation", I don't talk about hiding private fields with public properties; I talk about preventing users of your Api to do wrong things. Here is two good articles about this subject: http://blog.ploeh.dk/2011/05/24/PokayokeDesignFromSmellToFragrance.aspx http://lostechies.com/derickbailey/2011/03/28/encapsulation-youre-doing-it-wrong/ At my job, the majority a our applications are not destined to other programmers but rather to the customers. About 80% of the application code is at the top of the structure (Not used by other code). For this reason, there is probably no chance ever that this code will be used by other application. An example of encapsulation that prevent user to do wrong thing with your Api is to return an IEnumerable instead of IList when you don't want to give the ability to the user to add or remove items in the list. My question is: When encapsulation could be considered like too much of purism object oriented programming while keeping in mind that each hour of programming is charged to the customer? I want to do good code that is maintainable, easy to read and to use but when this is not a public Api (Used by other programmer), where could we put the line between perfect code and not so perfect code? Thank you.

    Read the article

  • Patterns & Practices: Composite Services CTP2 is Public

    - by HernanDL
    Finally the last CTP and pre-release version for the Composite Services is out. There were quite a lot of changes since CTP1. We added many new samples and many enhancements to the repository (DB) which is now called Inventory in sync with SOA Patterns. Here is a brief list of the main changes according to the included documentations.   Changes and additions in this release This CTP release contains reusable source code and samples to illustrate implementation for the following patterns and scenarios: Repair and Resubmit – this pattern is implemented in ESB Toolkit 2.0 as part of Exception Management Framework (EMF). This code drop provides code sample how to implement this pattern for Windows AppFabric workflow service, using Exceptions Web Service and workflow activities to create fault message, which will be created in EMF database.  Analytic Tracing – this code drop contains reusable code and samples for implementing ETW tracing: event collector service and database that store collected events. This capability may be used for scenarios that need flexibility on how collected events are decoded and processed via extensibility points you can configure and implement:  plugins and event decoders with leveraging ETW tracing capabilities provided by the event collector service.   Inventory Centralization – this code drop contains service catalog database, web services and samples to show how to implement Metadata Centralization, Schema Centralization and Policy Centralization patterns.  Service Virtualization – we included sample for implementing this pattern using WCF routing service( which is part of .NET framework) and service metadata centralization capabilities to define routing service metadata in service catalog. Termination Notification – we included sample for implementing this pattern using sample WCF service and policy centralization capabilities provided by this CTP release.   You will also find many new videos that will be uploaded to the home page any time soon. Stay tunned for new posts regarding implemetation details and advanced customizations for custom policy exporters/importers and monitoring.

    Read the article

  • Bad style programming, am I pretending too much?

    - by Luca
    I realized to work in an office with a quite bad code base. The base library implemented in years and years is quite limited, and most of that code is, honestly, horrible. Projects developed in the office are very large. Fine. I could define me a "perfectionist" (but often I'm not), and I thought to refactor an application (really a portion), which need a new (complex) feature. But, today, I really realized that it's not possible to refactor that application modules with a reasonable time (say, 24/26 hours, respect the avaialable time for the task, which is 160 hours). I'm talking about (I am a bit ashamed to say) name collisions, large and frequent cut & paste code, horrible and misleading naming, makefiles without dependencies (!), application login is spread randomly across many different sources, dead code, variable aliasing, no assertion, no documentation, very long source files, bad/incomplete include file definition, (this is emblematic!) very frequent extern declaration of variables and functions, ... I'm sure to continue ... buffer overflows because sprintf, indentation (!), spacing, non existent const modifier usage. I would say that every source line was written quite randomly when needed, without keeping in mind some design (at least, the obvious one). (Am I in hell?) The problem arises when the application is developed by a colleague of mine. I felt very frustrated. So, I decided to expose the "situation" to my colleague; at the end, that was a bad idea. He is justified in saying that "the application was developed in haste, so it is natural that it is written vaguely; you are wasting time to think and implement an elegant implementation" .... I'm asking too much from my colleague to write readable code, which is managed and documented? I expect too much in not having to read thousands of lines of code to understand how a particular logic?

    Read the article

  • FIX: Visual Studio Post Build Event Returns &ndash;1 when it should not.

    - by ChrisD
    I had written a Console Application that I run as part of my post build for other projects..  The Console application logs a series of messages to the console as it executes.  I use the Environment.ExitCode value to specify an error or success condition.  When the application executes without issue, the ExitCode is 0, when there is a problem its –1. As part of my logging, I log the value of the exit code right before the application terminates.  When I run this executable from the command line, it behaves as it should; error scenarios return –1 and success scenarios return 0.   When I run the same command line as part of the post-build event, Visual Studio reports the exit code as –1, even when the application reports the exit code as 0.   A snippet of the build output follows: Verbose: Exiting with ExitCode=0 C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.Common.targets(3397,13): error MSB3073: The command ""MGC.exe" "-TargetPath=C:\TFS\Solutions\Research\Source\Framework\Services\Identity\STS\_STSBuilder\bin\Debug\_STSBuilder.dll" C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.Common.targets(3397,13): error MSB3073:  C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.Common.targets(3397,13): error MSB3073: " exited with code -1. The Application returns a 0 exit code.  But visual studio is reporting an error.  Why? The answer is in the way I format my log messages.  Apparently Visual Studio watches the messages that get streamed to the the output console.  If those messages match a pattern used by visual studio to communicate errors, Visual Studio assumes an error has occurred in the executable and returns a –1.  This post details the formats used by Visual Studio to determine error conditions. In my case, the presence of the colon was tripping up Visual studio.  I Replaced all occurrences of colon with an equal sign and Visual Studio once again respected the exit code of the application. Verbose= Exiting with ExitCode=0 ========== Build: 3 succeeded or up-to-date, 0 failed, 0 skipped ==========

    Read the article

< Previous Page | 548 549 550 551 552 553 554 555 556 557 558 559  | Next Page >