Search Results

Search found 89614 results on 3585 pages for 'code analysis'.

Page 573/3585 | < Previous Page | 569 570 571 572 573 574 575 576 577 578 579 580  | Next Page >

  • Google I/O 2012 - New Low-Level Media APIs in Android

    Google I/O 2012 - New Low-Level Media APIs in Android Dave Burke Jellybean introduces a new set of powerful low-level media APIs that provide developers with the ability to access hardware codecs directly from Java. This session introduces the new APIs with examples. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 470 15 ratings Time: 01:05:50 More in Science & Technology

    Read the article

  • Google Annotations Gallery

    The Google Annotations Gallery is an exciting new Java open source library that provides a rich set of annotations for developers to express themselves. Do you find the...

    Read the article

  • Content API for Shopping - Fireside Chat with Zazzle

    Content API for Shopping - Fireside Chat with Zazzle We'll be chatting with Zazzle engineer Andrew Lamonica about the way they use the Content API for Shopping and we'll be introducing the newest member of the Shopping team here at Google. Links from video: Demo Page: google-content-api-tools.appspot.com Debug Dashboard: googlecommerce.blogspot.com From: GoogleDevelopers Views: 264 7 ratings Time: 41:36 More in Science & Technology

    Read the article

  • Inside BackgroundWorker

    - by João Angelo
    The BackgroundWorker is a reusable component that can be used in different contexts, but sometimes with unexpected results. If you are like me, you have mostly used background workers while doing Windows Forms development due to the flexibility they offer for running a background task. They support cancellation and give events that signal progress updates and task completion. When used in Windows Forms, these events (ProgressChanged and RunWorkerCompleted) get executed back on the UI thread where you can freely access your form controls. However, the logic of the progress changed and worker completed events being invoked in the thread that started the background worker is not something you get directly from the BackgroundWorker, but instead from the fact that you are running in the context of Windows Forms. Take the following example that illustrates the use of a worker in three different scenarios: – Console Application or Windows Service; – Windows Forms; – WPF. using System; using System.ComponentModel; using System.Threading; using System.Windows.Forms; using System.Windows.Threading; class Program { static AutoResetEvent Synch = new AutoResetEvent(false); static void Main() { var bw1 = new BackgroundWorker(); var bw2 = new BackgroundWorker(); var bw3 = new BackgroundWorker(); Console.WriteLine("DEFAULT"); var unspecializedThread = new Thread(() => { OutputCaller(1); SynchronizationContext.SetSynchronizationContext( new SynchronizationContext()); bw1.DoWork += (sender, e) => OutputWork(1); bw1.RunWorkerCompleted += (sender, e) => OutputCompleted(1); // Uses default SynchronizationContext bw1.RunWorkerAsync(); }); unspecializedThread.IsBackground = true; unspecializedThread.Start(); Synch.WaitOne(); Console.WriteLine(); Console.WriteLine("WINDOWS FORMS"); var windowsFormsThread = new Thread(() => { OutputCaller(2); SynchronizationContext.SetSynchronizationContext( new WindowsFormsSynchronizationContext()); bw2.DoWork += (sender, e) => OutputWork(2); bw2.RunWorkerCompleted += (sender, e) => OutputCompleted(2); // Uses WindowsFormsSynchronizationContext bw2.RunWorkerAsync(); Application.Run(); }); windowsFormsThread.IsBackground = true; windowsFormsThread.SetApartmentState(ApartmentState.STA); windowsFormsThread.Start(); Synch.WaitOne(); Console.WriteLine(); Console.WriteLine("WPF"); var wpfThread = new Thread(() => { OutputCaller(3); SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext()); bw3.DoWork += (sender, e) => OutputWork(3); bw3.RunWorkerCompleted += (sender, e) => OutputCompleted(3); // Uses DispatcherSynchronizationContext bw3.RunWorkerAsync(); Dispatcher.Run(); }); wpfThread.IsBackground = true; wpfThread.SetApartmentState(ApartmentState.STA); wpfThread.Start(); Synch.WaitOne(); } static void OutputCaller(int workerId) { Console.WriteLine( "bw{0}.{1} | Thread: {2} | IsThreadPool: {3}", workerId, "RunWorkerAsync".PadRight(18), Thread.CurrentThread.ManagedThreadId, Thread.CurrentThread.IsThreadPoolThread); } static void OutputWork(int workerId) { Console.WriteLine( "bw{0}.{1} | Thread: {2} | IsThreadPool: {3}", workerId, "DoWork".PadRight(18), Thread.CurrentThread.ManagedThreadId, Thread.CurrentThread.IsThreadPoolThread); } static void OutputCompleted(int workerId) { Console.WriteLine( "bw{0}.{1} | Thread: {2} | IsThreadPool: {3}", workerId, "RunWorkerCompleted".PadRight(18), Thread.CurrentThread.ManagedThreadId, Thread.CurrentThread.IsThreadPoolThread); Synch.Set(); } } Output: //DEFAULT //bw1.RunWorkerAsync | Thread: 3 | IsThreadPool: False //bw1.DoWork | Thread: 4 | IsThreadPool: True //bw1.RunWorkerCompleted | Thread: 5 | IsThreadPool: True //WINDOWS FORMS //bw2.RunWorkerAsync | Thread: 6 | IsThreadPool: False //bw2.DoWork | Thread: 5 | IsThreadPool: True //bw2.RunWorkerCompleted | Thread: 6 | IsThreadPool: False //WPF //bw3.RunWorkerAsync | Thread: 7 | IsThreadPool: False //bw3.DoWork | Thread: 5 | IsThreadPool: True //bw3.RunWorkerCompleted | Thread: 7 | IsThreadPool: False As you can see the output between the first and remaining scenarios is somewhat different. While in Windows Forms and WPF the worker completed event runs on the thread that called RunWorkerAsync, in the first scenario the same event runs on any thread available in the thread pool. Another scenario where you can get the first behavior, even when on Windows Forms or WPF, is if you chain the creation of background workers, that is, you create a second worker in the DoWork event handler of an already running worker. Since the DoWork executes in a thread from the pool the second worker will use the default synchronization context and the completed event will not run in the UI thread.

    Read the article

  • Google I/O 2012 - How to Build Apps that Love Each Other with Web Intents

    Google I/O 2012 - How to Build Apps that Love Each Other with Web Intents Paul Kinlan, James Hawkins Web Intents allows you to build applications that integrate with one another with an ease that has never been seen on the web before. In this session we will show you how to connect applications using Web Intents and how to best integrate with the many actions available in Web Intents such as editing, saving and sharing. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1394 15 ratings Time: 57:48 More in Science & Technology

    Read the article

  • Apps Script Office Hours - September 6, 2012

    Apps Script Office Hours - September 6, 2012 In this week's episode of Google Apps Script office hours, Ikai and Jan: - Discuss the upcoming Apps Script hackathon in Austin, Texas (goo.gl - Answer a variety of questions from the Google Moderator. - Answer live questions about monetization and other topics. To find out when the next office hours will be held visit: developers.google.com From: GoogleDevelopers Views: 301 10 ratings Time: 25:28 More in Science & Technology

    Read the article

  • Geo for Good Summit Highlights

    Geo for Good Summit Highlights The last week of September, Google hosted the Geo for Good User Summit, for nonprofit mapping and technology specialists to update the nonprofit community about new and special features of Google's mapping products. In this week's Maps Developers Live event, Mano Marks from Maps Developer Relations and Raleigh Seamster, Program Manager with the Google Earth Outreach team will talk about the highlights of the Summit and show off some great examples of people using Maps to help the world. From: GoogleDevelopers Views: 0 0 ratings Time: 00:00 More in Education

    Read the article

  • Accessing SQL Server data from iOS apps

    - by RobertChipperfield
    Almost all mobile apps need access to external data to be valuable. With a huge amount of existing business data residing in Microsoft SQL Server databases, and an ever-increasing drive to make more and more available to mobile users, how do you marry the rather separate worlds of Microsoft's SQL Server and Apple's iOS devices? The classic answer: write a web service layer Look at any of the questions on this topic asked in Internet discussion forums, and you'll inevitably see the answer, "just write a web service and use that!". But what does this process gain? For a well-designed database with a solid security model, and business logic in the database, writing a custom web service on top of this just to access some of the data from a different platform seems inefficient and unnecessary. Desktop applications interact with the SQL Server directly - why should mobile apps be any different? The better answer: the iSql SDK Working along the lines of "if you do something more than once, make it shared," we set about coming up with a better solution for the general case. And so the iSql SDK was born: sitting between SQL Server and your iOS apps, it provides the simple API you're used to if you've been developing desktop apps using the Microsoft SQL Native Client. It turns out a web service remained a sensible idea: HTTP is much more suited to the Big Bad Internet than SQL Server's native TDS protocol, removing the need for complex configuration, firewall configuration, and the like. However, rather than writing a web service for every app that needs data access, we made the web service generic, serving only as a proxy between the SQL Server and a client library integrated into the iPhone or iPad app. This client library handles all the network communication, and provides a clean API. OSQL in 25 lines of code As an example of how to use the API, I put together a very simple app that allowed the user to enter one or more SQL statements, and displayed the results in a rather primitively formatted text field. The total amount of Objective-C code responsible for doing the work? About 25 lines. You can see this in action in the demo video. Beta out now - your chance to give us your suggestions! We've released the iSql SDK as a beta on the MobileFoo website: you're welcome to download a copy, have a play in your own apps, and let us know what we've missed using the Feedback button on the site. Software development should be fun and rewarding: no-one wants to spend their time writing boiler-plate code over and over again, so stop writing the same web service code, and start doing exciting things in the new world of mobile data!

    Read the article

  • How to remove the boundary effects arising due to zero padding in scipy/numpy fft?

    - by Omkar
    I have made a python code to smoothen a given signal using the Weierstrass transform, which is basically the convolution of a normalised gaussian with a signal. The code is as follows: #Importing relevant libraries from __future__ import division from scipy.signal import fftconvolve import numpy as np def smooth_func(sig, x, t= 0.002): N = len(x) x1 = x[-1] x0 = x[0] # defining a new array y which is symmetric around zero, to make the gaussian symmetric. y = np.linspace(-(x1-x0)/2, (x1-x0)/2, N) #gaussian centered around zero. gaus = np.exp(-y**(2)/t) #using fftconvolve to speed up the convolution; gaus.sum() is the normalization constant. return fftconvolve(sig, gaus/gaus.sum(), mode='same') If I run this code for say a step function, it smoothens the corner, but at the boundary it interprets another corner and smoothens that too, as a result giving unnecessary behaviour at the boundary. I explain this with a figure shown in the link below. Boundary effects This problem does not arise if we directly integrate to find convolution. Hence the problem is not in Weierstrass transform, and hence the problem is in the fftconvolve function of scipy. To understand why this problem arises we first need to understand the working of fftconvolve in scipy. The fftconvolve function basically uses the convolution theorem to speed up the computation. In short it says: convolution(int1,int2)=ifft(fft(int1)*fft(int2)) If we directly apply this theorem we dont get the desired result. To get the desired result we need to take the fft on a array double the size of max(int1,int2). But this leads to the undesired boundary effects. This is because in the fft code, if size(int) is greater than the size(over which to take fft) it zero pads the input and then takes the fft. This zero padding is exactly what is responsible for the undesired boundary effects. Can you suggest a way to remove this boundary effects? I have tried to remove it by a simple trick. After smoothening the function I am compairing the value of the smoothened signal with the original signal near the boundaries and if they dont match I replace the value of the smoothened func with the input signal at that point. It is as follows: i = 0 eps=1e-3 while abs(smooth[i]-sig[i])> eps: #compairing the signals on the left boundary smooth[i] = sig[i] i = i + 1 j = -1 while abs(smooth[j]-sig[j])> eps: # compairing on the right boundary. smooth[j] = sig[j] j = j - 1 There is a problem with this method, because of using an epsilon there are small jumps in the smoothened function, as shown below: jumps in the smooth func Can there be any changes made in the above method to solve this boundary problem?

    Read the article

  • Alkan Improves Aeronautical-Equipment Product Collaboration, Design Processes, and Government Compliance

    - by Gerald Fauteux
    Alkan S.A. a leading aeronautical equipment manufacturer in France, specializing in carriage-release and ejection systems for various types of military aircraft utilize Oracle’s AutoVue Electro-Mechanical Professional for Agile as part of its Agile Product Lifecycle Management solution. AutoVue Electro-Mechanical Professional for Agile enables multiformat 3-D viewing of engineering designs, leading to deeper analysis of component and product functionality and allows all teams to easily participate and contribute to product data early in the development cycle. Alkan S.A.’s equipment is used in more than 65 countries and is certified for more than 60 types of aircraft, worldwide. Click here to read the complete story. French version.

    Read the article

  • Google I/O 2012 - The Next Generation of Social is in a Hangout

    Google I/O 2012 - The Next Generation of Social is in a Hangout Amit Fulay, Jonathan Beri Make your apps come alive with live audio/video conversations using the Hangouts Platform API. Using the Google+ Hangouts API, you can develop collaborative apps that run inside of a Google+ Hangout. Leave inspired by what you can create with the Hangouts APIs. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 267 10 ratings Time: 56:41 More in Science & Technology

    Read the article

< Previous Page | 569 570 571 572 573 574 575 576 577 578 579 580  | Next Page >