Search Results

Search found 130 results on 6 pages for 'emil rasmussen'.

Page 6/6 | < Previous Page | 2 3 4 5 6 

  • saving and searching encrypted mail

    - by user53616
    I often send and receive gpg-encrypted mail. At the moment I use thunderbird + enigmail (in linux) to do that. As far as I know there is no way in thunderbird to find all encrypted messages which bodies contain particular keywords. There also seems to be no option to save encrypted mails decrypted (so they would be searchable). However for me it is important to be able to search old encrypted mails. So my question is: Is there a way in linux to save incoming mails automatically decrypted in my inbox and save outgoing encrypted mail decrypted in the send folder? Both times adding a line to the body which remarks that the mail was encrypted. It could be another email client for linux that could to that or perhaps a solution using procmail or maildrop. For a procmail solution I guess there could be some problems with encoding (perhaps one have to use emil?). Note that the solution should work for multipart encrypted messages (including encrypted attachments) too. Further note that I don't want a discussion about security holes. For me it's ok if messages are stored decrypted on my harddrive (which is encrypted as a whole anyway). In doubt for a first solution it would be ok to store my private key passphrase in cleartext on my harddrive, too. The point is that the mails are encrypted on the mailserver or more generally on their "way through the net".

    Read the article

  • It’s the thought that counts…

    - by Tony Davis
    I recently finished editing a book called Tribal SQL, and it was a fantastic experience. It’s a community-sourced book written by first-timers. Fifteen previously unpublished authors contributed one chapter each, with the seemingly simple remit to write about “what makes them passionate about working with SQL Server, something that all SQL Server DBAs and developers really need to know”. Sure, some of the writing skills were a bit rusty as one would expect from busy people, but the ideas and energy were sheer nectar. Any seasoned editor can deal easily with the problem of fixing the output of untrained writers. We can handle with the occasional technical error too, which is why we have technical reviewers. The editor’s real job is to hone the clarity and flow of ideas, making the author’s knowledge and experience accessible to as many others as possible. What the writer needs to bring, on the other hand, is enthusiasm, attention to detail, common sense, and a sense of the person behind the writing. If any of these are missing, no editor can fix it. We can see these essential characteristics in many of the more seasoned and widely-published writers about SQL. To illustrate what I mean by enthusiasm, or passion, take a look at the work of Laerte Junior or Fabiano Amorim. Both authors have English as a second language, but their energy, enthusiasm, sheer immersion in a technology and thirst to know more, drives them, with a little editorial help, to produce articles of far more practical value than one can find in the “manuals”. There’s the attention to detail of the likes of Jonathan Kehayias, or Paul Randal. Read their work and one begins to understand the knowledge coupled with incredible rigor, the willingness to bend and test every piece of advice offered to make sure it’s correct, that marks out the very best technical writing. There’s the common sense of someone like Louis Davidson. All writers, including Louis, like to stretch the grey matter of their readers, but some of the most valuable writing is that which takes a complicated idea, or distils years of experience, and expresses it in a way that sounds like simple common sense. There’s personality and humor. Contrary to what you may have been told, they can and do mix well with technical writing, as long as they don’t become a distraction. Read someone like Rodney Landrum, or Phil Factor, for numerous examples of articles that teach hard technical lessons but also make you smile at least twice along the way. Writing well is not easy and it takes a certain bravery to expose your ideas and knowledge for dissection by others, but it doesn’t mean that writing should be the preserve only of those trained in the art, or best left to the MVPs. I believe that Tribal SQL is testament to the fact that if you have passion for what you do, and really know your topic then, with a little editorial help, you can write, and people will learn from what you have to say. You can read a sample chapter, by Mark Rasmussen, in this issue of Simple-Talk and I hope you’ll consider checking out the book (if you needed any further encouragement, it’s also for a good cause, Computers4Africa). Cheers, Tony  

    Read the article

  • Change index order in array (php)

    - by Trikks
    Hi Been kind of stuck on this one for a while now, so any help would be appreciated. I have one array (left) that contains a list of elements, the goal is to sort another arrays (right) keys with the values from the left array. The left array Array ( [0] => ID [1] => FirstName [2] => LastName [3] => Address ) The right array Array ( [0] => Array ( [FirstName] => Pim [Address] => Finland [LastName] => Svensson [ID] => 3 ) [1] => Array ( [FirstName] => Emil [Address] => Sweden [LastName] => Malm [ID] => 5 ) ) What I'm trying to accomplish would be similar to this Array ( [0] => Array ( [ID] => 3 [FirstName] => Pim [LastName] => Svensson [Address] => Finland ) Anyone? :) Oh, I'm running php 5.3, if it helps!

    Read the article

  • Large Object Heap Fragmentation

    - by Paul Ruane
    The C#/.NET application I am working on is suffering from a slow memory leak. I have used CDB with SOS to try to determine what is happening but the data does not seem to make any sense so I was hoping one of you may have experienced this before. The application is running on the 64 bit framework. It is continuously calculating and serialising data to a remote host and is hitting the Large Object Heap (LOH) a fair bit. However, most of the LOH objects I expect to be transient: once the calculation is complete and has been sent to the remote host, the memory should be freed. What I am seeing, however, is a large number of (live) object arrays interleaved with free blocks of memory, e.g., taking a random segment from the LOH: 0:000> !DumpHeap 000000005b5b1000 000000006351da10 Address MT Size ... 000000005d4f92e0 0000064280c7c970 16147872 000000005e45f880 00000000001661d0 1901752 Free 000000005e62fd38 00000642788d8ba8 1056 <-- 000000005e630158 00000000001661d0 5988848 Free 000000005ebe6348 00000642788d8ba8 1056 000000005ebe6768 00000000001661d0 6481336 Free 000000005f214d20 00000642788d8ba8 1056 000000005f215140 00000000001661d0 7346016 Free 000000005f9168a0 00000642788d8ba8 1056 000000005f916cc0 00000000001661d0 7611648 Free 00000000600591c0 00000642788d8ba8 1056 00000000600595e0 00000000001661d0 264808 Free ... Obviously I would expect this to be the case if my application were creating long-lived, large objects during each calculation. (It does do this and I accept there will be a degree of LOH fragmentation but that is not the problem here.) The problem is the very small (1056 byte) object arrays you can see in the above dump which I cannot see in code being created and which are remaining rooted somehow. Also note that CDB is not reporting the type when the heap segment is dumped: I am not sure if this is related or not. If I dump the marked (<--) object, CDB/SOS reports it fine: 0:015> !DumpObj 000000005e62fd38 Name: System.Object[] MethodTable: 00000642788d8ba8 EEClass: 00000642789d7660 Size: 1056(0x420) bytes Array: Rank 1, Number of elements 128, Type CLASS Element Type: System.Object Fields: None The elements of the object array are all strings and the strings are recognisable as from our application code. Also, I am unable to find their GC roots as the !GCRoot command hangs and never comes back (I have even tried leaving it overnight). So, I would very much appreciate it if anyone could shed any light as to why these small (<85k) object arrays are ending up on the LOH: what situations will .NET put a small object array in there? Also, does anyone happen to know of an alternative way of ascertaining the roots of these objects? Thanks in advance. Update 1 Another theory I came up with late yesterday is that these object arrays started out large but have been shrunk leaving the blocks of free memory that are evident in the memory dumps. What makes me suspicious is that the object arrays always appear to be 1056 bytes long (128 elements), 128 * 8 for the references and 32 bytes of overhead. The idea is that perhaps some unsafe code in a library or in the CLR is corrupting the number of elements field in the array header. Bit of a long shot I know... Update 2 Thanks to Brian Rasmussen (see accepted answer) the problem has been identified as fragmentation of the LOH caused by the string intern table! I wrote a quick test application to confirm this: static void Main() { const int ITERATIONS = 100000; for (int index = 0; index < ITERATIONS; ++index) { string str = "NonInterned" + index; Console.Out.WriteLine(str); } Console.Out.WriteLine("Continue."); Console.In.ReadLine(); for (int index = 0; index < ITERATIONS; ++index) { string str = string.Intern("Interned" + index); Console.Out.WriteLine(str); } Console.Out.WriteLine("Continue?"); Console.In.ReadLine(); } The application first creates and dereferences unique strings in a loop. This is just to prove that the memory does not leak in this scenario. Obviously it should not and it does not. In the second loop, unique strings are created and interned. This action roots them in the intern table. What I did not realise is how the intern table is represented. It appears it consists of a set of pages -- object arrays of 128 string elements -- that are created in the LOH. This is more evident in CDB/SOS: 0:000> .loadby sos mscorwks 0:000> !EEHeap -gc Number of GC Heaps: 1 generation 0 starts at 0x00f7a9b0 generation 1 starts at 0x00e79c3c generation 2 starts at 0x00b21000 ephemeral segment allocation context: none segment begin allocated size 00b20000 00b21000 010029bc 0x004e19bc(5118396) Large object heap starts at 0x01b21000 segment begin allocated size 01b20000 01b21000 01b8ade0 0x00069de0(433632) Total Size 0x54b79c(5552028) ------------------------------ GC Heap Size 0x54b79c(5552028) Taking a dump of the LOH segment reveals the pattern I saw in the leaking application: 0:000> !DumpHeap 01b21000 01b8ade0 ... 01b8a120 793040bc 528 01b8a330 00175e88 16 Free 01b8a340 793040bc 528 01b8a550 00175e88 16 Free 01b8a560 793040bc 528 01b8a770 00175e88 16 Free 01b8a780 793040bc 528 01b8a990 00175e88 16 Free 01b8a9a0 793040bc 528 01b8abb0 00175e88 16 Free 01b8abc0 793040bc 528 01b8add0 00175e88 16 Free total 1568 objects Statistics: MT Count TotalSize Class Name 00175e88 784 12544 Free 793040bc 784 421088 System.Object[] Total 1568 objects Note that the object array size is 528 (rather than 1056) because my workstation is 32 bit and the application server is 64 bit. The object arrays are still 128 elements long. So the moral to this story is to be very careful interning. If the string you are interning is not known to be a member of a finite set then your application will leak due to fragmentation of the LOH, at least in version 2 of the CLR. In our application's case, there is general code in the deserialisation code path that interns entity identifiers during unmarshalling: I now strongly suspect this is the culprit. However, the developer's intentions were obviously good as they wanted to make sure that if the same entity is deserialised multiple times then only one instance of the identifier string will be maintained in memory.

    Read the article

  • Remove/squash entries in a vertical hash

    - by Forkrul Assail
    I have a grid that represents an X, Y matrix, stored as a hash here. Some points on the X Y matrix may have values (as type string), and some may not. A typical grid could look like this: {[9, 5]=>"Alaina", [10, 3]=>"Courtney", [11, 1]=>"Gladys", [8, 7]=>"Alford", [14, 11]=>"Lesley", [17, 2]=>"Lawson", [0, 5]=>"Katrine", [2, 1]=>"Tyra", [3, 3]=>"Fredy", [1, 7]=>"Magnus", [6, 9]=>"Nels", [7, 11]=>"Kylie", [11, 0]=>"Kellen", [10, 2]=>"Johan", [14, 10]=>"Justice", [0, 4]=>"Barton", [2, 0]=>"Charley", [3, 2]=>"Magnolia", [1, 6]=>"Maximo", [7, 10]=>"Olga", [19, 5]=>"Isadore", [16, 3]=>"Delfina", [17, 1]=>"Noe", [20, 11]=>"Francis", [10, 5]=>"Creola", [9, 3]=>"Bulah", [8, 1]=>"Lempi", [11, 7]=>"Raquel", [13, 11]=>"Jace", [1, 5]=>"Garth", [3, 1]=>"Ernest", [2, 3]=>"Malcolm", [0, 7]=>"Alejandrin", [7, 9]=>"Marina", [6, 11]=>"Otilia", [16, 2]=>"Hailey", [20, 10]=>"Brandt", [8, 0]=>"Madeline", [9, 2]=>"Leanne", [13, 10]=>"Jenifer", [1, 4]=>"Humberto", [3, 0]=>"Nicholaus", [2, 2]=>"Nadia", [0, 6]=>"Abigail", [6, 10]=>"Zola", [20, 5]=>"Clementina", [23, 3]=>"Alvah", [19, 11]=>"Wallace", [11, 5]=>"Tracey", [8, 3]=>"Hulda", [9, 1]=>"Jedidiah", [10, 7]=>"Annetta", [12, 11]=>"Nicole", [2, 5]=>"Alison", [0, 1]=>"Wilma", [1, 3]=>"Shana", [3, 7]=>"Judd", [4, 9]=>"Lucio", [5, 11]=>"Hardy", [19, 10]=>"Immanuel", [9, 0]=>"Uriel", [8, 2]=>"Milton", [12, 10]=>"Elody", [5, 10]=>"Alexanne", [1, 2]=>"Lauretta", [0, 0]=>"Louvenia", [2, 4]=>"Adelia", [21, 5]=>"Erling", [18, 11]=>"Corene", [22, 3]=>"Haskell", [11, 11]=>"Leta", [10, 9]=>"Terrence", [14, 1]=>"Giuseppe", [15, 3]=>"Silas", [12, 5]=>"Johnnie", [4, 11]=>"Aurelie", [5, 9]=>"Meggie", [2, 7]=>"Phoebe", [0, 3]=>"Sister", [1, 1]=>"Violet", [3, 5]=>"Lilian", [18, 10]=>"Eusebio", [11, 10]=>"Emma", [15, 2]=>"Theodore", [14, 0]=>"Cassidy", [4, 10]=>"Edmund", [2, 6]=>"Claire", [0, 2]=>"Madisen", [1, 0]=>"Kasey", [3, 4]=>"Elijah", [17, 11]=>"Susana", [20, 1]=>"Nicklaus", [21, 3]=>"Kelsie", [10, 11]=>"Garnett", [11, 9]=>"Emanuel", [15, 1]=>"Louvenia", [14, 3]=>"Otho", [13, 5]=>"Vincenza", [3, 11]=>"Tate", [2, 9]=>"Beau", [5, 7]=>"Jason", [6, 1]=>"Jayde", [7, 3]=>"Lamont", [4, 5]=>"Curt", [17, 10]=>"Mack", [21, 2]=>"Lilyan", [10, 10]=>"Ruthe", [14, 2]=>"Georgianna", [4, 4]=>"Nyasia", [6, 0]=>"Sadie", [16, 11]=>"Emil", [21, 1]=>"Melba", [20, 3]=>"Delia", [3, 10]=>"Rosalee", [2, 8]=>"Myrtle", [7, 2]=>"Rigoberto", [14, 5]=>"Jedidiah", [13, 3]=>"Flavie", [12, 1]=>"Evie", [8, 9]=>"Olaf", [9, 11]=>"Stan", [20, 2]=>"Judge", [5, 5]=>"Cassie", [7, 1]=>"Gracie", [6, 3]=>"Armando", [4, 7]=>"Delia", [3, 9]=>"Marley", [16, 10]=>"Robyn", [2, 11]=>"Richie", [12, 0]=>"Gilberto", [13, 2]=>"Dedrick", [9, 10]=>"Liam", [5, 4]=>"Jabari", [7, 0]=>"Enola", [6, 2]=>"Lela", [3, 8]=>"Jade", [2, 10]=>"Johnson", [15, 5]=>"Willow", [12, 3]=>"Fredrick", [13, 1]=>"Beau", [9, 9]=>"Carlie", [8, 11]=>"Daisha", [6, 5]=>"Declan", [4, 1]=>"Carolina", [5, 3]=>"Cruz", [7, 7]=>"Jaime", [0, 9]=>"Anthony", [1, 11]=>"Esta", [13, 0]=>"Shaina", [12, 2]=>"Alec", [8, 10]=>"Lora", [6, 4]=>"Emely", [4, 0]=>"Rodger", [5, 2]=>"Cedrick", [0, 8]=>"Collin", [1, 10]=>"Armani", [16, 5]=>"Brooks", [19, 3]=>"Eleanora", [18, 1]=>"Alva", [7, 5]=>"Melissa", [5, 1]=>"Tabitha", [4, 3]=>"Aniya", [6, 7]=>"Marc", [1, 9]=>"Marjorie", [0, 11]=>"Arvilla", [19, 2]=>"Adela", [7, 4]=>"Zakary", [5, 0]=>"Emely", [4, 2]=>"Alison", [1, 8]=>"Lorenz", [0, 10]=>"Lisandro", [17, 5]=>"Aylin", [18, 3]=>"Giles", [19, 1]=>"Kyleigh", [8, 5]=>"Mary", [11, 3]=>"Claire", [10, 1]=>"Avis", [9, 7]=>"Manuela", [15, 11]=>"Chesley", [18, 2]=>"Kristopher", [24, 3]=>"Zola", [8, 4]=>"Pietro", [10, 0]=>"Delores", [11, 2]=>"Timmy", [15, 10]=>"Khalil", [18, 5]=>"Trudie", [17, 3]=>"Rafael", [16, 1]=>"Anthony"} What I need to do though, is basically remove all the empty entries. Let's say [17,3] = Raphael does not have an element in front of if (let's say - no [16,3] exists) then [17,3] should become [16,3] etc. So basically all empty items will be popped off the vertical (row) structure of the hash. Are there functions I should have a look at or is there an easy squash-like method that would just remove blanks and adjust and move other items? Thanks in advance for your help.

    Read the article

< Previous Page | 2 3 4 5 6