Search Results

Search found 9771 results on 391 pages for 'equivalence classes'.

Page 6/391 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Should conditional expressions go inside or outside of classes?

    - by Rupert
    It seems that often I will want to execute some methods from a Class when I call it and choosing which function will depend on some condition. This leads me to write classes like in Case 1 because it allows me to rapidly include their functionality. The alternative would be Case 2 which can take a lot of time if there is a lot of code and also means more code being written twice when I drop the Class into different pages. Having said that, Case 1 feels very wrong for some reason that I can't quite put my finger on. I haven't really seen any classes written like this, I suppose. Is there anything wrong with writing classes like in Case 1 or is Case 2 superior? Or is there a better way? What the advantages and disadvantages of each? Case 1 class Foo { public function __construct($bar) { if($bar = 'action1') $this->method1(); else if($bar = 'action2') $this->method2(); else $this->method1(); } public function method1() { } public function method2() { } } $bar = 'action1' $foo = new Foo($bar); Case 2 class Foo { public function __construct() { } public function method1() { } public function method2() { } } $foo = new Foo; $bar = 'action1'; if($bar == 'action1') $foo->method1(); else if($bar == 'action2') $foo->method2(); else $foo->method1();

    Read the article

  • Can You Have "Empty" Abstract/Classes?

    - by ShrimpCrackers
    Of course you can, I'm just wondering if it's rational to design in such a way. I'm making a breakout clone and was doing some class design. I wanted to use inheritance, even though I don't have to, to apply what I've learned in C++. I was thinking about class design and came up with something like this: GameObject - base class (consists of data members like x and y offsets, and a vector of SDL_Surface* MovableObject : GameObject - abstract class + derived class of GameObject (one method void move() = 0; ) NonMovableObject : GameObject - empty class...no methods or data members other than constructor and destructor(at least for now?). Later I was planning to derive a class from NonMovableObject, like Tileset : NonMovableObject. I was just wondering if "empty" abstract classes or just empty classes are often used...I notice that the way I'm doing this, I'm just creating the class NonMovableObject just for sake of categorization. I know I'm overthinking things just to make a breakout clone, but my focus is less on the game and more on using inheritance and designing some sort of game framework.

    Read the article

  • Getting Started with TypeScript – Classes, Static Types and Interfaces

    - by dwahlin
    I had the opportunity to speak on different JavaScript topics at DevConnections in Las Vegas this fall and heard a lot of interesting comments about JavaScript as I talked with people. The most frequent comment I heard from people was, “I guess it’s time to start learning JavaScript”. Yep – if you don’t already know JavaScript then it’s time to learn it. As HTML5 becomes more and more popular the amount of JavaScript code written will definitely increase. After all, many of the HTML5 features available in browsers have little to do with “tags” and more to do with JavaScript (web workers, web sockets, canvas, local storage, etc.). As the amount of JavaScript code being used in applications increases, it’s more important than ever to structure the code in a way that’s maintainable and easy to debug. While JavaScript patterns can certainly be used (check out my previous posts on the subject or my course on Pluralsight.com), several alternatives have come onto the scene such as CoffeeScript, Dart and TypeScript. In this post I’ll describe some of the features TypeScript offers and the benefits that they can potentially offer enterprise-scale JavaScript applications. It’s important to note that while TypeScript has several great features, it’s definitely not for everyone or every project especially given how new it is. The goal of this post isn’t to convince you to use TypeScript instead of standard JavaScript….I’m a big fan of JavaScript. Instead, I’ll present several TypeScript features and let you make the decision as to whether TypeScript is a good fit for your applications. TypeScript Overview Here’s the official definition of TypeScript from the http://typescriptlang.org site: “TypeScript is a language for application-scale JavaScript development. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open Source.” TypeScript was created by Anders Hejlsberg (the creator of the C# language) and his team at Microsoft. To sum it up, TypeScript is a new language that can be compiled to JavaScript much like alternatives such as CoffeeScript or Dart. It isn’t a stand-alone language that’s completely separate from JavaScript’s roots though. It’s a superset of JavaScript which means that standard JavaScript code can be placed in a TypeScript file (a file with a .ts extension) and used directly. That’s a very important point/feature of the language since it means you can use existing code and frameworks with TypeScript without having to do major code conversions to make it all work. Once a TypeScript file is saved it can be compiled to JavaScript using TypeScript’s tsc.exe compiler tool or by using a variety of editors/tools. TypeScript offers several key features. First, it provides built-in type support meaning that you define variables and function parameters as being “string”, “number”, “bool”, and more to avoid incorrect types being assigned to variables or passed to functions. Second, TypeScript provides a way to write modular code by directly supporting class and module definitions and it even provides support for custom interfaces that can be used to drive consistency. Finally, TypeScript integrates with several different tools such as Visual Studio, Sublime Text, Emacs, and Vi to provide syntax highlighting, code help, build support, and more depending on the editor. Find out more about editor support at http://www.typescriptlang.org/#Download. TypeScript can also be used with existing JavaScript frameworks such as Node.js, jQuery, and others and even catch type issues and provide enhanced code help. Special “declaration” files that have a d.ts extension are available for Node.js, jQuery, and other libraries out-of-the-box. Visit http://typescript.codeplex.com/SourceControl/changeset/view/fe3bc0bfce1f#samples%2fjquery%2fjquery.d.ts for an example of a jQuery TypeScript declaration file that can be used with tools such as Visual Studio 2012 to provide additional code help and ensure that a string isn’t passed to a parameter that expects a number. Although declaration files certainly aren’t required, TypeScript’s support for declaration files makes it easier to catch issues upfront while working with existing libraries such as jQuery. In the future I expect TypeScript declaration files will be released for different HTML5 APIs such as canvas, local storage, and others as well as some of the more popular JavaScript libraries and frameworks. Getting Started with TypeScript To get started learning TypeScript visit the TypeScript Playground available at http://www.typescriptlang.org. Using the playground editor you can experiment with TypeScript code, get code help as you type, and see the JavaScript that TypeScript generates once it’s compiled. Here’s an example of the TypeScript playground in action:   One of the first things that may stand out to you about the code shown above is that classes can be defined in TypeScript. This makes it easy to group related variables and functions into a container which helps tremendously with re-use and maintainability especially in enterprise-scale JavaScript applications. While you can certainly simulate classes using JavaScript patterns (note that ECMAScript 6 will support classes directly), TypeScript makes it quite easy especially if you come from an object-oriented programming background. An example of the Greeter class shown in the TypeScript Playground is shown next: class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } Looking through the code you’ll notice that static types can be defined on variables and parameters such as greeting: string, that constructors can be defined, and that functions can be defined such as greet(). The ability to define static types is a key feature of TypeScript (and where its name comes from) that can help identify bugs upfront before even running the code. Many types are supported including primitive types like string, number, bool, undefined, and null as well as object literals and more complex types such as HTMLInputElement (for an <input> tag). Custom types can be defined as well. The JavaScript output by compiling the TypeScript Greeter class (using an editor like Visual Studio, Sublime Text, or the tsc.exe compiler) is shown next: var Greeter = (function () { function Greeter(message) { this.greeting = message; } Greeter.prototype.greet = function () { return "Hello, " + this.greeting; }; return Greeter; })(); Notice that the code is using JavaScript prototyping and closures to simulate a Greeter class in JavaScript. The body of the code is wrapped with a self-invoking function to take the variables and functions out of the global JavaScript scope. This is important feature that helps avoid naming collisions between variables and functions. In cases where you’d like to wrap a class in a naming container (similar to a namespace in C# or a package in Java) you can use TypeScript’s module keyword. The following code shows an example of wrapping an AcmeCorp module around the Greeter class. In order to create a new instance of Greeter the module name must now be used. This can help avoid naming collisions that may occur with the Greeter class.   module AcmeCorp { export class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } } var greeter = new AcmeCorp.Greeter("world"); In addition to being able to define custom classes and modules in TypeScript, you can also take advantage of inheritance by using TypeScript’s extends keyword. The following code shows an example of using inheritance to define two report objects:   class Report { name: string; constructor (name: string) { this.name = name; } print() { alert("Report: " + this.name); } } class FinanceReport extends Report { constructor (name: string) { super(name); } print() { alert("Finance Report: " + this.name); } getLineItems() { alert("5 line items"); } } var report = new FinanceReport("Month's Sales"); report.print(); report.getLineItems();   In this example a base Report class is defined that has a variable (name), a constructor that accepts a name parameter of type string, and a function named print(). The FinanceReport class inherits from Report by using TypeScript’s extends keyword. As a result, it automatically has access to the print() function in the base class. In this example the FinanceReport overrides the base class’s print() method and adds its own. The FinanceReport class also forwards the name value it receives in the constructor to the base class using the super() call. TypeScript also supports the creation of custom interfaces when you need to provide consistency across a set of objects. The following code shows an example of an interface named Thing (from the TypeScript samples) and a class named Plane that implements the interface to drive consistency across the app. Notice that the Plane class includes intersect and normal as a result of implementing the interface.   interface Thing { intersect: (ray: Ray) => Intersection; normal: (pos: Vector) => Vector; surface: Surface; } class Plane implements Thing { normal: (pos: Vector) =>Vector; intersect: (ray: Ray) =>Intersection; constructor (norm: Vector, offset: number, public surface: Surface) { this.normal = function (pos: Vector) { return norm; } this.intersect = function (ray: Ray): Intersection { var denom = Vector.dot(norm, ray.dir); if (denom > 0) { return null; } else { var dist = (Vector.dot(norm, ray.start) + offset) / (-denom); return { thing: this, ray: ray, dist: dist }; } } } }   At first glance it doesn’t appear that the surface member is implemented in Plane but it’s actually included automatically due to the public surface: Surface parameter in the constructor. Adding public varName: Type to a constructor automatically adds a typed variable into the class without having to explicitly write the code as with normal and intersect. TypeScript has additional language features but defining static types and creating classes, modules, and interfaces are some of the key features it offers. So is TypeScript right for you and your applications? That’s a not a question that I or anyone else can answer for you. You’ll need to give it a spin to see what you think. In future posts I’ll discuss additional details about TypeScript and how it can be used with enterprise-scale JavaScript applications. In the meantime, I’m in the process of working with John Papa on a new Typescript course for Pluralsight that we hope to have out in December of 2012.

    Read the article

  • Is there any reason to use "container" classes?

    - by Michael
    I realize the term "container" is misleading in this context - if anyone can think of a better term please edit it in. In legacy code I occasionally see classes that are nothing but wrappers for data. something like: class Bottle { int height; int diameter; Cap capType; getters/setters, maybe a constructor } My understanding of OO is that classes are structures for data and the methods of operating on that data. This seems to preclude objects of this type. To me they are nothing more than structs and kind of defeat the purpose of OO. I don't think it's necessarily evil, though it may be a code smell. Is there a case where such objects would be necessary? If this is used often, does it make the design suspect?

    Read the article

  • managing information/functionality on shared common project classes

    - by ilansch
    In my company, we have a common solution the contains common projects (2 projects so far, one for .net 3.5 and one for .net 4.5). My main problem is that during time, a lot of code is added, for example hosting a process as windows service is a class called ServiceManagement, But no one but the developer knows it, and if someone wants to use this shared class, he does not know it exist. So i am looking for a way to document and manage all the classes with tags, a 3rd party util/web util, that i can search for tags and maybe find common classes that i can use (if we keep all our code well-documented). Does anyone familiar with sort of tools ?

    Read the article

  • CSS naming guildlines with elements with multiple classes

    - by ryanzec
    Its seems like there are 2 ways someone can handle naming classes for elements that are designed to have multiple classes. One way would be: <span class="btn btn-success"></span> This is something that twitter bootstrap uses. Another possibility I would think would be: <span class="btn success"></span> It seems like the zurb foundation uses this method. Now the benefits of the first that I can see is that there less chance of outside css interfering with styling as the class name btn-success would not be as common as the class name success. The benefit of the second as I can see is that there is less typing and potential better style reuse. Are there any other benefits/disadvantages of either option and is one of them more popular than the other?

    Read the article

  • Use adapter pattern for coupled classes

    - by kaiseroskilo
    I need (for unit testing purposes) to create adapters for external library classes.ExchangeService and ContactsFolder are Microsoft's implementations in its' EWS library. So I created my adapters that implement my interfaces, but it seems that contactsFolder has a dependency for ExchangeService in its' constructor. The problem is that I cannot instantiate ContactsFolderAdapter without somehow accessing the actual ExchangeService instance (I see only ExchangeServiceAdapter in scope). Is there a better pattern for this that retains the adapter classes? Or should I "infect" ExchangeServiceAdapter with some kind of GetActualObject method?

    Read the article

  • OOD: All classes at bottom of hierarchy contain the same field

    - by My Head Hurts
    I am creating a class diagram for what I thought was a fairly simple problem. However, when I get to the bottom of the hierarchy, all of the classes only contain one field and it is the same one. This to me looks very wrong, but this field does not belong in any of the parent classes. I was wondering if there are any suggested design patterns in a situation like this? A simplified version of the class diagram can be found below. Note, fields named differently cannot belong to any other class +------------------+ | ObjectA | |------------------| | String one | | String two | | | +---------+--------+ | +---------------+----------------+ | | +--------|--------+ +--------|--------+ | ObjectAA | | ObjectAB | |-----------------| |-----------------| | String three | | String four | | | | | +--------+--------+ +--------+--------+ | | | | +--------|--------+ +--------|--------+ | ObjectAAA | | ObjectABA | |-----------------| |-----------------| | String five | | String five | | | | | +-----------------+ +-----------------+ ASCII tables drawn using http://www.asciiflow.com/

    Read the article

  • Using Query Classes With NHibernate

    - by Liam McLennan
    Even when using an ORM, such as NHibernate, the developer still has to decide how to perform queries. The simplest strategy is to get access to an ISession and directly perform a query whenever you need data. The problem is that doing so spreads query logic throughout the entire application – a clear violation of the Single Responsibility Principle. A more advanced strategy is to use Eric Evan’s Repository pattern, thus isolating all query logic within the repository classes. I prefer to use Query Classes. Every query needed by the application is represented by a query class, aka a specification. To perform a query I: Instantiate a new instance of the required query class, providing any data that it needs Pass the instantiated query class to an extension method on NHibernate’s ISession type. To query my database for all people over the age of sixteen looks like this: [Test] public void QueryBySpecification() { var canDriveSpecification = new PeopleOverAgeSpecification(16); var allPeopleOfDrivingAge = session.QueryBySpecification(canDriveSpecification); } To be able to query for people over a certain age I had to create a suitable query class: public class PeopleOverAgeSpecification : Specification<Person> { private readonly int age; public PeopleOverAgeSpecification(int age) { this.age = age; } public override IQueryable<Person> Reduce(IQueryable<Person> collection) { return collection.Where(person => person.Age > age); } public override IQueryable<Person> Sort(IQueryable<Person> collection) { return collection.OrderBy(person => person.Name); } } Finally, the extension method to add QueryBySpecification to ISession: public static class SessionExtensions { public static IEnumerable<T> QueryBySpecification<T>(this ISession session, Specification<T> specification) { return specification.Fetch( specification.Sort( specification.Reduce(session.Query<T>()) ) ); } } The inspiration for this style of data access came from Ayende’s post Do You Need a Framework?. I am sick of working through multiple layers of abstraction that don’t do anything. Have you ever seen code that required a service layer to call a method on a repository, that delegated to a common repository base class that wrapped and ORMs unit of work? I can achieve the same thing with NHibernate’s ISession and a single extension method. If you’re interested you can get the full Query Classes example source from Github.

    Read the article

  • Problem creating levels using inherited classes/polymorphism

    - by Adam
    I'm trying to write my level classes by having a base class that each level class inherits from...The base class uses pure virtual functions. My base class is only going to be used as a vector that'll have the inherited level classes pushed onto it...This is what my code looks like at the moment, I've tried various things and get the same result (segmentation fault). //level.h class Level { protected: Mix_Music *music; SDL_Surface *background; SDL_Surface *background2; vector<Enemy> enemy; bool loaded; int time; public: Level(); virtual ~Level(); int bgX, bgY; int bg2X, bg2Y; int width, height; virtual void load(); virtual void unload(); virtual void update(); virtual void draw(); }; //level.cpp Level::Level() { bgX = 0; bgY = 0; bg2X = 0; bg2Y = 0; width = 2048; height = 480; loaded = false; time = 0; } Level::~Level() { } //virtual functions are empty... I'm not sure exactly what I'm supposed to include in the inherited class structure, but this is what I have at the moment... //level1.h class Level1: public Level { public: Level1(); ~Level1(); void load(); void unload(); void update(); void draw(); }; //level1.cpp Level1::Level1() { } Level1::~Level1() { enemy.clear(); Mix_FreeMusic(music); SDL_FreeSurface(background); SDL_FreeSurface(background2); music = NULL; background = NULL; background2 = NULL; Mix_CloseAudio(); } void Level1::load() { music = Mix_LoadMUS("music/song1.xm"); background = loadImage("image/background.png"); background2 = loadImage("image/background2.png"); Mix_OpenAudio(48000, MIX_DEFAULT_FORMAT, 2, 4096); Mix_PlayMusic(music, -1); } void Level1::unload() { } //functions have level-specific code in them... Right now for testing purposes, I just have the main loop call Level1 level1; and use the functions, but when I run the game I get a segmentation fault. This is the first time I've tried writing inherited classes, so I know I'm doing something wrong, but I can't seem to figure out what exactly.

    Read the article

  • Create many similar classes, or just one

    - by soandos
    The goal is to create an application that has objects that can represent some operations (add, subtract, etc). All of those objects will have common functions and members, and thus will either implement an interface or inherit from an abstract class (Which would be better practice, this will be in C# if that matters?). As far as I can see, there are two different ways of organizing all of these classes. I could create an addition class, a subtraction class, etc. This has the upside of being highly modular but the difference between classes is so minimal. I could create one class, and have a member that will say what type of operation is being represented. This means lots of switch statements, and losing some modularity, in addition to being harder to maintain. Which is is better practice? Is there a better way of doing that is not listed above? If it matters, the list of functions that should be supported is long.

    Read the article

  • Are nested classes under-rated?

    - by Aaron Anodide
    I'm not trying to say I know something everyone else doesn't but I've been solving more and more designs with the use of nested classes, so I'm curious to get a feeling for the acceptablilty of using this seemingly rarely used design mechanism. This leads me to the question: am I going down an inherintly bad path for reasons I'll discover when they come back to bite me, or are nested classes maybe something that are underrated? Here are two examples I just used them for: https://gist.github.com/3975581 - the first helped me keep tightly releated heirarchical things together, the second let me give access to protected members to workers...

    Read the article

  • Sharing object between 2 classes

    - by Justin
    I am struggling to wrap my head around being able to share an object between two classes. I want to be able to create only one instance of the object, commonlib in my main class and then have the classes, foo1 and foo2, to be able to mutually share the properties of the commonlib. commonlib is a 3rd party class which has a property Queries that will be added to in each child class of bar. This is why it is vital that only one instance is created. I create two separate queries in foo1 and foo2. This is my setup: abstract class bar{ //common methods } class foo1 extends bar{ //add query to commonlib } class foo2 extends bar{ //add query to commonlib } class main { public $commonlib = new commonlib(); public function start(){ //goal is to share one instance of $this->commonlib between foo1 and foo2 //so that they can both add to the properites of $this->commonlib (global //between the two) //now execute all of the queries after foo1 and foo2 add their query $this->commonlib->RunQueries(); } }

    Read the article

  • Jquery, div with two classes hide one show the other - conflict?????

    - by user349223
    Sorry if this was answered in a previous thread, i couldn't find one. I have 4 sections: Section1, Section2, Section3, Section4 There are classes for each section, so I am hiding and showing based on the section. The problem is some classes need to be showin in Section1 and Section2. <div class="section1 section2"> blah blah </div> $('a.homeLink').click(function(){ $('.section1').show(); $('.section2, .section3, .section4').hide(); return false; }); As you see in this case I have a div in two sections, but as i thought would happen it remains hidden due to hiding class section2 work arounds or solutions?? thanks

    Read the article

  • Jframe using multiple classes?

    - by user2945880
    and im trying to make it so it can show multiple classes at once Jframe: import javax.swing.JFrame; import java.awt.BorderLayout; public class Concert { public static void main(String[] args) { JFrame frame = new JFrame(); frame.setSize(1000, 800); frame.setTitle("Concert!"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); Concertbackground component = new Concertbackground(); BandComponent component1 = new BandComponent(); frame.add(component, BorderLayout.NORTH); frame.add(component1, BorderLayout.CENTER); frame.setVisible(true); } } These are the two classes mentioned in the Jframe: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Rectangle; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import javax.swing.JComponent; import java.awt.Polygon; /* BandComponent.java Justin Walker 10/27/13 */ public class BandComponent extends JComponent { public void paintComponent(Graphics g) { // Recover Graphics2D Graphics2D g2 = (Graphics2D) g; int xScale = 250; int yScale = 100; int x = 343; int y = 343; //singer Polygon sing = new Polygon(); sing.addPoint(667 ,208 + xScale); sing.addPoint(676,213 + xScale); sing.addPoint(678,217 + xScale); sing.addPoint(682,221 + xScale); sing.addPoint(681,224 + xScale); sing.addPoint(680,231 + xScale); sing.addPoint(676,242 + xScale); sing.addPoint(672,244 + xScale); sing.addPoint(672,250 + xScale); sing.addPoint(682,248 + xScale); sing.addPoint(713,244 + xScale); sing.addPoint(734,247 + xScale); sing.addPoint(750,247 + xScale); sing.addPoint(794,232 + xScale); sing.addPoint(800,231 + xScale); sing.addPoint(801,223 + xScale); sing.addPoint(807,219 + xScale); sing.addPoint(806,221 + xScale); sing.addPoint(806,229 + xScale); sing.addPoint(818,222 + xScale); sing.addPoint(820,223 + xScale); sing.addPoint(825,227 + xScale); sing.addPoint(825,240 + xScale); sing.addPoint(817,243 + xScale); sing.addPoint(807,245 + xScale); sing.addPoint(803,247 + xScale); sing.addPoint(801,252 + xScale); sing.addPoint(781,257 + xScale); sing.addPoint(762,264 + xScale); sing.addPoint(734,271 + xScale); sing.addPoint(701,286 + xScale); sing.addPoint(691,296 + xScale); sing.addPoint(693,311 + xScale); sing.addPoint(690,317 + xScale); sing.addPoint(690,335 + xScale); sing.addPoint(691,339 + xScale); sing.addPoint(689,343 + xScale); sing.addPoint(712,382 + xScale); sing.addPoint(725,400 + xScale); sing.addPoint(731,418 + xScale); sing.addPoint(731,428 + xScale); sing.addPoint(738,454 + xScale); sing.addPoint(741,460 + xScale); sing.addPoint(746,468 + xScale); sing.addPoint(766,468 + xScale); sing.addPoint(771,481 + xScale);// sing.addPoint(723,482 + xScale); sing.addPoint(720,462 + xScale); sing.addPoint(718,454 + xScale); sing.addPoint(709,436 + xScale); sing.addPoint(703,436 + xScale); sing.addPoint(699,417 + xScale); sing.addPoint(686,396 + xScale); sing.addPoint(678,395 + xScale); sing.addPoint(676,437 + xScale); sing.addPoint(673,439 + xScale); sing.addPoint(638,435 + xScale); sing.addPoint(640,398 + xScale); sing.addPoint(634,410 + xScale); sing.addPoint(625,416 + xScale); sing.addPoint(622,436 + xScale); sing.addPoint(622,443 + xScale); sing.addPoint(615,447 + xScale); sing.addPoint(609,456 + xScale); sing.addPoint(606,481 + xScale);// sing.addPoint(557,481 + xScale); sing.addPoint(560,467 + xScale); sing.addPoint(579,467 + xScale); sing.addPoint(587,464 + xScale); sing.addPoint(593,452 + xScale); sing.addPoint(594,441 + xScale); sing.addPoint(592,434 + xScale); sing.addPoint(600,416 + xScale); sing.addPoint(608,405 + xScale); sing.addPoint(609,394 + xScale); sing.addPoint(617,376 + xScale); sing.addPoint(619,363 + xScale); sing.addPoint(632,334 + xScale); sing.addPoint(637,324 + xScale); sing.addPoint(635,314 + xScale); sing.addPoint(639,296 + xScale); sing.addPoint(627,285 + xScale); sing.addPoint(600,279 + xScale); sing.addPoint(582,278 + xScale); sing.addPoint(575,275 + xScale); sing.addPoint(546,256 + xScale); sing.addPoint(536,252 + xScale); sing.addPoint(533,350 + xScale); sing.addPoint(534,361 + xScale); sing.addPoint(532,367 + xScale); sing.addPoint(529,369 + xScale); sing.addPoint(524,363 + xScale); sing.addPoint(525,355 + xScale); sing.addPoint(531,254 + xScale); sing.addPoint(527,249 + xScale); sing.addPoint(527,242 + xScale); sing.addPoint(529,237 + xScale); sing.addPoint(532,237 + xScale); sing.addPoint(536,178 + xScale); sing.addPoint(534,129 + xScale); sing.addPoint(535,123 + xScale); sing.addPoint(541,120 + xScale); sing.addPoint(545,123 + xScale); sing.addPoint(547,131 + xScale); sing.addPoint(545,173 + xScale); sing.addPoint(538,233 + xScale); sing.addPoint(549,239 + xScale); sing.addPoint(558,241 + xScale); sing.addPoint(585,257 + xScale); sing.addPoint(599,257 + xScale); sing.addPoint(627,254 + xScale); sing.addPoint(647,251 + xScale); sing.addPoint(653,248 + xScale); sing.addPoint(652,235 + xScale); sing.addPoint(648,226 + xScale); sing.addPoint(652,218 + xScale); sing.addPoint(661,212 + xScale); g2.setColor(Color.black); g2.fill(sing); g2.draw(sing); //guitar Polygon guitar = new Polygon(); guitar.addPoint(148,28); guitar.addPoint(158,32); guitar.addPoint(164,38); guitar.addPoint(168,46); guitar.addPoint(169,52); guitar.addPoint(167,60); guitar.addPoint(164,65); guitar.addPoint(165,70); guitar.addPoint(161,76); guitar.addPoint(158,92); guitar.addPoint(162,97); guitar.addPoint(161,102); guitar.addPoint(158,106); guitar.addPoint(155,108); guitar.addPoint(151,127); guitar.addPoint(152,133); guitar.addPoint(155,137); guitar.addPoint(151,146); guitar.addPoint(153,147); guitar.addPoint(160,142); guitar.addPoint(162,133); guitar.addPoint(162,123); guitar.addPoint(161,113); guitar.addPoint(162,110); guitar.addPoint(164,117); guitar.addPoint(169,131); guitar.addPoint(171,144); guitar.addPoint(170,159); guitar.addPoint(166,167); guitar.addPoint(166,171); guitar.addPoint(174,174); guitar.addPoint(183,184); guitar.addPoint(191,195); guitar.addPoint(196,198); guitar.addPoint(198,200); guitar.addPoint(199,210); guitar.addPoint(211,225); guitar.addPoint(212,233); guitar.addPoint(220,248); guitar.addPoint(233,260); guitar.addPoint(245,266); guitar.addPoint(248,268); guitar.addPoint(249,277); guitar.addPoint(205,275); guitar.addPoint(204,262); guitar.addPoint(187,238); guitar.addPoint(178,224); guitar.addPoint(177,216); guitar.addPoint(156,201); guitar.addPoint(146,197); guitar.addPoint(134,211); guitar.addPoint(128,229); guitar.addPoint(125,244);// guitar.addPoint(121,246); guitar.addPoint(107,248); guitar.addPoint(100,252); guitar.addPoint(97,258); guitar.addPoint(96,253); guitar.addPoint(89,258); guitar.addPoint(65,267); guitar.addPoint(63,274); guitar.addPoint(64,283); guitar.addPoint(41,282); guitar.addPoint(44,270); guitar.addPoint(47,264); guitar.addPoint(51,255); guitar.addPoint(73,238); guitar.addPoint(79,228); guitar.addPoint(97,222); guitar.addPoint(101,204); guitar.addPoint(102,181); guitar.addPoint(100,170); guitar.addPoint(95,161); guitar.addPoint(97,154); guitar.addPoint(91,152); guitar.addPoint(77,131); guitar.addPoint(65,123); guitar.addPoint(61,105); guitar.addPoint(64,94); guitar.addPoint(72,91); guitar.addPoint(78,82); guitar.addPoint(78,76); guitar.addPoint(70,73); guitar.addPoint(70,67); guitar.addPoint(93,51); guitar.addPoint(101,48); guitar.addPoint(111,52); guitar.addPoint(118,59); guitar.addPoint(119,70); guitar.addPoint(117,78); guitar.addPoint(113,79); guitar.addPoint(112,86); guitar.addPoint(111,88); guitar.addPoint(109,89); guitar.addPoint(109,92); guitar.addPoint(122,99);// guitar.addPoint(124,99); guitar.addPoint(133,96); guitar.addPoint(145,93); //guitar.addPoint(138,124); guitar.addPoint(150,69); guitar.addPoint(150,62); guitar.addPoint(155,58); guitar.addPoint(154,53); guitar.addPoint(149,50); guitar.addPoint(154,46); guitar.addPoint(153,38); guitar.addPoint(147,28); g2.setColor(Color.black); g2.fill(guitar); g2.draw(guitar); Polygon guitar2 = new Polygon (); guitar2.addPoint(141,108); guitar2.addPoint(139,126); guitar2.addPoint(135,122); guitar2.addPoint(128,122); guitar2.addPoint(129,116); guitar2.addPoint(143,108); g2.setColor(Color.white); g2.fill(guitar2); g2.draw(guitar2); //bass guitar Polygon bassgt = new Polygon (); bassgt.addPoint(871,21); bassgt.addPoint(879,24); bassgt.addPoint(885,32); bassgt.addPoint(886,42); bassgt.addPoint(895,47); bassgt.addPoint(904,56); bassgt.addPoint(907,69); bassgt.addPoint(909,83); bassgt.addPoint(910,91); bassgt.addPoint(941,81); bassgt.addPoint(946,75); bassgt.addPoint(945,67); bassgt.addPoint(950,67); bassgt.addPoint(955,75); bassgt.addPoint(960,68); bassgt.addPoint(963,74); bassgt.addPoint(967,72); bassgt.addPoint(971,66); bassgt.addPoint(973,70); bassgt.addPoint(981,67); bassgt.addPoint(984,71); bassgt.addPoint(982,76); bassgt.addPoint(987,80); bassgt.addPoint(986,82); bassgt.addPoint(980,83); bassgt.addPoint(979,90); bassgt.addPoint(974,85); bassgt.addPoint(970,86); bassgt.addPoint(973,91); bassgt.addPoint(965,86); bassgt.addPoint(960,90); bassgt.addPoint(961,100); bassgt.addPoint(955,92); bassgt.addPoint(944,91); bassgt.addPoint(907,103); bassgt.addPoint(906,109); bassgt.addPoint(893,114); bassgt.addPoint(895,123); bassgt.addPoint(900,131); bassgt.addPoint(904,134); bassgt.addPoint(908,145); bassgt.addPoint(911,159); bassgt.addPoint(918,171); bassgt.addPoint(919,190); bassgt.addPoint(923,198); bassgt.addPoint(919,201); bassgt.addPoint(919,210); bassgt.addPoint(927,220); bassgt.addPoint(942,226); bassgt.addPoint(944,234); bassgt.addPoint(909,230); bassgt.addPoint(905,214); bassgt.addPoint(899,204); bassgt.addPoint(893,203); bassgt.addPoint(889,171); bassgt.addPoint(877,151); bassgt.addPoint(861,152); bassgt.addPoint(852,169); bassgt.addPoint(849,203); bassgt.addPoint(841,210); bassgt.addPoint(840,228); bassgt.addPoint(828,233); bassgt.addPoint(806,235); bassgt.addPoint(805,228); bassgt.addPoint(822,219); bassgt.addPoint(824,204); bassgt.addPoint(817,201); bassgt.addPoint(822,196); bassgt.addPoint(822,184); bassgt.addPoint(828,162); bassgt.addPoint(829,152); bassgt.addPoint(820,149); bassgt.addPoint(811,144); bassgt.addPoint(806,134); bassgt.addPoint(805,117); bassgt.addPoint(820,107); bassgt.addPoint(819,89); bassgt.addPoint(811,83); bassgt.addPoint(811,77); bassgt.addPoint(824,66); bassgt.addPoint(825,61); bassgt.addPoint(842,53); bassgt.addPoint(852,43); bassgt.addPoint(853,29); bassgt.addPoint(870,20); g2.setColor(Color.black); g2.fill(bassgt); g2.draw(bassgt); Polygon bassgt2 = new Polygon(); bassgt2.addPoint(845,78); bassgt2.addPoint(845,98); bassgt2.addPoint(843,98); bassgt2.addPoint(842,105); bassgt2.addPoint(839,109); bassgt2.addPoint(834,103); bassgt2.addPoint(832,85); bassgt2.addPoint(845,78); g2.setColor(Color.white); g2.fill(bassgt2); g2.draw(bassgt2); Polygon drums = new Polygon (); drums.addPoint(713,104); drums.addPoint(706,121); drums.addPoint(721,377); drums.addPoint(248,380); drums.addPoint(253,228); drums.addPoint(250,206); drums.addPoint(237,178); drums.addPoint(206,166); drums.addPoint(201,154); drums.addPoint(198,152); drums.addPoint(208,148); drums.addPoint(236,150); drums.addPoint(247,130); drums.addPoint(227,119); drums.addPoint(219,105); drums.addPoint(222,96); drums.addPoint(233,88); drums.addPoint(251,84); drums.addPoint(272,83); drums.addPoint(300,91); drums.addPoint(285,72); drums.addPoint(294,57); drums.addPoint(319,46); drums.addPoint(372,45); drums.addPoint(406,50); drums.addPoint(428,65); drums.addPoint(433,74); drums.addPoint(450,58); drums.addPoint(478,48); drums.addPoint(514,48); drums.addPoint(544,51); drums.addPoint(566,52); drums.addPoint(577,67); drums.addPoint(575,79); drums.addPoint(561,95); drums.addPoint(545,98); drums.addPoint(525,105); drums.addPoint(524,147); drums.addPoint(524,183); drums.addPoint(645,175); drums.addPoint(662,143); drums.addPoint(617,152); drums.addPoint(608,148); drums.addPoint(614,139); drums.addPoint(633,128); drums.addPoint(661,116); drums.addPoint(659,107); drums.addPoint(625,114); drums.addPoint(592,113); drums.addPoint(571,111); drums.addPoint(565,102); drums.addPoint(576,86); drums.addPoint(616,70); drums.addPoint(647,66); drums.addPoint(679,67); drums.addPoint(695,72); drums.addPoint(699,90); drums.addPoint(678,100); drums.addPoint(667,103); drums.addPoint(672,113); drums.addPoint(689,105); drums.addPoint(709,106); g2.setColor(Color.black); g2.fill(drums); g2.draw(drums); } } The second class: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Rectangle; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import javax.swing.JComponent; import java.awt.GradientPaint; /* component that draws the concert background */ public class Concertbackground extends JComponent { public void paintComponent(Graphics g) { super.paintComponent(g); // Recover Graphics2D Graphics2D g2 = (Graphics2D) g; //Background Top g2.setColor(Color.BLUE); Rectangle backgroundTop = new Rectangle (0, 0, getWidth(), getHeight() / 4); g2.fill(backgroundTop); // Background bottom g2.setColor(Color.GREEN); Rectangle backgroundBottom = new Rectangle (0, getHeight() / 2, getWidth(), getHeight() / 2); g2.fill(backgroundBottom); // Speaker base g2.setColor(Color.BLACK); Rectangle base = new Rectangle (0, 0, 50, 100); g2.fill(base); // Speakers circles gray top g2.setColor(Color.DARK_GRAY); Ellipse2D.Double speakerTop = new Ellipse2D.Double(10, 10, 30, 30); g2.fill(speakerTop); //speakers circles black top g2.setColor(Color.BLACK); Ellipse2D.Double speakerTop1 = new Ellipse2D.Double(15, 15, 20, 20); g2.fill(speakerTop1); // Speakers circles gray bottom g2.setColor(Color.DARK_GRAY); Ellipse2D.Double speakerBottom = new Ellipse2D.Double(10, 50, 30, 30); g2.fill(speakerBottom); //speakers circles black bottom g2.setColor(Color.BLACK); Ellipse2D.Double speakerBottom1 = new Ellipse2D.Double(15, 55, 20, 20); g2.fill(speakerBottom1); } } My main question is how do I change my Jframe so it can use as many classes as I want, It cant be the size of my classes because they were used with the same 1000, 800 Jframe to make the classes. I also need to be able to add more than just these two classes to my Jframe.

    Read the article

  • How should I share variables between instances/classes?

    - by tesselode
    I'm making a game using LOVE, so everything is programmed in Lua. I've been experimenting with using classes and object orientation recently. I've found out that a nice system to use is having most of the game's code in different classes, and having a table of instances with all of the instances of any class in it. This way, I can go through every instance of every class and update and draw it by calling the same function. There is a problem, though. Let's say I have an instance of a player with variables for health and recharge time of a weapon. I also have a master instance which is responsible for drawing the HUD. How can I tell the master instance what the player's health is? Bad solutions: Assuming that the player instance will always have the same position in the table - that can be easily changed. Using global variables. Global variables are evil. Have the master instance outside of the instances table, and have the player set variables inside the master instance, which it then uses for HUD drawing. This is really bad because now I have to make a duplicate of every variable the master instance needs. What is the proper, standard way of sharing variables between instances? Do I need to change the way I keep track of instances?

    Read the article

  • Better way to generate enemies of different sub-classes

    - by KDiTraglia
    So lets pretend I have an enemy class that has some generic implementation and inheriting from it I have all the specific enemies of my game. There are points in my code that I need to check whether an enemy is a specific type, but in Java I have found no easier way than this monstrosity... //Must be a better way to do this if ( enemy.class.isAssignableFrom(Ninja.class) ) { ... } My partner on the project saw these and changed them to use an enum system instead public class Ninja extends Enemy { //EnemyType is an enum containing all our enemy types public EnemyType = EnemyTypes.NINJA; } if (enemy.EnemyType = EnemyTypes.NINJA) { ... } I also have found no way to generate enemies on varying probabilities besides this for (EnemyTypes types : enemyTypes) { if ( (randomNext = (randomNext - types.getFrequency())) < 0 ) { enemy = createEnemy(types.getEnemyType()); break; } } private static Enemy createEnemy(EnemyType type) { switch (type) { case NINJA: return new Ninja(new Vector2D(rand.nextInt(getScreenWidth()), 0), determineSpeed()); case GORILLA: return new Gorilla(new Vector2D(rand.nextInt(getScreenWidth()), 0), determineSpeed()); case TREX: return new TRex(new Vector2D(rand.nextInt(getScreenWidth()), 0), determineSpeed()); //etc } return null } I know java is a little weak at dynamic object creation, but is there a better way to implement this in a way such like this for (EnemyTypes types : enemyTypes) { if ( (randomNext = (randomNext - types.getFrequency())) < 0 ) { //Change enemyTypes to hold the classes of the enemies I can spawn enemy = types.getEnemyType().class.newInstance() break; } } Is the above possible? How would I declare enemyTypes to hold the classes if so? Everything I have tried so far as generated compile errors and general frustration, but I figured I might ask here before I completely give up to the huge mass that is the createEveryEnemy() method. All the enemies do inherit from the Enemy class (which is what the enemy variable is declared as). Also is there a better way to check which type a particular enemy that is shorter than enemy.class.isAssignableFrom(Ninja.class)? I'd like to ditch the enums entirely if possible, since they seem repetitive when the class name itself holds that information.

    Read the article

  • Splitting Pygame functionality between classes or modules?

    - by sec_goat
    I am attempting to make my pygame application more modular so that different functionalities are split up into different classes and modules. I am having some trouble getting pygame to allow me to draw or load images in secondary classes when the display has been set and pygame.init() has been done in my main class. I have typically used C# and XNA to accomplish this sort of behavior, but this time I need to use python. How do I init pygame in class1, then create an instance of class2 which loads and converts() images. I have tried pygame.init() in class 2 but then it tells me no display mode has been set, when it has been set in class1. I am under the impression i do not wnat to create multiple pygame.displays as that gets problematic I am probably missing something pythonic and simple but I am not sure what. How do I create a Display class, init python and then have other modules do my work like loading images, fonts etc.? here is the simplest version of what I am doing: class1: def __init__(self): self.screen = pygame.display.set_mode((600,400)) self.imageLoader = class2() class2: def __init__(self): self.images = ['list of images'] def load_images(): self.images = os.listdir('./images/') #get all images in the images directory for img in self.images: #read all images in the directory and load them into pygame new_img = pygame.image.load(os.path.join('images', img)).convert() scale_img = pygame.transform.scale(new_img, (pygame.display.Info().current_w, pygame.display.Info().current_h)) self.images.append(scale_img) if __name__ == "__main__": c1 = class1() c1.imageLoader.load_images() Of course when it tries to load an convert the images it tells me pygame has not been initialized, so i throw in a pygame.init() in class2 ( i have heard it is safe to init multiple times) and then the error goes to pygame.error: No video mode has been set

    Read the article

  • Android Activity access Unity Classes

    - by Anomaly
    I have made my own C# classes in Unity, is there any way I can access these classes from the Android Activity that starts the UnityPlayer? Example: I have a C# class called testClass in Unity: class testClass{ public static string myString="test string"; } From the Android activity in Java I want to access that class: string str=testClass.myString; Is this possible? If so, how? Or is there some other way to do this? In the end I basically want to communicate between my Android activity and the UnityPlayer object. Thanks in advance. EDIT: Ok so I looked at building Android plugins for Unity but this wasn't satisfactory to me. I ended up building a socket client-server interface in Unity with C# and another one in Java for the Android app: So Unity listens on port X and broadcasts on port Y The Android activity listens on port Y and broadcasts on port X This is necessary as both interfaces are running on the same host. So that's how I solved my problem, but I'm open for any suggestions if anyone knows a better way of communicating between the Unityplayer and your app.

    Read the article

  • Does jQuery or JavaScript have the concept of classes and objects?

    - by Prashant
    I found the following code somewhere, but I am not understanding the code properly. ArticleVote.submitVote('no');return false; Is ArticleVote a class and submitVote() a function of that class? Or what does the above code mean? And is there any concept of classes and objects in jQuery or in traditional JavaScript? How to create them? Please share some reference links or code.

    Read the article

  • how to filter files from the root "classes" and "test-classes" folders in Eclipse?

    - by Kidburla
    I am using ClearCase in my application which generates a whole load of ".copyarea.db" files (one in every folder). These cause conflicts when publishing to Tomcat as Eclipse will bundle the "classes" and "test-classes" folders into one JAR (not sure why it does this - as there is no need to have test classes available on the application server). Any folders with the same names will have a separate .copyarea.db in the classes and test-classes branches. I managed to get around this problem in general by adding ".copyarea.db" to the Filtered resources on the Java->Compiler->Building->Output Folder preference page. This stops the file appearing in source output (package/class folders), the vast majority of cases. However there remains the problem of the root folder, i.e. "target/classes/.copyarea.db" and "target/test-classes/.copyarea.db". These files are not filtered as they are not part of the compile task. Just deleting the files manually doesn't help either, as Eclipse expects to find them and doesn't. How can I exclude these ".copyarea.db" files from the root "classes" and "test-classes" folders?

    Read the article

  • SQL SERVER – Finding Shortest Distance between Two Shapes using Spatial Data Classes – Ramsetu or Adam’s Bridge

    - by pinaldave
    Recently I was reading excellent blog post by Lenni Lobel on Spatial Database. He has written very interesting function ShortestLineTo in Spatial Data Classes. I really loved this new feature of the finding shortest distance between two shapes in SQL Server. Following is the example which is same as Lenni talk on his blog article . DECLARE @Shape1 geometry = 'POLYGON ((-20 -30, -3 -26, 14 -28, 20 -40, -20 -30))' DECLARE @Shape2 geometry = 'POLYGON ((-18 -20, 0 -10, 4 -12, 10 -20, 2 -22, -18 -20))' SELECT @Shape1 UNION ALL SELECT @Shape2 UNION ALL SELECT @Shape1.ShortestLineTo(@Shape2).STBuffer(.25) GO When you run this script SQL Server finds out the shortest distance between two shapes and draws the line. We are using STBuffer so we can see the connecting line clearly. Now let us modify one of the object and then we see how the connecting shortest line works. DECLARE @Shape1 geometry = 'POLYGON ((-20 -30, -3 -30, 14 -28, 20 -40, -20 -30))' DECLARE @Shape2 geometry = 'POLYGON ((-18 -20, 0 -10, 4 -12, 10 -20, 2 -22, -18 -20))' SELECT @Shape1 UNION ALL SELECT @Shape2 UNION ALL SELECT @Shape1.ShortestLineTo(@Shape2).STBuffer(.25) GO Now once again let us modify one of the script and see how the shortest line to works. DECLARE @Shape1 geometry = 'POLYGON ((-20 -30, -3 -30, 14 -28, 20 -40, -20 -30))' DECLARE @Shape2 geometry = 'POLYGON ((-18 -20, 0 -10, 4 -12, 10 -20, 2 -18, -18 -20))' SELECT @Shape1 UNION ALL SELECT @Shape2 UNION ALL SELECT @Shape1.ShortestLineTo(@Shape2).STBuffer(.25) SELECT @Shape1.STDistance(@Shape2) GO You can see as the objects are changing the shortest lines are moving at appropriate place. I think even though this is very small feature this is really cool know. While I was working on this example, I suddenly thought about distance between Sri Lanka and India. The distance is very short infect it is less than 30 km by sea. I decided to map India and Sri Lanka using spatial data classes. To my surprise the plotted shortest line is the same as Adam’s Bridge or Ramsetu. Adam’s Bridge starts as chain of shoals from the Dhanushkodi tip of India’s Pamban Island and ends at Sri Lanka’s Mannar Island. Geological evidence suggests that this bridge is a former land connection between India and Sri Lanka. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Function, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Spatial Database, SQL Spatial

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >