Search Results

Search found 1608 results on 65 pages for 'declaration'.

Page 60/65 | < Previous Page | 56 57 58 59 60 61 62 63 64 65  | Next Page >

  • How to dynamically change the content of a facet in a custom component?

    - by romaintaz
    Hello, Let's consider that I want to extend an existing JSF component, such as the <rich:datatable/>. My main requirement is to dynamically modify the content of a <f:facet>, to change its content. What is the best way to achieve that? Or where is the best place in the code to achieve that? In my faces-config.xml, I have the following declaration: <faces-config> ... <component> <component-type>my.component.dataTable</component-type> <component-class>my.project.component.table.MyHtmlDataTable</component-class> </component> ... <render-kit> <render-kit-id>HTML_BASIC</render-kit-id> <renderer> <component-family>org.richfaces.DataTable</component-family> <renderer-type>my.renderkit.dataTable</renderer-type> <renderer-class>my.project.component.table.MyDataTableRenderer</renderer-class> </renderer> ... Also, my my-project.taglib.xml file (as I use Facelets) looks like: <facelet-taglib> <namespace>http://my.project/jsf</namespace> <tag> <tag-name>dataTable</tag-name> <component> <component-type>my.component.dataTable</component-type> <renderer-type>my.renderkit.dataTable</renderer-type> </component> </tag> So as you can see, I have two classes in my project for my custom datatable: MyHtmlDataTable and MyDataTableRenderer. One of my idea is to modify the content of the <f:facet> directly in the doEncodeBegin() method of my renderer. This is working (in fact almost working), but I don't really think that's the better place to achieve my modification. What do you think? Technical information: JSF 1.2, Facelets, Richfaces 3.3.2, Java 1.6

    Read the article

  • Backbone.js (model instanceof Model) via Chrome Extension

    - by Leoncelot
    Hey guys, This is my first time ever posting on this site and the problem I'm about to pose is difficult to articulate due to the set of variables required to arrive at it. Let me just quickly explain the framework I'm working with. I'm building a Chrome Extension using jQuery, jQuery-ui, and Backbone The entire JS suite for the extension is written in CoffeeScript and I'm utilizing Rails and the asset pipeline to manage it all. This means that when I want to deploy my extension code I run rake assets:precompile and copy the resulting compressed JS to my extensions Directory. The nice thing about this approach is that I can actually run the extension js from inside my Rails app by including the library. This is basically the same as my extensions background.js file which injects the js as a content script. Anyway, the problem I've recently encountered was when I tried testing my extension on my buddy's site, whiskeynotes.com. What I was noticing is that my backbone models were being mangled upon adding them to their respective collections. So something like this.collection.add(new SomeModel) created some nonsense version of my model. This code eventually runs into Backbone's prepareModel code _prepareModel: function(model, options) { options || (options = {}); if (!(model instanceof Model)) { var attrs = model; options.collection = this; model = new this.model(attrs, options); if (!model._validate(model.attributes, options)) model = false; } else if (!model.collection) { model.collection = this; } return model; }, Now, in most of the sites on which I've tested the extension, the result is normal, however on my buddy's site the !(model instance Model) evaluates to true even though it is actually an instance of the correct class. The consequence is a super messed up version of the model where the model's attributes is a reference to the models collection (strange right?). Needless to say, all kinds of crazy things were happening afterward. Why this is occurring is beyond me. However changing this line (!(model instanceof Model)) to (!(model instanceof Backbone.Model)) seems to fix the problem. I thought maybe it had something to do with the Flot library (jQuery graph library) creating their own version of 'Model' but looking through the source yielded no instances of it. I'm just curious as to why this would happen. And does it make sense to add this little change to the Backbone source? Update: I just realized that the "fix" doesn't actually work. I can also add that my backbone Models are namespaced in a wrapping object so that declaration looks something like class SomeNamespace.SomeModel extends Backbone.Model

    Read the article

  • Can I write a test that succeeds if and only if a statement does not compile?

    - by Billy ONeal
    I'd like to prevent clients of my class from doing something stupid. To that end, I have used the type system, and made my class only accept specific types as input. Consider the following example (Not real code, I've left off things like virtual destructors for the sake of example): class MyDataChunk { //Look Ma! Implementation! }; class Sink; class Source { virtual void Run() = 0; Sink *next_; void SetNext(Sink *next) { next_ = next; } }; class Sink { virtual void GiveMeAChunk(const MyDataChunk& data) { //Impl }; }; class In { virtual void Run { //Impl } }; class Out { }; //Note how filter and sorter have the same declaration. Concrete classes //will inherit from them. The seperate names are there to ensure only //that some idiot doesn't go in and put in a filter where someone expects //a sorter, etc. class Filter : public Source, public Sink { //Drop objects from the chain-of-command pattern that don't match a particular //criterion. }; class Sorter : public Source, public Sink { //Sorts inputs to outputs. There are different sorters because someone might //want to sort by filename, size, date, etc... }; class MyClass { In i; Out o; Filter f; Sorter s; public: //Functions to set i, o, f, and s void Execute() { i.SetNext(f); f.SetNext(s); s.SetNext(o); i.Run(); } }; What I don't want is for somebody to come back later and go, "Hey, look! Sorter and Filter have the same signature. I can make a common one that does both!", thus breaking the semantic difference MyClass requires. Is this a common kind of requirement, and if so, how might I implement a test for it?

    Read the article

  • Use multiple inheritance to discriminate useage roles?

    - by Arne
    Hi fellows, it's my flight simulation application again. I am leaving the mere prototyping phase now and start fleshing out the software design now. At least I try.. Each of the aircraft in the simulation have got a flight plan associated to them, the exact nature of which is of no interest for this question. Sufficient to say that the operator way edit the flight plan while the simulation is running. The aircraft model most of the time only needs to read-acess the flight plan object which at first thought calls for simply passing a const reference. But ocassionally the aircraft will need to call AdvanceActiveWayPoint() to indicate a way point has been reached. This will affect the Iterator returned by function ActiveWayPoint(). This implies that the aircraft model indeed needs a non-const reference which in turn would also expose functions like AppendWayPoint() to the aircraft model. I would like to avoid this because I would like to enforce the useage rule described above at compile time. Note that class WayPointIter is equivalent to a STL const iterator, that is the way point can not be mutated by the iterator. class FlightPlan { public: void AppendWayPoint(const WayPointIter& at, WayPoint new_wp); void ReplaceWayPoint(const WayPointIter& ar, WayPoint new_wp); void RemoveWayPoint(WayPointIter at); (...) WayPointIter First() const; WayPointIter Last() const; WayPointIter Active() const; void AdvanceActiveWayPoint() const; (...) }; My idea to overcome the issue is this: define an abstract interface class for each usage role and inherit FlightPlan from both. Each user then only gets passed a reference of the appropriate useage role. class IFlightPlanActiveWayPoint { public: WayPointIter Active() const =0; void AdvanceActiveWayPoint() const =0; }; class IFlightPlanEditable { public: void AppendWayPoint(const WayPointIter& at, WayPoint new_wp); void ReplaceWayPoint(const WayPointIter& ar, WayPoint new_wp); void RemoveWayPoint(WayPointIter at); (...) }; Thus the declaration of FlightPlan would only need to be changed to: class FlightPlan : public IFlightPlanActiveWayPoint, IFlightPlanEditable { (...) }; What do you think? Are there any cavecats I might be missing? Is this design clear or should I come up with somethink different for the sake of clarity? Alternatively I could also define a special ActiveWayPoint class which would contain the function AdvanceActiveWayPoint() but feel that this might be unnecessary. Thanks in advance!

    Read the article

  • How to access the map returned by IParameterValues::getParameterValues()?

    - by Hua
    I declared a command and a commandParameter for this command. I specified the "values" of this commandParameter as a class implemented by myself. The implementation of this class is below, public class ParameterValues implements IParameterValues { @Override public Map<String, Double> getParameterValues() { // TODO Auto-generated method stub Map<String, Double> values = new HashMap<String, Double>(2); values.put("testParam", 1.1239); values.put("AnotherTest", 4.1239); return values; } } The implementation of the handler of this command is blow, public class testHandler extends AbstractHandler implements IHandler { private static String PARAMETER_ID = "my.parameter1"; @Override public Object execute(ExecutionEvent event) throws ExecutionException { String value = event.getParameter(PARAMETER_ID); MessageDialog.openInformation(HandlerUtil.getActiveShell(event), "Test", "Parameter ID: " + PARAMETER_ID + "\nValue: " + value); return null; } } Now, I contribute the command to a menu, <menuContribution locationURI="menu:org.eclipse.ui.main.menu"> <menu id="my.edit" label="Edit"> <command commandId="myCommand.test" label="Test1"> <parameter name="my.parameter1" value="testParam"> </parameter> </command> Since I specified a "values" class for the commandParater, I expect when the menu is clicked, this code line "String value = event.getParameter(PARAMETER_ID);" in the handler class returns 1.1239 instead of "testParam". But, I still see that code line returns "testParam". What's the problem? How could I access the map returned by getParameterValues()? By the way, following menu declaration still works even I don't define "ppp" in the map. <menuContribution locationURI="menu:org.eclipse.ui.main.menu"> <menu id="my.edit" label="Edit"> <command commandId="myCommand.test" label="Test1"> <parameter name="my.parameter1" value="ppp"> </parameter> </command> Thanks!

    Read the article

  • Undefined template methods trick ?

    - by Matthieu M.
    A colleague of mine told me about a little piece of design he has used with his team that sent my mind boiling. It's a kind of traits class that they can specialize in an extremely decoupled way. I've had a hard time understanding how it could possibly work, and I am still unsure of the idea I have, so I thought I would ask for help here. We are talking g++ here, specifically the versions 3.4.2 and 4.3.2 (it seems to work with both). The idea is quite simple: 1- Define the interface // interface.h template <class T> struct Interface { void foo(); // the method is not implemented, it could not work if it was }; // // I do not think it is necessary // but they prefer free-standing methods with templates // because of the automatic argument deduction // template <class T> void foo(Interface<T>& interface) { interface.foo(); } 2- Define a class, and in the source file specialize the interface for this class (defining its methods) // special.h class Special {}; // special.cpp #include "interface.h" #include "special.h" // // Note that this specialization is not visible outside of this translation unit // template <> struct Interface<Special> { void foo() { std::cout << "Special" << std::endl; } }; 3- To use, it's simple too: // main.cpp #include "interface.h" class Special; // yes, it only costs a forward declaration // which helps much in term of dependencies int main(int argc, char* argv[]) { Interface<Special> special; foo(special); return 0; }; It's an undefined symbol if no translation unit defined a specialization of Interface for Special. Now, I would have thought this would require the export keyword, which to my knowledge has never been implemented in g++ (and only implemented once in a C++ compiler, with its authors advising anyone not to, given the time and effort it took them). I suspect it's got something to do with the linker resolving the templates methods... Do you have ever met anything like this before ? Does it conform to the standard or do you think it's a fortunate coincidence it works ? I must admit I am quite puzzled by the construct...

    Read the article

  • iOs receivedData from NSURLConnection is nil

    - by yhl
    I was wondering if anyone could point out why I'm not able to capture a web reply. My NSLog shows that my [NSMutableData receivedData] has a length of 0 the entire run of the connection. The script that I hit when I click my login button returns a string. My NSLog result is pasted below, and after that I've pasted both the .h and .m files that I have. NSLog Result 2012-11-28 23:35:22.083 [12548:c07] Clicked on button_login 2012-11-28 23:35:22.090 [12548:c07] theConnection is succesful 2012-11-28 23:35:22.289 [12548:c07] didReceiveResponse 2012-11-28 23:35:22.290 [12548:c07] didReceiveData 2012-11-28 23:35:22.290 [12548:c07] 0 2012-11-28 23:35:22.290 [12548:c07] connectionDidFinishLoading 2012-11-28 23:35:22.290 [12548:c07] 0 ViewController.h #import <UIKit/UIKit.h> @interface ViewController : UIViewController // Create an Action for the button. - (IBAction)button_login:(id)sender; // Add property declaration. @property (nonatomic,assign) NSMutableData *receivedData; @end ViewController.m #import ViewController.h @interface ViewController () @end @implementation ViewController @synthesize receivedData; - (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse *)response { NSLog(@"didReceiveResponse"); [receivedData setLength:0]; } - (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data { NSLog(@"didReceiveData"); [receivedData appendData:data]; NSLog(@"%d",[receivedData length]); } - (void)connectionDidFinishLoading:(NSURLConnection *)connection { NSLog(@"connectionDidFinishLoading"); NSLog(@"%d",[receivedData length]); } - (IBAction)button_login:(id)sender { NSLog(@"Clicked on button_login"); NSString *loginScriptURL = [NSString stringWithFormat:@"http://www.website.com/app/scripts/login.php?"]; NSMutableURLRequest *theRequest = [NSMutableURLRequest requestWithURL:[NSURL URLWithString:loginScriptURL]]; NSString *postString = [NSString stringWithFormat:@"&paramUsername=user&paramPassword=pass"]; NSData *postData = [postString dataUsingEncoding:NSASCIIStringEncoding allowLossyConversion:YES]; [theRequest setHTTPMethod:@"POST"]; [theRequest setHTTPBody:postData]; // Create the actual connection using the request. NSURLConnection *theConnection = [[NSURLConnection alloc] initWithRequest:theRequest delegate:self]; // Capture the response if (theConnection) { NSLog(@"theConnection is succesful"); } else { NSLog(@"theConnection failed"); } } @end

    Read the article

  • How to fix a warning message associated with strlen() used in Yacc?

    - by user547894
    Hello! Please i need your help. Basically, I am facing this warning message upon compiling with gcc, and am not able to deduce the error: Here are the details: The warning message i am receiving is literrally as follows: y.tab.c: In function ‘yyparse’: y.tab.c:1317 warning: incompatible implicit declaration of built-in function ‘strlen’ My Lex File looks like: %{ #include <stdio.h> #include <stdlib.h> #include <ctype.h> #include "y.tab.h" void yyerror(const char*); char *ptrStr; %} %START nameState %% "Name:" { BEGIN nameState; } <nameState>.+ { ptrStr = (char *)calloc(strlen(yytext)+1, sizeof(char)); strcpy(ptrStr, yytext); yylval.sValue = ptrStr; return sText; } %% int main(int argc, char *argv[]) { if ( argc < 3 ) { printf("Two args are needed: input and output"); } else { yyin = fopen(argv[1], "r"); yyout = fopen(argv[2], "w"); yyparse(); fclose(yyin); fclose(yyout); } return 0; } My Yacc file is as follows: %{ #include <stdio.h> #include <stdlib.h> #include <ctype.h> #include "y.tab.h" void yyerror(const char*); int yywrap(); extern FILE *yyout; %} %union { int iValue; char* sValue; }; %token <sValue> sText %token nameToken %% StartName: /* for empty */ | sName ; sName: sText { fprintf(yyout, "The Name is: %s", $1); fprintf(yyout, "The Length of the Name is: %d", strlen($1)); } ; %% void yyerror(const char *str) { fprintf(stderr,"error: %s\n",str); } int yywrap() { return 1; } *I was wondering how to remove this warning message. Please any suggestions are highly appreciated! Thanks in advance.

    Read the article

  • best alternative to in-definition initialization of static class members? (for SVN keywords)

    - by Jeff
    I'm storing expanded SVN keyword literals for .cpp files in 'static char const *const' class members and want to store the .h descriptions as similarly as possible. In short, I need to guarantee single instantiation of a static member (presumably in a .cpp file) to an auto-generated non-integer literal living in a potentially shared .h file. Unfortunately the language makes no attempt to resolve multiple instantiations resulting from assignments made outside class definitions and explicitly forbids non-integer inits inside class definitions. My best attempt (using static-wrapping internal classes) is not too dirty, but I'd really like to do better. Does anyone have a way to template the wrapper below or have an altogether superior approach? // Foo.h: class with .h/.cpp SVN info stored and logged statically class Foo { static Logger const verLog; struct hInfoWrap; public: static hInfoWrap const hInfo; static char const *const cInfo; }; // Would like to eliminate this per-class boilerplate. struct Foo::hInfoWrap { hInfoWrapper() : text("$Id$") { } char const *const text; }; ... // Foo.cpp: static inits called here Foo::hInfoWrap const Foo::hInfo; char const *const Foo::cInfo = "$Id$"; Logger const Foo::verLog(Foo::cInfo, Foo::hInfo.text); ... // Helper.h: output on construction, with no subsequent activity or stored fields class Logger { Logger(char const *info1, char const *info2) { cout << info0 << endl << info1 << endl; } }; Is there a way to get around the static linkage address issue for templating the hInfoWrap class on string literals? Extern char pointers assigned outside class definitions are linguistically valid but fail in essentially the same manner as direct member initializations. I get why the language shirks the whole resolution issue, but it'd be very convenient if an inverted extern member qualifier were provided, where the definition code was visible in class definitions to any caller but only actually invoked at the point of a single special declaration elsewhere. Anyway, I digress. What's the best solution for the language we've got, template or otherwise? Thanks!

    Read the article

  • Terminating a long-executing thread and then starting a new one in response to user changing parameters via UI in an applet

    - by user1817170
    I have an applet which creates music using the JFugue API and plays it for the user. It allows the user to input a music phrase which the piece will be based on, or lets them choose to have a phrase generated randomly. I had been using the following method (successfully) to simply stop and start the music, which runs in a thread using the Player class from JFugue. I generate the music using my classes and user input from the applet GUI...then... private playerThread pthread; private Thread threadPlyr; private Player player; (from variables declaration) public void startMusic(Pattern p) // pattern is a JFugue object which holds the generated music { if (pthread == null) { pthread = new playerThread(); } else { pthread = null; pthread = new playerThread(); } if (threadPlyr == null) { threadPlyr = new Thread(pthread); } else { threadPlyr = null; threadPlyr = new Thread(pthread); } pthread.setPattern(p); threadPlyr.start(); } class playerThread implements Runnable // plays midi using jfugue Player { private Pattern pt; public void setPattern(Pattern p) { pt = p; } @Override public void run() { try { player.play(pt); // takes a couple mins or more to execute resetGUI(); } catch (Exception exception) { } } } And the following to stop music when user presses the stop/start button while Player.isPlaying() is true: public void stopMusic() { threadPlyr.interrupt(); threadPlyr = null; pthread = null; player.stop(); } Now I want to implement a feature which will allow the user to change parameters while the music is playing, create an updated music pattern, and then play THAT pattern. Basically, the idea is to make it simulate "real time" adjustments to the generated music for the user. Well, I have been beating my head against the wall on this for a couple of weeks. I've read all the standard java documentation, researched, read, and searched forums, and I have tried many different ideas, none of which have succeeded. The problem I've run into with all approaches I've tried is that when I start the new thread with the new, updated musical pattern, all the old threads ALSO start, and there is a cacophony of unintelligible noise instead of my desired output. From what I've gathered, the issue seems to be that all the methods I've come across require that the thread is able to periodically check the value of a "flag" variable and then shut itself down from within its "run" block in response to that variable. However, since my thread makes a call that takes several minutes minimum to execute (playing the music), and I need to terminate it WHILE it is executing this, there is really no safe way to do so. So, I'm wondering if there is something I'm missing when it comes to threads, or if perhaps I can accomplish my goal using a totally different approach. Any ideas or guidance is greatly appreciated! Thank you!

    Read the article

  • Name hiding from inherited classes

    - by Mercerbearman
    I have the following sample code and I wanted to know the correct way to get access to the Pass method in the CBar class. Currently I have found 3 ways to get access to this method and they are as follows: Casting the object, ((CBar *) &foo)-Pass(1, 2, 3); Using this syntax, foo.CBar::Pass(1,2,3); Use the "using" syntax in the CFoo class declaration, using CBar::Pass. The following is an example of a simple project to test this capability. Foo.h #include "bar.h" class CFoo : public CBar { private: double m_a; double m_b; public: CFoo(void); ~CFoo(void); void Pass(double a, double b); }; Foo.cpp #include "Foo.h" CFoo::CFoo(void) { m_a = 0.0; m_b = 0.0; } CFoo::~CFoo(void) { } void CFoo::Pass(double a, double b) { m_a = a; m_b = b; } Bar.h class CBar { int m_x; int m_y; int m_z; public: CBar(void); ~CBar(void); void Pass(int x, int y, int z); }; Bar.cpp #include "Bar.h" CBar::CBar(void) { m_x = 0; m_y = 0; m_z = 0; } CBar::~CBar(void) { } void CBar::Pass(int x, int y, int z) { m_x = x; m_y = y; m_z = z; } And my main class DoStuff.cpp #include "DoStuff.h" #include "Foo.h" CDoStuff::CDoStuff(void) { } CDoStuff::~CDoStuff(void) { } int main() { CFoo foo, foo1, foo2; //This only gets to the Pass method in Foo. foo.Pass(2.5, 3.5); //Gets access to Pass method in Bar. foo1.CBar::Pass(5,10,15); //Can also case and access by location for the same result?? ((CBar *) &foo2)->Pass(100,200,300); return 0; } Are each of these options viable? Are some preferred? Are there pitfalls with using any one of the methods listed? I am especially curious about the foo.CBar::Pass(1,2,3) syntax. Thanks, B

    Read the article

  • Metro: Introduction to the WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to provide a quick introduction to the ListView control – just the bare minimum that you need to know to start using the control. When building Metro style applications using JavaScript, the ListView control is the primary control that you use for displaying lists of items. For example, if you are building a product catalog app, then you can use the ListView control to display the list of products. The ListView control supports several advanced features that I plan to discuss in future blog entries. For example, you can group the items in a ListView, you can create master/details views with a ListView, and you can efficiently work with large sets of items with a ListView. In this blog entry, we’ll keep things simple and focus on displaying a list of products. There are three things that you need to do in order to display a list of items with a ListView: Create a data source Create an Item Template Declare the ListView Creating the ListView Data Source The first step is to create (or retrieve) the data that you want to display with the ListView. In most scenarios, you will want to bind a ListView to a WinJS.Binding.List object. The nice thing about the WinJS.Binding.List object is that it enables you to take a standard JavaScript array and convert the array into something that can be bound to the ListView. It doesn’t matter where the JavaScript array comes from. It could be a static array that you declare or you could retrieve the array as the result of an Ajax call to a remote server. The following JavaScript file – named products.js – contains a list of products which can be bound to a ListView. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99 }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44 }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The products variable represents a WinJS.Binding.List object. This object is initialized with a plain-old JavaScript array which represents an array of products. To avoid polluting the global namespace, the code above uses the module pattern and exposes the products using a namespace. The list of products is exposed to the world as ListViewDemos.products. To learn more about the module pattern and namespaces in WinJS, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/22/metro-namespaces-and-modules.aspx Creating the ListView Item Template The ListView control does not know how to render anything. It doesn’t know how you want each list item to appear. To get the ListView control to render something useful, you must create an Item Template. Here’s what our template for rendering an individual product looks like: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> This template displays the product name and price from the data source. Normally, you will declare your template in the same file as you declare the ListView control. In our case, both the template and ListView are declared in the default.html file. To learn more about templates, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/27/metro-using-templates.aspx Declaring the ListView The final step is to declare the ListView control in a page. Here’s the markup for declaring a ListView: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> You declare a ListView by adding the data-win-control to an HTML DIV tag. The data-win-options attribute is used to set two properties of the ListView. The ListView is associated with its data source with the itemDataSource property. Notice that the data source is ListViewDemos.products.dataSource and not just ListViewDemos.products. You need to associate the ListView with the dataSoure property. The ListView is associated with its item template with the help of the itemTemplate property. The ID of the item template — #productTemplate – is used to select the template from the page. Here’s what the complete version of the default.html page looks like: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> </body> </html> Notice that the page above includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The page above also contains a Template control which contains the ListView item template. Finally, the page includes the declaration of the ListView control. Summary The goal of this blog entry was to describe the minimal set of steps which you must complete to use the WinJS ListView control to display a simple list of items. You learned how to create a data source, declare an item template, and declare a ListView control.

    Read the article

  • Dynamic Types and DynamicObject References in C#

    - by Rick Strahl
    I've been working a bit with C# custom dynamic types for several customers recently and I've seen some confusion in understanding how dynamic types are referenced. This discussion specifically centers around types that implement IDynamicMetaObjectProvider or subclass from DynamicObject as opposed to arbitrary type casts of standard .NET types. IDynamicMetaObjectProvider types  are treated special when they are cast to the dynamic type. Assume for a second that I've created my own implementation of a custom dynamic type called DynamicFoo which is about as simple of a dynamic class that I can think of:public class DynamicFoo : DynamicObject { Dictionary<string, object> properties = new Dictionary<string, object>(); public string Bar { get; set; } public DateTime Entered { get; set; } public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; if (!properties.ContainsKey(binder.Name)) return false; result = properties[binder.Name]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { properties[binder.Name] = value; return true; } } This class has an internal dictionary member and I'm exposing this dictionary member through a dynamic by implementing DynamicObject. This implementation exposes the properties dictionary so the dictionary keys can be referenced like properties (foo.NewProperty = "Cool!"). I override TryGetMember() and TrySetMember() which are fired at runtime every time you access a 'property' on a dynamic instance of this DynamicFoo type. Strong Typing and Dynamic Casting I now can instantiate and use DynamicFoo in a couple of different ways: Strong TypingDynamicFoo fooExplicit = new DynamicFoo(); var fooVar = new DynamicFoo(); These two commands are essentially identical and use strong typing. The compiler generates identical code for both of them. The var statement is merely a compiler directive to infer the type of fooVar at compile time and so the type of fooExplicit is DynamicFoo, just like fooExplicit. This is very static - nothing dynamic about it - and it completely ignores the IDynamicMetaObjectProvider implementation of my class above as it's never used. Using either of these I can access the native properties:DynamicFoo fooExplicit = new DynamicFoo();// static typing assignmentsfooVar.Bar = "Barred!"; fooExplicit.Entered = DateTime.Now; // echo back static values Console.WriteLine(fooVar.Bar); Console.WriteLine(fooExplicit.Entered); but I have no access whatsoever to the properties dictionary. Basically this creates a strongly typed instance of the type with access only to the strongly typed interface. You get no dynamic behavior at all. The IDynamicMetaObjectProvider features don't kick in until you cast the type to dynamic. If I try to access a non-existing property on fooExplicit I get a compilation error that tells me that the property doesn't exist. Again, it's clearly and utterly non-dynamic. Dynamicdynamic fooDynamic = new DynamicFoo(); fooDynamic on the other hand is created as a dynamic type and it's a completely different beast. I can also create a dynamic by simply casting any type to dynamic like this:DynamicFoo fooExplicit = new DynamicFoo(); dynamic fooDynamic = fooExplicit; Note that dynamic typically doesn't require an explicit cast as the compiler automatically performs the cast so there's no need to use as dynamic. Dynamic functionality works at runtime and allows for the dynamic wrapper to look up and call members dynamically. A dynamic type will look for members to access or call in two places: Using the strongly typed members of the object Using theIDynamicMetaObjectProvider Interface methods to access members So rather than statically linking and calling a method or retrieving a property, the dynamic type looks up - at runtime  - where the value actually comes from. It's essentially late-binding which allows runtime determination what action to take when a member is accessed at runtime *if* the member you are accessing does not exist on the object. Class members are checked first before IDynamicMetaObjectProvider interface methods are kick in. All of the following works with the dynamic type:dynamic fooDynamic = new DynamicFoo(); // dynamic typing assignments fooDynamic.NewProperty = "Something new!"; fooDynamic.LastAccess = DateTime.Now; // dynamic assigning static properties fooDynamic.Bar = "dynamic barred"; fooDynamic.Entered = DateTime.Now; // echo back dynamic values Console.WriteLine(fooDynamic.NewProperty); Console.WriteLine(fooDynamic.LastAccess); Console.WriteLine(fooDynamic.Bar); Console.WriteLine(fooDynamic.Entered); The dynamic type can access the native class properties (Bar and Entered) and create and read new ones (NewProperty,LastAccess) all using a single type instance which is pretty cool. As you can see it's pretty easy to create an extensible type this way that can dynamically add members at runtime dynamically. The Alter Ego of IDynamicObject The key point here is that all three statements - explicit, var and dynamic - declare a new DynamicFoo(), but the dynamic declaration results in completely different behavior than the first two simply because the type has been cast to dynamic. Dynamic binding means that the type loses its typical strong typing, compile time features. You can see this easily in the Visual Studio code editor. As soon as you assign a value to a dynamic you lose Intellisense and you see which means there's no Intellisense and no compiler type checking on any members you apply to this instance. If you're new to the dynamic type it might seem really confusing that a single type can behave differently depending on how it is cast, but that's exactly what happens when you use a type that implements IDynamicMetaObjectProvider. Declare the type as its strong type name and you only get to access the native instance members of the type. Declare or cast it to dynamic and you get dynamic behavior which accesses native members plus it uses IDynamicMetaObjectProvider implementation to handle any missing member definitions by running custom code. You can easily cast objects back and forth between dynamic and the original type:dynamic fooDynamic = new DynamicFoo(); fooDynamic.NewProperty = "New Property Value"; DynamicFoo foo = fooDynamic; foo.Bar = "Barred"; Here the code starts out with a dynamic cast and a dynamic assignment. The code then casts back the value to the DynamicFoo. Notice that when casting from dynamic to DynamicFoo and back we typically do not have to specify the cast explicitly - the compiler can induce the type so I don't need to specify as dynamic or as DynamicFoo. Moral of the Story This easy interchange between dynamic and the underlying type is actually super useful, because it allows you to create extensible objects that can expose non-member data stores and expose them as an object interface. You can create an object that hosts a number of strongly typed properties and then cast the object to dynamic and add additional dynamic properties to the same type at runtime. You can easily switch back and forth between the strongly typed instance to access the well-known strongly typed properties and to dynamic for the dynamic properties added at runtime. Keep in mind that dynamic object access has quite a bit of overhead and is definitely slower than strongly typed binding, so if you're accessing the strongly typed parts of your objects you definitely want to use a strongly typed reference. Reserve dynamic for the dynamic members to optimize your code. The real beauty of dynamic is that with very little effort you can build expandable objects or objects that expose different data stores to an object interface. I'll have more on this in my next post when I create a customized and extensible Expando object based on DynamicObject.© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • SharePoint 2010 Replaceable Parameter, some observations…

    - by svdoever
    SharePoint Tools for Visual Studio 2010 provides a rudimentary mechanism for replaceable parameters that you can use in files that are not compiled, like ascx files and your project property settings. The basics on this can be found in the documentation at http://msdn.microsoft.com/en-us/library/ee231545.aspx. There are some quirks however. For example: My Package name is MacawMastSP2010Templates, as defined in my Package properties: I want to use the $SharePoint.Package.Name$ replaceable parameter in my feature properties. But this parameter does not work in the “Deployment Path” property, while other parameters work there, while it works in the “Image Url” property. It just does not get expanded. So I had to resort to explicitly naming the first path of the deployment path: : You also see a special property for the “Receiver Class” in the format $SharePoint.Type.<GUID>.FullName$. The documentation gives the following description:The full name of the type matching the GUID in the token. The format of the GUID is lowercase and corresponds to the Guid.ToString(“D”) format (that is, xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx). Not very clear. After some searching it happened to be the guid as declared in my feature receiver code: In other properties you see a different set of replaceable parameters: We use a similar mechanism for replaceable parameter for years in our Macaw Solutions Factory for SharePoint 2007 development, where each replaceable parameter is a PowerShell function. This provides so much more power. For example in a feature declaration we can say: Code Snippet <?xml version="1.0" encoding="utf-8" ?> <!-- Template expansion      [[ProductDependency]] -> Wss3 or Moss2007      [[FeatureReceiverAssemblySignature]] -> for example: Macaw.Mast.Wss3.Templates.SharePoint.Features, Version=1.0.0.0, Culture=neutral, PublicKeyToken=6e9d15db2e2a0be5      [[FeatureReceiverClass]] -> for example: Macaw.Mast.Wss3.Templates.SharePoint.Features.SampleFeature.FeatureReceiver.SampleFeatureFeatureReceiver --> <Feature Id="[[$Feature.SampleFeature.ID]]"   Title="MAST [[$MastSolutionName]] Sample Feature"   Description="The MAST [[$MastSolutionName]] Sample Feature, where all possible elements in a feature are showcased"   Version="1.0.0.0"   Scope="Site"   Hidden="FALSE"   ImageUrl="[[FeatureImage]]"   ReceiverAssembly="[[FeatureReceiverAssemblySignature]]"   ReceiverClass="[[FeatureReceiverClass]]"   xmlns="http://schemas.microsoft.com/sharepoint/">     <ElementManifests>         <ElementManifest Location="ExampleCustomActions.xml" />         <ElementManifest Location="ExampleSiteColumns.xml" />         <ElementManifest Location="ExampleContentTypes.xml" />         <ElementManifest Location="ExampleDocLib.xml" />         <ElementManifest Location="ExampleMasterPages.xml" />           <!-- Element files -->         [[GenerateXmlNodesForFiles -path 'ExampleDocLib\*.*' -node 'ElementFile' -attributes @{Location = { RelativePathToExpansionSourceFile -path $_ }}]]         [[GenerateXmlNodesForFiles -path 'ExampleMasterPages\*.*' -node 'ElementFile' -attributes @{Location = { RelativePathToExpansionSourceFile -path $_ }}]]         [[GenerateXmlNodesForFiles -path 'Resources\*.resx' -node 'ElementFile' -attributes @{Location = { RelativePathToExpansionSourceFile -path $_ }}]]     </ElementManifests> </Feature> We have a solution level PowerShell script file named TemplateExpansionConfiguration.ps1 where we declare our variables (starting with a $) and include helper functions: Code Snippet # ============================================================================================== # NAME: product:\src\Wss3\Templates\TemplateExpansionConfiguration.ps1 # # AUTHOR: Serge van den Oever, Macaw # DATE  : May 24, 2007 # # COMMENT: # Nota bene: define variable and function definitions global to be visible during template expansion. # # ============================================================================================== Set-PSDebug -strict -trace 0 #variables must have value before usage $global:ErrorActionPreference = 'Stop' # Stop on errors $global:VerbosePreference = 'Continue' # set to SilentlyContinue to get no verbose output   # Load template expansion utility functions . product:\tools\Wss3\MastDeploy\TemplateExpansionUtil.ps1   # If exists add solution expansion utility functions $solutionTemplateExpansionUtilFile = $MastSolutionDir + "\TemplateExpansionUtil.ps1" if ((Test-Path -Path $solutionTemplateExpansionUtilFile)) {     . $solutionTemplateExpansionUtilFile } # ==============================================================================================   # Expected: $Solution.ID; Unique GUID value identifying the solution (DON'T INCLUDE BRACKETS). # function: guid:UpperCaseWithoutCurlies -guid '{...}' ensures correct syntax $global:Solution = @{     ID = GuidUpperCaseWithoutCurlies -guid '{d366ced4-0b98-4fa8-b256-c5a35bcbc98b}'; }   #  DON'T INCLUDE BRACKETS for feature id's!!! # function: GuidUpperCaseWithoutCurlies -guid '{...}' ensures correct syntax $global:Feature = @{     SampleFeature = @{         ID = GuidUpperCaseWithoutCurlies -guid '{35de59f4-0c8e-405e-b760-15234fe6885c}';     } }   $global:SiteDefinition = @{     TemplateBlankSite = @{         ID = '12346';     } }   # To inherit from this content type add the delimiter (00) and then your own guid # ID: <base>00<newguid> $global:ContentType = @{     ExampleContentType = @{         ID = '0x01008e5e167ba2db4bfeb3810c4a7ff72913';     } }   #  INCLUDE BRACKETS for column id's and make them LOWER CASE!!! # function: GuidLowerCaseWithCurlies -guid '{...}' ensures correct syntax $global:SiteColumn = @{     ExampleChoiceField = @{         ID = GuidLowerCaseWithCurlies -guid '{69d38ce4-2771-43b4-a861-f14247885fe9}';     };     ExampleBooleanField = @{         ID = GuidLowerCaseWithCurlies -guid '{76f794e6-f7bd-490e-a53e-07efdf967169}';     };     ExampleDateTimeField = @{         ID = GuidLowerCaseWithCurlies -guid '{6f176e6e-22d2-453a-8dad-8ab17ac12387}';     };     ExampleNumberField = @{         ID = GuidLowerCaseWithCurlies -guid '{6026947f-f102-436b-abfd-fece49495788}';     };     ExampleTextField = @{         ID = GuidLowerCaseWithCurlies -guid '{23ca1c29-5ef0-4b3d-93cd-0d1d2b6ddbde}';     };     ExampleUserField = @{         ID = GuidLowerCaseWithCurlies -guid '{ee55b9f1-7b7c-4a7e-9892-3e35729bb1a5}';     };     ExampleNoteField = @{         ID = GuidLowerCaseWithCurlies -guid '{f9aa8da3-1f30-48a6-a0af-aa0a643d9ed4}';     }; } This gives so much more possibilities, like for example the elements file expansion where a PowerShell function iterates through a folder and generates the required XML nodes. I think I will bring back this mechanism, so it can work together with the built-in replaceable parameters, there are hooks to define you custom replacements as described by Waldek in this blog post.

    Read the article

  • Using Radio Button in GridView with Validation

    - by Vincent Maverick Durano
    A developer is asking how to select one radio button at a time if the radio button is inside the GridView.  As you may know setting the group name attribute of radio button will not work if the radio button is located within a Data Representation control like GridView. This because the radio button inside the gridview bahaves differentely. Since a gridview is rendered as table element , at run time it will assign different "name" to each radio button. Hence you are able to select multiple rows. In this post I'm going to demonstrate how select one radio button at a time in gridview and add a simple validation on it. To get started let's go ahead and fire up visual studio and the create a new web application / website project. Add a WebForm and then add gridview. The mark up would look something like this: <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false" > <Columns> <asp:TemplateField> <ItemTemplate> <asp:RadioButton ID="rb" runat="server" /> </ItemTemplate> </asp:TemplateField> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Col1" HeaderText="First Column" /> <asp:BoundField DataField="Col2" HeaderText="Second Column" /> </Columns> </asp:GridView> Noticed that I've added a templatefield column so that we can add the radio button there. Also I have set up some BoundField columns and set the DataFields as RowNumber, Col1 and Col2. These columns are just dummy columns and i used it for the simplicity of this example. Now where these columns came from? These columns are created by hand at the code behind file of the ASPX. Here's the code below: private DataTable FillData() { DataTable dt = new DataTable(); DataRow dr = null; //Create DataTable columns dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Col1", typeof(string))); dt.Columns.Add(new DataColumn("Col2", typeof(string))); //Create Row for each columns dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Col1"] = "AA"; dr["Col2"] = "BB"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); return dt; } And here's the code for binding the GridView with the dummy data above. protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { GridView1.DataSource = FillData(); GridView1.DataBind(); } } Okay we have now a GridView data with a radio button on each row. Now lets go ahead and switch back to ASPX mark up. In this example I'm going to use a JavaScript for validating the radio button to select one radio button at a time. Here's the javascript code below: function CheckOtherIsCheckedByGVID(rb) { var isChecked = rb.checked; var row = rb.parentNode.parentNode; if (isChecked) { row.style.backgroundColor = '#B6C4DE'; row.style.color = 'black'; } var currentRdbID = rb.id; parent = document.getElementById("<%= GridView1.ClientID %>"); var items = parent.getElementsByTagName('input'); for (i = 0; i < items.length; i++) { if (items[i].id != currentRdbID && items[i].type == "radio") { if (items[i].checked) { items[i].checked = false; items[i].parentNode.parentNode.style.backgroundColor = 'white'; items[i].parentNode.parentNode.style.color = '#696969'; } } } } The function above sets the row of the current selected radio button's style to determine that the row is selected and then loops through the radio buttons in the gridview and then de-select the previous selected radio button and set the row style back to its default. You can then call the javascript function above at onlick event of radio button like below: <asp:RadioButton ID="rb" runat="server" onclick="javascript:CheckOtherIsCheckedByGVID(this);" /> Here's the output below: On Load: After Selecting a Radio Button: As you have noticed, on initial load there's no default selected radio in the GridView. Now let's add a simple validation for that. We will basically display an error message if a user clicks a button that triggers a postback without selecting  a radio button in the GridView. Here's the javascript for the validation: function ValidateRadioButton(sender, args) { var gv = document.getElementById("<%= GridView1.ClientID %>"); var items = gv.getElementsByTagName('input'); for (var i = 0; i < items.length ; i++) { if (items[i].type == "radio") { if (items[i].checked) { args.IsValid = true; return; } else { args.IsValid = false; } } } } The function above loops through the rows in gridview and find all the radio buttons within it. It will then check each radio button checked property. If a radio is checked then set IsValid to true else set it to false.  The reason why I'm using IsValid is because I'm using the ASP validator control for validation. Now add the following mark up below under the GridView declaration: <br /> <asp:Label ID="lblMessage" runat="server" /> <br /> <asp:Button ID="btn" runat="server" Text="POST" onclick="btn_Click" ValidationGroup="GroupA" /> <asp:CustomValidator ID="CustomValidator1" runat="server" ErrorMessage="Please select row in the grid." ClientValidationFunction="ValidateRadioButton" ValidationGroup="GroupA" style="display:none"></asp:CustomValidator> <asp:ValidationSummary ID="ValidationSummary1" runat="server" ValidationGroup="GroupA" HeaderText="Error List:" DisplayMode="BulletList" ForeColor="Red" /> And then at Button Click event add this simple code below just to test if  the validation works: protected void btn_Click(object sender, EventArgs e) { lblMessage.Text = "Postback at: " + DateTime.Now.ToString("hh:mm:ss tt"); } Here's the output below that you can see in the browser:   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,JavaScript,GridView

    Read the article

  • Using Table-Valued Parameters in SQL Server

    - by Jesse
    I work with stored procedures in SQL Server pretty frequently and have often found myself with a need to pass in a list of values at run-time. Quite often this list contains a set of ids on which the stored procedure needs to operate the size and contents of which are not known at design time. In the past I’ve taken the collection of ids (which are usually integers), converted them to a string representation where each value is separated by a comma and passed that string into a VARCHAR parameter of a stored procedure. The body of the stored procedure would then need to parse that string into a table variable which could be easily consumed with set-based logic within the rest of the stored procedure. This approach works pretty well but the VARCHAR variable has always felt like an un-wanted “middle man” in this scenario. Of course, I could use a BULK INSERT operation to load the list of ids into a temporary table that the stored procedure could use, but that approach seems heavy-handed in situations where the list of values is usually going to contain only a few dozen values. Fortunately SQL Server 2008 introduced the concept of table-valued parameters which effectively eliminates the need for the clumsy middle man VARCHAR parameter. Example: Customer Transaction Summary Report Let’s say we have a report that can summarize the the transactions that we’ve conducted with customers over a period of time. The report returns a pretty simple dataset containing one row per customer with some key metrics about how much business that customer has conducted over the date range for which the report is being run. Sometimes the report is run for a single customer, sometimes it’s run for all customers, and sometimes it’s run for a handful of customers (i.e. a salesman runs it for the customers that fall into his sales territory). This report can be invoked from a website on-demand, or it can be scheduled for periodic delivery to certain users via SQL Server Reporting Services. Because the report can be created from different places and the query to generate the report is complex it’s been packed into a stored procedure that accepts three parameters: @startDate – The beginning of the date range for which the report should be run. @endDate – The end of the date range for which the report should be run. @customerIds – The customer Ids for which the report should be run. Obviously, the @startDate and @endDate parameters are DATETIME variables. The @customerIds parameter, however, needs to contain a list of the identity values (primary key) from the Customers table representing the customers that were selected for this particular run of the report. In prior versions of SQL Server we might have made this parameter a VARCHAR variable, but with SQL Server 2008 we can make it into a table-valued parameter. Defining And Using The Table Type In order to use a table-valued parameter, we first need to tell SQL Server about what the table will look like. We do this by creating a user defined type. For the purposes of this stored procedure we need a very simple type to model a table variable with a single integer column. We can create a generic type called ‘IntegerListTableType’ like this: CREATE TYPE IntegerListTableType AS TABLE (Value INT NOT NULL) Once defined, we can use this new type to define the @customerIds parameter in the signature of our stored procedure. The parameter list for the stored procedure definition might look like: 1: CREATE PROCEDURE dbo.rpt_CustomerTransactionSummary 2: @starDate datetime, 3: @endDate datetime, 4: @customerIds IntegerListTableTableType READONLY   Note the ‘READONLY’ statement following the declaration of the @customerIds parameter. SQL Server requires any table-valued parameter be marked as ‘READONLY’ and no DML (INSERT/UPDATE/DELETE) statements can be performed on a table-valued parameter within the routine in which it’s used. Aside from the DML restriction, however, you can do pretty much anything with a table-valued parameter as you could with a normal TABLE variable. With the user defined type and stored procedure defined as above, we could invoke like this: 1: DECLARE @cusomterIdList IntegerListTableType 2: INSERT @customerIdList VALUES (1) 3: INSERT @customerIdList VALUES (2) 4: INSERT @customerIdList VALUES (3) 5:  6: EXEC dbo.rpt_CustomerTransationSummary 7: @startDate = '2012-05-01', 8: @endDate = '2012-06-01' 9: @customerIds = @customerIdList   Note that we can simply declare a variable of type ‘IntegerListTableType’ just like any other normal variable and insert values into it just like a TABLE variable. We could also populate the variable with a SELECT … INTO or INSERT … SELECT statement if desired. Using The Table-Valued Parameter With ADO .NET Invoking a stored procedure with a table-valued parameter from ADO .NET is as simple as building a DataTable and passing it in as the Value of a SqlParameter. Here’s some example code for how we would construct the SqlParameter for the @customerIds parameter in our stored procedure: 1: var customerIdsParameter = new SqlParameter(); 2: customerIdParameter.Direction = ParameterDirection.Input; 3: customerIdParameter.TypeName = "IntegerListTableType"; 4: customerIdParameter.Value = selectedCustomerIds.ToIntegerListDataTable("Value");   All we’re doing here is new’ing up an instance of SqlParameter, setting the pamameters direction, specifying the name of the User Defined Type that this parameter uses, and setting its value. We’re assuming here that we have an IEnumerable<int> variable called ‘selectedCustomerIds’ containing all of the customer Ids for which the report should be run. The ‘ToIntegerListDataTable’ method is an extension method of the IEnumerable<int> type that looks like this: 1: public static DataTable ToIntegerListDataTable(this IEnumerable<int> intValues, string columnName) 2: { 3: var intergerListDataTable = new DataTable(); 4: intergerListDataTable.Columns.Add(columnName); 5: foreach(var intValue in intValues) 6: { 7: var nextRow = intergerListDataTable.NewRow(); 8: nextRow[columnName] = intValue; 9: intergerListDataTable.Rows.Add(nextRow); 10: } 11:  12: return intergerListDataTable; 13: }   Since the ‘IntegerListTableType’ has a single int column called ‘Value’, we pass that in for the ‘columnName’ parameter to the extension method. The method creates a new single-columned DataTable using the provided column name then iterates over the items in the IEnumerable<int> instance adding one row for each value. We can then use this SqlParameter instance when invoking the stored procedure just like we would use any other parameter. Advanced Functionality Using passing a list of integers into a stored procedure is a very simple usage scenario for the table-valued parameters feature, but I’ve found that it covers the majority of situations where I’ve needed to pass a collection of data for use in a query at run-time. I should note that BULK INSERT feature still makes sense for passing large amounts of data to SQL Server for processing. MSDN seems to suggest that 1000 rows of data is the tipping point where the overhead of a BULK INSERT operation can pay dividends. I should also note here that table-valued parameters can be used to deal with more complex data structures than single-columned tables of integers. A User Defined Type that backs a table-valued parameter can use things like identities and computed columns. That said, using some of these more advanced features might require the use the SqlDataRecord and SqlMetaData classes instead of a simple DataTable. Erland Sommarskog has a great article on his website that describes when and how to use these classes for table-valued parameters. What About Reporting Services? Earlier in the post I referenced the fact that our example stored procedure would be called from both a web application and a SQL Server Reporting Services report. Unfortunately, using table-valued parameters from SSRS reports can be a bit tricky and warrants its own blog post which I’ll be putting together and posting sometime in the near future.

    Read the article

  • Metro: Introduction to the WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to provide a quick introduction to the ListView control – just the bare minimum that you need to know to start using the control. When building Metro style applications using JavaScript, the ListView control is the primary control that you use for displaying lists of items. For example, if you are building a product catalog app, then you can use the ListView control to display the list of products. The ListView control supports several advanced features that I plan to discuss in future blog entries. For example, you can group the items in a ListView, you can create master/details views with a ListView, and you can efficiently work with large sets of items with a ListView. In this blog entry, we’ll keep things simple and focus on displaying a list of products. There are three things that you need to do in order to display a list of items with a ListView: Create a data source Create an Item Template Declare the ListView Creating the ListView Data Source The first step is to create (or retrieve) the data that you want to display with the ListView. In most scenarios, you will want to bind a ListView to a WinJS.Binding.List object. The nice thing about the WinJS.Binding.List object is that it enables you to take a standard JavaScript array and convert the array into something that can be bound to the ListView. It doesn’t matter where the JavaScript array comes from. It could be a static array that you declare or you could retrieve the array as the result of an Ajax call to a remote server. The following JavaScript file – named products.js – contains a list of products which can be bound to a ListView. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99 }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44 }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The products variable represents a WinJS.Binding.List object. This object is initialized with a plain-old JavaScript array which represents an array of products. To avoid polluting the global namespace, the code above uses the module pattern and exposes the products using a namespace. The list of products is exposed to the world as ListViewDemos.products. To learn more about the module pattern and namespaces in WinJS, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/22/metro-namespaces-and-modules.aspx Creating the ListView Item Template The ListView control does not know how to render anything. It doesn’t know how you want each list item to appear. To get the ListView control to render something useful, you must create an Item Template. Here’s what our template for rendering an individual product looks like: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> This template displays the product name and price from the data source. Normally, you will declare your template in the same file as you declare the ListView control. In our case, both the template and ListView are declared in the default.html file. To learn more about templates, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/27/metro-using-templates.aspx Declaring the ListView The final step is to declare the ListView control in a page. Here’s the markup for declaring a ListView: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> You declare a ListView by adding the data-win-control to an HTML DIV tag. The data-win-options attribute is used to set two properties of the ListView. The ListView is associated with its data source with the itemDataSource property. Notice that the data source is ListViewDemos.products.dataSource and not just ListViewDemos.products. You need to associate the ListView with the dataSoure property. The ListView is associated with its item template with the help of the itemTemplate property. The ID of the item template — #productTemplate – is used to select the template from the page. Here’s what the complete version of the default.html page looks like: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> </body> </html> Notice that the page above includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The page above also contains a Template control which contains the ListView item template. Finally, the page includes the declaration of the ListView control. Summary The goal of this blog entry was to describe the minimal set of steps which you must complete to use the WinJS ListView control to display a simple list of items. You learned how to create a data source, declare an item template, and declare a ListView control.

    Read the article

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • CodePlex Daily Summary for Saturday, October 22, 2011

    CodePlex Daily Summary for Saturday, October 22, 2011Popular ReleasesWatchersNET CKEditor™ Provider for DotNetNuke®: CKEditor Provider 1.12.17: Changes Added FilePath Length Check when Uploading Files. Fixed Issue #6550 Fixed Issue #6536 Fixed Issue #6525 Fixed Issue #6500 Fixed Issue #6401 Fixed Issue #6490DotNet.Framework.Common: DotNet.Framework.Common 4.0: ??????????,????????????XML Explorer: XML Explorer 4.0.5: Changes in 4.0.5: Added 'Copy Attribute XPath to Address Bar' feature. Added methods for decoding node text and value from Base64 encoded strings, and copying them to the clipboard. Added 'ChildNodeDefinitions' to the options, which allows for easier navigation of parent-child and ID-IDREF relationships. Discovery happens on-demand, as nodes are expanded and child nodes are added. Nodes can now have 'virtual' child nodes, defined by an xpath to select an identifier (usually relative to ...Media Companion: MC 3.419b Weekly: A couple of minor bug fixes, but the important fix in this release is to tackle the extremely long load times for users with large TV collections (issue #130). A note has been provided by developer Playos: "One final note, you will have to suffer one final long load and then it should be fixed... alternatively you can delete the TvCache.xml and rebuild your library... The fix was to include the file extension so it doesn't have to look for the video file (checking to see if a file exists is a...CODE Framework: 4.0.11021.0: This build adds a lot of our WPF components, including our MVVC and MVC components as well as a "Metro" and "Battleship" style.Manejo de tags - PHP sobre apache: tagqrphp: Primera version: Para que funcione el programa se debe primero obtener un id para desarrollo del tag eso lo entrega Microsoft registrandose en el sitio. http://tag.microsoft.com - En tagm.php que llama a la libreria Microsoft Tag PHP Library (Codigo que sirve para trabajar con PHP y Tag) - Llenamos los datos del formulario y ejecutamos para obtener el codigo tag de microsoft el cual apunte a la url que le indicamos en el formulario - Libreria MStag.php (tiene mucha explicación del funciona...GridLibre para Visual FoxPro: GridLibre para Visual FoxPro v3.5: GridLibre Para Visual FoxPro: esta herramienta ayudara a los usuarios y programadores en los manejos de los datos, como Filtrar, multiseleccion y el autoformato a las columnas como la asignacion del controlsource.Self-Tracking Entity Generator for WPF and Silverlight: Self-Tracking Entity Generator v 0.9.9: Self-Tracking Entity Generator v 0.9.9 for Entity Framework 4.0Umbraco CMS: Umbraco 5.0 CMS Alpha 3: Umbraco 5 Alpha 3Umbraco 5 (aka Jupiter) will be the next version of everyone's favourite, friendly ASP.NET CMS that already powers over 100,000 websites worldwide. Try out the Alpha of v5 today! If you're new to Umbraco and would like to get a low-down on our popular and easy-to-learn approach to content management, check out our intro video. What's Alpha 3?This is our third Alpha release. It's intended for developers looking to become familiar with the codebase & architecture, or for thos...Vkontakte WP: Vkontakte: source codeWay2Sms Applications for Android, Desktop/Laptop & Java enabled phones: Way2SMS Desktop App v2.0: 1. Fixed issue with sending messages due to changes to Way2Sms site 2. Updated the character limit to 160 from 140GART - Geo Augmented Reality Toolkit: 1.0.1: About Release 1.0.1 Release 1.0.1 is a service release that addresses several issues and improves performance. As always, check the Documentation tab for instructions on how to get started. If you don't have the Windows Phone SDK yet, grab it here. Breaking Change Please note: There is a breaking change in this release. As noted below, the WorldCalculationMode property of ARItem has been replaced by a user-definable function. ARItem is now automatically wired up with a function that perform...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.32: Fix for issue #16710 - string literals in "constant literal operations" which contain ASP.NET substitutions should not be considered "constant." Move the JS1284 error (Misplaced Function Declaration) so it only fires when in strict mode. I got a couple complaints that people didn't like that error popping up in their existing code when they could verify that the location of that function, although not strict JS, still functions as expected cross-browser.Naked Objects: Naked Objects Release 4.0.110.0: Corresponds to the packaged version 4.0.110.0 available via NuGet. Please note that the easiest way to install and run the Naked Objects Framework is via the NuGet package manager: just search the Official NuGet Package Source for 'nakedobjects'. It is only necessary to download the source code (from here) if you wish to modify or re-build the framework yourself. If you do wish to re-build the framework, consul the file HowToBuild.txt in the release. Documentation Please note that after ...myCollections: Version 1.5: New in this version : Added edit type for selected elements Added clean for selected elements Added Amazon Italia Added Amazon China Added TVDB Italia Added TVDB China Added Turkish language You can now manually add artist Added Order by Rating Improved Add by Media Improved Artist Detail Upgrade Sqlite engine View, Zoom, Grouping, Filter are now saved by category Added group by Artist Added CubeCover View BugFixingFacebook C# SDK: 5.3: This is a BETA release which adds new features and bug fixes to v5.2.1. removed dependency from Code Contracts enabled Task Parallel Support in .NET 4.0+ added support for early preview for .NET 4.5 added additional method overloads for .NET 4.5 to support IProgress<T> for upload progress added new CS-WinForms-AsyncAwait.sln sample demonstrating the use of async/await, upload progress report using IProgress<T> and cancellation support Query/QueryAsync methods uses graph api instead...IronPython: 2.7.1 RC: This is the first release candidate of IronPython 2.7.1. Like IronPython 54498, this release requires .NET 4 or Silverlight 4. This release will replace any existing IronPython installation. If there are no showstopping issues, this will be the only release candidate for 2.7.1, so please speak up if you run into any roadblocks. The highlights of 2.7.1 are: Updated the standard library to match CPython 2.7.2. Add the ast, csv, and unicodedata modules. Fixed several bugs. IronPython To...Rawr: Rawr 4.2.6: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr AddonWe now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including bag and bank items) like Char...Home Access Plus+: v7.5: Change Log: New Booking System (out of Beta) New Help Desk (out of Beta) New My Files (Developer Preview) Token now saved into Cookie so the system doesn't TIMEOUT as much File Changes: ~/bin/hap.ad.dll ~/bin/hap.web.dll ~/bin/hap.data.dll ~/bin/hap.web.configuration.dll ~/bookingsystem/admin/default.aspx ~/bookingsystem/default.aspx REMOVED ~/bookingsystem/bookingpopup.ascx REMOVED ~/bookingsystem/daylist.ascx REMOVED ~/bookingsystem/new.aspx ~/helpdesk/default.aspx ...Visual Micro - Arduino for Visual Studio: Arduino for Visual Studio 2008 and 2010: Arduino for Visual Studio 2010 has been extended to support Visual Studio 2008. The same functionality and configuration exists between the two versions. The 2010 addin runs .NET4 and the 2008 addin runs .NET3.5, both are installed using a single msi and both share the same configuration settings. The only known issue in 2008 is that the button and menu icons are missing. Please logon to the visual micro forum and let us know if things are working or not. Read more about this Visual Studio ...New Projects#foo Core: Core functionality extensions of .NET used by all HashFoo projects.#foo Nhib: #foo NHibernate extensions.Aagust G: Hello all ! Its a free JQuery Image Slider....ACP Log Analyzer: ACP Log Analyzer provides a quick and easy mechanism for generating a report on your ACP-based astronomical observing activities. Developed in Microsoft Visual Studio 2010 using C#, the .NET Framework version 4 and WPF.BlobShare Sample: TBDCompletedWorkflowCleanUp: This tool once executed on a list delete all completed workflow instancesCRM 2011 Visual Ribbon Editor: Visual Ribbon Editor is a tool for Microsoft Dynamics CRM 2011 that lets you edit CRM ribbons. This ribbon editor shows a preview of the CRM ribbon as you are editing it and allows you to add ribbon buttons and groups without needing to fully understand the ribbon XML schema.GearMerge: Organizes Movies and TV Series files from one Hard Drive to another. I created it for myself to update external drives with movies and TV shows from my collection.Generic Object Storage Helper for WinRT: ObjectStorageHelper<T> is a Generic class that simplifies storage of data in WinRT applications.Government Sanctioned Espionage RPG: Government Sanctioned is a modern SRD-like espionage game server. Visit http://wiki.government-sanctioned.us:8040 for game design and play information or homepage http://www.government-sanctioned.us Government Sanctioned is an online, text-based espionage RPG (similar to a MUD/MOO) that takes place against the backdrop of a highly-secretive U.S. Government agency whose stated goals don't always match the dirty work the agents tend to find themselves in. - over 15 starting profession...GridLibre para Visual FoxPro: GridLibre Para Visual FoxPro: esta herramienta ayudara a los usuarios y programadores en los manejos de los datos, como Filtrar, multiseleccion y el autoformato a las columnas como la asignacion del controlsource.HTML5 Video Web Part for SharePoint 2010: A web part for SharePoint 2010 that enable users playing video into the page using the Ribbon bar.Jogo do Galo: JOGO DO GALO REGRAS •O tabuleiro é a matriz de três linhas em três colunas. •Dois jogadores escolhem três peças cada um. •Os jogadores jogam alternadamente, uma peça de cada vez, num espaço que esteja vazio. •O objectivo é conseguir três peças iguais em linha, quer horizontal, vKarol sie uczy silverlajta: on sie naprawde tego uczy!Manejo de tags - PHP sobre apache: Hago uso de la libreria Microsoft Tag PHP Library para que pueda funcionar la aplicación sobre Apache finalmente puede crear tag de micrsosoft desde el formulario creado. Modem based SMS Gateway: It is an easy to use modem based SMS server that provide easier solutions for SMS marketing or SMS based services. It is highly programmable and the easy to use API interface makes SMS integration very easy. Embedded SMS processor provides customized solution to many of your needs even without building any custom software.Mund Publishing Feture: Mund Publishing FeatureMyTFSTest: TestNHS HL7 CDA Document Developer: A project to demonstrate how templated HL7 CDA documents can be created by using a common API. The API is designed to be used in .NET applications. A number of examples are provided using C#OpenShell: OpenShell is an open source implementation of the Windows PowerShell engine. It is to make integrating PowerShell into standalone console programs simple.Powershell Script to Copy Lists in a Site Collection in MOSS 2007 and SPS 2010: Hi, This is a powershell script file that copies a list within the same site collection. This works in Sharepoint 2007 and Sharepoint 2010 as well. THis will flash the messages before taking the input values. This will in this way provide the clear ideas about the values to beSharePoint Desktop: SharePoint Desktop is a explorer-like webpart that makes it possible to drag and drop items (documents and folders), copy and paste items and explore all SharePoint document libraries in 1 place.SQL floating point compare function: Comparison of floating point values in SQL Server not always gives the expected result. With this function, comparison is only done on the first 15 significant digits. Since SQL Server only garantees a precision of 15 digits for float datatypes, this is expected to be secure.Stock Analyzer: It is a stock management software. It's main job is to store market realtime data on a database to be able to analyse it latter and create automatic systems that operate directly on the stock exchange market. It will have different modules to do this task: - Realtime data capture. - Realtime data analysis - Historic analysis. - Order execution. - Strategy test. - Strategy execution. It's developed in C# and with WPF.VB_Skype: VB_Skype utilizza la libreria Skype4COM per integrare i servizi Skype con un'applicazione Visual Basic (Windows Forms). L'applicazione comprende un progetto di controllo personalizzato che costituisce il "wrapper" verso la libreria Skype4COM e un progetto con una demo di utilizzo. Progetto che dovrebbe essere utilizzato nella mia sessione, come uno degli speaker della conferenza "WPC 2011" che si terrà ad Assago (MI) nei giorni 22-23-24 Novembre 2011. La mia sessione è in agenda per il 24...Word Template Generator: Custom Template Generator for Microsoft Word, developed in C#?????OA??: ?????OA??

    Read the article

  • FAQ: GridView Calculation with JavaScript - Editable Price Field

    - by Vincent Maverick Durano
    Recently I wrote a series of blog posts that demonstrates how to do calculation in GridView using JavaScripts. You can check the series of posts below: FAQ: GridView Calculation with JavaScript FAQ: GridView Calculation with JavaScript - Formatting and Validation FAQ: GridView Calculation with JavaScript - Displaying Quantity Total Recently a user in the forums is asking how to calculate the total quantity, sub-totals and total amout in GridView  when a user enters the price and quantity in the TextBox field. Obviously the series of post  that I wrote will not work in this case because the price field in those examples are Label (read-only) and not TextBox fields. In this post I'm going to demonstrate how to accomplish this using the same method used in my previous examples. Basically I'm just going to modify the GridView declaration and replace the Label price field with a TextBox so that users can type on it. And finally modify the CalculateTotals() javascript function. Here are the code blocks below: <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title></title> <script type="text/javascript"> function CalculateTotals() { var gv = document.getElementById("<%= GridView1.ClientID %>"); var tb = gv.getElementsByTagName("input"); var lb = gv.getElementsByTagName("span"); var sub = 0; var total = 0; var indexQ = 1; var indexP = 0; var price = 0; var qty = 0; var totalQty = 0; var tbCount = tb.length / 2; for (var i = 0; i < tbCount; i++) { if (tb[i].type == "text") { ValidateNumber(tb[i + indexQ]); sub = parseFloat(tb[i + indexP].value) * parseFloat(tb[i + indexQ].value); if (isNaN(sub)) { lb[i].innerHTML = "0.00"; sub = 0; } else { lb[i].innerHTML = FormatToMoney(sub, "$", ",", "."); ; } if (isNaN(tb[i + indexQ].value) || tb[i + indexQ].value == "") { qty = 0; } else { qty = tb[i + indexQ].value; } totalQty += parseInt(qty); total += parseFloat(sub); indexQ++; indexP++; } } lb[lb.length - 2].innerHTML = totalQty; lb[lb.length -1].innerHTML = FormatToMoney(total, "$", ",", "."); } function ValidateNumber(o) { if (o.value.length > 0) { o.value = o.value.replace(/[^\d]+/g, ''); //Allow only whole numbers } } function isThousands(position) { if (Math.floor(position / 3) * 3 == position) return true; return false; }; function FormatToMoney(theNumber, theCurrency, theThousands, theDecimal) { var theDecimalDigits = Math.round((theNumber * 100) - (Math.floor(theNumber) * 100)); theDecimalDigits = "" + (theDecimalDigits + "0").substring(0, 2); theNumber = "" + Math.floor(theNumber); var theOutput = theCurrency; for (x = 0; x < theNumber.length; x++) { theOutput += theNumber.substring(x, x + 1); if (isThousands(theNumber.length - x - 1) && (theNumber.length - x - 1 != 0)) { theOutput += theThousands; }; }; theOutput += theDecimal + theDecimalDigits; return theOutput; } </script> </head> <body> <form id="form1" runat="server"> <asp:gridview ID="GridView1" runat="server" ShowFooter="true" AutoGenerateColumns="false"> <Columns> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Description" HeaderText="Item Description" /> <asp:TemplateField HeaderText="Item Price"> <ItemTemplate> <asp:TextBox ID="TXTPrice" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate> <FooterTemplate> <b>Total Qty:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Quantity"> <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLQtyTotal" runat="server" Font-Bold="true" ForeColor="Blue" Text="0" ></asp:Label>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <b>Total Amount:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Sub-Total"> <ItemTemplate> <asp:Label ID="LBLSubTotal" runat="server" ForeColor="Green" Text="0.00"></asp:Label> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLTotal" runat="server" ForeColor="Green" Font-Bold="true" Text="0.00"></asp:Label> </FooterTemplate> </asp:TemplateField> </Columns> </asp:gridview> </form> </body> </html>   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,GridView,JavaScript

    Read the article

  • Creating New Scripts Dynamically in Lua

    - by bazola
    Right now this is just a crazy idea that I had, but I was able to implement the code and get it working properly. I am not entirely sure of what the use cases would be just yet. What this code does is create a new Lua script file in the project directory. The ScriptWriter takes as arguments the file name, a table containing any arguments that the script should take when created, and a table containing any instance variables to create by default. My plan is to extend this code to create new functions based on inputs sent in during its creation as well. What makes this cool is that the new file is both generated and loaded dynamically on the fly. Theoretically you could get this code to generate and load any script imaginable. One use case I can think of is an AI that creates scripts to map out it's functions, and creates new scripts for new situations or environments. At this point, this is all theoretical, though. Here is the test code that is creating the new script and then immediately loading it and calling functions from it: function Card:doScriptWriterThing() local scriptName = "ScriptIAmMaking" local scripter = scriptWriter:new(scriptName, {"argumentName"}, {name = "'test'", one = 1}) scripter:makeFileForLoadedSettings() local loadedScript = require (scriptName) local scriptInstance = loadedScript:new("sayThis") print(scriptInstance:get_name()) --will print test print(scriptInstance:get_one()) -- will print 1 scriptInstance:set_one(10000) print(scriptInstance:get_one()) -- will print 10000 print(scriptInstance:get_argumentName()) -- will print sayThis scriptInstance:set_argumentName("saySomethingElse") print(scriptInstance:get_argumentName()) --will print saySomethingElse end Here is ScriptWriter.lua local ScriptWriter = {} local twoSpaceIndent = " " local equalsWithSpaces = " = " local newLine = "\n" --scriptNameToCreate must be a string --argumentsForNew and instanceVariablesToCreate must be tables and not nil function ScriptWriter:new(scriptNameToCreate, argumentsForNew, instanceVariablesToCreate) local instance = setmetatable({}, { __index = self }) instance.name = scriptNameToCreate instance.newArguments = argumentsForNew instance.instanceVariables = instanceVariablesToCreate instance.stringList = {} return instance end function ScriptWriter:makeFileForLoadedSettings() self:buildInstanceMetatable() self:buildInstanceCreationMethod() self:buildSettersAndGetters() self:buildReturn() self:writeStringsToFile() end --very first line of any script that will have instances function ScriptWriter:buildInstanceMetatable() table.insert(self.stringList, "local " .. self.name .. " = {}" .. newLine) table.insert(self.stringList, newLine) end --every script made this way needs a new method to create its instances function ScriptWriter:buildInstanceCreationMethod() --new() function declaration table.insert(self.stringList, ("function " .. self.name .. ":new(")) self:buildNewArguments() table.insert(self.stringList, ")" .. newLine) --first line inside :new() function table.insert(self.stringList, twoSpaceIndent .. "local instance = setmetatable({}, { __index = self })" .. newLine) --add designated arguments inside :new() self:buildNewArgumentVariables() --create the instance variables with the loaded values for key,value in pairs(self.instanceVariables) do table.insert(self.stringList, twoSpaceIndent .. "instance." .. key .. equalsWithSpaces .. value .. newLine) end --close the :new() function table.insert(self.stringList, twoSpaceIndent .. "return instance" .. newLine) table.insert(self.stringList, "end" .. newLine) table.insert(self.stringList, newLine) end function ScriptWriter:buildNewArguments() --if there are arguments for :new(), add them for key,value in ipairs(self.newArguments) do table.insert(self.stringList, value) table.insert(self.stringList, ", ") end if next(self.newArguments) ~= nil then --makes sure the table is not empty first table.remove(self.stringList) --remove the very last element, which will be the extra ", " end end function ScriptWriter:buildNewArgumentVariables() --add the designated arguments to :new() for key, value in ipairs(self.newArguments) do table.insert(self.stringList, twoSpaceIndent .. "instance." .. value .. equalsWithSpaces .. value .. newLine) end end --the instance variables need separate code because their names have to be the key and not the argument name function ScriptWriter:buildSettersAndGetters() for key,value in ipairs(self.newArguments) do self:buildArgumentSetter(value) self:buildArgumentGetter(value) table.insert(self.stringList, newLine) end for key,value in pairs(self.instanceVariables) do self:buildInstanceVariableSetter(key, value) self:buildInstanceVariableGetter(key, value) table.insert(self.stringList, newLine) end end --code for arguments passed in function ScriptWriter:buildArgumentSetter(variable) table.insert(self.stringList, "function " .. self.name .. ":set_" .. variable .. "(newValue)" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "self." .. variable .. equalsWithSpaces .. "newValue" .. newLine) table.insert(self.stringList, "end" .. newLine) end function ScriptWriter:buildArgumentGetter(variable) table.insert(self.stringList, "function " .. self.name .. ":get_" .. variable .. "()" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "return " .. "self." .. variable .. newLine) table.insert(self.stringList, "end" .. newLine) end --code for instance variable values passed in function ScriptWriter:buildInstanceVariableSetter(key, variable) table.insert(self.stringList, "function " .. self.name .. ":set_" .. key .. "(newValue)" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "self." .. key .. equalsWithSpaces .. "newValue" .. newLine) table.insert(self.stringList, "end" .. newLine) end function ScriptWriter:buildInstanceVariableGetter(key, variable) table.insert(self.stringList, "function " .. self.name .. ":get_" .. key .. "()" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "return " .. "self." .. key .. newLine) table.insert(self.stringList, "end" .. newLine) end --last line of any script that will have instances function ScriptWriter:buildReturn() table.insert(self.stringList, "return " .. self.name) end function ScriptWriter:writeStringsToFile() local fileName = (self.name .. ".lua") file = io.open(fileName, 'w') for key,value in ipairs(self.stringList) do file:write(value) end file:close() end return ScriptWriter And here is what the code provided will generate: local ScriptIAmMaking = {} function ScriptIAmMaking:new(argumentName) local instance = setmetatable({}, { __index = self }) instance.argumentName = argumentName instance.name = 'test' instance.one = 1 return instance end function ScriptIAmMaking:set_argumentName(newValue) self.argumentName = newValue end function ScriptIAmMaking:get_argumentName() return self.argumentName end function ScriptIAmMaking:set_name(newValue) self.name = newValue end function ScriptIAmMaking:get_name() return self.name end function ScriptIAmMaking:set_one(newValue) self.one = newValue end function ScriptIAmMaking:get_one() return self.one end return ScriptIAmMaking All of this is generated with these calls: local scripter = scriptWriter:new(scriptName, {"argumentName"}, {name = "'test'", one = 1}) scripter:makeFileForLoadedSettings() I am not sure if I am correct that this could be useful in certain situations. What I am looking for is feedback on the readability of the code, and following Lua best practices. I would also love to hear whether this approach is a valid one, and whether the way that I have done things will be extensible.

    Read the article

  • DRY and SRP

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/06/11/dry-and-srp.aspxKent Beck’s XP Simplicity Rules (aka Four Rules of Simple Design) are a prioritized list of rules that when applied to your code generally yield a great design.  As you’ll see from the above link the list has slightly evolved over time.  I find today they are usually listed as: All Tests Pass Don’t Repeat Yourself (DRY) Express Intent Minimalistic These are prioritized.  If your code doesn’t work (rule 1) then everything else is forfeit.  Go back to rule one and get the code working before worrying about anything else. Over the years the community have debated whether the priority of rules 2 and 3 should be reversed.  Some say a little duplication in the code is OK as long as it helps express intent.  I’ve debated it myself.  This recent post got me thinking about this again, hence this post.   I don’t think it is fair to compare “Expressing Intent” against “DRY”.  This is a comparison of apples to oranges.  “Expressing Intent” is a principal of code quality.  “Repeating Yourself” is a code smell.  A code smell is merely an indicator that there might be something wrong with the code.  It takes further investigation to determine if a violation of an underlying principal of code quality has actually occurred. For example “using nouns for method names”, “using verbs for property names”, or “using Booleans for parameters” are all code smells that indicate that code probably isn’t doing a good job at expressing intent.  They are usually very good indicators.  But what principle is the code smell of Duplication pointing to and how good of an indicator is it? Duplication in the code base is bad for a couple reasons.  If you need to make a change and that needs to be made in a number of locations it is difficult to know if you have caught all of them.  This can lead to bugs if/when one of those locations is overlooked.  By refactoring the code to remove all duplication there will be left with only one place to change, thereby eliminating this problem. With most projects the code becomes the single source of truth for a project.  If a production code base is inconsistent with a five year old requirements or design document the production code that people are currently living with is usually declared as the current reality (or truth).  Requirement or design documents at this age in a project life cycle are usually of little value. Although comparing production code to external documentation is usually straight forward, duplication within the code base muddles this declaration of truth.  When code is duplicated small discrepancies will creep in between the two copies over time.  The question then becomes which copy is correct?  As different factions debate how the software should work, trust in the software and the team behind it erodes. The code smell of Duplication points to a violation of the “Single Source of Truth” principle.  Let me define that as: A stakeholder’s requirement for a software change should never cause more than one class to change. Violation of the Single Source of Truth principle will always result in duplication in the code.  However, the inverse is not always true.  Duplication in the code does not necessarily indicate that there is a violation of the Single Source of Truth principle. To illustrate this, let’s look at a retail system where the system will (1) send a transaction to a bank and (2) print a receipt for the customer.  Although these are two separate features of the system, they are closely related.  The reason for printing the receipt is usually to provide an audit trail back to the bank transaction.  Both features use the same data:  amount charged, account number, transaction date, customer name, retail store name, and etcetera.  Because both features use much of the same data, there is likely to be a lot of duplication between them.  This duplication can be removed by making both features use the same data access layer. Then start coming the divergent requirements.  The receipt stakeholder wants a change so that the account number has the last few digits masked out to protect the customer’s privacy.  That can be solve with a small IF statement whilst still eliminating all duplication in the system.  Then the bank wants to take a picture of the customer as well as capture their signature and/or PIN number for enhanced security.  Then the receipt owner wants to pull data from a completely different system to report the customer’s loyalty program point total. After a while you realize that the two stakeholders have somewhat similar, but ultimately different responsibilities.  They have their own reasons for pulling the data access layer in different directions.  Then it dawns on you, the Single Responsibility Principle: There should never be more than one reason for a class to change. In this example we have two stakeholders giving two separate reasons for the data access class to change.  It is clear violation of the Single Responsibility Principle.  That’s a problem because it can often lead the project owner pitting the two stakeholders against each other in a vein attempt to get them to work out a mutual single source of truth.  But that doesn’t exist.  There are two completely valid truths that the developers need to support.  How is this to be supported and honour the Single Responsibility Principle?  The solution is to duplicate the data access layer and let each stakeholder control their own copy. The Single Source of Truth and Single Responsibility Principles are very closely related.  SST tells you when to remove duplication; SRP tells you when to introduce it.  They may seem to be fighting each other, but really they are not.  The key is to clearly identify the different responsibilities (or sources of truth) over a system.  Sometimes there is a single person with that responsibility, other times there are many.  This can be especially difficult if the same person has dual responsibilities.  They might not even realize they are wearing multiple hats. In my opinion Single Source of Truth should be listed as the second rule of simple design with Express Intent at number three.  Investigation of the DRY code smell should yield to the proper application SST, without violating SRP.  When necessary leave duplication in the system and let the class names express the different people that are responsible for controlling them.  Knowing all the people with responsibilities over a system is the higher priority because you’ll need to know this before you can express it.  Although it may be a code smell when there is duplication in the code, it does not necessarily mean that the coder has chosen to be expressive over DRY or that the code is bad.

    Read the article

  • iptables - quick safety eval & limit max conns over time

    - by Peter Hanneman
    Working on locking down a *nix server box with some fancy iptable(v1.4.4) rules. I'm approaching the matter with a "paranoid, everyone's out to get me" style, not necessarily because I expect the box to be a hacker magnet but rather just for the sake of learning iptables and *nix security more throughly. Everything is well commented - so if anyone sees something I missed please let me know! The *nat table's "--to-ports" point to the only ports with actively listening services. (aside from pings) Layer 2 apps listen exclusively on chmod'ed sockets bridged by one of the layer 1 daemons. Layers 3+ inherit from layer 2 in a similar fashion. The two lines giving me grief are commented out at the very bottom of the *filter rules. The first line runs fine but it's all or nothing. :) Many thanks, Peter H. *nat #Flush previous rules, chains and counters for the 'nat' table -F -X -Z #Redirect traffic to alternate internal ports -I PREROUTING --src 0/0 -p tcp --dport 80 -j REDIRECT --to-ports 8080 -I PREROUTING --src 0/0 -p tcp --dport 443 -j REDIRECT --to-ports 8443 -I PREROUTING --src 0/0 -p udp --dport 53 -j REDIRECT --to-ports 8053 -I PREROUTING --src 0/0 -p tcp --dport 9022 -j REDIRECT --to-ports 8022 COMMIT *filter #Flush previous settings, chains and counters for the 'filter' table -F -X -Z #Set default behavior for all connections and protocols -P INPUT DROP -P OUTPUT DROP -A FORWARD -j DROP #Only accept loopback traffic originating from the local NIC -A INPUT -i lo -j ACCEPT -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP #Accept all outgoing non-fragmented traffic having a valid state -A OUTPUT ! -f -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT #Drop fragmented incoming packets (Not always malicious - acceptable for use now) -A INPUT -f -j DROP #Allow ping requests rate limited to one per second (burst ensures reliable results for high latency connections) -A INPUT -p icmp --icmp-type 8 -m limit --limit 1/sec --limit-burst 2 -j ACCEPT #Declaration of custom chains -N INSPECT_TCP_FLAGS -N INSPECT_STATE -N INSPECT #Drop incoming tcp connections with invalid tcp-flags -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL ALL -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL NONE -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,FIN FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,PSH PSH -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,URG URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags FIN,RST FIN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP #Accept incoming traffic having either an established or related state -A INSPECT_STATE -m state --state ESTABLISHED,RELATED -j ACCEPT #Drop new incoming tcp connections if they aren't SYN packets -A INSPECT_STATE -m state --state NEW -p tcp ! --syn -j DROP #Drop incoming traffic with invalid states -A INSPECT_STATE -m state --state INVALID -j DROP #INSPECT chain definition -A INSPECT -p tcp -j INSPECT_TCP_FLAGS -A INSPECT -j INSPECT_STATE #Route incoming traffic through the INSPECT chain -A INPUT -j INSPECT #Accept redirected HTTP traffic via HA reverse proxy -A INPUT -p tcp --dport 8080 -j ACCEPT #Accept redirected HTTPS traffic via STUNNEL SSH gateway (As well as tunneled HTTPS traffic destine for other services) -A INPUT -p tcp --dport 8443 -j ACCEPT #Accept redirected DNS traffic for NSD authoritative nameserver -A INPUT -p udp --dport 8053 -j ACCEPT #Accept redirected SSH traffic for OpenSSH server #Temp solution: -A INPUT -p tcp --dport 8022 -j ACCEPT #Ideal solution: #Limit new ssh connections to max 10 per 10 minutes while allowing an "unlimited" (or better reasonably limited?) number of established connections. #-A INPUT -p tcp --dport 8022 --state NEW,ESTABLISHED -m recent --set -j ACCEPT #-A INPUT -p tcp --dport 8022 --state NEW -m recent --update --seconds 600 --hitcount 11 -j DROP COMMIT *mangle #Flush previous rules, chains and counters in the 'mangle' table -F -X -Z COMMIT

    Read the article

  • Nvidia drivers don't work with mainline kernel

    - by dutchie
    I want to try some of the new features in the btrfs filesystem, and to do that I need to use a newer kernel than is included in Ubuntu 12.04. To do that, I have installed linux-headers-3.4.0-030400_3.4.0-030400.201205210521_all.deb, linux-headers-3.4.0-030400-generic_3.4.0-030400.201205210521_amd64.deb, and linux-image-3.4.0-030400-generic_3.4.0-030400.201205210521_amd64.deb from the mainline kernel download here. However, on rebooting into the 3.4 kernel, my desktop is stuck at a very low resolution and I cannot increase it to the full. This did happen when I first installed, but a simple install of the nvidia-current package got everything working nicely with my GTX570 card. There were appear to be some DKMS errors when I installed the kernel, and they indicated I should look at /var/lib/dkms/nvidia-current/295.40/build/make.log: josh@sirius:~/Downloads$ sudo dpkg -i linux-*.deb Selecting previously unselected package linux-headers-3.4.0-030400. (Reading database ... 309400 files and directories currently installed.) Unpacking linux-headers-3.4.0-030400 (from linux-headers-3.4.0-030400_3.4.0-030400.201205210521_all.deb) ... Selecting previously unselected package linux-headers-3.4.0-030400-generic. Unpacking linux-headers-3.4.0-030400-generic (from linux-headers-3.4.0-030400-generic_3.4.0-030400.201205210521_amd64.deb) ... Selecting previously unselected package linux-image-3.4.0-030400-generic. Unpacking linux-image-3.4.0-030400-generic (from linux-image-3.4.0-030400-generic_3.4.0-030400.201205210521_amd64.deb) ... Done. Setting up linux-headers-3.4.0-030400 (3.4.0-030400.201205210521) ... Setting up linux-headers-3.4.0-030400-generic (3.4.0-030400.201205210521) ... Examining /etc/kernel/header_postinst.d. run-parts: executing /etc/kernel/header_postinst.d/dkms 3.4.0-030400-generic /boot/vmlinuz-3.4.0-030400-generic ERROR (dkms apport): kernel package linux-headers-3.4.0-030400-generic is not supported Error! Bad return status for module build on kernel: 3.4.0-030400-generic (x86_64) Consult /var/lib/dkms/nvidia-current/295.40/build/make.log for more information. Setting up linux-image-3.4.0-030400-generic (3.4.0-030400.201205210521) ... Running depmod. update-initramfs: deferring update (hook will be called later) Examining /etc/kernel/postinst.d. run-parts: executing /etc/kernel/postinst.d/dkms 3.4.0-030400-generic /boot/vmlinuz-3.4.0-030400-generic ERROR (dkms apport): kernel package linux-headers-3.4.0-030400-generic is not supported Error! Bad return status for module build on kernel: 3.4.0-030400-generic (x86_64) Consult /var/lib/dkms/nvidia-current/295.40/build/make.log for more information. run-parts: executing /etc/kernel/postinst.d/initramfs-tools 3.4.0-030400-generic /boot/vmlinuz-3.4.0-030400-generic update-initramfs: Generating /boot/initrd.img-3.4.0-030400-generic run-parts: executing /etc/kernel/postinst.d/pm-utils 3.4.0-030400-generic /boot/vmlinuz-3.4.0-030400-generic run-parts: executing /etc/kernel/postinst.d/update-notifier 3.4.0-030400-generic /boot/vmlinuz-3.4.0-030400-generic run-parts: executing /etc/kernel/postinst.d/zz-update-grub 3.4.0-030400-generic /boot/vmlinuz-3.4.0-030400-generic Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.4.0-030400-generic Found initrd image: /boot/initrd.img-3.4.0-030400-generic Found linux image: /boot/vmlinuz-3.2.0-24-generic Found initrd image: /boot/initrd.img-3.2.0-24-generic Found memtest86+ image: /memtest86+.bin Found Ubuntu 12.04 LTS (12.04) on /dev/sda1 Found Windows 7 (loader) on /dev/sda2 Found Windows 7 (loader) on /dev/sda3 done /var/lib/dkms/nvidia-current/295.40/build/make.log: DKMS make.log for nvidia-current-295.40 for kernel 3.4.0-030400-generic (x86_64) Thu Jun 7 00:58:39 BST 2012 NVIDIA: calling KBUILD... test -e include/generated/autoconf.h -a -e include/config/auto.conf || ( \ echo; \ echo " ERROR: Kernel configuration is invalid."; \ echo " include/generated/autoconf.h or include/config/auto.conf are missing.";\ echo " Run 'make oldconfig && make prepare' on kernel src to fix it."; \ echo; \ /bin/false) mkdir -p /var/lib/dkms/nvidia-current/295.40/build/.tmp_versions ; rm -f /var/lib/dkms/nvidia-current/295.40/build/.tmp_versions/* make -f scripts/Makefile.build obj=/var/lib/dkms/nvidia-current/295.40/build cc -Wp,-MD,/var/lib/dkms/nvidia-current/295.40/build/.nv.o.d -nostdinc -isystem /usr/lib/gcc/x86_64-linux-gnu/4.6/include -I/usr/src/linux-headers-3.4.0-030400-generic/arch/x86/include -Iarch/x86/include/generated -Iinclude -include /usr/src/linux-headers-3.4.0-030400-generic/include/linux/kconfig.h -D__KERNEL__ -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs -fno-strict-aliasing -fno-common -Werror-implicit-function-declaration -Wno-format-security -fno-delete-null-pointer-checks -O2 -m64 -mtune=generic -mno-red-zone -mcmodel=kernel -funit-at-a-time -maccumulate-outgoing-args -fstack-protector -DCONFIG_AS_CFI=1 -DCONFIG_AS_CFI_SIGNAL_FRAME=1 -DCONFIG_AS_CFI_SECTIONS=1 -DCONFIG_AS_FXSAVEQ=1 -pipe -Wno-sign-compare -fno-asynchronous-unwind-tables -mno-sse -mno-mmx -mno-sse2 -mno-3dnow -mno-avx -Wframe-larger-than=1024 -Wno-unused-but-set-variable -fno-omit-frame-pointer -fno-optimize-sibling-calls -pg -Wdeclaration-after-statement -Wno-pointer-sign -fno-strict-overflow -fconserve-stack -DCC_HAVE_ASM_GOTO -I/var/lib/dkms/nvidia-current/295.40/build -Wall -MD -Wsign-compare -Wno-cast-qual -Wno-error -D__KERNEL__ -DMODULE -DNVRM -DNV_VERSION_STRING=\"295.40\" -Wno-unused-function -Wuninitialized -mno-red-zone -mcmodel=kernel -UDEBUG -U_DEBUG -DNDEBUG -DMODULE -D"KBUILD_STR(s)=#s" -D"KBUILD_BASENAME=KBUILD_STR(nv)" -D"KBUILD_MODNAME=KBUILD_STR(nvidia)" -c -o /var/lib/dkms/nvidia-current/295.40/build/.tmp_nv.o /var/lib/dkms/nvidia-current/295.40/build/nv.c In file included from include/linux/kernel.h:19:0, from include/linux/sched.h:55, from include/linux/utsname.h:35, from /var/lib/dkms/nvidia-current/295.40/build/nv-linux.h:38, from /var/lib/dkms/nvidia-current/295.40/build/nv.c:13: include/linux/bitops.h: In function ‘hweight_long’: include/linux/bitops.h:66:41: warning: signed and unsigned type in conditional expression [-Wsign-compare] In file included from /usr/src/linux-headers-3.4.0-030400-generic/arch/x86/include/asm/uaccess.h:577:0, from include/linux/poll.h:14, from /var/lib/dkms/nvidia-current/295.40/build/nv-linux.h:97, from /var/lib/dkms/nvidia-current/295.40/build/nv.c:13: /usr/src/linux-headers-3.4.0-030400-generic/arch/x86/include/asm/uaccess_64.h: In function ‘copy_from_user’: /usr/src/linux-headers-3.4.0-030400-generic/arch/x86/include/asm/uaccess_64.h:53:6: warning: comparison between signed and unsigned integer expressions [-Wsign-compare] In file included from /var/lib/dkms/nvidia-current/295.40/build/nv.c:13:0: /var/lib/dkms/nvidia-current/295.40/build/nv-linux.h: At top level: /var/lib/dkms/nvidia-current/295.40/build/nv-linux.h:114:75: fatal error: asm/system.h: No such file or directory compilation terminated. make[3]: *** [/var/lib/dkms/nvidia-current/295.40/build/nv.o] Error 1 make[2]: *** [_module_/var/lib/dkms/nvidia-current/295.40/build] Error 2 NVIDIA: left KBUILD. nvidia.ko failed to build! make[1]: *** [module] Error 1 make: *** [module] Error 2

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65  | Next Page >