Search Results

Search found 40915 results on 1637 pages for 'virtual method'.

Page 634/1637 | < Previous Page | 630 631 632 633 634 635 636 637 638 639 640 641  | Next Page >

  • Algorithm to generate multifaced cube?

    - by OnePie
    Are there any elegant soloution to generate a simple-six sided cube, where each cube is made out of more than one face? The method I have used ended up a horrible and complicated mess of logic that is imopssible to follow and most likely to maintain. The algorithm should not generate reduntant vertices, and should output the indice list for the mesh as well. The reason I need this is that the cubes vertices will be deformed depending on various factors, meaning that a simple six-faced cube will nto do.

    Read the article

  • Exception Handling Differences Between 32/64 Bit

    - by Alois Kraus
    I do quite a bit of debugging .NET applications but from time to time I see things that are impossible (at a first look). I may ask you dear reader what your mental exception handling model is. Exception handling is easy after all right? Lets suppose the following code:         private void F1(object sender, EventArgs e)         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new Exception("even worse Exception");             }           }           private void F2()         {             try             {                 F3();             }             finally             {                 throw new Exception("other exception");             }         }           private void F3()         {             throw new NotImplementedException();         }   What will the call stack look like when you break into the catch(Exception) clause in Windbg (32 and 64 bit on .NET 3.5 SP1)? The mental model I have is that when an exception is thrown the stack frames are unwound until the catch handler can execute. An exception does propagate the call chain upwards.   So when F3 does throw an exception the control flow will resume at the finally handler in F2 which does throw another exception hiding the original one (that is nasty) and then the new Exception will be catched in F1 where the catch handler is executed. So we should see in the catch handler in F1 as call stack only the F1 stack frame right? Well lets try it out in Windbg. For this I created a simple Windows Forms application with one button which does execute the F1 method in its click handler. When you compile the application for 64 bit and the catch handler is reached you will find with the following commands in Windbg   Load sos extension from the same path where mscorwks was loaded in the current process .loadby sos mscorwks   Beak on clr exceptions sxe clr   Continue execution g   Dump mixed call stack container C++  and .NET Stacks interleaved 0:000> !DumpStack OS Thread Id: 0x1d8 (0) Child-SP         RetAddr          Call Site 00000000002c88c0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002c8990 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002c8a60 000007ff005dd7f4 mscorwks!JIT_Throw+0x130 00000000002c8c10 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0xb4 00000000002c8c60 000007fefa661012 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002c8d60 000007fefa711a72 mscorwks!ExceptionTracker::CallCatchHandler+0x9e 00000000002c8df0 0000000077b055cd mscorwks!ProcessCLRException+0x25e 00000000002c8e90 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002c8ec0 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002c9560 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002c9a70 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002c9b10 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002c9b40 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002ca220 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002ca7e0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002ca8b0 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002ca980 000007ff005dd8df mscorwks!JIT_Throw+0x130 00000000002cab30 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x9f 00000000002cab80 000007fefa71b5b3 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002cac80 000007fefa70dcd0 mscorwks!ExceptionTracker::ProcessManagedCallFrame+0x683 00000000002caed0 000007fefa7119af mscorwks!ExceptionTracker::ProcessOSExceptionNotification+0x430 00000000002cbd90 0000000077b055cd mscorwks!ProcessCLRException+0x19b 00000000002cbe30 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002cbe60 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002cc500 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002cca10 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002ccab0 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002ccae0 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002cd1c0 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002cd780 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002cd850 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002cd920 000007ff005dd968 mscorwks!JIT_Throw+0x130 00000000002cdad0 000007ff005dd875 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F3()+0x48 00000000002cdb10 000007ff005dd786 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x35 00000000002cdb60 000007ff005dbe6a WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0x46 00000000002cdbc0 000007ff005dd452 System_Windows_Forms!System.Windows.Forms.Control.OnClick(System.EventArgs)+0x5a   Hm okaaay. I see my method F1 two times in this call stack. Looks like we did get some recursion bug. But that can´t be given the obvious code above. Let´s try the same thing in a 32 bit process.  0:000> !DumpStack OS Thread Id: 0x33e4 (0) Current frame: KERNELBASE!RaiseException+0x58 ChildEBP RetAddr  Caller,Callee 0028ed38 767db727 KERNELBASE!RaiseException+0x58, calling ntdll!RtlRaiseException 0028ed4c 68b9008c mscorwks!Binder::RawGetClass+0x20, calling mscorwks!Module::LookupTypeDef 0028ed5c 68b904ff mscorwks!Binder::IsClass+0x23, calling mscorwks!Binder::RawGetClass 0028ed68 68bfb96f mscorwks!Binder::IsException+0x14, calling mscorwks!Binder::IsClass 0028ed78 68bfb996 mscorwks!IsExceptionOfType+0x23, calling mscorwks!Binder::IsException 0028ed80 68bfbb1c mscorwks!RaiseTheExceptionInternalOnly+0x2a8, calling KERNEL32!RaiseExceptionStub 0028eda8 68ba0713 mscorwks!Module::ResolveStringRef+0xe0, calling mscorwks!BaseDomain::GetStringObjRefPtrFromUnicodeString 0028edc8 68b91e8d mscorwks!SetObjectReferenceUnchecked+0x19 0028ede0 68c8e910 mscorwks!JIT_Throw+0xfc, calling mscorwks!RaiseTheExceptionInternalOnly 0028ee44 68c8e734 mscorwks!JIT_StrCns+0x22, calling mscorwks!LazyMachStateCaptureState 0028ee54 68c8e865 mscorwks!JIT_Throw+0x1e, calling mscorwks!LazyMachStateCaptureState 0028eea4 02ffaecd (MethodDesc 0x7af08c +0x7d WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)), calling mscorwks!JIT_Throw 0028eeec 02ffaf19 (MethodDesc 0x7af098 +0x29 WindowsFormsApplication1.Form1.F2()), calling 06370634 0028ef58 02ffae37 (MethodDesc 0x7a7bb0 +0x4f System.Windows.Forms.Control.OnClick(System.EventArgs))   That does look more familar. The call stack has been unwound and we do see only some frames into the history where the debugger was smart enough to find out that we have called F2 from F1. The exception handling on 64 bit systems does work quite differently which seems to have the nice property to remember the called methods not only during the first pass of exception filter clauses (during first pass all catch handler are called if they are going to catch the exception which is about to be thrown)  but also when the actual stack unwind has taken place. This makes it possible to follow not only the call stack right at the moment but also to look into the “history” of the catch/finally clauses. In a 64 bit process you only need to look at the ExceptionTracker to find out if a catch or finally handler was called. The two frames ProcessManagedCallFrame/CallHandler does indicate a finally clause whereas CallCatchHandler/CallHandler indicates a catch clause. That was a interesting one. Oh and by the way if you manage to load the Microsoft symbols you can also find out the hidden exception which. When you encounter in the call stack a line 0016eb34 75b79617 KERNELBASE!RaiseException+0x58 ====> Exception Code e0434f4d cxr@16e850 exr@16e838 Then it is a good idea to execute .exr 16e838 !analyze –v to find out more. In the managed world it is even easier since we can dump the objects allocated on the stack which have not yet been garbage collected to look at former method parameters. The command !dso which is the abbreviation for dump stack objects will give you 0:000> !dso OS Thread Id: 0x46c (0) ESP/REG  Object   Name 0016dd4c 020737f0 System.Exception 0016dd98 020737f0 System.Exception 0016dda8 01f5c6cc System.Windows.Forms.Button 0016ddac 01f5d2b8 System.EventHandler 0016ddb0 02071744 System.Windows.Forms.MouseEventArgs 0016ddc0 01f5d2b8 System.EventHandler 0016ddcc 01f5c6cc System.Windows.Forms.Button 0016dddc 020737f0 System.Exception 0016dde4 01f5d2b8 System.EventHandler 0016ddec 02071744 System.Windows.Forms.MouseEventArgs 0016de40 020737f0 System.Exception 0016de80 02071744 System.Windows.Forms.MouseEventArgs 0016de8c 01f5d2b8 System.EventHandler 0016de90 01f5c6cc System.Windows.Forms.Button 0016df10 02073784 System.SByte[] 0016df5c 02073684 System.NotImplementedException 0016e2a0 02073684 System.NotImplementedException 0016e2e8 01ed69f4 System.Resources.ResourceManager From there it is easy to do 0:000> !pe 02073684 Exception object: 02073684 Exception type: System.NotImplementedException Message: Die Methode oder der Vorgang sind nicht implementiert. InnerException: <none> StackTrace (generated):     SP       IP       Function     0016ECB0 006904AD WindowsFormsApplication2!WindowsFormsApplication2.Form1.F3()+0x35     0016ECC0 00690411 WindowsFormsApplication2!WindowsFormsApplication2.Form1.F2()+0x29     0016ECF0 0069038F WindowsFormsApplication2!WindowsFormsApplication2.Form1.F1(System.Object, System.EventArgs)+0x3f StackTraceString: <none> HResult: 80004001 to see the former exception. That´s all for today.

    Read the article

  • Premature-Optimization and Performance Anxiety

    - by James Michael Hare
    While writing my post analyzing the new .NET 4 ConcurrentDictionary class (here), I fell into one of the classic blunders that I myself always love to warn about.  After analyzing the differences of time between a Dictionary with locking versus the new ConcurrentDictionary class, I noted that the ConcurrentDictionary was faster with read-heavy multi-threaded operations.  Then, I made the classic blunder of thinking that because the original Dictionary with locking was faster for those write-heavy uses, it was the best choice for those types of tasks.  In short, I fell into the premature-optimization anti-pattern. Basically, the premature-optimization anti-pattern is when a developer is coding very early for a perceived (whether rightly-or-wrongly) performance gain and sacrificing good design and maintainability in the process.  At best, the performance gains are usually negligible and at worst, can either negatively impact performance, or can degrade maintainability so much that time to market suffers or the code becomes very fragile due to the complexity. Keep in mind the distinction above.  I'm not talking about valid performance decisions.  There are decisions one should make when designing and writing an application that are valid performance decisions.  Examples of this are knowing the best data structures for a given situation (Dictionary versus List, for example) and choosing performance algorithms (linear search vs. binary search).  But these in my mind are macro optimizations.  The error is not in deciding to use a better data structure or algorithm, the anti-pattern as stated above is when you attempt to over-optimize early on in such a way that it sacrifices maintainability. In my case, I was actually considering trading the safety and maintainability gains of the ConcurrentDictionary (no locking required) for a slight performance gain by using the Dictionary with locking.  This would have been a mistake as I would be trading maintainability (ConcurrentDictionary requires no locking which helps readability) and safety (ConcurrentDictionary is safe for iteration even while being modified and you don't risk the developer locking incorrectly) -- and I fell for it even when I knew to watch out for it.  I think in my case, and it may be true for others as well, a large part of it was due to the time I was trained as a developer.  I began college in in the 90s when C and C++ was king and hardware speed and memory were still relatively priceless commodities and not to be squandered.  In those days, using a long instead of a short could waste precious resources, and as such, we were taught to try to minimize space and favor performance.  This is why in many cases such early code-bases were very hard to maintain.  I don't know how many times I heard back then to avoid too many function calls because of the overhead -- and in fact just last year I heard a new hire in the company where I work declare that she didn't want to refactor a long method because of function call overhead.  Now back then, that may have been a valid concern, but with today's modern hardware even if you're calling a trivial method in an extremely tight loop (which chances are the JIT compiler would optimize anyway) the results of removing method calls to speed up performance are negligible for the great majority of applications.  Now, obviously, there are those coding applications where speed is absolutely king (for example drivers, computer games, operating systems) where such sacrifices may be made.  But I would strongly advice against such optimization because of it's cost.  Many folks that are performing an optimization think it's always a win-win.  That they're simply adding speed to the application, what could possibly be wrong with that?  What they don't realize is the cost of their choice.  For every piece of straight-forward code that you obfuscate with performance enhancements, you risk the introduction of bugs in the long term technical debt of the application.  It will become so fragile over time that maintenance will become a nightmare.  I've seen such applications in places I have worked.  There are times I've seen applications where the designer was so obsessed with performance that they even designed their own memory management system for their application to try to squeeze out every ounce of performance.  Unfortunately, the application stability often suffers as a result and it is very difficult for anyone other than the original designer to maintain. I've even seen this recently where I heard a C++ developer bemoaning that in VS2010 the iterators are about twice as slow as they used to be because Microsoft added range checking (probably as part of the 0x standard implementation).  To me this was almost a joke.  Twice as slow sounds bad, but it almost never as bad as you think -- especially if you're gaining safety.  The only time twice is really that much slower is when once was too slow to begin with.  Think about it.  2 minutes is slow as a response time because 1 minute is slow.  But if an iterator takes 1 microsecond to move one position and a new, safer iterator takes 2 microseconds, this is trivial!  The only way you'd ever really notice this would be in iterating a collection just for the sake of iterating (i.e. no other operations).  To my mind, the added safety makes the extra time worth it. Always favor safety and maintainability when you can.  I know it can be a hard habit to break, especially if you started out your career early or in a language such as C where they are very performance conscious.  But in reality, these type of micro-optimizations only end up hurting you in the long run. Remember the two laws of optimization.  I'm not sure where I first heard these, but they are so true: For beginners: Do not optimize. For experts: Do not optimize yet. This is so true.  If you're a beginner, resist the urge to optimize at all costs.  And if you are an expert, delay that decision.  As long as you have chosen the right data structures and algorithms for your task, your performance will probably be more than sufficient.  Chances are it will be network, database, or disk hits that will be your slow-down, not your code.  As they say, 98% of your code's bottleneck is in 2% of your code so premature-optimization may add maintenance and safety debt that won't have any measurable impact.  Instead, code for maintainability and safety, and then, and only then, when you find a true bottleneck, then you should go back and optimize further.

    Read the article

  • XNA: Networking gone totally out of sync

    - by MesserChups
    I'm creating a multiplayer interface for a game in 2D some of my friends made, and I'm stuck with a huge latency or sync problem. I started by adapting my game to the msdn xna network tutorial and right now when I join a SystemLink network session (1 host on PC and 1 client on Xbox) I can move two players, everything is ok, but few minutes later the two machines start being totally out of synchronization. When I move one player it takes 10 or 20 seconds (increasing with TIME) to take effect on the second machine. I've tried to : Create a thread which calls NetworkSession.Update() continuously as suggested on this forum, didn't worked. Call the Send() method one frame on 10, and the receive() method at each frame, didn't worked either. I've cleaned my code, flushed all buffers at each call and switched the host and client but the problem still remain... I hope you have a solution because I'm running out of ideas... Thanks SendPackets() code : protected override void SendPackets() { if ((NetworkSessionState)m_networkSession.SessionState == NetworkSessionState.Playing) //Only while playing { //Write in the packet manager m_packetWriter.Write(m_packetManager.PacketToSend.ToArray(), 0, (int)m_packetManager.PacketToSend.Position); m_packetManager.ResetPacket(); //flush //Sends the packets to all remote gamers foreach (NetworkGamer l_netGamer in m_networkSession.RemoteGamers) { if (m_packetWriter.Length != 0) { FirstLocalNetGamer.SendData(m_packetWriter, SendDataOptions.None, l_netGamer); } } m_packetWriter.Flush();//m m_packetWriter.Seek(0, 0); } } ReceivePackets() code : public override void ReceivePackets() { base.ReceivePackets(); if ((NetworkSessionState)m_networkSession.SessionState == NetworkSessionState.Playing) //Only while playing { if (m_networkSession.LocalGamers.Count > 0) //Verify that there's at least one local gamer { foreach (LocalNetworkGamer l_localGamer in m_networkSession.LocalGamers) { //every LocalNetworkGamer must read to flush their stream // Keep reading while packets are available. NetworkGamer l_oldSender = null; while (l_localGamer.IsDataAvailable) { // Read a single packet, even if we are the host, we must read to clear the queue NetworkGamer l_newSender; l_localGamer.ReceiveData(m_packetReader, out l_newSender); if (l_newSender != l_oldSender) { if ((!l_newSender.IsLocal) && (l_localGamer == FirstLocalNetGamer)) { //Parsing PacketReader to MemoryStream m_packetManager.Receive(new MemoryStream(m_packetReader.ReadBytes(m_packetReader.Length))); } } l_oldSender = l_newSender; m_packetReader.BaseStream.Flush(); m_packetReader.BaseStream.Seek(0, SeekOrigin.Begin); } } m_packetManager.ParsePackets(); } } }

    Read the article

  • Calling methods on Objects

    - by Mashael
    Let's say we have a class called 'Automobile' and we have an instance of that class called 'myCar'. I would like to ask why do we need to put the values that our methods return in a variable for the object? Why just don't we call the method? For example: Why should we write: string message = myCar.SpeedMessage(); Console.WriteLine(message); instead of: Console.WriteLine(myCar.SpeedMessage());

    Read the article

  • Action delegate in C#

    - by Jalpesh P. Vadgama
    In last few posts about I have written lots of things about delegates and this post is also part of that series. In this post we are going to learn about Action delegates in C#.  Following is a list of post related to delegates. Delegates in C#. Multicast Delegates in C#. Func Delegates in C#. Action Delegates in c#: As per MSDN action delegates used to pass a method as parameter without explicitly declaring custom delegates. Action Delegates are used to encapsulate method that does not have return value. C# 4.0 Action delegates have following different variants like following. It can take up to 16 parameters. Action – It will be no parameter and does not return any value. Action(T) Action(T1,T2) Action(T1,T2,T3) Action(T1,T2,T3,T4) Action(T1,T2,T3,T4,T5) Action(T1,T2,T3,T4,T5,T6) Action(T1,T2,T3,T4,T5,T6,T7) Action(T1,T2,T3,T4,T5,T6,T7,T8) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16) So for this Action delegate you can have up to 16 parameters for Action.  Sound interesting!!… Enough theory now. It’s time to implement real code. Following is a code for that. using System; using System.Collections.Generic; namespace DelegateExample { class Program { static void Main(string[] args) { Action<String> Print = p => Console.WriteLine(p); Action<String,String> PrintAnother = (p1,p2)=> Console.WriteLine(string.Format("{0} {1}",p1,p2)); Print("Hello"); PrintAnother("Hello","World"); } } } In the above code you can see that I have created two Action delegate Print and PrintAnother. Print have one string parameter and its printing that. While PrintAnother have two string parameter and printing both the strings via Console.Writeline. Now it’s time to run example and following is the output as expected. That’s it. Hope you liked it. Stay tuned for more updates!!

    Read the article

  • Hosted CRM Solutions from a Manager?s Perspective

    CRM, Customer Relationship Management is a method or process that is used to know the customer?s behavior and their needs and it helps in developing a stronger relation with them. This is only a defi... [Author: James Wong - Computers and Internet - April 29, 2010]

    Read the article

  • Check if Database Exists

    - by Derek Dieter
    In creating a database you also need to check whether or not the database already exists. In order to do so, simply use the ‘if exists’ method and select the name of the database from sysdatabases.IF NOT EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'SQLServerPlanet') CREATE DATABASE [SQLServerPlanet]The code below will drop an [...]

    Read the article

  • How can I update Ubuntu if the update servers are blocked?

    - by Yasser Hussain
    I connect to the Internet through my college wifi and for some weird reason they have blocked all Ubuntu updates, so I cannot update Ubuntu through the common "Update Manager" way. So I was wondering if there was some other method to update Ubuntu, maybe manually download each package and then install them or download a DVD image which already has all the packages. I have Ubuntu 11.10 installed currently.

    Read the article

  • Beware of const members

    - by nmarun
    I happened to learn a new thing about const today and how one needs to be careful with its usage. Let’s say I have a third-party assembly ‘ConstVsReadonlyLib’ with a class named ConstSideEffect.cs: 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 10; 4: public const int EndValue = 20; 5: } In my project, I reference the above assembly as follows: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < ConstSideEffect.EndValue; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } You’ll see values 10 through 19 as expected. Now, let’s say I receive a new version of the ConstVsReadonlyLib. 1: public class ConstSideEffect 2: { 3: public static readonly int StartValue = 5; 4: public const int EndValue = 30; 5: } If I just drop this new assembly in the bin folder and run the application, without rebuilding my console application, my thinking was that the output would be from 5 to 29. Of course I was wrong… if not you’d not be reading this blog. The actual output is from 5 through 19. The reason is due to the behavior of const and readonly members. To begin with, const is the compile-time constant and readonly is a runtime constant. Next, when you compile the code, a compile-time constant member is replaced with the value of the constant in the code. But, the IL generated when you reference a read-only constant, references the readonly variable, not its value. So, the IL version of the Main method, after compilation actually looks something like: 1: static void Main(string[] args) 2: { 3: for (int i = ConstSideEffect.StartValue; i < 20; i++) 4: { 5: Console.WriteLine(i); 6: } 7: Console.ReadLine(); 8: } I’m no expert with this IL thingi, but when I look at the disassembled code of the exe file (using IL Disassembler), I see the following: I see our readonly member still being referenced by the variable name (ConstVsReadonlyLib.ConstSideEffect::StartValue) in line 0001. Then there’s the Console.WriteLine in line 000b and finally, see the value of 20 in line 0017. This, I’m pretty sure is our const member being replaced by its value which marks the upper bound of the ‘for’ loop. Now you know why the output was from 5 through 19. This definitely is a side-effect of having const members and one needs to be aware of it. While we’re here, I’d like to add a few other points about const and readonly members: const is slightly faster, but is less flexible readonly cannot be declared within a method scope const can be used only on primitive types (numbers and strings) Just wanted to share this before going to bed!

    Read the article

  • Oracle Tutor: Top 10 to Implement Sustainable Policies and Procedures

    - by emily.chorba(at)oracle.com
    Overview Your organization (executives, managers, and employees) understands the value of having written business process documents (process maps, procedures, instructions, reference documents, and form abstracts). Policies and procedures should be documented because they help to reduce the range of individual decisions and encourage management by exception: the manager only needs to give special attention to unusual problems, not covered by a specific policy or procedure. As more and more procedures are written to cover recurring situations, managers will begin to make decisions which will be consistent from one functional area to the next.Companies should take a project management approach when implementing an environment for a sustainable documentation program and do the following:1. Identify an Executive Champion2. Put together a winning team3. Assign ownership4. Centralize publishing5. Establish the Document Maintenance Process Up Front6. Document critical activities only7. Document actual practice8. Minimize documentation9. Support continuous improvement10. Keep it simple 1. Identify an Executive ChampionAppoint a top down driver. Select one key individual to be a mentor for the procedure planning team. The individual should be a senior manager, such as your company president, CIO, CFO, the vice-president of quality, manufacturing, or engineering. Written policies and procedures can be important supportive aids when known to express the thinking for the chief executive officer and / or the president and to have his or her full support. 2. Put Together a Winning TeamChoose a strong Project Management Leader and staff the procedure planning team with management members from cross functional groups. Make sure team members have the responsibility - and the authority - to make things happen.The winning team should consist of the Documentation Project Manager, Document Owners (one for each functional area), a Document Controller, and Document Specialists (as needed). The Tutor Implementation Guide has complete job descriptions for these roles. 3. Assign Ownership It is virtually impossible to keep process documentation simple and meaningful if employees who are far removed from the activity itself create it. It is impossible to keep documentation up-to-date when responsibility for the document is not clearly understood.Key to the Tutor methodology, therefore, is the concept of ownership. Each document has a single owner, who is responsible for ensuring that the document is necessary and that it reflects actual practice. The owner must be a person who is knowledgeable about the activity and who has the authority to build consensus among the persons who participate in the activity as well as the authority to define or change the way an activity is performed. The owner must be an advocate of the performers and negotiate, not dictate practices.In the Tutor environment, a document's owner is the only person with the authority to approve an update to that document. 4. Centralize Publishing Although it is tempting (especially in a networked environment and with document management software solutions) to decentralize the control of all documents -- with each owner updating and distributing his own -- Tutor promotes centralized publishing by assigning the Document Administrator (gate keeper) to manage the updates and distribution of the procedures library. 5. Establish a Document Maintenance Process Up Front (and stick to it) Everyone in your organization should know they are invited to suggest changes to procedures and should understand exactly what steps to take to do so. Tutor provides a set of procedures to help your company set up a healthy document control system. There are many document management products available to automate some of the document change and maintenance steps. Depending on the size of your organization, a simple document management system can reduce the effort it takes to track and distribute document changes and updates. Whether your company decides to store the written policies and procedures on a file server or in a database, the essential tasks for maintaining documents are the same, though some tasks are automated. 6. Document Critical Activities Only The best way to keep your documentation simple is to reduce the number of process documents to a bare minimum and to include in those documents only as much detail as is absolutely necessary. The first step to reducing process documentation is to document only those activities that are deemed critical. Not all activities require documentation. In fact, some critical activities cannot and should not be standardized. Others may be sufficiently documented with an instruction or a checklist and may not require a procedure. A document should only be created when it enhances the performance of the employee performing the activity. If it does not help the employee, then there is no reason to maintain the document. Activities that represent little risk (such as project status), activities that cannot be defined in terms of specific tasks (such as product research), and activities that can be performed in a variety of ways (such as advertising) often do not require documentation. Sometimes, an activity will evolve to the point where documentation is necessary. For example, an activity performed by single employee may be straightforward and uncomplicated -- that is, until the activity is performed by multiple employees. Sometimes, it is the interaction between co-workers that necessitates documentation; sometimes, it is the complexity or the diversity of the activity.7. Document Actual Practices The only reason to maintain process documentation is to enhance the performance of the employee performing the activity. And documentation can only enhance performance if it reflects reality -- that is, current best practice. Documentation that reflects an unattainable ideal or outdated practices will end up on the shelf, unused and forgotten.Documenting actual practice means (1) auditing the activity to understand how the work is really performed, (2) identifying best practices with employees who are involved in the activity, (3) building consensus so that everyone agrees on a common method, and (4) recording that consensus.8. Minimize Documentation One way to keep it simple is to document at the highest level possible. That is, include in your documents only as much detail as is absolutely necessary.When writing a document, you should ask yourself, What is the purpose of this document? That is, what problem will it solve?By focusing on this question, you can target the critical information.• What questions are the end users likely to have?• What level of detail is required?• Is any of this information extraneous to the document's purpose? Short, concise documents are user friendly and they are easier to keep up to date. 9. Support Continuous Improvement Employees who perform an activity are often in the best position to identify improvements to the process. In other words, continuous improvement is a natural byproduct of the work itself -- but only if the improvements are communicated to all employees who are involved in the process, and only if there is consensus among those employees.Traditionally, process documentation has been used to dictate performance, to limit employees' actions. In the Tutor environment, process documents are used to communicate improvements identified by employees. How does this work? The Tutor methodology requires a process document to reflect actual practice, so the owner of a document must routinely audit its content -- does the document match what the employees are doing? If it doesn't, the owner has the responsibility to evaluate the process, to build consensus among the employees, to identify "best practices," and to communicate these improvements via a document update. Continuous improvement can also be an outgrowth of corrective action -- but only if the solutions to problems are communicated effectively. The goal should be to solve a problem once and only once, which means not only identifying the solution, but ensuring that the solution becomes part of the process. The Tutor system provides the method through which improvements and solutions are documented and communicated to all affected employees in a cost-effective, timely manner; it ensures that improvements are not lost or confined to a single employee. 10. Keep it Simple Process documents don't have to be complex and unfriendly. In fact, the simpler the format and organization, the more likely the documents will be used. And the simpler the method of maintenance, the more likely the documents will be kept up-to-date. Keep it simply by:• Minimizing skills and training required• Following the established Tutor document format and layout• Avoiding technology just for technology's sake No other rule has as major an impact on the success of your internal documentation as -- keep it simple. Learn More For more information about Tutor, visit Oracle.Com or the Tutor Blog. Post your questions at the Tutor Forum.   Emily Chorba Principle Product Manager Oracle Tutor & BPM 

    Read the article

  • "Fails to get size of gamma" error when trying to set resolution

    - by Max Payne
    On 11.10 my max allowed resolution is 1024x768, while my monitor supports 1280x800 on windows. I've seen a method to solve this via xrandr, but I allways get a message saying it fails to get size of gamma. xrandr: Failed to get size of gamma for output default Screen 0: minimum 640 x 480, current 1024 x 768, maximum 1024 x 768 default connected 1024x768+0+0 0mm x 0mm 1024x768 61.0* 800x600 61.0 640x480 60.0 Is there any other way to add 1280x800 resolution to my laptop, any workarounds this? Thanks in advance.

    Read the article

  • Stairway to XML: Level 7 - Updating Data in an XML Instance

    You need to provide the necessary keywords and define the XQuery and value expressions in your XML DML expression in order to use the modify() method to update element and attribute values in either typed or untyped XML instances in an XML column. Robert Sheldon explains how. "It really helped us isolate where we were experiencing a bottleneck"- John Q Martin, SQL Server DBA. Get started with SQL Monitor today to solve tricky performance problems - download a free trial

    Read the article

  • What type of code is suitable for unit testing?

    - by RPK
    In Test Driven Development, what type of code is testable? I am using a Micro-ORM (PetaPoco) and I have several methods that interact with the database like: AddCustomer UpdateRecord etc. I want to know how to write a test for these methods. I searched YouTube for videos on writing a test for DAL, but I didn't find any. I want to know which method or class is testable and how to write a test before writing the code itself.

    Read the article

  • GoF Design Patterns - which ones do you actually use?

    - by CraigS
    I'm trying to educate my colleagues in the area of design patterns. Some of the original Gang of Four patterns are a little esoteric, so I'm wondering if there is a sub-group of "essential" patterns that all programmers should know. As I look through the list, I think I've probably used - Abstract Factory Factory Method Singleton Bridge Facade Command Which ones do you actually use in practice, and what do you use them for? Link for those wanting a list of patterns

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Why is Spritebatch drawing my Textures out of order?

    - by Andrew
    I just started working with XNA Studio after programming 2D games in java. Because of this, I have absolutely no experience with Spritebatch and sprite sorting. In java, I could just layer the images by calling the draw methods in order. For a while, my Spritebatch was working fine in deferred sorting mode, but when I made a change to one of my textures, it suddenly started drawing them out of order. I have searched for a solution to this problem, but nothing seems to work. I have tried adding layer depths to the sprites and changing the sort mode to BackToFront or FrontToBack or even immediate, but nothing seems to work. Here is my drawing code: protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Gray); Game1.spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.AlphaBlend, SamplerState.PointClamp, null, null); for (int x = 0; x < 5; x++) { for (int y = 0; y < 5; y++) { region[x, y].draw(((float)w / aw)); // Draws the Tile-Based background } } player.draw(spriteBatch, ((float)w / aw));//draws the character (This method is where the problem occurs) enemy.draw(spriteBatch, (float)w/aw); // draws a basic enemy Game1.spriteBatch.End(); base.Draw(gameTime); } player.draw method: public void draw(SpriteBatch sb, float ratio){ //draws the player base (The character without hair or equipment) sb.Draw(playerbase[0], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White,0,Vector2.Zero,SpriteEffects.None,0); //draws the player's hair sb.Draw(playerbase[3], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); //draws the player's shirt sb.Draw(equipment[0], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); //draws the player's pants sb.Draw(equipment[1], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); //draws the player's shoes sb.Draw(equipment[2], new Rectangle((int)(pos.X - (24 * ratio)), (int)(pos.Y - (48 * ratio)), (int)(48 * ratio), (int)(48 * ratio)), new Rectangle(orientation * 48, animFrame * 48, 48, 48), Color.White, 0, Vector2.Zero, SpriteEffects.None, 0); } the game has a top-down perspective much like the early legend of zelda games. It draws sections of the texture depending on which direction the character is facing and the animation frame. However, instead of drawing the character in the order the draw methods are called, it ends up drawing the character out of order. Please help me with this problem.

    Read the article

  • Making my own custom Ubuntu

    - by Benny
    I was wondering, is it possible to make my own customized version of Linux based on Ubuntu 10.10 ? I am thinking of calling it something different but I was wondering besides making a custom Live CD I am talking about an Linux that people can install on there computers using Ubuntu installation method. I want to base it on something other than GNOME but be able to install it latter on. Thanks in advance, Benny

    Read the article

  • Bin packing part 6: Further improvements

    - by Hugo Kornelis
    In part 5 of my series on the bin packing problem, I presented a method that sits somewhere in between the true row-by-row iterative characteristics of the first three parts and the truly set-based approach of the fourth part. I did use iteration, but each pass through the loop would use a set-based statement to process a lot of rows at once. Since that statement is fairly complex, I am sure that a single execution of it is far from cheap – but the algorithm used is efficient enough that the entire...(read more)

    Read the article

  • The Dispose Pattern (and FxCop warnings)

    - by Scott Dorman
    [This is actually a response to Bill’s blog post, but since it isn’t possible to leave this as a comment on his blog it’s a post here.] There are many different ways to implement the Dispose pattern correctly. Some are (in my opinion) better than others. In Bill’s blog post he presents a particular pattern, which is an excerpt from his book (Effective C#). The issue centers around the fact that a reader took the code sample presented in the book and ran FxCop (Code Analysis) on it, which generated a warning: “Ensure that base.Dispose() is always called.” The “lesson learned” that Bill presents is that “tools are there to help us, not control us.” While I completely agree with the belief that tools are there to help us, I think it’s important to understand why FxCop is raising this particular warning. The code presented in Bill’s book looks like: // Have its own disposed flag.private bool disposed = false;protected override void Dispose(bool isDisposing){ // Don't dispose more than once. if (disposed) return; if (isDisposing) { // TODO: free managed resources here. } // TODO: free unmanaged resources here. // Let the base class free its resources. // Base class is responsible for calling // GC.SuppressFinalize( ) base.Dispose(isDisposing); // Set derived class disposed flag: disposed = true;} This code does follow all of the guidelines for implementing the Dispose pattern. In this case, it’s presumably part of a larger example showing how to implement the pattern as part of a base class. The reason FxCop is warning you about this code is the first if statement in the Dispose method, which will cause the method to exit if disposed is true. The problem here is that there is the possibility that if the disposed flag is true, the call to base.Dispose() will never be executed. As Bill points out, it is possible for some other code elsewhere in the class to set this flag. He states that this is an “unlikely occurrence.” While that is probably true, it can be a potentially dangerous assumption to make and is one that can be easily corrected. By changing the code slightly you can remove this assumption and correct the FxCop violation. private bool disposed = false;protected override void Dispose(bool disposing){ if (!disposed) { if (disposing) { // Dispose managed resources. } // Dispose unmanaged resources. disposed = true; } base.Dispose(disposing);} Using this implementation allows the call to base.Dispose() to always occur, which ensures that the the disposal chain is always properly followed. Technorati Tags: .NET,C#,Dispose Pattern

    Read the article

  • RiverTrail - JavaScript GPPGU Data Parallelism

    - by JoshReuben
    Where is WebCL ? The Khronos WebCL working group is working on a JavaScript binding to the OpenCL standard so that HTML 5 compliant browsers can host GPGPU web apps – e.g. for image processing or physics for WebGL games - http://www.khronos.org/webcl/ . While Nokia & Samsung have some protype WebCL APIs, Intel has one-upped them with a higher level of abstraction: RiverTrail. Intro to RiverTrail Intel Labs JavaScript RiverTrail provides GPU accelerated SIMD data-parallelism in web applications via a familiar JavaScript programming paradigm. It extends JavaScript with simple deterministic data-parallel constructs that are translated at runtime into a low-level hardware abstraction layer. With its high-level JS API, programmers do not have to learn a new language or explicitly manage threads, orchestrate shared data synchronization or scheduling. It has been proposed as a draft specification to ECMA a (known as ECMA strawman). RiverTrail runs in all popular browsers (except I.E. of course). To get started, download a prebuilt version https://github.com/downloads/RiverTrail/RiverTrail/rivertrail-0.17.xpi , install Intel's OpenCL SDK http://www.intel.com/go/opencl and try out the interactive River Trail shell http://rivertrail.github.com/interactive For a video overview, see  http://www.youtube.com/watch?v=jueg6zB5XaM . ParallelArray the ParallelArray type is the central component of this API & is a JS object that contains ordered collections of scalars – i.e. multidimensional uniform arrays. A shape property describes the dimensionality and size– e.g. a 2D RGBA image will have shape [height, width, 4]. ParallelArrays are immutable & fluent – they are manipulated by invoking methods on them which produce new ParallelArray objects. ParallelArray supports several constructors over arrays, functions & even the canvas. // Create an empty Parallel Array var pa = new ParallelArray(); // pa0 = <>   // Create a ParallelArray out of a nested JS array. // Note that the inner arrays are also ParallelArrays var pa = new ParallelArray([ [0,1], [2,3], [4,5] ]); // pa1 = <<0,1>, <2,3>, <4.5>>   // Create a two-dimensional ParallelArray with shape [3, 2] using the comprehension constructor var pa = new ParallelArray([3, 2], function(iv){return iv[0] * iv[1];}); // pa7 = <<0,0>, <0,1>, <0,2>>   // Create a ParallelArray from canvas.  This creates a PA with shape [w, h, 4], var pa = new ParallelArray(canvas); // pa8 = CanvasPixelArray   ParallelArray exposes fluent API functions that take an elemental JS function for data manipulation: map, combine, scan, filter, and scatter that return a new ParallelArray. Other functions are scalar - reduce  returns a scalar value & get returns the value located at a given index. The onus is on the developer to ensure that the elemental function does not defeat data parallelization optimization (avoid global var manipulation, recursion). For reduce & scan, order is not guaranteed - the onus is on the dev to provide an elemental function that is commutative and associative so that scan will be deterministic – E.g. Sum is associative, but Avg is not. map Applies a provided elemental function to each element of the source array and stores the result in the corresponding position in the result array. The map method is shape preserving & index free - can not inspect neighboring values. // Adding one to each element. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.map(function inc(v) {     return v+1; }); //<2,3,4,5,6> combine Combine is similar to map, except an index is provided. This allows elemental functions to access elements from the source array relative to the one at the current index position. While the map method operates on the outermost dimension only, combine, can choose how deep to traverse - it provides a depth argument to specify the number of dimensions it iterates over. The elemental function of combine accesses the source array & the current index within it - element is computed by calling the get method of the source ParallelArray object with index i as argument. It requires more code but is more expressive. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.combine(function inc(i) { return this.get(i)+1; }); reduce reduces the elements from an array to a single scalar result – e.g. Sum. // Calculate the sum of the elements var source = new ParallelArray([1,2,3,4,5]); var sum = source.reduce(function plus(a,b) { return a+b; }); scan Like reduce, but stores the intermediate results – return a ParallelArray whose ith elements is the results of using the elemental function to reduce the elements between 0 and I in the original ParallelArray. // do a partial sum var source = new ParallelArray([1,2,3,4,5]); var psum = source.scan(function plus(a,b) { return a+b; }); //<1, 3, 6, 10, 15> scatter a reordering function - specify for a certain source index where it should be stored in the result array. An optional conflict function can prevent an exception if two source values are assigned the same position of the result: var source = new ParallelArray([1,2,3,4,5]); var reorder = source.scatter([4,0,3,1,2]); // <2, 4, 5, 3, 1> // if there is a conflict use the max. use 33 as a default value. var reorder = source.scatter([4,0,3,4,2], 33, function max(a, b) {return a>b?a:b; }); //<2, 33, 5, 3, 4> filter // filter out values that are not even var source = new ParallelArray([1,2,3,4,5]); var even = source.filter(function even(iv) { return (this.get(iv) % 2) == 0; }); // <2,4> Flatten used to collapse the outer dimensions of an array into a single dimension. pa = new ParallelArray([ [1,2], [3,4] ]); // <<1,2>,<3,4>> pa.flatten(); // <1,2,3,4> Partition used to restore the original shape of the array. var pa = new ParallelArray([1,2,3,4]); // <1,2,3,4> pa.partition(2); // <<1,2>,<3,4>> Get return value found at the indices or undefined if no such value exists. var pa = new ParallelArray([0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24]) pa.get([1,1]); // 11 pa.get([1]); // <10,11,12,13,14>

    Read the article

  • Difference between the terms Material & Effect

    - by codey
    I'm making an effect system right now (I think, because it may be a material system... or both!). The effects system follows the common (e.g. COLLADA, DirectX) effect framework abstraction of Effects have Techniques, Techniques have Passes, Passes have States & Shader Programs. An effect, according to COLLADA, defines the equations necessary for the visual appearance of geometry and screen-space image processing. Keeping with the abstraction, effects contain techniques. Each effect can contain one or many techniques (i.e. ways to generate the effect), each of which describes a different method for rendering that effect. The technique could be relate to quality (e.g. high precision, high LOD, etc.), or in-game-situation (e.g. night/day, power-up-mode, etc.). Techniques hold a description of the textures, samplers, shaders, parameters, & passes necessary for rendering this effect using one method. Some algorithms require several passes to render the effect. Pipeline descriptions are broken into an ordered collection of Pass objects. A pass provides a static declaration of all the render states, shaders, & settings for "one rendering pipeline" (i.e. one pass). Meshes usually contain a series of materials that define the model. According to the COLLADA spec (again), a material instantiates an effect, fills its parameters with values, & selects a technique. But I see material defined differently in other places, such as just the Lambert, Blinn, Phong "material types/shaded surfaces", or as Metal, Plastic, Wood, etc. In game dev forums, people often talk about implementing a "material/effect system". Is the material not an instance of an effect? Ergo, if I had effect objects, stored in a collection, & each effect instance object with there own parameter setting, then there is no need for the concept of a material... Or am I interpreting it wrong? Please help by contributing your interpretations as I want to be clear on a distinction (if any), & don't want to miss out on the concept of a material if it should be implemented to follow the abstraction of the DirectX FX framework & COLLADA definitions closely.

    Read the article

  • How can I access the scanner functionality of my Samsung CLX 3175N over the network?

    - by Roger De Backer
    I have a Samsung CLX 3175N network capable color laser printer/scanner which was sold as being Linux compatible. Whereas the printer undeed works in the network. It has been impossible up to now to get the scanner working under Ubuntu (safe for using Windows XP running in Virtualbox on the Ubuntu client), but that is not my understanding of Linux compatibility. Is there anybody who knows a method to access a network Scanner in Ubuntu?

    Read the article

  • java webservice requires usernametoken over basichttpbinding (3 replies)

    I need to call a Java webservice. I can add a service reference without problems, and I get Intellisense in Visual Studio. However, when I try to call a service method I get an error message saying &quot;Missing (user) Security Information&quot;. I n my code I try to set usercredentials: testWS.WarrantyClaimServiceClient svc new TestClient.testWS.WarrantyClaimServiceClient(); svc.ClientCredentials.UserName....

    Read the article

< Previous Page | 630 631 632 633 634 635 636 637 638 639 640 641  | Next Page >