Search Results

Search found 69357 results on 2775 pages for 'data oriented design'.

Page 64/2775 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • AntFarm anti-pattern -- strategies to avoid, antidotes to help heal from

    - by alchemical
    I'm working on a 10 page web site with a database back-end. There are 500+ objects in use, trying to implement the MVP pattern in ASP.Net. I'm tracing the code-execution from a single-page, my finger has been on F-11 in Visual Studio for about 40 minutes, there seems to be no end, possibly 1000+ method calls for one web page! If it was just 50 objects that would be one thing, however, code execution snakes through all these objects just like millions of ants frantically woring in their giant dirt mound house, riddled with object tunnels. Hence, a new anti-pattern is born : AntFarm. AntFarm is also known as "OO-Madnes", "OO-Fever", OO-ADD, or simply design-pattern junkie. This is not the first time I've seen this, nor my associates at other companies. It seems that this style is being actively propogated, or in any case is a misunderstanding of the numerous OO/DP gospels going around... I'd like to introduce an anti-pattern to the anti-pattern: GST or "Get Stuff Done" AKA "Get Sh** done" AKA GRD (GetRDone). This pattern focused on just what it says, getting stuff done, in a simple way. I may try to outline it more in a later post, or please share your ideas on this antidote pattern. Anyway, I'm in the midst of a great example of AntFarm anti-pattern as I write (as a bonus, there is no documentation or comments). Please share you thoughts on how this anti-pattern has become so prevelant, how we can avoid it, and how can one undo or deal with this pattern in a live system one must work with!

    Read the article

  • When is factory method better than simple factory and vice versa?

    - by Bruce
    Hi all Working my way through the Head First Design Patterns book. I believe I understand the simple factory and the factory method, but I'm having trouble seeing what advantages factory method brings over simple factory. If an object A uses a simple factory to create its B objects, then clients can create it like this: A a = new A(new BFactory()); whereas if an object uses a factory method, a client can create it like this: A a = new ConcreteA(); // ConcreteA contains a method for instantiating the same Bs that the BFactory above creates, with the method hardwired into the subclass of A, ConcreteA. So in the case of the simple factory, clients compose A with a B factory, whereas with the factory method, the client chooses the appropriate subclass for the types of B it wants. There really doesn't seem to be much to choose between them. Either you have to choose which BFactory you want to compose A with, or you have to choose the right subclass of A to give you the Bs. Under what circumstances is one better than the other? Thanks all!

    Read the article

  • Why does C# not provide the C++ style 'friend' keyword?

    - by Ash
    The C++ friend keyword allows a class A to designate class B as it's friend. This allows Class B to access the private/protected members of class A. I've never read anything as to why this was left out of C# (and VB.NET). Most answers to this earlier StackOverflow question seem to be saying it is a useful part of C++ and there are good reasons to use it. In my experience I'd have to agree. Another question seems to me to be really asking how to do something similar to friend in a C# application. While the answers generally revolve around nested classes, it doesn't seem quite as elegant as using the friend keyword. The original Design Patterns book uses the friend keyword regularly throughout its examples. So in summary, why is friend missing from C#, and what is the "best practice" way (or ways) of simulating it in C#? (By the way, the "internal" keyword is not the same thing, it allows ALL classes within the entire assembly to access internal members, friend allows you to give access to a class to just one other class.)

    Read the article

  • Tablet design guide, Endeca patterns now available

    - by JuergenKress
    UX Direct, an Oracle program that offers consultants, partners, and customers the same scientifically proven and reusable user experience best practices that Oracle uses to build Oracle Applications, recently added links to a new design guide for creating tablet-based solutions for enterprise applications, and to the recently published Endeca User Interface Design Pattern Library. The tablet design guide is available from the UX Direct Home page. Tap the button under “Latest patterns & tools” for “Oracle Applications UX Tablet Guide.” It provides basic help for designers, developers, and project managers trying to approach tablet design and testing from an enterprise point of view. To hear what developers are saying about it, follow the links from this post on the User Experience Assistance blog. The newly released Endeca User Interface Design Pattern Library is also available from the UX Direct Home page and from a post on the User Experience Assistance blog. It describes principled ways to solve common user interface (UI) design problems related to search, faceted navigation, and discovery. The link between Simplified UI and Oracle UX strategy, plus content you can share on the cloud, ADf, tailoring, and more Simplified User Interface in Oracle Fusion Applications Fronts Oracle Cloud Offerings This new article on Simplified UI has just been posted on Usable Apps. Learn about the three themes - simplicity, mobility, and extensibility – that Simplified UI embodies. These same principles are guiding the development of the next generation of the Oracle user experience. Oracle's Applications User Experience Strategy: One Cloud User Experience, with Optimized UIs Where and How You Want This podcast from Misha Vaughan, Director, User Experience, is now available on the Oracle University Knowledge Center. It is available for partners and Oracle employees at this iLearning Link. Oracle Partner Builds User Experience That Hits Right Note for New Employees This new article on the Usable Apps website explores the experience of consultants at IntraSee as they implement a PeopleSoft onboarding process for Invesco, a global asset management company. The Feng Shui of Fusion This article in Oracle Scene is from Grant Ronald, Director of Product Management, on the Tools of Fusion: Oracle JDeveloper and Oracle ADF. Hands-On Workshop with Fusion Applications and ADF UX Desktop Design Patterns This post on the Voice of User Experience, or VoX, blog from Misha Vaughan describes a new kind of workshop for partners and a handful of internal Oracle sales folks on extending Oracle Fusion Applications and building custom applications with Application Development Framework (ADF) while maintaining the Oracle user experience. To learn more about the content that was delivered during this three-day workshop, visit the Usable Apps blog. Recent posts from a new blog series take a look at several of the topics discussed during the workshop. Applications User Experience Fundamentals Visual Design for any Enterprise User Interface / Art School in a Box Wireframing / Blueprinting Usable Applications Concepts. Tailoring videos This blog post from Richard Bingham, Applications Architect, on the Fusion Applications Developer Relations blog provides links to several videos that show many customization and development tasks using the Oracle Fusion Applications platform. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: UX,Architecture,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part II, Translation

    - by Ralf Westphal
    In my previous post I summarized the notation for Flow-Design (FD) diagrams. Now is the time to show you how to translate those diagrams into code. Hopefully you feel how different this is from UML. UML leaves you alone with your sequence diagram or component diagram or activity diagram. They leave it to you how to translate your elaborate design into code. Or maybe UML thinks it´s so easy no further explanations are needed? I don´t know. I just know that, as soon as people stop designing with UML and start coding, things end up to be very different from the design. And that´s bad. That degrades graphical designs to just time waste on paper (or some designer). I even believe that´s the reason why most programmers view textual source code as the only and single source of truth. Design and code usually do not match. FD is trying to change that. It wants to make true design a first class method in every developers toolchest. For that the first prerequisite is to be able to easily translate any design into code. Mechanically, without thinking. Even a compiler could do it :-) (More of that in some other article.) Translating to Methods The first translation I want to show you is for small designs. When you start using FD you should translate your diagrams like this. Functional units become methods. That´s it. An input-pin becomes a method parameter, an output-pin becomes a return value: The above is a part. But a board can be translated likewise and calls the nested FUs in order: In any case be sure to keep the board method clear of any and all business logic. It should not contain any control structures like if, switch, or a loop. Boards do just one thing: calling nested functional units in proper sequence. What about multiple input-pins? Try to avoid them. Replace them with a join returning a tuple: What about multiple output-pins? Try to avoid them. Or return a tuple. Or use out-parameters: But as I said, this simple translation is for simple designs only. Splits and joins are easily done with method translation: All pretty straightforward, isn´t it. But what about wires, named pins, entry points, explicit dependencies? I suggest you don´t use this kind of translation when your designs need these features. Translating to methods is for small scale designs like you might do once you´re working on the implementation of a part of a larger design. Or maybe for a code kata you´re doing in your local coding dojo. Instead of doing TDD try doing FD and translate your design into methods. You´ll see that way it´s much easier to work collaboratively on designs, remember them more easily, keep them clean, and lessen the need for refactoring. Translating to Events [coming soon]

    Read the article

  • www-data can upload a file but cant move it after the upload action

    - by user70058
    I am currently running Apache and PHP on Ubuntu. I have a page where a user is supposed to upload a profile image. The action on the backend is supposed to work like this: Upload file to user directory -- WORKS! Refer to the uploaded file and create a thumbnail in directory thumbs -- DOES NOT WORK www-data has write access to directory thumbs. My guess is that www-data for some reason does not have proper access to the file that was uploaded. UPLOADED FILE PERMISSIONS -rw-r--r-- 1 www-data www-data 47057 Feb 8 23:24 0181c6e0973eb19cb0d98521a6fe1d9e71cd6daa.jpg THUMBS DIRECTORY PERMISSIONS drwxr-sr-x 2 www-data www-data 4096 Feb 8 23:23 thumbs Im at lost here. I'm new to Ubuntu as well. Any help would be greatly appreciated!

    Read the article

  • Component based game engine design

    - by a_m0d
    I have been looking at game engine design (specifically focused on 2d game engines, but also applicable to 3d games), and am interested in some information on how to go about it. I have heard that many engines are moving to a component based design nowadays rather than the traditional deep-object hierarchy. Do you know of any good links with information on how these sorts of designs are often implemented? I have seen evolve your hierarchy, but I can't really find many more with detailed information (most of them just seem to say "use components rather than a hierarchy" but I have found that it takes a bit of effort to switch my thinking between the two models). Any good links or information on this would be appreciated, and even books, although links and detailed answers here would be preferred.

    Read the article

  • From a language design perspective, if Javascript objects are simply associative arrays, then why ha

    - by Christopher Altman
    I was reading about objects in O'Reilly Javascript Pocket Reference and the book made the following statement. An object is a compound data type that contains any number of properties. Javascript objects are associative arrays: they associate arbitrary data values with arbitrary names. From a language design perspective, if objects are simply associative arrays, then why have objects? I appreciate the convenience of having objects in the language, but if convenience is the main purpose for adding a data type, then how do you decide what to add and what to not add in a language? A language can quickly become bloated and less valuable if it is weighed down by several overlapping methods and data types (Is this a true statement or am I missing something).

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Opinions on sensor / reading / alert database design

    - by Mark
    I've asked a few questions lately regarding database design, probably too many ;-) However I beleive I'm slowly getting to the heart of the matter with my design and am slowly boiling it down. I'm still wrestling with a couple of decisions regarding how "alerts" are stored in the database. In this system, an alert is an entity that must be acknowledged, acted upon, etc. Initially I related readings to alerts like this (very cut down) : - [Location] LocationId [Sensor] SensorId LocationId UpperLimitValue LowerLimitValue [SensorReading] SensorReadingId Value Status Timestamp [SensorAlert] SensorAlertId [SensorAlertReading] SensorAlertId SensorReadingId The last table is associating readings with the alert, because it is the reading that dictate that the sensor is in alert or not. The problem with this design is that it allows readings from many sensors to be associated with a single alert - whereas each alert is for a single sensor only and should only have readings for that sensor associated with it (should I be bothered that the DB allows this though?). I thought to simplify things, why even bother with the SensorAlertReading table? Instead I could do this: [Location] LocationId [Sensor] SensorId LocationId [SensorReading] SensorReadingId SensorId Value Status Timestamp [SensorAlert] SensorAlertId SensorId Timestamp [SensorAlertEnd] SensorAlertId Timestamp Basically I'm not associating readings with the alert now - instead I just know that an alert was active between a start and end time for a particular sensor, and if I want to look up the readings for that alert I can do. Obviously the downside is I no longer have any constraint stopping me deleting readings that occurred during the alert, but I'm not sure that the constraint is neccessary. Now looking in from the outside as a developer / DBA, would that make you want to be sick or does it seem reasonable? Is there perhaps another way of doing this that I may be missing? Thanks. EDIT: Here's another idea - it works in a different way. It stores each sensor state change, going from normal to alert in a table, and then readings are simply associated with a particular state. This seems to solve all the problems - what d'ya think? (the only thing I'm not sure about is calling the table "SensorState", I can't help think there's a better name (maybe SensorReadingGroup?) : - [Location] LocationId [Sensor] SensorId LocationId [SensorState] SensorStateId SensorId Timestamp Status IsInAlert [SensorReading] SensorReadingId SensorStateId Value Timestamp There must be an elegant solution to this!

    Read the article

  • Using Moq at Blend design time

    - by adrian hara
    This might be a bit out there, but suppose I want to use Moq in a ViewModel to create some design time data, like so: public class SomeViewModel { public SomeViewModel(ISomeDependency dependency) { if (IsInDesignMode) { var mock = new Mock<ISomeDependency>(); dependency = mock.Object; // this throws! } } } The mock could be set up to do some stuff, but you get the idea. My problem is that at design-time in Blend, this code throws an InvalidCastException, with the message along the lines of "Unable to cast object of type 'Castle.Proxies.ISomeDependencyProxy2b3a8f3188284ff0b1129bdf3d50d3fc' to type 'ISomeDependency'." While this doesn't necessarily look to be Moq related but Castle related, I hope the Moq example helps ;) Any idea why that is? Thanks!

    Read the article

  • Where did System.Design go?

    - by Nilbert
    I am making a C# project in which I am using ScintillaNet, and it says: The referenced assembly "ScintillaNet" could not be resolved because it has a dependency on "System.Design, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" which is not in the currently targeted framework ".NETFramework,Version=v4.0,Profile=Client". Please remove references to assemblies not in the targeted framework or consider retargeting your project. I tried adding a reference to System.Design, but it doesn't exist in my list. Do I need to download it somewhere? I have MS Visual Studio 10.

    Read the article

  • A good design pattern for almost similar objects

    - by Sam
    Hello, I have two websites that have an almost identical database schema. the only difference is that some tables in one website have 1 or 2 extra fields that the other and vice versa. I wanted to the same Database Access layer classes to will manipulate both websites. What can be a good design pattern that can be used to handle that little difference. for example, I have a method createAccount(Account account) in my DAO class but the implementation will be slightly different between website A and website B. I know design patterns don't depend on the language but FYI i m working with Perl. Thanks

    Read the article

  • Oracle Enterprise Data Quality Adds Global Address Verification Capabilities for Greater Accuracy and Broader Location Coverage

    - by Mala Narasimharajan
    Data quality – has many flavors to it.  Product, Customer – you name the data domain and there’s data quality associated with it.  Address verification and data quality are a little different.  in that there is a tremendous amount of variation as well as nuance attached to it.  Specifically, what makes address verification challenging is that more often than not, addresses are incomplete, riddled with misspellings, incorrect postal codes are assigned to locations or non-address items are present.  Almost all data has locations, and accurate locations power a wealth of business processes: Customer Relationship Management, data quality, delivery of materials, goods or services, fraud detection, insurance risk assessment, data analytics, store and territory planning, and much more. Oracle Address Verification Server provides location-based services as well as deeper parsing and analysis capabilities for Oracle Enterprise Data Quality.  Specifically, Pre-integrated with the EDQ platform, Oracle Address Verification Server provides robust parsing, validation, as well as specialized location information for over 240 countries – all populated countries on Earth.  Oracle Enterprise Data Quality (EDQ) is a data quality platform, dedicated to address the distinct challenges of customer and product data quality, and performs advanced data profiling to identify and measure poor quality data and identify rule requirements, as well as semantic and pattern-based recognition to accurately parse and standardize data that is poorly structured.   EDQ is integrated with Oracle Master Data Management, including Oracle Customer Hub and Oracle Product Hub, as well as Oracle Data Integrator Enterprise Edition and Oracle CRM.  Address Verification Server provides key address verification services for Oracle CRM and Oracle Customer Hub.  In addition, Address Verification Server provides greater accuracy when handling address data due to its expanded sources and extensible knowledge repository, solid parsing across locales and countries as well as  adept handling of extraneous data in address fields.  For more information on Oracle Address Verification Server visit:  http://bit.ly/GMUE4H and http://bit.ly/GWf7U6

    Read the article

  • Design pattern for cost calculator app?

    - by Anders Svensson
    Hi, I have a problem that I’ve tried to get help for before, but I wasn’t able to solve it then, so I’m trying to simplify the problem now to see if I can get some more concrete help with this because it is driving me crazy… Basically, I have a working (more complex) version of this application, which is a project cost calculator. But because I am at the same time trying to learn to design my applications better, I would like some input on how I could improve this design. Basically the main thing I want is input on the conditionals that (here) appear repeated in two places. The suggestions I got before was to use the strategy pattern or factory pattern. I also know about the Martin Fowler book with the suggestion to Refactor conditional with polymorphism. I understand that principle in his simpler example. But how can I do either of these things here (if any would be suitable)? The way I see it, the calculation is dependent on a couple of conditions: 1. What kind of service is it, writing or analysis? 2. Is the project small, medium or large? (Please note that there may be other parameters as well, equally different, such as “are the products new or previously existing?” So such parameters should be possible to add, but I tried to keep the example simple with only two parameters to be able to get concrete help) So refactoring with polymorphism would imply creating a number of subclasses, which I already have for the first condition (type of service), and should I really create more subclasses for the second condition as well (size)? What would that become, AnalysisSmall, AnalysisMedium, AnalysisLarge, WritingSmall, etc…??? No, I know that’s not good, I just don’t see how to work with that pattern anyway else? I see the same problem basically for the suggestions of using the strategy pattern (and the factory pattern as I see it would just be a helper to achieve the polymorphism above). So please, if anyone has concrete suggestions as to how to design these classes the best way I would be really grateful! Please also consider whether I have chosen the objects correctly too, or if they need to be redesigned. (Responses like "you should consider the factory pattern" will obviously not be helpful... I've already been down that road and I'm stumped at precisely how in this case) Regards, Anders The code (very simplified, don’t mind the fact that I’m using strings instead of enums, not using a config file for data etc, that will be done as necessary in the real application once I get the hang of these design problems): public abstract class Service { protected Dictionary<string, int> _hours; protected const int SMALL = 2; protected const int MEDIUM = 8; public int NumberOfProducts { get; set; } public abstract int GetHours(); } public class Writing : Service { public Writing(int numberOfProducts) { NumberOfProducts = numberOfProducts; _hours = new Dictionary<string, int> { { "small", 125 }, { "medium", 100 }, { "large", 60 } }; } public override int GetHours() { if (NumberOfProducts <= SMALL) return _hours["small"] * NumberOfProducts; if (NumberOfProducts <= MEDIUM) return (_hours["small"] * SMALL) + (_hours["medium"] * (NumberOfProducts - SMALL)); return (_hours["small"] * SMALL) + (_hours["medium"] * (MEDIUM - SMALL)) + (_hours["large"] * (NumberOfProducts - MEDIUM)); } } public class Analysis : Service { public Analysis(int numberOfProducts) { NumberOfProducts = numberOfProducts; _hours = new Dictionary<string, int> { { "small", 56 }, { "medium", 104 }, { "large", 200 } }; } public override int GetHours() { if (NumberOfProducts <= SMALL) return _hours["small"]; if (NumberOfProducts <= MEDIUM) return _hours["medium"]; return _hours["large"]; } } public partial class Form1 : Form { public Form1() { InitializeComponent(); List<int> quantities = new List<int>(); for (int i = 0; i < 100; i++) { quantities.Add(i); } comboBoxNumberOfProducts.DataSource = quantities; } private void comboBoxNumberOfProducts_SelectedIndexChanged(object sender, EventArgs e) { Service writing = new Writing((int) comboBoxNumberOfProducts.SelectedItem); Service analysis = new Analysis((int) comboBoxNumberOfProducts.SelectedItem); labelWriterHours.Text = writing.GetHours().ToString(); labelAnalysisHours.Text = analysis.GetHours().ToString(); } }

    Read the article

  • What are some good design patterns for CRUD?

    - by Extrakun
    I am working with a number of data entities which can be created, read, updated and deleted, and I find myself writing more or less the same code for them. For example, I need to sometimes output data as JSON, and sometimes in a table format. I am finding myself writing 2 different types of view to export the data to. Also, the creation of those entities within DB usually differs just by the SQL statements and the input parameters. I am thinking of creating a strategy pattern to represent different 'contexts'. For example, the read() method of an AJAX context will be to return the data as JSON. However, I wonder if others have deal with this problem beforehand and will like to know what design patterns are usually use for CRUD operations.

    Read the article

  • C# Language Design: explicit interface implementation of an event

    - by ControlFlow
    Small question about C# language design :)) If I had an interface like this: interface IFoo { int Value { get; set; } } It's possible to explicitly implement such interface using C# 3.0 auto-implemented properties: sealed class Foo : IFoo { int IFoo.Value { get; set; } } But if I had an event in the interface: interface IFoo { event EventHandler Event; } And trying to explicitly implement it using field-like event: sealed class Foo : IFoo { event EventHandler IFoo.Event; } I will get the following compiler error: error CS0071: An explicit interface implementation of an event must use event accessor syntax I think that field-like events is the some kind of dualism for auto-implemented properties. So my question is: what is the design reason for such restriction done?

    Read the article

  • Custom Providers & Design Patterns

    - by Code Sherpa
    Hi. I am using ASP.NET 2.0 and its various providers. I have overridden most of the methods I need and have the following custom providers: ProjectMembershipProvider ProjectProfileProvider ProjectRoleProvider In the design of my project, my intention was to wrap the custom providers in a facade - style design - mixing and matching profiling, membership, and roles in API methods to simplify things for developers. But, I am finding that a lot of the methods in my custom providers don't need to change, really. And, it seems silly to wrap a stand-alone method in another method that does exactly the same thing. So - is my approach wrong? Or, should I allow end - users to instantiate the custom providers when needed and the mix/match api when needed? This seems a bit redundant to me but I can't see another way. Advice appreciated. Thanks.

    Read the article

  • Design from scratch - building classes

    - by Tony
    Hi All, I've started a new project where I'm writing a WPF business application, but I'm having trouble with the design. The database was easy to put together, but I'm not sure how I have to go about the designing the application itself. The main thing that I find hard is the code design. I've decided that the MVVM pattern is very applicable for this application, but how do I go about deciding what classes to build and how things go from there? Does anyone have some guidelines I could use? This is a standard business application that just stores and retrieves data. Some data queries will also need to be performed.

    Read the article

  • Domain-driven design with Zend

    - by mik
    This question is a continuation of my previous question here http://stackoverflow.com/questions/2122850/zend-models-architecture (big thanks to Bill Karwin). I've made some reading including this article http://weierophinney.net/matthew/archives/202-Model-Infrastructure.html and this question http://stackoverflow.com/questions/373054/how-to-properly-create-domain-using-zend-framework Now I understand, what domain driven design is. But examples are still very simple and poor. They are based on one table and one model. Now, my question is: do they use Domain Model Design in real-world PHP projects? I've been looking for some good documentation about this, but I haven't found anything good enough, that explains how to manage several tables and transfer them to Domain Objects. As long as I know, there is Hibernate library, that has this features in Java, but what should I use in PHP (Zend Framework)?

    Read the article

  • Service design or access to another process

    - by hotyi
    I have a cache service,it's works as .net remoting, i want to create another windows service to clean up the that cache service by transfer the objects from cache to files. because they are in separate process, is their any way i could access that cache service or do i have to expose a method from the cache service to do that clean up work? the "clean up" means i want to serialize the object from Cache to file and these saved file will be used for further process. let me explain this application more detail. the application is mainly a log service to log all the coming request and these request will be saved to db for further data mining. we have 2 design for this log system 1) use MSMQ, but seems it's performance is not good enough, we don't use it. 2) we design a cache service, each request will be saved into the cache, and we need another function to clean up the cache by serialize the object to file.

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >