Search Results

Search found 5267 results on 211 pages for 'use cases'.

Page 65/211 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • ODI 12c - Parallel Table Load

    - by David Allan
    In this post we will look at the ODI 12c capability of parallel table load from the aspect of the mapping developer and the knowledge module developer - two quite different viewpoints. This is about parallel table loading which isn't to be confused with loading multiple targets per se. It supports the ability for ODI mappings to be executed concurrently especially if there is an overlap of the datastores that they access, so any temporary resources created may be uniquely constructed by ODI. Temporary objects can be anything basically - common examples are staging tables, indexes, views, directories - anything in the ETL to help the data integration flow do its job. In ODI 11g users found a few workarounds (such as changing the technology prefixes - see here) to build unique temporary names but it was more of a challenge in error cases. ODI 12c mappings by default operate exactly as they did in ODI 11g with respect to these temporary names (this is also true for upgraded interfaces and scenarios) but can be configured to support the uniqueness capabilities. We will look at this feature from two aspects; that of a mapping developer and that of a developer (of procedures or KMs). 1. Firstly as a Mapping Developer..... 1.1 Control when uniqueness is enabled A new property is available to set unique name generation on/off. When unique names have been enabled for a mapping, all temporary names used by the collection and integration objects will be generated using unique names. This property is presented as a check-box in the Property Inspector for a deployment specification. 1.2 Handle cleanup after successful execution Provided that all temporary objects that are created have a corresponding drop statement then all of the temporary objects should be removed during a successful execution. This should be the case with the KMs developed by Oracle. 1.3 Handle cleanup after unsuccessful execution If an execution failed in ODI 11g then temporary tables would have been left around and cleaned up in the subsequent run. In ODI 12c, KM tasks can now have a cleanup-type task which is executed even after a failure in the main tasks. These cleanup tasks will be executed even on failure if the property 'Remove Temporary Objects on Error' is set. If the agent was to crash and not be able to execute this task, then there is an ODI tool (OdiRemoveTemporaryObjects here) you can invoke to cleanup the tables - it supports date ranges and the like. That's all there is to it from the aspect of the mapping developer it's much, much simpler and straightforward. You can now execute the same mapping concurrently or execute many mappings using the same resource concurrently without worrying about conflict.  2. Secondly as a Procedure or KM Developer..... In the ODI Operator the executed code shows the actual name that is generated - you can also see the runtime code prior to execution (introduced in 11.1.1.7), for example below in the code type I selected 'Pre-executed Code' this lets you see the code about to be processed and you can also see the executed code (which is the default view). References to the collection (C$) and integration (I$) names will be automatically made unique by using the odiRef APIs - these objects will have unique names whenever concurrency has been enabled for a particular mapping deployment specification. It's also possible to use name uniqueness functions in procedures and your own KMs. 2.1 New uniqueness tags  You can also make your own temporary objects have unique names by explicitly including either %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG in the name passed to calls to the odiRef APIs. Such names would always include the unique tag regardless of the concurrency setting. To illustrate, let's look at the getObjectName() method. At <% expansion time, this API will append %UNIQUE_STEP_TAG to the object name for collection and integration tables. The name parameter passed to this API may contain  %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. This API always generates to the <? version of getObjectName() At execution time this API will replace the unique tag macros with a string that is unique to the current execution scope. The returned name will conform to the name-length restriction for the target technology, and its pattern for the unique tag. Any necessary truncation will be performed against the initial name for the object and any other fixed text that may have been specified. Examples are:- <?=odiRef.getObjectName("L", "%COL_PRFEMP%UNIQUE_STEP_TAG", "D")?> SCOTT.C$_EABH7QI1BR1EQI3M76PG9SIMBQQ <?=odiRef.getObjectName("L", "EMP%UNIQUE_STEP_TAG_AE", "D")?> SCOTT.EMPAO96Q2JEKO0FTHQP77TMSAIOSR_ Methods which have this kind of support include getFrom, getTableName, getTable, getObjectShortName and getTemporaryIndex. There are APIs for retrieving this tag info also, the getInfo API has been extended with the following properties (the UNIQUE* properties can also be used in ODI procedures); UNIQUE_STEP_TAG - Returns the unique value for the current step scope, e.g. 5rvmd8hOIy7OU2o1FhsF61 Note that this will be a different value for each loop-iteration when the step is in a loop. UNIQUE_SESSION_TAG - Returns the unique value for the current session scope, e.g. 6N38vXLrgjwUwT5MseHHY9 IS_CONCURRENT - Returns info about the current mapping, will return 0 or 1 (only in % phase) GUID_SRC_SET - Returns the UUID for the current source set/execution unit (only in % phase) The getPop API has been extended with the IS_CONCURRENT property which returns info about an mapping, will return 0 or 1.  2.2 Additional APIs Some new APIs are provided including getFormattedName which will allow KM developers to construct a name from fixed-text or ODI symbols that can be optionally truncate to a max length and use a specific encoding for the unique tag. It has syntax getFormattedName(String pName[, String pTechnologyCode]) This API is available at both the % and the ? phase.  The format string can contain the ODI prefixes that are available for getObjectName(), e.g. %INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF alongwith %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. The latter tags will be expanded into a unique string according to the specified technology. Calls to this API within the same execution context are guaranteed to return the same unique name provided that the same parameters are passed to the call. e.g. <%=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")%> <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")?> C$_MY_TAB7wDiBe80vBog1auacS1xB_AE <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG.log", "FILE")?> C2_MY_TAB7wDiBe80vBog1auacS1xB.log 2.3 Name length generation  As part of name generation, the length of the generated name will be compared with the maximum length for the target technology and truncation may need to be applied. When a unique tag is included in the generated string it is important that uniqueness is not compromised by truncation of the unique tag. When a unique tag is NOT part of the generated name, the name will be truncated by removing characters from the end - this is the existing 11g algorithm. When a unique tag is included, the algorithm will first truncate the <postfix> and if necessary  the <prefix>. It is recommended that users will ensure there is sufficient uniqueness in the <prefix> section to ensure uniqueness of the final resultant name. SUMMARY To summarize, ODI 12c make it much simpler to utilize mappings in concurrent cases and provides APIs for helping developing any procedures or custom knowledge modules in such a way they can be used in highly concurrent, parallel scenarios. 

    Read the article

  • Change or Reset Windows Password from a Ubuntu Live CD

    - by Trevor Bekolay
    If you can’t log in even after trying your twelve passwords, or you’ve inherited a computer complete with password-protected profiles, worry not – you don’t have to do a fresh install of Windows. We’ll show you how to change or reset your Windows password from a Ubuntu Live CD. This method works for all of the NT-based version of Windows – anything from Windows 2000 and later, basically. And yes, that includes Windows 7. You’ll need a Ubuntu 9.10 Live CD, or a bootable Ubuntu 9.10 Flash Drive. If you don’t have one, or have forgotten how to boot from the flash drive, check out our article on creating a bootable Ubuntu 9.10 flash drive. The program that lets us manipulate Windows passwords is called chntpw. The steps to install it are different in 32-bit and 64-bit versions of Ubuntu. Installation: 32-bit Open up Synaptic Package Manager by clicking on System at the top of the screen, expanding the Administration section, and clicking on Synaptic Package Manager. chntpw is found in the universe repository. Repositories are a way for Ubuntu to group software together so that users are able to choose if they want to use only completely open source software maintained by Ubuntu developers, or branch out and use software with different licenses and maintainers. To enable software from the universe repository, click on Settings > Repositories in the Synaptic window. Add a checkmark beside the box labeled “Community-maintained Open Source software (universe)” and then click close. When you change the repositories you are selecting software from, you have to reload the list of available software. In the main Synaptic window, click on the Reload button. The software lists will be downloaded. Once downloaded, Synaptic must rebuild its search index. The label over the text field by the Search button will read “Rebuilding search index.” When it reads “Quick search,” type chntpw in the text field. The package will show up in the list. Click on the checkbox near the chntpw name. Click on Mark for Installation. chntpw won’t actually be installed until you apply the changes you’ve made, so click on the Apply button in the Synaptic window now. You will be prompted to accept the changes. Click Apply. The changes should be applied quickly. When they’re done, click Close. chntpw is now installed! You can close Synaptic Package Manager. Skip to the section titled Using chntpw to reset your password. Installation: 64-bit The version of chntpw available in Ubuntu’s universe repository will not work properly on a 64-bit machine. Fortunately, a patched version exists in Debian’s Unstable branch, so let’s download it from there and install it manually. Open Firefox. Whether it’s your preferred browser or not, it’s very readily accessible in the Ubuntu Live CD environment, so it will be the easiest to use. There’s a shortcut to Firefox in the top panel. Navigate to http://packages.debian.org/sid/amd64/chntpw/download and download the latest version of chntpw for 64-bit machines. Note: In most cases it would be best to add the Debian Unstable branch to a package manager, but since the Live CD environment will revert to its original state once you reboot, it’ll be faster to just download the .deb file. Save the .deb file to the default location. You can close Firefox if desired. Open a terminal window by clicking on Applications at the top-left of the screen, expanding the Accessories folder, and clicking on Terminal. In the terminal window, enter the following text, hitting enter after each line: cd Downloadssudo dpkg –i chntpw* chntpw will now be installed. Using chntpw to reset your password Before running chntpw, you will have to mount the hard drive that contains your Windows installation. In most cases, Ubuntu 9.10 makes this simple. Click on Places at the top-left of the screen. If your Windows drive is easily identifiable – usually by its size – then left click on it. If it is not obvious, then click on Computer and check out each hard drive until you find the correct one. The correct hard drive will have the WINDOWS folder in it. When you find it, make a note of the drive’s label that appears in the menu bar of the file browser. If you don’t already have one open, start a terminal window by going to Applications > Accessories > Terminal. In the terminal window, enter the commands cd /medials pressing enter after each line. You should see one or more strings of text appear; one of those strings should correspond with the string that appeared in the title bar of the file browser earlier. Change to that directory by entering the command cd <hard drive label> Since the hard drive label will be very annoying to type in, you can use a shortcut by typing in the first few letters or numbers of the drive label (capitalization matters) and pressing the Tab key. It will automatically complete the rest of the string (if those first few letters or numbers are unique). We want to switch to a certain Windows directory. Enter the command: cd WINDOWS/system32/config/ Again, you can use tab-completion to speed up entering this command. To change or reset the administrator password, enter: sudo chntpw SAM SAM is the file that contains your Windows registry. You will see some text appear, including a list of all of the users on your system. At the bottom of the terminal window, you should see a prompt that begins with “User Edit Menu:” and offers four choices. We recommend that you clear the password to blank (you can always set a new password in Windows once you log in). To do this, enter “1” and then “y” to confirm. If you would like to change the password instead, enter “2”, then your desired password, and finally “y” to confirm. If you would like to reset or change the password of a user other than the administrator, enter: sudo chntpw –u <username> SAM From here, you can follow the same steps as before: enter “1” to reset the password to blank, or “2” to change it to a value you provide. And that’s it! Conclusion chntpw is a very useful utility provided for free by the open source community. It may make you think twice about how secure the Windows login system is, but knowing how to use chntpw can save your tail if your memory fails you two or eight times! Similar Articles Productive Geek Tips Reset Your Ubuntu Password Easily from the Live CDChange Your Forgotten Windows Password with the Linux System Rescue CDHow to Create and Use a Password Reset Disk in Windows Vista & Windows 7Reset Your Forgotten Password the Easy Way Using the Ultimate Boot CD for WindowsHow to install Spotify in Ubuntu 9.10 using Wine TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Add a Custom Title in IE using Spybot or Spyware Blaster When You Need to Hail a Taxi in NYC Live Map of Marine Traffic NoSquint Remembers Site Specific Zoom Levels (Firefox) New Firefox release 3.6.3 fixes 1 Critical bug Dark Side of the Moon (8-bit)

    Read the article

  • South Florida Code Camp 2010 &ndash; VI &ndash; 2010-02-27

    - by Dave Noderer
    Catching up after our sixth code camp here in the Ft Lauderdale, FL area. Website at: http://www.fladotnet.com/codecamp. For the 5th time, DeVry University hosted the event which makes everything else really easy! Statistics from 2010 South Florida Code Camp: 848 registered (we use Microsoft Group Events) ~ 600 attended (516 took name badges) 64 speakers (including speaker idol) 72 sessions 12 parallel tracks Food 400 waters 600 sodas 900 cups of coffee (it was cold!) 200 pounds of ice 200 pizza's 10 large salad trays 900 mouse pads Photos on facebook Dave Noderer: http://www.facebook.com/home.php#!/album.php?aid=190812&id=693530361 Joe Healy: http://www.facebook.com/devfish?ref=mf#!/album.php?aid=202787&id=720054950 Will Strohl:http://www.facebook.com/home.php#!/album.php?aid=2045553&id=1046966128&ref=mf Veronica Gonzalez: http://www.facebook.com/home.php#!/album.php?aid=150954&id=672439484 Florida Speaker Idol One of the sessions at code camp was the South Florida Regional speaker idol competition. After user group level competitions there are five competitors. I acted as MC and score keeper while Ed Hill, Bob O’Connell, John Dunagan and Shervin Shakibi were judges. This statewide competition is being run by Roy Lawsen in Lakeland and the winner, Jeff Truman from Naples will move on to the state finals to be held at the Orlando Code Camp on 3/27/2010: http://www.orlandocodecamp.com/. Each speaker has 10 minutes. The participants were: Alex Koval Jeff Truman Jared Nielsen Chris Catto Venkat Narayanasamy They all did a great job and I’m working with each to make sure they don’t stop there and start speaking at meetings. Thanks to everyone involved! Volunteers As always events like this don’t happen without a lot of help! The key people were: Ed Hill, Bob O’Connell – DeVry For the months leading up to the event, Ed collects all of the swag, books, etc and stores them. He holds meeting with various DeVry departments to coordinate the day, he works with the students in the days  before code camp to stuff bags, print signs, arrange tables and visit BJ’s for our supplies (I go and pay but have a small car!). And of course the day of the event he is there at 5:30 am!! We took two SUV’s to BJ’s, i was really worried that the 36 cases of water were going to break his rear axle! He also helps with the students and works very hard before and after the event. Rainer Haberman – Speakers and Volunteer of the Year Rainer has helped over the past couple of years but this time he took full control of arranging the tracks. I did some preliminary work solicitation speakers but he took over all communications after that. We have tried various organizations around speakers, chair per track, central team but having someone paying attention to the details is definitely the way to go! This was the first year I did not have to jump in at the last minute and re-arrange everything. There were lots of kudo’s from the speakers too saying they felt it was more organized than they have experienced in the past from any code camp. Thanks Rainer! Ray Alamonte – Book Swap We saw the idea of a book swap from the Alabama Code Camp and thought we would give it a try. Ray jumped in and took control. The idea was to get people to bring their old technical books to swap or for others to buy. You got a ticket for each book you brought that you could then turn in to buy another book. If you did not have a ticket you could buy a book for $1. Net proceeds were $153 which I rounded up and donated to the Red Cross. There is plenty going on in Haiti and Chile! I don’t think we really got a count of how many books came in. I many cases the books barely hit the table before being picked up again. At the end we were left with a dozen books which we donated to the DeVry library. A great success we will definitely do again! Jace Weiss / Ratchelen Hut – Coffee and Snacks Wow, this was an eye opener. In past years a few of us would struggle to give some attention to coffee, snacks, etc. But it was always tenuous and always ended up running out of coffee. In the past we have tried buying Dunkin Donuts coffee, renting urns, borrowing urns, etc. This year I actually purchased 2 – 100 cup Westbend commercial brewers plus a couple of small urns (30 and 60 cup we used for decaf). We got them both started early (although i forgot to push the on button on one!) and primed it with 10 boxes of Joe from Dunkin. then Jace and Rachelen took over.. once a batch was brewed they would refill the boxes, keep the area clean and at one point were filling cups. We never ran out of coffee and served a few hundred more than last  year. We did look but next year I’ll get a large insulated (like gatorade) dispensing container. It all went very smoothly and having help focused on that one area was a big win. Thanks Jace and Rachelen! Ken & Shirley Golding / Roberta Barbosa – Registration Ken & Shirley showed up and took over registration. This year we printed small name tags for everyone registered which was great because it is much easier to remember someone’s name when they are labeled! In any case it went the smoothest it has ever gone. All three were actively pulling people through the registration, answering questions, directing them to bags and information very quickly. I did not see that there was too big a line at any time. Thanks!! Scott Katarincic / Vishal Shukla – Website For the 3rd?? year in a row, Scott was in charge of the website starting in August or September when I start on code camp. He handles all the requests, makes changes to the site and admin. I think two years ago he wrote all the backend administration and tunes it and the website a bit but things are pretty stable. The only thing I do is put up the sponsors. It is a big pressure off of me!! Thanks Scott! Vishal jumped into the web end this year and created a new Silverlight agenda page to replace the old ajax page. We will continue to enhance this but it is definitely a good step forward! Thanks! Alex Funkhouser – T-shirts/Mouse pads/tables/sponsors Alex helps in many areas. He helps me bring in sponsors and handles all the logistics for t-shirts, sponsor tables and this year the mouse pads. He is also a key person to help promote the event as well not to mention the after after party which I did not attend and don’t want to know much about! Students There were a number of student volunteers but don’t have all of their names. But thanks to them, they stuffed bags, patrolled pizza and helped with moving things around. Sponsors We had a bunch of great sponsors which allowed us to feed people and give a way a lot of great swag. Our major sponsors of DeVry, Microsoft (both DPE and UGSS), Infragistics, Telerik, SQL Share (End to End, SQL Saturdays), and Interclick are very much appreciated. The other sponsors Applied Innovations (also supply code camp hosting), Ultimate Software (a great local SW company), Linxter (reliable cloud messaging we are lucky to have here!), Mediascend (a media startup), SoftwareFX (another local SW company we are happy to have back participating in CC), CozyRoc (if you do SSIS, check them out), Arrow Design (local DNN and Silverlight experts),Boxes and Arrows (a local SW consulting company) and Robert Half. One thing we did this year besides a t-shirt was a mouse pad. I like it because it will be around for a long time on many desks. After much investigation and years of using mouse pad’s I’ve determined that the 1/8” fabric top is the best and that is what we got!   So now I get a break for a few months before starting again!

    Read the article

  • Regression testing with Selenium GRID

    - by Ben Adderson
    A lot of software teams out there are tasked with supporting and maintaining systems that have grown organically over time, and the web team here at Red Gate is no exception. We're about to embark on our first significant refactoring endeavour for some time, and as such its clearly paramount that the code be tested thoroughly for regressions. Unfortunately we currently find ourselves with a codebase that isn't very testable - the three layers (database, business logic and UI) are currently tightly coupled. This leaves us with the unfortunate problem that, in order to confidently refactor the code, we need unit tests. But in order to write unit tests, we need to refactor the code :S To try and ease the initial pain of decoupling these layers, I've been looking into the idea of using UI automation to provide a sort of system-level regression test suite. The idea being that these tests can help us identify regressions whilst we work towards a more testable codebase, at which point the more traditional combination of unit and integration tests can take over. Ending up with a strong battery of UI tests is also a nice bonus :) Following on from my previous posts (here, here and here) I knew I wanted to use Selenium. I also figured that this would be a good excuse to put my xUnit [Browser] attribute to good use. Pretty quickly, I had a raft of tests that looked like the following (this particular example uses Reflector Pro). In a nut shell the test traverses our shopping cart and, for a particular combination of number of users and months of support, checks that the price calculations all come up with the correct values. [BrowserTheory] [Browser(Browsers.Firefox3_6, "http://www.red-gate.com")] public void Purchase1UserLicenceNoSupport(SeleniumProvider seleniumProvider) {     //Arrange     _browser = seleniumProvider.GetBrowser();     _browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                  //Act     _browser = ShoppingCartHelpers.TraverseShoppingCart(_browser, 1, 0, ".NET Reflector Pro");     //Assert     var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);         Assert.Equal(priceResult.Price, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.Equal(priceResult.Tax, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.Equal(priceResult.Total, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } These tests are pretty concise, with much of the common code in the TraverseShoppingCart() and GetNewPurchasePrice() methods. The (inevitable) problem arose when it came to execute these tests en masse. Selenium is a very slick tool, but it can't mask the fact that UI automation is very slow. To give you an idea, the set of cases that covers all of our products, for all combinations of users and support, came to 372 tests (for now only considering purchases in dollars). In the world of automated integration tests, that's a very manageable number. For unit tests, it's a trifle. However for UI automation, those 372 tests were taking just over two hours to run. Two hours may not sound like a lot, but those cases only cover one of the three currencies we deal with, and only one of the many different ways our systems can be asked to calculate a price. It was already pretty clear at this point that in order for this approach to be viable, I was going to have to find a way to speed things up. Up to this point I had been using Selenium Remote Control to automate Firefox, as this was the approach I had used previously and it had worked well. Fortunately,  the guys at SeleniumHQ also maintain a tool for executing multiple Selenium RC tests in parallel: Selenium Grid. Selenium Grid uses a central 'hub' to handle allocation of Selenium tests to individual RCs. The Remote Controls simply register themselves with the hub when they start, and then wait to be assigned work. The (for me) really clever part is that, as far as the client driver library is concerned, the grid hub looks exactly the same as a vanilla remote control. To create a new browser session against Selenium RC, the following C# code suffices: new DefaultSelenium("localhost", 4444, "*firefox", "http://www.red-gate.com"); This assumes that the RC is running on the local machine, and is listening on port 4444 (the default). Assuming the hub is running on your local machine, then to create a browser session in Selenium Grid, via the hub rather than directly against the control, the code is exactly the same! Behind the scenes, the hub will take this request and hand it off to one of the registered RCs that provides the "*firefox" execution environment. It will then pass all communications back and forth between the test runner and the remote control transparently. This makes running existing RC tests on a Selenium Grid a piece of cake, as the developers intended. For a more detailed description of exactly how Selenium Grid works, see this page. Once I had a test environment capable of running multiple tests in parallel, I needed a test runner capable of doing the same. Unfortunately, this does not currently exist for xUnit (boo!). MbUnit on the other hand, has the concept of concurrent execution baked right into the framework. So after swapping out my assembly references, and fixing up the resulting mismatches in assertions, my example test now looks like this: [Test] public void Purchase1UserLicenceNoSupport() {    //Arrange    ISelenium browser = BrowserHelpers.GetBrowser();    var db = DbHelpers.GetWebsiteDBDataContext();    browser.Start();    browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                 //Act     browser = ShoppingCartHelpers.TraverseShoppingCart(browser, 1, 0, ".NET Reflector Pro");    var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);    //Assert     Assert.AreEqual(priceResult.Price, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.AreEqual(priceResult.Tax, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.AreEqual(priceResult.Total, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } This is pretty much the same as the xUnit version. The exceptions are that the attributes have changed,  the //Arrange phase now has to handle setting up the ISelenium object, as the attribute that previously did this has gone away, and the test now sets up its own database connection. Previously I was using a shared database connection, but this approach becomes more complicated when tests are being executed concurrently. To avoid complexity each test has its own connection, which it is responsible for closing. For the sake of readability, I snipped out the code that closes the browser session and the db connection at the end of the test. With all that done, there was only one more step required before the tests would execute concurrently. It is necessary to tell the test runner which tests are eligible to run in parallel, via the [Parallelizable] attribute. This can be done at the test, fixture or assembly level. Since I wanted to run all tests concurrently, I marked mine at the assembly level in the AssemblyInfo.cs using the following: [assembly: DegreeOfParallelism(3)] [assembly: Parallelizable(TestScope.All)] The second attribute marks all tests in the assembly as [Parallelizable], whilst the first tells the test runner how many concurrent threads to use when executing the tests. I set mine to three since I was using 3 RCs in separate VMs. With everything now in place, I fired up the Icarus* test runner that comes with MbUnit. Executing my 372 tests three at a time instead of one at a time reduced the running time from 2 hours 10 minutes, to 55 minutes, that's an improvement of about 58%! I'd like to have seen an improvement of 66%, but I can understand that either inefficiencies in the hub code, my test environment or the test runner code (or some combination of all three most likely) contributes to a slightly diminished improvement. That said, I'd love to hear about any experience you have in upping this efficiency. Ultimately though, it was a saving that was most definitely worth having. It makes regression testing via UI automation a far more plausible prospect. The other obvious point to make is that this approach scales far better than executing tests serially. So if ever we need to improve performance, we just register additional RC's with the hub, and up the DegreeOfParallelism. *This was just my personal preference for a GUI runner. The MbUnit/Gallio installer also provides a command line runner, a TestDriven.net runner, and a Resharper 4.5 runner. For now at least, Resharper 5 isn't supported.

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • RSS feeds in Orchard

    - by Bertrand Le Roy
    When we added RSS to Orchard, we wanted to make it easy for any module to expose any contents as a feed. We also wanted the rendering of the feed to be handled by Orchard in order to minimize the amount of work from the module developer. A typical example of such feed exposition is of course blog feeds. We have an IFeedManager interface for which you can get the built-in implementation through dependency injection. Look at the BlogController constructor for an example: public BlogController( IOrchardServices services, IBlogService blogService, IBlogSlugConstraint blogSlugConstraint, IFeedManager feedManager, RouteCollection routeCollection) { If you look a little further in that same controller, in the Item action, you’ll see a call to the Register method of the feed manager: _feedManager.Register(blog); This in reality is a call into an extension method that is specialized for blogs, but we could have made the two calls to the actual generic Register directly in the action instead, that is just an implementation detail: feedManager.Register(blog.Name, "rss", new RouteValueDictionary { { "containerid", blog.Id } }); feedManager.Register(blog.Name + " - Comments", "rss", new RouteValueDictionary { { "commentedoncontainer", blog.Id } }); What those two effective calls are doing is to register two feeds: one for the blog itself and one for the comments on the blog. For each call, the name of the feed is provided, then we have the type of feed (“rss”) and some values to be injected into the generic RSS route that will be used later to route the feed to the right providers. This is all you have to do to expose a new feed. If you’re only interested in exposing feeds, you can stop right there. If on the other hand you want to know what happens after that under the hood, carry on. What happens after that is that the feedmanager will take care of formatting the link tag for the feed (see FeedManager.GetRegisteredLinks). The GetRegisteredLinks method itself will be called from a specialized filter, FeedFilter. FeedFilter is an MVC filter and the event we’re interested in hooking into is OnResultExecuting, which happens after the controller action has returned an ActionResult and just before MVC executes that action result. In other words, our feed registration has already been called but the view is not yet rendered. Here’s the code for OnResultExecuting: model.Zones.AddAction("head:after", html => html.ViewContext.Writer.Write( _feedManager.GetRegisteredLinks(html))); This is another piece of code whose execution is differed. It is saying that whenever comes time to render the “head” zone, this code should be called right after. The code itself is rendering the link tags. As a result of all that, here’s what can be found in an Orchard blog’s head section: <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire"     href="/rss?containerid=5" /> <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire - Comments"     href="/rss?commentedoncontainer=5" /> The generic action that these two feeds point to is Index on FeedController. That controller has three important dependencies: an IFeedBuilderProvider, an IFeedQueryProvider and an IFeedItemProvider. Different implementations of these interfaces can provide different formats of feeds, such as RSS and Atom. The Match method enables each of the competing providers to provide a priority for themselves based on arbitrary criteria that can be found on the FeedContext. This means that a provider can be selected based not only on the desired format, but also on the nature of the objects being exposed as a feed or on something even more arbitrary such as the destination device (you could imagine for example giving shorter text only excerpts of posts on mobile devices, and full HTML on desktop). The key here is extensibility and dynamic competition and collaboration from unknown and loosely coupled parts. You’ll find this pattern pretty much everywhere in the Orchard architecture. The RssFeedBuilder implementation of IFeedBuilderProvider is also a regular controller with a Process action that builds a RssResult, which is itself a thin ActionResult wrapper around an XDocument. Let’s get back to the FeedController’s Index action. After having called into each known feed builder to get its priority on the currently requested feed, it will select the one with the highest priority. The next thing it needs to do is to actually fetch the data for the feed. This again is a collaborative effort from a priori unknown providers, the implementations of IFeedQueryProvider. There are several implementations by default in Orchard, the choice of which is again done through a Match method. ContainerFeedQuery for example chimes in when a “containerid” parameter is found in the context (see URL in the link tag above): public FeedQueryMatch Match(FeedContext context) { var containerIdValue = context.ValueProvider.GetValue("containerid"); if (containerIdValue == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } The actual work is done in the Execute method, which finds the right container content item in the Orchard database and adds elements for each of them. In other words, the feed query provider knows how to retrieve the list of content items to add to the feed. The last step is to translate each of the content items into feed entries, which is done by implementations of IFeedItemBuilder. There is no Match method this time. Instead, all providers are called with the collection of items (or more accurately with the FeedContext, but this contains the list of items, which is what’s relevant in most cases). Each provider can then choose to pick those items that it knows how to treat and transform them into the format requested. This enables the construction of heterogeneous feeds that expose content items of various types into a single feed. That will be extremely important when you’ll want to expose a single feed for all your site. So here are feeds in Orchard in a nutshell. The main point here is that there is a fair number of components involved, with some complexity in implementation in order to allow for extreme flexibility, but the part that you use to expose a new feed is extremely simple and light: declare that you want your content exposed as a feed and you’re done. There are cases where you’ll have to dive in and provide new implementations for some or all of the interfaces involved, but that requirement will only arise as needed. For example, you might need to create a new feed item builder to include your custom content type but that effort will be extremely focused on the specialized task at hand. The rest of the system won’t need to change. So what do you think?

    Read the article

  • Top tweets SOA Partner Community – October 2012

    - by JuergenKress
    Send your tweets @soacommunity #soacommunity and follow us at http://twitter.com/soacommunity SOA Community Deploying Fusion Order Demo on 11.1.1.6 by Antony Reynolds http://wp.me/p10C8u-vA leonsmiers ?Cant wait to test it >> 't waiRT @OracleSOA: Case Management patterns, session coverage from #OOW #OracleBPM #ACM #BPM http://bit.ly/OdcZL6 Danilo Schmiedel Bye bye San Francisco. #oow was a great conference in a wonderful city! Thanks! @soacommunity pic.twitter.com/lcYSe9xC OPITZ CONSULTING ?The Journey towards #Oracle #BPM @OpenWorld 2012 - Slides by @t_winterberg & H. Normann: http://ow.ly/edkWE #oow demed Full house at the SOA Customer Advisory Board! #oow12 http://instagr.am/p/QX9B8eLMLS/ Danilo Schmiedel "@whitehorsesnl: Had some great talks with the BPM guys at the DEMOgrounds. It is one of the best things at #oow" -> I agree!! @soacommunity Mark Simpson ?Fusion Middleware Global Innovation Awards: nice to pick up a soa and bpm with our customer. #oow Mark Simpson ?RT @SOASimone: #oraclesoa #oow hands on lab fully booked pic.twitter.com/pwI94Ew7 <--quick, provision some more compute power on the cloud! Oracle SOA ?Join us for BPM and Analytics: Process Dashboards. BAM, and Intelligent OptimizationMoscone South - 308#OracleBPM #OOW Oracle SOA ?Real-time public safety demo! License plate recognition and processing in London via Oracle Event Processing. #oow pic.twitter.com/WufesDBq Marc ?Nice session on customer success stories on #SOA11g on with @SOASimone Pro and cons and architectural overview. #oow pic.twitter.com/bzuhsujm Lucas Jellema Full length Keynote on Middleware #oow : http://medianetwork.oracle.com/video/player/1873556035001 … #oow_amis OracleBlogs ?Why Fusion Middleware matters to Oracle Applications and Fusion Applications customers? http://ow.ly/2stVQ0 OracleBlogs ?Open World Session - BPM, SOA and ADF Combined:Patterns learned from Fusion Applications http://ow.ly/2suhzf Ronald Luttikhuizen ?VENNSTER BLOG | Presentations at OpenWorld 2012 | http://blog.vennster.nl/2012/10/presentations-at-openworld-2012.html … Andrejus Baranovskis @dschmied @soacommunity next OOW for sure, and may be SOA community event ! @soacommunity Danilo Schmiedel ?@andrejusb Thanks Andrejus - I really enjoyed having a session with you at #oow. When is next time :-) ? @soacommunity Lionel Dubreuil ?@soacommunity #oow12 Today-1:15pm-Marriott Marquis Salon 7 Jump-starting Integration with Oracle Foundation Pack http://bit.ly/QKKJzF Ronald Luttikhuizen ?Impression from our fault handling session in OSB and SOA Suite from the audience @soacommunity @gschmutz #oow pic.twitter.com/WSg1Z89E Marc Nice session on Oracle Virtual Assembly for #SOA11g, @soacommunity Works with #exalogic but not required SOA Community ?Send your #soacommunity #oow pictures and blog posts @soacommunity or http://www.facebook.com/soacommunity Enjoy OOW ;-) Jon petter hjulstad Oracle BPM- Big leap forward in 11.1.1.7 ! Whitehorses ?Common BPM Use Cases from Oracle #bpm #oow pic.twitter.com/ofOv04EF Whitehorses ?Oracle BPM 11.1.1.7 top new features. Interesting #oow #oowbenelux pic.twitter.com/HY9QN5un SOA Community Industrialized SOA - topic of Business Technology Magazine http://wp.me/p10C8u-vi orclateamsoa ?A-Team Blog #ateam: The curious case of SOA Human tasks' automatic completion http://ow.ly/1mq6YU Simone Geib Look for this sign #oow #oraclesoa pic.twitter.com/MJsPV4PO Lucas Jellema My summary of Larry Ellison's keynote at #oow on the AMIS Blog: http://technology.amis.nl/2012/10/01/oow-2012-larry-ellisons-keynote-announcements-exa-cloud-database/ … #oow_amis gschmutz ?Join my #oow session "Five Cool Use Cases for the Spring Component" to see the power of Spring and SOA Suite combined! Moscone 310 - 3:15 PM Ronald Luttikhuizen Thanks to @soacommunity for great SOA/BPM dinner event yesterday night! #oow pic.twitter.com/v7x3i0DC OracleBlogs ?OSB, Service Callouts and OQL http://ow.ly/2sq6B2 OracleBlogs ?Cloud and On-Premises Applications Integration using Oracle Integration Adapters http://ow.ly/2sqiDy OracleBlogs ?Adapters, SOA Suite and More @Openworld 2012 http://ow.ly/2srdTg Eric Elzinga ?OSB, Service Callouts and OQL - Part 3, http://see.sc/JodzEx #oracleservicebus Donatas Valys interesting articles about soa industrialization to read #soa #industrialization http://it-republik.de/business-technology/bt-magazin-ausgaben/Industrialized-SOA-000516.html … gschmutz ?“@techsymp: 2012 Symposium Presentation Download Page Now Available! 75% of presentations published. http://www.servicetechsymposium.com ” find mine there.. Oracle BPM Customer Experience and BPM – From Efficiency to Engagement #bpm #oraclebpm #processmanagement #socialbpm http://pub.vitrue.com/Tahi SOA Community ?@soacommunity SOA Community Newsletter September 2012 http://wp.me/p10C8u-wa SOA Community again again again.... it is Oracle Open World 2012 http://wp.me/p10C8u-wk OracleBlogs ?SOA Proactive support http://ow.ly/2smrSJ demed ?@gschmutz on NoSQL at @techsymp http://lockerz.com/s/247601661 demed ?Just finished "#BigData and its impact on #SOA" talk @techsymp. Really enjoyed getting out of beaten path. #london #oep http://lockerz.com/s/247636974 OTNArchBeat ?Need help selling SOA to business stakeholders? Give them this free eBook. #soasuite http://pub.vitrue.com/hsQY SOA Community top Tweets SOA Partner Community &ndash; September 2012 http://wp.me/p10C8u-vc SOA Community Move Data into the grid for scalable, predictable response times http://wp.me/p10C8u-vv ServiceTechSymposium ?The September issue of the Service Technology Magazine is now published with six new items! Read them at http://www.servicetechmag.com Marc ?Reviewed @Packt_OracleFMW new book on SOA11g administration! Very good ! http://tinyurl.com/8pzd5ww SOA Community ?BPM Solution Catalogue&ndash;promote your process templates http://wp.me/p10C8u-vt OTNArchBeat ?BPM ADF Task forms: Checking whether the current user is in a BPM Swimlane | @ChrisKarlChan http://pub.vitrue.com/aPMG OTNArchBeat ?Cloud, automation drive new growth in SOA governance market | @JoeMcKendrick http://pub.vitrue.com/hNPv Simon Haslam ?Looking for "oak style"(!) advanced content but you're a middleware specialist? See #ukoug2012 #middlewaresunday http://2012.ukoug.org/default.asp?p=9355 … Simon Haslam ?The #ukoug2012 agenda is "go, go, go!" (as Murray would say!) http://2012.ukoug.org/agendagrid Germán Gazzoni SOA Spezial II verfügbar – Industralized SOA: Die überarbeitete und ergänzte Neuauflage des SOA Spezial Sonderhe... http://bit.ly/PAWwN9 Oracle SOA ?Flip thru new interactive "Oracle SOA Suite eBook-In the Customers Words" #middleware #soa #oraclesoa http://pub.vitrue.com/NzFZ SOA Community Follow SOA Community on Facebook http://www.facebook.com/soacommunity #soacommunity #opn SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SOA Community twitter,SOA Community,Oracle SOA,Oracle BPM,BPM Community,OPN,Jürgen Kress

    Read the article

  • Is Berkeley DB a NoSQL solution?

    - by Gregory Burd
    Berkeley DB is a library. To use it to store data you must link the library into your application. You can use most programming languages to access the API, the calls across these APIs generally mimic the Berkeley DB C-API which makes perfect sense because Berkeley DB is written in C. The inspiration for Berkeley DB was the DBM library, a part of the earliest versions of UNIX written by AT&T's Ken Thompson in 1979. DBM was a simple key/value hashtable-based storage library. In the early 1990s as BSD UNIX was transitioning from version 4.3 to 4.4 and retrofitting commercial code owned by AT&T with unencumbered code, it was the future founders of Sleepycat Software who wrote libdb (aka Berkeley DB) as the replacement for DBM. The problem it addressed was fast, reliable local key/value storage. At that time databases almost always lived on a single node, even the most sophisticated databases only had simple fail-over two node solutions. If you had a lot of data to store you would choose between the few commercial RDBMS solutions or to write your own custom solution. Berkeley DB took the headache out of the custom approach. These basic market forces inspired other DBM implementations. There was the "New DBM" (ndbm) and the "GNU DBM" (GDBM) and a few others, but the theme was the same. Even today TokyoCabinet calls itself "a modern implementation of DBM" mimicking, and improving on, something first created over thirty years ago. In the mid-1990s, DBM was the name for what you needed if you were looking for fast, reliable local storage. Fast forward to today. What's changed? Systems are connected over fast, very reliable networks. Disks are cheep, fast, and capable of storing huge amounts of data. CPUs continued to follow Moore's Law, processing power that filled a room in 1990 now fits in your pocket. PCs, servers, and other computers proliferated both in business and the personal markets. In addition to the new hardware entire markets, social systems, and new modes of interpersonal communication moved onto the web and started evolving rapidly. These changes cause a massive explosion of data and a need to analyze and understand that data. Taken together this resulted in an entirely different landscape for database storage, new solutions were needed. A number of novel solutions stepped up and eventually a category called NoSQL emerged. The new market forces inspired the CAP theorem and the heated debate of BASE vs. ACID. But in essence this was simply the market looking at what to trade off to meet these new demands. These new database systems shared many qualities in common. There were designed to address massive amounts of data, millions of requests per second, and scale out across multiple systems. The first large-scale and successful solution was Dynamo, Amazon's distributed key/value database. Dynamo essentially took the next logical step and added a twist. Dynamo was to be the database of record, it would be distributed, data would be partitioned across many nodes, and it would tolerate failure by avoiding single points of failure. Amazon did this because they recognized that the majority of the dynamic content they provided to customers visiting their web store front didn't require the services of an RDBMS. The queries were simple, key/value look-ups or simple range queries with only a few queries that required more complex joins. They set about to use relational technology only in places where it was the best solution for the task, places like accounting and order fulfillment, but not in the myriad of other situations. The success of Dynamo, and it's design, inspired the next generation of Non-SQL, distributed database solutions including Cassandra, Riak and Voldemort. The problem their designers set out to solve was, "reliability at massive scale" so the first focal point was distributed database algorithms. Underneath Dynamo there is a local transactional database; either Berkeley DB, Berkeley DB Java Edition, MySQL or an in-memory key/value data structure. Dynamo was an evolution of local key/value storage onto networks. Cassandra, Riak, and Voldemort all faced similar design decisions and one, Voldemort, choose Berkeley DB Java Edition for it's node-local storage. Riak at first was entirely in-memory, but has recently added write-once, append-only log-based on-disk storage similar type of storage as Berkeley DB except that it is based on a hash table which must reside entirely in-memory rather than a btree which can live in-memory or on disk. Berkeley DB evolved too, we added high availability (HA) and a replication manager that makes it easy to setup replica groups. Berkeley DB's replication doesn't partitioned the data, every node keeps an entire copy of the database. For consistency, there is a single node where writes are committed first - a master - then those changes are delivered to the replica nodes as log records. Applications can choose to wait until all nodes are consistent, or fire and forget allowing Berkeley DB to eventually become consistent. Berkeley DB's HA scales-out quite well for read-intensive applications and also effectively eliminates the central point of failure by allowing replica nodes to be elected (using a PAXOS algorithm) to mastership if the master should fail. This implementation covers a wide variety of use cases. MemcacheDB is a server that implements the Memcache network protocol but uses Berkeley DB for storage and HA to replicate the cache state across all the nodes in the cache group. Google Accounts, the user authentication layer for all Google properties, was until recently running Berkeley DB HA. That scaled to a globally distributed system. That said, most NoSQL solutions try to partition (shard) data across nodes in the replication group and some allow writes as well as reads at any node, Berkeley DB HA does not. So, is Berkeley DB a "NoSQL" solution? Not really, but it certainly is a component of many of the existing NoSQL solutions out there. Forgetting all the noise about how NoSQL solutions are complex distributed databases when you boil them down to a single node you still have to store the data to some form of stable local storage. DBMs solved that problem a long time ago. NoSQL has more to do with the layers on top of the DBM; the distributed, sometimes-consistent, partitioned, scale-out storage that manage key/value or document sets and generally have some form of simple HTTP/REST-style network API. Does Berkeley DB do that? Not really. Is Berkeley DB a "NoSQL" solution today? Nope, but it's the most robust solution on which to build such a system. Re-inventing the node-local data storage isn't easy. A lot of people are starting to come to appreciate the sophisticated features found in Berkeley DB, even mimic them in some cases. Could Berkeley DB grow into a NoSQL solution? Absolutely. Our key/value API could be extended over the net using any of a number of existing network protocols such as memcache or HTTP/REST. We could adapt our node-local data partitioning out over replicated nodes. We even have a nice query language and cost-based query optimizer in our BDB XML product that we could reuse were we to build out a document-based NoSQL-style product. XML and JSON are not so different that we couldn't adapt one to work with the other interchangeably. Without too much effort we could add what's missing, we could jump into this No SQL market withing a single product development cycle. Why isn't Berkeley DB already a NoSQL solution? Why aren't we working on it? Why indeed...

    Read the article

  • Windows Azure VMs - New "Stopped" VM Options Provide Cost-effective Flexibility for On-Demand Workloads

    - by KeithMayer
    Originally posted on: http://geekswithblogs.net/KeithMayer/archive/2013/06/22/windows-azure-vms---new-stopped-vm-options-provide-cost-effective.aspxDidn’t make it to TechEd this year? Don’t worry!  This month, we’ll be releasing a new article series that highlights the Best of TechEd announcements and technical information for IT Pros.  Today’s article focuses on a new, much-heralded enhancement to Windows Azure Infrastructure Services to make it more cost-effective for spinning VMs up and down on-demand on the Windows Azure cloud platform. NEW! VMs that are shutdown from the Windows Azure Management Portal will no longer continue to accumulate compute charges while stopped! Previous to this enhancement being available, the Azure platform maintained fabric resource reservations for VMs, even in a shutdown state, to ensure consistent resource availability when starting those VMs in the future.  And, this meant that VMs had to be exported and completely deprovisioned when not in use to avoid compute charges. In this article, I'll provide more details on the scenarios that this enhancement best fits, and I'll also review the new options and considerations that we now have for performing safe shutdowns of Windows Azure VMs. Which scenarios does the new enhancement best fit? Being able to easily shutdown VMs from the Windows Azure Management Portal without continued compute charges is a great enhancement for certain cloud use cases, such as: On-demand dev/test/lab environments - Freely start and stop lab VMs so that they are only accumulating compute charges when being actively used.  "Bursting" load-balanced web applications - Provision a number of load-balanced VMs, but keep the minimum number of VMs running to support "normal" loads. Easily start-up the remaining VMs only when needed to support peak loads. Disaster Recovery - Start-up "cold" VMs when needed to recover from disaster scenarios. BUT ... there is a consideration to keep in mind when using the Windows Azure Management Portal to shutdown VMs: although performing a VM shutdown via the Windows Azure Management Portal causes that VM to no longer accumulate compute charges, it also deallocates the VM from fabric resources to which it was previously assigned.  These fabric resources include compute resources such as virtual CPU cores and memory, as well as network resources, such as IP addresses.  This means that when the VM is later started after being shutdown from the portal, the VM could be assigned a different IP address or placed on a different compute node within the fabric. In some cases, you may want to shutdown VMs using the old approach, where fabric resource assignments are maintained while the VM is in a shutdown state.  Specifically, you may wish to do this when temporarily shutting down or restarting a "7x24" VM as part of a maintenance activity.  Good news - you can still revert back to the old VM shutdown behavior when necessary by using the alternate VM shutdown approaches listed below.  Let's walk through each approach for performing a VM Shutdown action on Windows Azure so that we can understand the benefits and considerations of each... How many ways can I shutdown a VM? In Windows Azure Infrastructure Services, there's three general ways that can be used to safely shutdown VMs: Shutdown VM via Windows Azure Management Portal Shutdown Guest Operating System inside the VM Stop VM via Windows PowerShell using Windows Azure PowerShell Module Although each of these options performs a safe shutdown of the guest operation system and the VM itself, each option handles the VM shutdown end state differently. Shutdown VM via Windows Azure Management Portal When clicking the Shutdown button at the bottom of the Virtual Machines page in the Windows Azure Management Portal, the VM is safely shutdown and "deallocated" from fabric resources.  Shutdown button on Virtual Machines page in Windows Azure Management Portal  When the shutdown process completes, the VM will be shown on the Virtual Machines page with a "Stopped ( Deallocated )" status as shown in the figure below. Virtual Machine in a "Stopped (Deallocated)" Status "Deallocated" means that the VM configuration is no longer being actively associated with fabric resources, such as virtual CPUs, memory and networks. In this state, the VM will not continue to allocate compute charges, but since fabric resources are deallocated, the VM could receive a different internal IP address ( called "Dynamic IPs" or "DIPs" in Windows Azure ) the next time it is started.  TIP: If you are leveraging this shutdown option and consistency of DIPs is important to applications running inside your VMs, you should consider using virtual networks with your VMs.  Virtual networks permit you to assign a specific IP Address Space for use with VMs that are assigned to that virtual network.  As long as you start VMs in the same order in which they were originally provisioned, each VM should be reassigned the same DIP that it was previously using. What about consistency of External IP Addresses? Great question! External IP addresses ( called "Virtual IPs" or "VIPs" in Windows Azure ) are associated with the cloud service in which one or more Windows Azure VMs are running.  As long as at least 1 VM inside a cloud service remains in a "Running" state, the VIP assigned to a cloud service will be preserved.  If all VMs inside a cloud service are in a "Stopped ( Deallocated )" status, then the cloud service may receive a different VIP when VMs are next restarted. TIP: If consistency of VIPs is important for the cloud services in which you are running VMs, consider keeping one VM inside each cloud service in the alternate VM shutdown state listed below to preserve the VIP associated with the cloud service. Shutdown Guest Operating System inside the VM When performing a Guest OS shutdown or restart ( ie., a shutdown or restart operation initiated from the Guest OS running inside the VM ), the VM configuration will not be deallocated from fabric resources. In the figure below, the VM has been shutdown from within the Guest OS and is shown with a "Stopped" VM status rather than the "Stopped ( Deallocated )" VM status that was shown in the previous figure. Note that it may require a few minutes for the Windows Azure Management Portal to reflect that the VM is in a "Stopped" state in this scenario, because we are performing an OS shutdown inside the VM rather than through an Azure management endpoint. Virtual Machine in a "Stopped" Status VMs shown in a "Stopped" status will continue to accumulate compute charges, because fabric resources are still being reserved for these VMs.  However, this also means that DIPs and VIPs are preserved for VMs in this state, so you don't have to worry about VMs and cloud services getting different IP addresses when they are started in the future. Stop VM via Windows PowerShell In the latest version of the Windows Azure PowerShell Module, a new -StayProvisioned parameter has been added to the Stop-AzureVM cmdlet. This new parameter provides the flexibility to choose the VM configuration end result when stopping VMs using PowerShell: When running the Stop-AzureVM cmdlet without the -StayProvisioned parameter specified, the VM will be safely stopped and deallocated; that is, the VM will be left in a "Stopped ( Deallocated )" status just like the end result when a VM Shutdown operation is performed via the Windows Azure Management Portal.  When running the Stop-AzureVM cmdlet with the -StayProvisioned parameter specified, the VM will be safely stopped but fabric resource reservations will be preserved; that is the VM will be left in a "Stopped" status just like the end result when performing a Guest OS shutdown operation. So, with PowerShell, you can choose how Windows Azure should handle VM configuration and fabric resource reservations when stopping VMs on a case-by-case basis. TIP: It's important to note that the -StayProvisioned parameter is only available in the latest version of the Windows Azure PowerShell Module.  So, if you've previously downloaded this module, be sure to download and install the latest version to get this new functionality. Want to Learn More about Windows Azure Infrastructure Services? To learn more about Windows Azure Infrastructure Services, be sure to check-out these additional FREE resources: Become our next "Early Expert"! Complete the Early Experts "Cloud Quest" and build a multi-VM lab network in the cloud for FREE!  Build some cool scenarios! Check out our list of over 20+ Step-by-Step Lab Guides based on key scenarios that IT Pros are implementing on Windows Azure Infrastructure Services TODAY!  Looking forward to seeing you in the Cloud! - Keith Build Your Lab! Download Windows Server 2012 Don’t Have a Lab? Build Your Lab in the Cloud with Windows Azure Virtual Machines Want to Get Certified? Join our Windows Server 2012 "Early Experts" Study Group

    Read the article

  • How can a code editor effectively hint at code nesting level - without using indentation?

    - by pgfearo
    I've written an XML text editor that provides 2 view options for the same XML text, one indented (virtually), the other left-justified. The motivation for the left-justified view is to help users 'see' the whitespace characters they're using for indentation of plain-text or XPath code without interference from indentation that is an automated side-effect of the XML context. I want to provide visual clues (in the non-editable part of the editor) for the left-justified mode that will help the user, but without getting too elaborate. I tried just using connecting lines, but that seemed too busy. The best I've come up with so far is shown in a mocked up screenshot of the editor below, but I'm seeking better/simpler alternatives (that don't require too much code). [Edit] Taking the heatmap idea (from: @jimp) I get this and 3 alternatives - labelled a, b and c: The following section describes the accepted answer as a proposal, bringing together ideas from a number of other answers and comments. As this question is now community wiki, please feel free to update this. NestView The name for this idea which provides a visual method to improve the readability of nested code without using indentation. Contour Lines The name for the differently shaded lines within the NestView The image above shows the NestView used to help visualise an XML snippet. Though XML is used for this illustration, any other code syntax that uses nesting could have been used for this illustration. An Overview: The contour lines are shaded (as in a heatmap) to convey nesting level The contour lines are angled to show when a nesting level is being either opened or closed. A contour line links the start of a nesting level to the corresponding end. The combined width of contour lines give a visual impression of nesting level, in addition to the heatmap. The width of the NestView may be manually resizable, but should not change as the code changes. Contour lines can either be compressed or truncated to keep acheive this. Blank lines are sometimes used code to break up text into more digestable chunks. Such lines could trigger special behaviour in the NestView. For example the heatmap could be reset or a background color contour line used, or both. One or more contour lines associated with the currently selected code can be highlighted. The contour line associated with the selected code level would be emphasized the most, but other contour lines could also 'light up' in addition to help highlight the containing nested group Different behaviors (such as code folding or code selection) can be associated with clicking/double-clicking on a Contour Line. Different parts of a contour line (leading, middle or trailing edge) may have different dynamic behaviors associated. Tooltips can be shown on a mouse hover event over a contour line The NestView is updated continously as the code is edited. Where nesting is not well-balanced assumptions can be made where the nesting level should end, but the associated temporary contour lines must be highlighted in some way as a warning. Drag and drop behaviors of Contour Lines can be supported. Behaviour may vary according to the part of the contour line being dragged. Features commonly found in the left margin such as line numbering and colour highlighting for errors and change state could overlay the NestView. Additional Functionality The proposal addresses a range of additional issues - many are outside the scope of the original question, but a useful side-effect. Visually linking the start and end of a nested region The contour lines connect the start and end of each nested level Highlighting the context of the currently selected line As code is selected, the associated nest-level in the NestView can be highlighted Differentiating between code regions at the same nesting level In the case of XML different hues could be used for different namespaces. Programming languages (such as c#) support named regions that could be used in a similar way. Dividing areas within a nesting area into different visual blocks Extra lines are often inserted into code to aid readability. Such empty lines could be used to reset the saturation level of the NestView's contour lines. Multi-Column Code View Code without indentation makes the use of a multi-column view more effective because word-wrap or horizontal scrolling is less likely to be required. In this view, once code has reach the bottom of one column, it flows into the next one: Usage beyond merely providing a visual aid As proposed in the overview, the NestView could provide a range of editing and selection features which would be broadly in line with what is expected from a TreeView control. The key difference is that a typical TreeView node has 2 parts: an expander and the node icon. A NestView contour line can have as many as 3 parts: an opener (sloping), a connector (vertical) and a close (sloping). On Indentation The NestView presented alongside non-indented code complements, but is unlikely to replace, the conventional indented code view. It's likely that any solutions adopting a NestView, will provide a method to switch seamlessly between indented and non-indented code views without affecting any of the code text itself - including whitespace characters. One technique for the indented view would be 'Virtual Formatting' - where a dynamic left-margin is used in lieu of tab or space characters. The same nesting-level data used to dynamically render the NestView could also used for the more conventional-looking indented view. Printing Indentation will be important for the readability of printed code. Here, the absence of tab/space characters and a dynamic left-margin means that the text can wrap at the right-margin and still maintain the integrity of the indented view. Line numbers can be used as visual markers that indicate where code is word-wrapped and also the exact position of indentation: Screen Real-Estate: Flat Vs Indented Addressing the question of whether the NestView uses up valuable screen real-estate: Contour lines work well with a width the same as the code editor's character width. A NestView width of 12 character widths can therefore accommodate 12 levels of nesting before contour lines are truncated/compressed. If an indented view uses 3 character-widths for each nesting level then space is saved until nesting reaches 4 levels of nesting, after this nesting level the flat view has a space-saving advantage that increases with each nesting level. Note: A minimum indentation of 4 character widths is often recommended for code, however XML often manages with less. Also, Virtual Formatting permits less indentation to be used because there's no risk of alignment issues A comparison of the 2 views is shown below: Based on the above, its probably fair to conclude that view style choice will be based on factors other than screen real-estate. The one exception is where screen space is at a premium, for example on a Netbook/Tablet or when multiple code windows are open. In these cases, the resizable NestView would seem to be a clear winner. Use Cases Examples of real-world examples where NestView may be a useful option: Where screen real-estate is at a premium a. On devices such as tablets, notepads and smartphones b. When showing code on websites c. When multiple code windows need to be visible on the desktop simultaneously Where consistent whitespace indentation of text within code is a priority For reviewing deeply nested code. For example where sub-languages (e.g. Linq in C# or XPath in XSLT) might cause high levels of nesting. Accessibility Resizing and color options must be provided to aid those with visual impairments, and also to suit environmental conditions and personal preferences: Compatability of edited code with other systems A solution incorporating a NestView option should ideally be capable of stripping leading tab and space characters (identified as only having a formatting role) from imported code. Then, once stripped, the code could be rendered neatly in both the left-justified and indented views without change. For many users relying on systems such as merging and diff tools that are not whitespace-aware this will be a major concern (if not a complete show-stopper). Other Works: Visualisation of Overlapping Markup Published research by Wendell Piez, dated from 2004, addresses the issue of the visualisation of overlapping markup, specifically LMNL. This includes SVG graphics with significant similarities to the NestView proposal, as such, they are acknowledged here. The visual differences are clear in the images (below), the key functional distinction is that NestView is intended only for well-nested XML or code, whereas Wendell Piez's graphics are designed to represent overlapped nesting. The graphics above were reproduced - with kind permission - from http://www.piez.org Sources: Towards Hermenutic Markup Half-steps toward LMNL

    Read the article

  • Windows Azure Myths

    - by BuckWoody
    Windows Azure is part of the Microsoft "stack" - the suite of software and services we offer. Because we have so many products in almost every part of technology, it's hard to know everything about all parts of what we do - even for those of us who work here. So it's no surprise that some folks are not as familiar with Windows and SQL Azure as they are, say Windows Server or XBox. As I chat with folks about a solution for a business or organization need, I put Windows Azure into the mix. I always start off with "What do you already know about Windows Azure?" so that I don't bore folks with information they already have. I some cases they've checked out the product ahead of time and have specific questions, in others they aren't as familiar, and in still others there is a fair amount of mis-information. Sometimes that's because of a marketing failure, sometimes it's hearsay, and somtetimes it's active misinformation. I thought I might lay out a few of these misconceptions. As always - do your fact-checking! Never take anyone's word alone (including mine) as gospel. Make sure you educate yourself on your options. Your company or your clients depend on you to have the right information on IT, so make sure you live up to that. Myth 1: Nobody uses Windows Azure It's true that we don't give out numbers on the amount of clients on Windows and SQL Azure. But lots of folks are here - companies you may have heard of like Boeing, NASA, Fujitsu, The City of London, Nuedesic, and many others. I deal with firms small and large that use Windows Azure for mission-critical applications, sometimes totally on Windows and/or SQL Azure, sometimes in conjunction with an on-premises system, sometimes for only a specific component in Windows Azure like storage. The interesting thing is that many sites you visit have a Windows Azure component, or are running on Windows Azure. They just don't announce it. Just like the other cloud providers, the companies have asked to be completely branded themselves - they don't want you to be aware or care that they are on Windows Azure. Sometimes that's for security, other times it's for different reasons. It's just like the web sites you visit. For the most part, they don't advertise which OS or Web Server they use. It really just shouldn't matter. The point is that they just use what works to solve a given problem. Check out a few public case studies here: https://www.windowsazure.com/en-us/home/case-studies/ Myth 2: It's only for Microsoft stuff - can't use Open Source This is the one I face the most, and am the most dismayed by. We work just fine with many open source products, including Java, NodeJS, PHP, Ruby, Python, Hadoop, and many other languages and applications. You can quickly deploy a Wordpress, Umbraco and other "kits". We have software development kits (SDK's) for iPhones, iPads, Android, Windows phones and more. We have an SDK to work with FaceBook and other social networks. In short, we play well with others. More on the languages and runtimes we support here: https://www.windowsazure.com/en-us/develop/overview/ More on the SDK's here: http://www.wadewegner.com/2011/05/windows-azure-toolkit-for-ios/, http://www.wadewegner.com/2011/08/windows-azure-toolkits-for-devices-now-with-android/, http://azuretoolkit.codeplex.com/ Myth 3: Microsoft expects me to switch everything to "the cloud" No, we don't. That would be disasterous, unless the only things you run in your company uses works perfectly in Azure. Use Windows Azure  - or any cloud for that matter - where it works. Whenever I talk to companies, I focus on two things: Something that is broken and needs to be re-architected Something you want to do that is new If something is broken, and you need new tools to scale, extend, add capacity dynamically and so on, then you can consider using Windows or SQL Azure. It can help solve problems that you have, or it may include a component you don't want to write or architect yourself. Sometimes you want to do something new, like extend your company's offerings to mobile phones, to the web, or to a social network. More info on where it works here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Myth 4: I have to write code to use Windows and SQL Azure If Windows Azure is a PaaS - a Platform as a Service - then don't you have to write code to use it? Nope. Windows and SQL Azure are made up of various components. Some of those components allow you to write and deploy code (like Compute) and others don't. We have lots of customers using Windows Azure storage as a backup, to securely share files instead of using DropBox, to distribute videos or code or firmware, and more. Others use our High Performance Computing (HPC) offering to rent a supercomputer when they need one. You can even throw workloads at that using Excel! In addition there are lots of other components in Windows Azure you can use, from the Windows Azure Media Services to others. More here: https://www.windowsazure.com/en-us/home/scenarios/saas/ Myth 5: Windows Azure is just another form of "vendor lock-in" Windows Azure uses .NET, OSS languages and standard interfaces for the code. Sure, you're not going to take the code line-for-line and run it on a mainframe, but it's standard code that you write, and can port to something else. And the data is yours - you can bring it back whever you want. It's either in text or binary form, that you have complete control over. There are no licenses - you can "pay as you go", and when you're done, you can leave the service and take all your code, data and IP with you.   So go out there, read up, try it. Use it where it works. And don't believe everything you hear - sometimes the Internet doesn't get it all correct. :)

    Read the article

  • MySQL Cluster 7.2: Over 8x Higher Performance than Cluster 7.1

    - by Mat Keep
    0 0 1 893 5092 Homework 42 11 5974 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary The scalability enhancements delivered by extensions to multi-threaded data nodes enables MySQL Cluster 7.2 to deliver over 8x higher performance than the previous MySQL Cluster 7.1 release on a recent benchmark What’s New in MySQL Cluster 7.2 MySQL Cluster 7.2 was released as GA (Generally Available) in February 2012, delivering many enhancements to performance on complex queries, new NoSQL Key / Value API, cross-data center replication and ease-of-use. These enhancements are summarized in the Figure below, and detailed in the MySQL Cluster New Features whitepaper Figure 1: Next Generation Web Services, Cross Data Center Replication and Ease-of-Use Once of the key enhancements delivered in MySQL Cluster 7.2 is extensions made to the multi-threading processes of the data nodes. Multi-Threaded Data Node Extensions The MySQL Cluster 7.2 data node is now functionally divided into seven thread types: 1) Local Data Manager threads (ldm). Note – these are sometimes also called LQH threads. 2) Transaction Coordinator threads (tc) 3) Asynchronous Replication threads (rep) 4) Schema Management threads (main) 5) Network receiver threads (recv) 6) Network send threads (send) 7) IO threads Each of these thread types are discussed in more detail below. MySQL Cluster 7.2 increases the maximum number of LDM threads from 4 to 16. The LDM contains the actual data, which means that when using 16 threads the data is more heavily partitioned (this is automatic in MySQL Cluster). Each LDM thread maintains its own set of data partitions, index partitions and REDO log. The number of LDM partitions per data node is not dynamically configurable, but it is possible, however, to map more than one partition onto each LDM thread, providing flexibility in modifying the number of LDM threads. The TC domain stores the state of in-flight transactions. This means that every new transaction can easily be assigned to a new TC thread. Testing has shown that in most cases 1 TC thread per 2 LDM threads is sufficient, and in many cases even 1 TC thread per 4 LDM threads is also acceptable. Testing also demonstrated that in some instances where the workload needed to sustain very high update loads it is necessary to configure 3 to 4 TC threads per 4 LDM threads. In the previous MySQL Cluster 7.1 release, only one TC thread was available. This limit has been increased to 16 TC threads in MySQL Cluster 7.2. The TC domain also manages the Adaptive Query Localization functionality introduced in MySQL Cluster 7.2 that significantly enhanced complex query performance by pushing JOIN operations down to the data nodes. Asynchronous Replication was separated into its own thread with the release of MySQL Cluster 7.1, and has not been modified in the latest 7.2 release. To scale the number of TC threads, it was necessary to separate the Schema Management domain from the TC domain. The schema management thread has little load, so is implemented with a single thread. The Network receiver domain was bound to 1 thread in MySQL Cluster 7.1. With the increase of threads in MySQL Cluster 7.2 it is also necessary to increase the number of recv threads to 8. This enables each receive thread to service one or more sockets used to communicate with other nodes the Cluster. The Network send thread is a new thread type introduced in MySQL Cluster 7.2. Previously other threads handled the sending operations themselves, which can provide for lower latency. To achieve highest throughput however, it has been necessary to create dedicated send threads, of which 8 can be configured. It is still possible to configure MySQL Cluster 7.2 to a legacy mode that does not use any of the send threads – useful for those workloads that are most sensitive to latency. The IO Thread is the final thread type and there have been no changes to this domain in MySQL Cluster 7.2. Multiple IO threads were already available, which could be configured to either one thread per open file, or to a fixed number of IO threads that handle the IO traffic. Except when using compression on disk, the IO threads typically have a very light load. Benchmarking the Scalability Enhancements The scalability enhancements discussed above have made it possible to scale CPU usage of each data node to more than 5x of that possible in MySQL Cluster 7.1. In addition, a number of bottlenecks have been removed, making it possible to scale data node performance by even more than 5x. Figure 2: MySQL Cluster 7.2 Delivers 8.4x Higher Performance than 7.1 The flexAsynch benchmark was used to compare MySQL Cluster 7.2 performance to 7.1 across an 8-node Intel Xeon x5670-based cluster of dual socket commodity servers (6 cores each). As the results demonstrate, MySQL Cluster 7.2 delivers over 8x higher performance per data nodes than MySQL Cluster 7.1. More details of this and other benchmarks will be published in a new whitepaper – coming soon, so stay tuned! In a following blog post, I’ll provide recommendations on optimum thread configurations for different types of server processor. You can also learn more from the Best Practices Guide to Optimizing Performance of MySQL Cluster Conclusion MySQL Cluster has achieved a range of impressive benchmark results, and set in context with the previous 7.1 release, is able to deliver over 8x higher performance per node. As a result, the multi-threaded data node extensions not only serve to increase performance of MySQL Cluster, they also enable users to achieve significantly improved levels of utilization from current and future generations of massively multi-core, multi-thread processor designs.

    Read the article

  • Oracle Expands Sun Blade Portfolio for Cloud and Highly Virtualized Environments

    - by Ferhat Hatay
    Oracle announced the expansion of Sun Blade Portfolio for cloud and highly virtualized environments that deliver powerful performance and simplified management as tightly integrated systems.  Along with the SPARC T3-1B blade server, Oracle VM blade cluster reference configuration and Oracle's optimized solution for Oracle WebLogic Suite, Oracle introduced the dual-node Sun Blade X6275 M2 server module with some impressive benchmark results.   Benchmarks on the Sun Blade X6275 M2 server module demonstrate the outstanding performance characteristics critical for running varied commercial applications used in cloud and highly virtualized environments.  These include best-in-class SPEC CPU2006 results with the Intel Xeon processor 5600 series, six Fluent world records and 1.8 times the price-performance of the IBM Power 755 running NAMD, a prominent bio-informatics workload.   Benchmarks for Sun Blade X6275 M2 server module  SPEC CPU2006  The Sun Blade X6275 M2 server module demonstrated best in class SPECint_rate2006 results for all published results using the Intel Xeon processor 5600 series, with a result of 679.  This result is 97% better than the HP BL460c G7 blade, 80% better than the IBM HS22V blade, and 79% better than the Dell M710 blade.  This result demonstrates the density advantage of the new Oracle's server module for space-constrained data centers.     Sun Blade X6275M2 (2 Nodes, Intel Xeon X5670 2.93GHz) - 679 SPECint_rate2006; HP ProLiant BL460c G7 (2.93 GHz, Intel Xeon X5670) - 347 SPECint_rate2006; IBM BladeCenter HS22V (Intel Xeon X5680)  - 377 SPECint_rate2006; Dell PowerEdge M710 (Intel Xeon X5680, 3.33 GHz) - 380 SPECint_rate2006.  SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 11/24/2010 and this report.    For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Fluent The Sun Fire X6275 M2 server module produced world-record results on each of the six standard cases in the current "FLUENT 12" benchmark test suite at 8-, 12-, 24-, 32-, 64- and 96-core configurations. These results beat the most recent QLogic score with IBM DX 360 M series platforms and QLogic "Truescale" interconnects.  Results on sedan_4m test case on the Sun Blade X6275 M2 server module are 23% better than the HP C7000 system, and 20% better than the IBM DX 360 M2; Dell has not posted a result for this test case.  Results can be found at the FLUENT website.   ANSYS's FLUENT software solves fluid flow problems, and is based on a numerical technique called computational fluid dynamics (CFD), which is used in the automotive, aerospace, and consumer products industries. The FLUENT 12 benchmark test suite consists of seven models that are well suited for multi-node clustered environments and representative of modern engineering CFD clusters. Vendors benchmark their systems with the principal objective of providing comparative performance information for FLUENT software that, among other things, depends on compilers, optimization, interconnect, and the performance characteristics of the hardware.   FLUENT application performance is representative of other commercial applications that require memory and CPU resources to be available in a scalable cluster-ready format.  FLUENT benchmark has six conventional test cases (eddy_417k, turbo_500k, aircraft_2m, sedan_4m, truck_14m, truck_poly_14m) at various core counts.   All information on the FLUENT website (http://www.fluent.com) is Copyrighted1995-2010 by ANSYS Inc. Results as of November 24, 2010. For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   NAMD Results on the Sun Blade X6275 M2 server module running NAMD (a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems) show up to a 1.8X better price/performance than IBM's Power 7-based system.  For space-constrained environments, the ultra-dense Sun Blade X6275 M2 server module provides a 1.7X better price/performance per rack unit than IBM's system.     IBM Power 755 4-way Cluster (16U). Total price for cluster: $324,212. See IBM United States Hardware Announcement 110-008, dated February 9, 2010, pp. 4, 21 and 39-46.  Sun Blade X6275 M2 8-Blade Cluster (10U). Total price for cluster:  $193,939. Price/performance and performance/RU comparisons based on f1ATPase molecule test results. Sun Blade X6275 M2 cluster: $3,568/step/sec, 5.435 step/sec/RU. IBM Power 755 cluster: $6,355/step/sec, 3.189 step/sec/U. See http://www-03.ibm.com/systems/power/hardware/reports/system_perf.html. See http://www.ks.uiuc.edu/Research/namd/performance.html for more information, results as of 11/24/10.   For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Reverse Time Migration The Reverse Time Migration is heavily used in geophysical imaging and modeling for Oil & Gas Exploration.  The Sun Blade X6275 M2 server module showed up to a 40% performance improvement over the previous generation server module with super-linear scalability to 16 nodes for the 9-Point Stencil used in this Reverse Time Migration computational kernel.  The balanced combination of Oracle's Sun Storage 7410 system with the Sun Blade X6275 M2 server module cluster showed linear scalability for the total application throughput, including the I/O and MPI communication, to produce a final 3-D seismic depth imaged cube for interpretation. The final image write time from the Sun Blade X6275 M2 server module nodes to Oracle's Sun Storage 7410 system achieved 10GbE line speed of 1.25 GBytes/second or better performance. Between subsequent runs, the effects of I/O buffer caching on the Sun Blade X6275 M2 server module nodes and write optimized caching on the Sun Storage 7410 system gave up to 1.8 GBytes/second effective write performance. The performance results and characterization of this Reverse Time Migration benchmark could serve as a useful measure for many other I/O intensive commercial applications. 3D VTI Reverse Time Migration Seismic Depth Imaging, see http://blogs.sun.com/BestPerf/entry/3d_vti_reverse_time_migration for more information, results as of 11/14/2010.                            

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #048

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Order of Result Set of SELECT Statement on Clustered Indexed Table When ORDER BY is Not Used Above theory is true in most of the cases. However SQL Server does not use that logic when returning the resultset. SQL Server always returns the resultset which it can return fastest.In most of the cases the resultset which can be returned fastest is the resultset which is returned using clustered index. Effect of TRANSACTION on Local Variable – After ROLLBACK and After COMMIT One of the Jr. Developer asked me this question (What will be the Effect of TRANSACTION on Local Variable – After ROLLBACK and After COMMIT?) while I was rushing to an important meeting. I was getting late so I asked him to talk with his Application Tech Lead. When I came back from meeting both of them were looking for me. They said they are confused. I quickly wrote down following example for them. 2008 SQL SERVER – Guidelines and Coding Standards Complete List Download Coding standards and guidelines are very important for any developer on the path of a successful career. A coding standard is a set of guidelines, rules and regulations on how to write code. Coding standards should be flexible enough or should take care of the situation where they should not prevent best practices for coding. They are basically the guidelines that one should follow for better understanding. Download Guidelines and Coding Standards complete List Download Get Answer in Float When Dividing of Two Integer Many times we have requirements of some calculations amongst different fields in Tables. One of the software developers here was trying to calculate some fields having integer values and divide it which gave incorrect results in integer where accurate results including decimals was expected. Puzzle – Computed Columns Datatype Explanation SQL Server automatically does a cast to the data type having the highest precedence. So the result of INT and INT will be INT, but INT and FLOAT will be FLOAT because FLOAT has a higher precedence. If you want a different data type, you need to do an EXPLICIT cast. Renaming SP is Not Good Idea – Renaming Stored Procedure Does Not Update sys.procedures I have written many articles about renaming a tables, columns and procedures SQL SERVER – How to Rename a Column Name or Table Name, here I found something interesting about renaming the stored procedures and felt like sharing it with you all. The interesting fact is that when we rename a stored procedure using SP_Rename command, the Stored Procedure is successfully renamed. But when we try to test the procedure using sp_helptext, the procedure will be having the old name instead of new names. 2009 Insert Values of Stored Procedure in Table – Use Table Valued Function It is clear from the result set that , where I have converted stored procedure logic into the table valued function, is much better in terms of logic as it saves a large number of operations. However, this option should be used carefully. The performance of the stored procedure is “usually” better than that of functions. Interesting Observation – Index on Index View Used in Similar Query Recently, I was working on an optimization project for one of the largest organizations. While working on one of the queries, we came across a very interesting observation. We found that there was a query on the base table and when the query was run, it used the index, which did not exist in the base table. On careful examination, we found that the query was using the index that was on another view. This was very interesting as I have personally never experienced a scenario like this. In simple words, “Query on the base table can use the index created on the indexed view of the same base table.” Interesting Observation – Execution Plan and Results of Aggregate Concatenation Queries Working with SQL Server has never seemed to be monotonous – no matter how long one has worked with it. Quite often, I come across some excellent comments that I feel like acknowledging them as blog posts. Recently, I wrote an article on SQL SERVER – Execution Plan and Results of Aggregate Concatenation Queries Depend Upon Expression Location, which is well received in the community. 2010 I encourage all of you to go through complete series and write your own on the subject. If you write an article and send it to me, I will publish it on this blog with due credit to you. If you write on your own blog, I will update this blog post pointing to your blog post. SQL SERVER – ORDER BY Does Not Work – Limitation of the View 1 SQL SERVER – Adding Column is Expensive by Joining Table Outside View – Limitation of the View 2 SQL SERVER – Index Created on View not Used Often – Limitation of the View 3 SQL SERVER – SELECT * and Adding Column Issue in View – Limitation of the View 4 SQL SERVER – COUNT(*) Not Allowed but COUNT_BIG(*) Allowed – Limitation of the View 5 SQL SERVER – UNION Not Allowed but OR Allowed in Index View – Limitation of the View 6 SQL SERVER – Cross Database Queries Not Allowed in Indexed View – Limitation of the View 7 SQL SERVER – Outer Join Not Allowed in Indexed Views – Limitation of the View 8 SQL SERVER – SELF JOIN Not Allowed in Indexed View – Limitation of the View 9 SQL SERVER – Keywords View Definition Must Not Contain for Indexed View – Limitation of the View 10 SQL SERVER – View Over the View Not Possible with Index View – Limitations of the View 11 2011 Startup Parameters Easy to Configure If you are a regular reader of this blog, you must be aware that I have written about SQL Server Denali recently. Here is the quickest way to reach into the screen where we can change the startup parameters. Go to SQL Server Configuration Manager >> SQL Server Services >> Right Click on the Server >> Properties >> Startup Parameters 2012 Validating Unique Columnname Across Whole Database I sometimes come across very strange requirements and often I do not receive a proper explanation of the same. Here is the one of those examples. For example “Our business requirement is when we add new column we want it unique across current database.” Read the solution to this strange request in this blog post. Excel Losing Decimal Values When Value Pasted from SSMS ResultSet It is very common when users are coping the resultset to Excel, the floating point or decimals are missed. The solution is very much simple and it requires a small adjustment in the Excel. By default Excel is very smart and when it detects the value which is getting pasted is numeric it changes the column format to accommodate that. Basic Calculation and PEMDAS Order of Operation Read this interesting blog post for fantastic conversation about the subject. Copy Column Headers from Resultset – SQL in Sixty Seconds #027 – Video http://www.youtube.com/watch?v=x_-3tLqTRv0 Delete From Multiple Table – Update Multiple Table in Single Statement There are two questions which I get every single day multiple times. In my gmail, I have created standard canned reply for them. Let us see the questions here. I want to delete from multiple table in a single statement how will I do it? I want to update multiple table in a single statement how will I do it? Read the answer in the blog post. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Windows Azure Myths

    - by BuckWoody
    Windows Azure is part of the Microsoft "stack" - the suite of software and services we offer. Because we have so many products in almost every part of technology, it's hard to know everything about all parts of what we do - even for those of us who work here. So it's no surprise that some folks are not as familiar with Windows and SQL Azure as they are, say Windows Server or XBox. As I chat with folks about a solution for a business or organization need, I put Windows Azure into the mix. I always start off with "What do you already know about Windows Azure?" so that I don't bore folks with information they already have. I some cases they've checked out the product ahead of time and have specific questions, in others they aren't as familiar, and in still others there is a fair amount of mis-information. Sometimes that's because of a marketing failure, sometimes it's hearsay, and somtetimes it's active misinformation. I thought I might lay out a few of these misconceptions. As always - do your fact-checking! Never take anyone's word alone (including mine) as gospel. Make sure you educate yourself on your options. Your company or your clients depend on you to have the right information on IT, so make sure you live up to that. Myth 1: Nobody uses Windows Azure It's true that we don't give out numbers on the amount of clients on Windows and SQL Azure. But lots of folks are here - companies you may have heard of like Boeing, NASA, Fujitsu, The City of London, Nuedesic, and many others. I deal with firms small and large that use Windows Azure for mission-critical applications, sometimes totally on Windows and/or SQL Azure, sometimes in conjunction with an on-premises system, sometimes for only a specific component in Windows Azure like storage. The interesting thing is that many sites you visit have a Windows Azure component, or are running on Windows Azure. They just don't announce it. Just like the other cloud providers, the companies have asked to be completely branded themselves - they don't want you to be aware or care that they are on Windows Azure. Sometimes that's for security, other times it's for different reasons. It's just like the web sites you visit. For the most part, they don't advertise which OS or Web Server they use. It really just shouldn't matter. The point is that they just use what works to solve a given problem. Check out a few public case studies here: https://www.windowsazure.com/en-us/home/case-studies/ Myth 2: It's only for Microsoft stuff - can't use Open Source This is the one I face the most, and am the most dismayed by. We work just fine with many open source products, including Java, NodeJS, PHP, Ruby, Python, Hadoop, and many other languages and applications. You can quickly deploy a Wordpress, Umbraco and other "kits". We have software development kits (SDK's) for iPhones, iPads, Android, Windows phones and more. We have an SDK to work with FaceBook and other social networks. In short, we play well with others. More on the languages and runtimes we support here: https://www.windowsazure.com/en-us/develop/overview/ More on the SDK's here: http://www.wadewegner.com/2011/05/windows-azure-toolkit-for-ios/, http://www.wadewegner.com/2011/08/windows-azure-toolkits-for-devices-now-with-android/, http://azuretoolkit.codeplex.com/ Myth 3: Microsoft expects me to switch everything to "the cloud" No, we don't. That would be disasterous, unless the only things you run in your company uses works perfectly in Azure. Use Windows Azure  - or any cloud for that matter - where it works. Whenever I talk to companies, I focus on two things: Something that is broken and needs to be re-architected Something you want to do that is new If something is broken, and you need new tools to scale, extend, add capacity dynamically and so on, then you can consider using Windows or SQL Azure. It can help solve problems that you have, or it may include a component you don't want to write or architect yourself. Sometimes you want to do something new, like extend your company's offerings to mobile phones, to the web, or to a social network. More info on where it works here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Myth 4: I have to write code to use Windows and SQL Azure If Windows Azure is a PaaS - a Platform as a Service - then don't you have to write code to use it? Nope. Windows and SQL Azure are made up of various components. Some of those components allow you to write and deploy code (like Compute) and others don't. We have lots of customers using Windows Azure storage as a backup, to securely share files instead of using DropBox, to distribute videos or code or firmware, and more. Others use our High Performance Computing (HPC) offering to rent a supercomputer when they need one. You can even throw workloads at that using Excel! In addition there are lots of other components in Windows Azure you can use, from the Windows Azure Media Services to others. More here: https://www.windowsazure.com/en-us/home/scenarios/saas/ Myth 5: Windows Azure is just another form of "vendor lock-in" Windows Azure uses .NET, OSS languages and standard interfaces for the code. Sure, you're not going to take the code line-for-line and run it on a mainframe, but it's standard code that you write, and can port to something else. And the data is yours - you can bring it back whever you want. It's either in text or binary form, that you have complete control over. There are no licenses - you can "pay as you go", and when you're done, you can leave the service and take all your code, data and IP with you.   So go out there, read up, try it. Use it where it works. And don't believe everything you hear - sometimes the Internet doesn't get it all correct. :)

    Read the article

  • Is RTD Stateless or Stateful?

    - by [email protected]
    Yes.   A stateless service is one where each request is an independent transaction that can be processed by any of the servers in a cluster.  A stateful service is one where state is kept in a server's memory from transaction to transaction, thus necessitating the proper routing of requests to the right server. The main advantage of stateless systems is simplicity of design. The main advantage of stateful systems is performance. I'm often asked whether RTD is a stateless or stateful service, so I wanted to clarify this issue in depth so that RTD's architecture will be properly understood. The short answer is: "RTD can be configured as a stateless or stateful service." The performance difference between stateless and stateful systems can be very significant, and while in a call center implementation it may be reasonable to use a pure stateless configuration, a web implementation that produces thousands of requests per second is practically impossible with a stateless configuration. RTD's performance is orders of magnitude better than most competing systems. RTD was architected from the ground up to achieve this performance. Features like automatic and dynamic compression of prediction models, automatic translation of metadata to machine code, lack of interpreted languages, and separation of model building from decisioning contribute to achieving this performance level. Because  of this focus on performance we decided to have RTD's default configuration work in a stateful manner. By being stateful RTD requests are typically handled in a few milliseconds when repeated requests come to the same session. Now, those readers that have participated in implementations of RTD know that RTD's architecture is also focused on reducing Total Cost of Ownership (TCO) with features like automatic model building, automatic time windows, automatic maintenance of database tables, automatic evaluation of data mining models, automatic management of models partitioned by channel, geography, etcetera, and hot swapping of configurations. How do you reconcile the need for a low TCO and the need for performance? How do you get the performance of a stateful system with the simplicity of a stateless system? The answer is that you make the system behave like a stateless system to the exterior, but you let it automatically take advantage of situations where being stateful is better. For example, one of the advantages of stateless systems is that you can route a message to any server in a cluster, without worrying about sending it to the same server that was handling the session in previous messages. With an RTD stateful configuration you can still route the message to any server in the cluster, so from the point of view of the configuration of other systems, it is the same as a stateless service. The difference though comes in performance, because if the message arrives to the right server, RTD can serve it without any external access to the session's state, thus tremendously reducing processing time. In typical implementations it is not rare to have high percentages of messages routed directly to the right server, while those that are not, are easily handled by forwarding the messages to the right server. This architecture usually provides the best of both worlds with performance and simplicity of configuration.   Configuring RTD as a pure stateless service A pure stateless configuration requires session data to be persisted at the end of handling each and every message and reloading that data at the beginning of handling any new message. This is of course, the root of the inefficiency of these configurations. This is also the reason why many "stateless" implementations actually do keep state to take advantage of a request coming back to the same server. Nevertheless, if the implementation requires a pure stateless decision service, this is easy to configure in RTD. The way to do it is: Mark every Integration Point to Close the session at the end of processing the message In the Session entity persist the session data on closing the session In the session entity check if a persisted version exists and load it An excellent solution for persisting the session data is Oracle Coherence, which provides a high performance, distributed cache that minimizes the performance impact of persisting and reloading the session. Alternatively, the session can be persisted to a local database. An interesting feature of the RTD stateless configuration is that it can cope with serializing concurrent requests for the same session. For example, if a web page produces two requests to the decision service, these requests could come concurrently to the decision services and be handled by different servers. Most stateless implementation would have the two requests step onto each other when saving the state, or fail one of the messages. When properly configured, RTD will make one message wait for the other before processing.   A Word on Context Using the context of a customer interaction typically significantly increases lift. For example, offer success in a call center could double if the context of the call is taken into account. For this reason, it is important to utilize the contextual information in decision making. To make the contextual information available throughout a session it needs to be persisted. When there is a well defined owner for the information then there is no problem because in case of a session restart, the information can be easily retrieved. If there is no official owner of the information, then RTD can be configured to persist this information.   Once again, RTD provides flexibility to ensure high performance when it is adequate to allow for some loss of state in the rare cases of server failure. For example, in a heavy use web site that serves 1000 pages per second the navigation history may be stored in the in memory session. In such sites it is typical that there is no OLTP that stores all the navigation events, therefore if an RTD server were to fail, it would be possible for the navigation to that point to be lost (note that a new session would be immediately established in one of the other servers). In most cases the loss of this navigation information would be acceptable as it would happen rarely. If it is desired to save this information, RTD would persist it every time the visitor navigates to a new page. Note that this practice is preferred whether RTD is configured in a stateless or stateful manner.  

    Read the article

  • Five Ways Enterprise 2.0 Can Transform Your Business - Q&A from the Webcast

    - by [email protected]
    A few weeks ago, Vince Casarez and I presented with KMWorld on the Five Ways Enterprise 2.0 Can Transform Your Business. It was an enjoyable, interactive webcast in which Vince and I discussed the ways Enterprise 2.0 can transform your business and more importantly, highlighted key customer examples of how to do so. If you missed the webcast, you can catch a replay here. We had a lot of audience participation in some of the polls we conducted and in the Q&A session. We weren't able to address all of the questions during the broadcast, so we attempted to answer them here: Q: Which area within your firm focuses on Web 2.0? Meaning, do you find new departments developing just to manage the web 2.0 (Twitter, Facebook, etc.) user experience or are you structuring current departments? A: There are three distinct efforts within Oracle. The first is around delivery of these Web 2.0 services for enterprise deployments. This is the focus of the WebCenter team. The second effort is injecting these Web 2.0 services into use cases that drive the different enterprise applications. This effort is focused on how to manage these external services and bring them into a cohesive flow for marketing programs, customer care, and purchasing. The third effort is how we consume these services internally to enhance Oracle's business delivery. It leverages the technologies and use cases of the first two but also pushes the envelope with regards to future directions of these other two areas. Q: In a business, Web 2.0 is mostly like action logs. How can we leverage the official process practice versus the logs of a recent action? Example: a system configuration modified last night on a call out versus the official practice that everybody would use in the morning.A: The key thing to remember is that most Web 2.0 actions / activity streams today are based on collaboration and communication type actions. At least with public social sites like Facebook and Twitter. What we're delivering as part of the WebCenter Suite are not just these types of activities but also enterprise application activities. These enterprise application activities come from different application modules: purchasing, HR, order entry, sales opportunity, etc. The actions within these systems are normally tied to a business object or process: purchase order/customer, employee or department, customer and supplier, customer and product, respectively. Therefore, the activities or "logs" as you name them are able to be "typed" so that as a viewer, you can filter or decide to see only certain types of information. In your example, you could have a view that only showed you recent "configuration" changes and this could be right next to a view that showed off the items to be watched every morning. Q: It's great to hear about customers using the software but is there any plan for future webinars to show what the products/installs look like? That would be very helpful.A: We don't have a webinar planned to show off the install process. However, we have a viewlet that's posted on Oracle Technology Network. You can see it here:http://www.oracle.com/technetwork/testcontent/wcs-install-098014.htmlAnd we've got excellent documentation that walks you through the steps here:http://download.oracle.com/docs/cd/E14571_01/install.1111/e12001/install.htmAnd there's a whole set of demos and examples of what WebCenter can do at this URL:http://www.oracle.com/technetwork/middleware/webcenter/release11-demos-097468.html Q: How do you anticipate managing metadata across the enterprise to make content findable?A: We need to first make sure we are all talking about the same thing when we use a word like "metadata". Here's why...  For a developer, metadata means information that describes key elements of the portal or application and what the portal or application can do. For content systems, metadata means key terms that provide a taxonomy or folksonomy about the information that is being indexed, ordered, and managed. For business intelligence systems, metadata means key terms that provide labels to groups of data that most non-mathematicians need to understand. And for SOA, metadata means labels for parts of the processes that business owners should understand that connect development terminology. There are also additional requirements for metadata to be available to the team building these new solutions as well as requirements to make this metadata available to the running system. These requirements are often separated by "design time" and "run time" respectively. So clearly, a general goal of managing metadata across the enterprise is very challenging. We've invested a huge amount of resources around Oracle Metadata Services (MDS) to be able to provide a more generic system for all of these elements. No other vendor has anything like this technology foundation in their products. This provides a huge benefit to our customers as they will now be able to find content, processes, people, and information from a common set of search interfaces with consistent enterprise wide results. Q: Can you give your definition of terms as to document and content, please?A: Content applies to a broad category of information from Word documents, presentations and reports through attachments to invoices and/or purchase orders. Content is essentially any type of digital asset including images, video, and voice. A document is just one type of content. Q: Do you have special integration tools to realize an interaction between UCM and WebCenter Spaces/Services?A: Yes, we've dedicated a whole team of engineers to exploit the key features of Oracle UCM within WebCenter.  While ensuring that WebCenter can connect to other non-Oracle systems, we've made sure that with the combined set of Oracle technology, no other solution can match the combined power and integration.  This is part of the Oracle Fusion Middleware strategy which is to provide best in class capabilities for Content and Portals.  When combined together, the synergy between the two products enables users to quickly add capabilities when they are needed.  For example, simple document sharing is part of the combined product offering, but if legal discovery or archiving is required, Oracle UCM product includes these capabilities that can be quickly added.  There's no need to move content around or add another system to support this, it's just a feature that gets turned on within Oracle UCM. Q: All customers have some interaction with their applications and have many older versions, how do you see some of these new Enterprise 2.0 capabilities adding value to existing enterprise application deployments?A: Just as Service Oriented Architectures allowed for connecting the processes of different applications systems to work together, there's a need for a similar approach with regards to these enterprise 2.0 capabilities. Oracle WebCenter is built on a core architecture that allows for SOA of these Enterprise 2.0 services so that one set of scalable services can be used and integrated directly into any type of application. In this way, users can get immediate value out of the Enterprise 2.0 capabilities without having to wait for the next major release or upgrade. These centrally managed WebCenter services expose a set of standard interfaces that make it extremely easy to add them into existing applications no matter what technology the application has been implemented. Q: We've heard about Oracle Next Generation applications called "Fusion Applications", can you tell me how all this works together?A: Oracle WebCenter powers the core collaboration and social computing services found within Fusion Applications. It is the core user experience technology for how all the application screens have been implemented. And the core concept of task flows allows for all the Fusion Applications modules to be adaptable and composable by business users and IT without needing to be a professional developer. Oracle WebCenter is at the heart of the new Fusion Applications. In addition, the same patterns and technologies are now being added to the existing applications including JD Edwards, Siebel, Peoplesoft, and eBusiness Suite. The core technology enables all these customers to have a much smoother upgrade path to Fusion Applications. They get immediate benefits of injecting new user interactions into their existing applications without having to completely move to Fusion Applications. And then when the time comes, their users will already be well versed in how the new capabilities work. Q: Does any of this work with non Oracle software? Other databases? Other application servers? etc.A: We have made sure that Oracle WebCenter delivers the broadest set of development choices so that no matter what technology you developers are using, WebCenter capabilities can be quickly and easily added to the site or application. In addition, we have certified Oracle WebCenter to run against non-Oracle databases like DB2 and SQLServer. We have stated plans for certification against MySQL as well. Later in CY 2011, Oracle will provide certification on non-Oracle application servers such as WebSphere and JBoss. Q: How do we balance User and IT requirements in regards to Enterprise 2.0 technologies?A: Wrong decisions are often made because employee knowledge is not tapped efficiently and opportunities to innovate are often missed because the right people do not work together. Collaboration amongst workers in the right business context is critical for success. While standalone Enterprise 2.0 technologies can improve collaboration for collaboration's sake, using social collaboration tools in the context of business applications and processes will improve business responsiveness and lead companies to a more competitive position. As these systems become more mission critical it is essential that they maintain the highest level of performance and availability while scaling to support larger communities. Q: What are the ways in which Enterprise 2.0 can improve business responsiveness?A: With a wide range of Enterprise 2.0 tools in the marketplace, CIOs need to deploy solutions that will meet the requirements from users as well as address the requirements from IT. Workers want a next-generation user experience that is personalized and aggregates their daily tools and tasks, while IT needs to ensure the solution is secure, scalable, flexible, reliable and easily integrated with existing systems. An open and integrated approach to deploying portals, content management, and collaboration can enhance your business by addressing both the needs of knowledge workers for better information and the IT mandate to conserve resources by simplifying, consolidating and centralizing infrastructure and administration.  

    Read the article

  • CodePlex Daily Summary for Sunday, June 01, 2014

    CodePlex Daily Summary for Sunday, June 01, 2014Popular ReleasesSandcastle Help File Builder: Help File Builder and Tools v2014.5.31.0: General InformationIMPORTANT: On some systems, the content of the ZIP file is blocked and the installer may fail to run. Before extracting it, right click on the ZIP file, select Properties, and click on the Unblock button if it is present in the lower right corner of the General tab in the properties dialog. This release completes removal of the branding transformations and implements the new VS2013 presentation style that utilizes the new lightweight website format. Several breaking cha...Tooltip Web Preview: ToolTip Web Preview: Version 1.0Database Helper: Release 1.0.0.0: First Release of Database HelperCoMaSy: CoMaSy1.0.2: !Contact Management SystemImage View Slider: Image View Slider: This is a .NET component. We create this using VB.NET. Here you can use an Image Viewer with several properties to your application form. We wish somebody to improve freely. Try this out! Author : Steven Renaldo Antony Yustinus Arjuna Purnama Putra Andre Wijaya P Martin Lidau PBK GENAP 2014 - TI UKDWAspose for Apache POI: Missing Features of Apache POI WP - v 1.1: Release contain the Missing Features in Apache POI WP SDK in Comparison with Aspose.Words for dealing with Microsoft Word. What's New ?Following Examples: Insert Picture in Word Document Insert Comments Set Page Borders Mail Merge from XML Data Source Moving the Cursor Feedback and Suggestions Many more examples are yet to come here. Keep visiting us. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.babelua: V1.5.6.0: V1.5.6.0 - 2014.5.30New feature: support quick-cocos2d-x project now; support text search in scripts folder now, you can use this function in Search Result Window;SEToolbox: 01.032.014 Release 1: Added fix when loading game Textures for icons causing 'Unable to read beyond the end of the stream'. Added new Resource Report, that displays all in game resources in a concise report. Added in temp directory cleaner, to keep excess files from building up. Fixed use of colors on the windows, to work better with desktop schemes. Adding base support for multilingual resources. This will allow loading of the Space Engineers resources to show localized names, and display localized date a...ClosedXML - The easy way to OpenXML: ClosedXML 0.71.2: More memory and performance improvements. Fixed an issue with pivot table field order.Fancontroller: Fancontroller: Initial releaseVi-AIO SearchBar: Vi – AIO Search Bar: Version 1.0Top Verses ( Ayat Emas ): Binary Top Verses: This one is the bin folder of the component. the .dll component is inside.Traditional Calendar Component: Traditional Calender Converter: Duta Wacana Christian University This file containing Traditional Calendar Component and Demo Aplication that using Traditional Calendar Component. This component made with .NET Framework 4 and the programming language is C# .SQLSetupHelper: 1.0.0.0: First Stable Version of SQL SetupComposite Iconote: Composite Iconote: This is a composite has been made by Microsoft Visual Studio 2013. Requirement: To develop this composite or use this component in your application, your computer must have .NET framework 4.5 or newer.Magick.NET: Magick.NET 6.8.9.101: Magick.NET linked with ImageMagick 6.8.9.1. Breaking changes: - Int/short Set methods of WritablePixelCollection are now unsigned. - The Q16 build no longer uses HDRI, switch to the new Q16-HDRI build if you need HDRI.fnr.exe - Find And Replace Tool: 1.7: Bug fixes Refactored logic for encoding text values to command line to handle common edge cases where find/replace operation works in GUI but not in command line Fix for bug where selection in Encoding drop down was different when generating command line in some cases. It was reported in: https://findandreplace.codeplex.com/workitem/34 Fix for "Backslash inserted before dot in replacement text" reported here: https://findandreplace.codeplex.com/discussions/541024 Fix for finding replacing...VG-Ripper & PG-Ripper: VG-Ripper 2.9.59: changes NEW: Added Support for 'GokoImage.com' links NEW: Added Support for 'ViperII.com' links NEW: Added Support for 'PixxxView.com' links NEW: Added Support for 'ImgRex.com' links NEW: Added Support for 'PixLiv.com' links NEW: Added Support for 'imgsee.me' links NEW: Added Support for 'ImgS.it' linksToolbox for Dynamics CRM 2011/2013: XrmToolBox (v1.2014.5.28): XrmToolbox improvement XrmToolBox updates (v1.2014.5.28)Fix connecting to a connection with custom authentication without saved password Tools improvement New tool!Solution Components Mover (v1.2014.5.22) Transfer solution components from one solution to another one Import/Export NN relationships (v1.2014.3.7) Allows you to import and export many to many relationships Tools updatesAttribute Bulk Updater (v1.2014.5.28) Audit Center (v1.2014.5.28) View Layout Replicator (v1.2014.5.28) Scrip...Microsoft Ajax Minifier: Microsoft Ajax Minifier 5.10: Fix for Issue #20875 - echo switch doesn't work for CSS CSS should honor the SASS source-file comments JS should allow multi-line comment directivesNew ProjectsCet MicroWPF: WPF-like library for simple graphic-UI application using Netduino (Plus) 2 and the FTDI FT800 Eve board.Fakemons: Some Fakmons, powered by XML, XSLT, CSS and JavascriptFling OS: Fling OS is a C# operating system project aiming to create a new, managed operating system from the ground up.MudRoom: Experimental tool sets in mud parsing and area definitionOOP-2112110158: My name's NgocDungRoslynResearch: Roslyn ResearchTHD - Control de Usuarios: control de usuarios y permisosWPF Kinect User Controls: WPF Kinect User Control project provide simple Tilt and Skeleton Tracking Parameter Controls.

    Read the article

  • Movement prediction for non-shooters

    - by ShadowChaser
    I'm working on an isometric 2D game with moderate-scale multiplayer, approximately 20-30 players connected at once to a persistent server. I've had some difficulty getting a good movement prediction implementation in place. Physics/Movement The game doesn't have a true physics implementation, but uses the basic principles to implement movement. Rather than continually polling input, state changes (ie/ mouse down/up/move events) are used to change the state of the character entity the player is controlling. The player's direction (ie/ north-east) is combined with a constant speed and turned into a true 3D vector - the entity's velocity. In the main game loop, "Update" is called before "Draw". The update logic triggers a "physics update task" that tracks all entities with a non-zero velocity uses very basic integration to change the entities position. For example: entity.Position += entity.Velocity.Scale(ElapsedTime.Seconds) (where "Seconds" is a floating point value, but the same approach would work for millisecond integer values). The key point is that no interpolation is used for movement - the rudimentary physics engine has no concept of a "previous state" or "current state", only a position and velocity. State Change and Update Packets When the velocity of the character entity the player is controlling changes, a "move avatar" packet is sent to the server containing the entity's action type (stand, walk, run), direction (north-east), and current position. This is different from how 3D first person games work. In a 3D game the velocity (direction) can change frame to frame as the player moves around. Sending every state change would effectively transmit a packet per frame, which would be too expensive. Instead, 3D games seem to ignore state changes and send "state update" packets on a fixed interval - say, every 80-150ms. Since speed and direction updates occur much less frequently in my game, I can get away with sending every state change. Although all of the physics simulations occur at the same speed and are deterministic, latency is still an issue. For that reason, I send out routine position update packets (similar to a 3D game) but much less frequently - right now every 250ms, but I suspect with good prediction I can easily boost it towards 500ms. The biggest problem is that I've now deviated from the norm - all other documentation, guides, and samples online send routine updates and interpolate between the two states. It seems incompatible with my architecture, and I need to come up with a better movement prediction algorithm that is closer to a (very basic) "networked physics" architecture. The server then receives the packet and determines the players speed from it's movement type based on a script (Is the player able to run? Get the player's running speed). Once it has the speed, it combines it with the direction to get a vector - the entity's velocity. Some cheat detection and basic validation occurs, and the entity on the server side is updated with the current velocity, direction, and position. Basic throttling is also performed to prevent players from flooding the server with movement requests. After updating its own entity, the server broadcasts an "avatar position update" packet to all other players within range. The position update packet is used to update the client side physics simulations (world state) of the remote clients and perform prediction and lag compensation. Prediction and Lag Compensation As mentioned above, clients are authoritative for their own position. Except in cases of cheating or anomalies, the client's avatar will never be repositioned by the server. No extrapolation ("move now and correct later") is required for the client's avatar - what the player sees is correct. However, some sort of extrapolation or interpolation is required for all remote entities that are moving. Some sort of prediction and/or lag-compensation is clearly required within the client's local simulation / physics engine. Problems I've been struggling with various algorithms, and have a number of questions and problems: Should I be extrapolating, interpolating, or both? My "gut feeling" is that I should be using pure extrapolation based on velocity. State change is received by the client, client computes a "predicted" velocity that compensates for lag, and the regular physics system does the rest. However, it feels at odds to all other sample code and articles - they all seem to store a number of states and perform interpolation without a physics engine. When a packet arrives, I've tried interpolating the packet's position with the packet's velocity over a fixed time period (say, 200ms). I then take the difference between the interpolated position and the current "error" position to compute a new vector and place that on the entity instead of the velocity that was sent. However, the assumption is that another packet will arrive in that time interval, and it's incredibly difficult to "guess" when the next packet will arrive - especially since they don't all arrive on fixed intervals (ie/ state changes as well). Is the concept fundamentally flawed, or is it correct but needs some fixes / adjustments? What happens when a remote player stops? I can immediately stop the entity, but it will be positioned in the "wrong" spot until it moves again. If I estimate a vector or try to interpolate, I have an issue because I don't store the previous state - the physics engine has no way to say "you need to stop after you reach position X". It simply understands a velocity, nothing more complex. I'm reluctant to add the "packet movement state" information to the entities or physics engine, since it violates basic design principles and bleeds network code across the rest of the game engine. What should happen when entities collide? There are three scenarios - the controlling player collides locally, two entities collide on the server during a position update, or a remote entity update collides on the local client. In all cases I'm uncertain how to handle the collision - aside from cheating, both states are "correct" but at different time periods. In the case of a remote entity it doesn't make sense to draw it walking through a wall, so I perform collision detection on the local client and cause it to "stop". Based on point #2 above, I might compute a "corrected vector" that continually tries to move the entity "through the wall" which will never succeed - the remote avatar is stuck there until the error gets too high and it "snaps" into position. How do games work around this?

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • CodePlex Daily Summary for Monday, June 02, 2014

    CodePlex Daily Summary for Monday, June 02, 2014Popular ReleasesPortable Class Library for SQLite: Portable Class Library for SQLite - 3.8.4.4: This pull request from mattleibow addresses an issue with custom function creation (define functions in C# code and invoke them from SQLite as id they where regular SQL functions). Impact: Xamarin iOSTweetinvi a friendly Twitter C# API: Tweetinvi 0.9.3.x: Timelines- Added all the parameters available from the Timeline Endpoints in Tweetinvi. - This is available for HomeTimeline, UserTimeline, MentionsTimeline // Simple query var tweets = Timeline.GetHomeTimeline(); // Create a parameter for queries with specific parameters var timelineParameter = Timeline.GenerateHomeTimelineRequestParameter(); timelineParameter.ExcludeReplies = true; timelineParameter.TrimUser = true; var tweets = Timeline.GetHomeTimeline(timelineParameter); Tweets- Add mis...Sandcastle Help File Builder: Help File Builder and Tools v2014.5.31.0: General InformationIMPORTANT: On some systems, the content of the ZIP file is blocked and the installer may fail to run. Before extracting it, right click on the ZIP file, select Properties, and click on the Unblock button if it is present in the lower right corner of the General tab in the properties dialog. This release completes removal of the branding transformations and implements the new VS2013 presentation style that utilizes the new lightweight website format. Several breaking cha...Tooltip Web Preview: ToolTip Web Preview: Version 1.0Database Helper: Release 1.0.0.0: First Release of Database HelperCoMaSy: CoMaSy1.0.2: !Contact Management SystemImage View Slider: Image View Slider: This is a .NET component. We create this using VB.NET. Here you can use an Image Viewer with several properties to your application form. We wish somebody to improve freely. Try this out! Author : Steven Renaldo Antony Yustinus Arjuna Purnama Putra Andre Wijaya P Martin Lidau PBK GENAP 2014 - TI UKDWAspose for Apache POI: Missing Features of Apache POI WP - v 1.1: Release contain the Missing Features in Apache POI WP SDK in Comparison with Aspose.Words for dealing with Microsoft Word. What's New ?Following Examples: Insert Picture in Word Document Insert Comments Set Page Borders Mail Merge from XML Data Source Moving the Cursor Feedback and Suggestions Many more examples are yet to come here. Keep visiting us. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.SEToolbox: 01.032.014 Release 1: Added fix when loading game Textures for icons causing 'Unable to read beyond the end of the stream'. Added new Resource Report, that displays all in game resources in a concise report. Added in temp directory cleaner, to keep excess files from building up. Fixed use of colors on the windows, to work better with desktop schemes. Adding base support for multilingual resources. This will allow loading of the Space Engineers resources to show localized names, and display localized date a...ClosedXML - The easy way to OpenXML: ClosedXML 0.71.2: More memory and performance improvements. Fixed an issue with pivot table field order.Vi-AIO SearchBar: Vi – AIO Search Bar: Version 1.0Top Verses ( Ayat Emas ): Binary Top Verses: This one is the bin folder of the component. the .dll component is inside.Traditional Calendar Component: Traditional Calender Converter: Duta Wacana Christian University This file containing Traditional Calendar Component and Demo Aplication that using Traditional Calendar Component. This component made with .NET Framework 4 and the programming language is C# .SQLSetupHelper: 1.0.0.0: First Stable Version of SQL SetupComposite Iconote: Composite Iconote: This is a composite has been made by Microsoft Visual Studio 2013. Requirement: To develop this composite or use this component in your application, your computer must have .NET framework 4.5 or newer.Magick.NET: Magick.NET 6.8.9.101: Magick.NET linked with ImageMagick 6.8.9.1. Breaking changes: - Int/short Set methods of WritablePixelCollection are now unsigned. - The Q16 build no longer uses HDRI, switch to the new Q16-HDRI build if you need HDRI.fnr.exe - Find And Replace Tool: 1.7: Bug fixes Refactored logic for encoding text values to command line to handle common edge cases where find/replace operation works in GUI but not in command line Fix for bug where selection in Encoding drop down was different when generating command line in some cases. It was reported in: https://findandreplace.codeplex.com/workitem/34 Fix for "Backslash inserted before dot in replacement text" reported here: https://findandreplace.codeplex.com/discussions/541024 Fix for finding replacing...VG-Ripper & PG-Ripper: VG-Ripper 2.9.59: changes NEW: Added Support for 'GokoImage.com' links NEW: Added Support for 'ViperII.com' links NEW: Added Support for 'PixxxView.com' links NEW: Added Support for 'ImgRex.com' links NEW: Added Support for 'PixLiv.com' links NEW: Added Support for 'imgsee.me' links NEW: Added Support for 'ImgS.it' linksToolbox for Dynamics CRM 2011/2013: XrmToolBox (v1.2014.5.28): XrmToolbox improvement XrmToolBox updates (v1.2014.5.28)Fix connecting to a connection with custom authentication without saved password Tools improvement New tool!Solution Components Mover (v1.2014.5.22) Transfer solution components from one solution to another one Import/Export NN relationships (v1.2014.3.7) Allows you to import and export many to many relationships Tools updatesAttribute Bulk Updater (v1.2014.5.28) Audit Center (v1.2014.5.28) View Layout Replicator (v1.2014.5.28) Scrip...Microsoft Ajax Minifier: Microsoft Ajax Minifier 5.10: Fix for Issue #20875 - echo switch doesn't work for CSS CSS should honor the SASS source-file comments JS should allow multi-line comment directivesNew Projects[ISEN] Rendu de projet Naughty3Dogs - Pong3D: Pong3D est un jeu qui reprend le principe classique du Pong en le portant dans un environnement 3D à l'aide du langage c# et du moteur Unity3DBootstrap for MVC: Bootstrap for MVC.F. A. Q. - Najczesciej zadawane pytania: FAQForuMvc: Technifutur short projecthomework456: no.iStoody: Studies organize solution, available through app for Windows and Windows Phone.liaoliao: ???????????Price Tracker: Allows a user to track prices based on parsed emailsRoslynEval: RoslynRx Hub: Rx Hub provides server side computation which initiate by subscriber requestSharepoint Online AppCache Reset: We are an IT resource company providing Virtual IT services and custom and opensource programs for everyday needs. UnitConversionLib : Smart Unit Conversion Library in C#: Conversion of units, arithmetic operation and parsing quantities with their units on run time. Smart unit converter and conversion lib for physical quantities,

    Read the article

  • HTG Explains: Why Does Rebooting a Computer Fix So Many Problems?

    - by Chris Hoffman
    Ask a geek how to fix a problem you’ve having with your Windows computer and they’ll likely ask “Have you tried rebooting it?” This seems like a flippant response, but rebooting a computer can actually solve many problems. So what’s going on here? Why does resetting a device or restarting a program fix so many problems? And why don’t geeks try to identify and fix problems rather than use the blunt hammer of “reset it”? This Isn’t Just About Windows Bear in mind that this soltion isn’t just limited to Windows computers, but applies to all types of computing devices. You’ll find the advice “try resetting it” applied to wireless routers, iPads, Android phones, and more. This same advice even applies to software — is Firefox acting slow and consuming a lot of memory? Try closing it and reopening it! Some Problems Require a Restart To illustrate why rebooting can fix so many problems, let’s take a look at the ultimate software problem a Windows computer can face: Windows halts, showing a blue screen of death. The blue screen was caused by a low-level error, likely a problem with a hardware driver or a hardware malfunction. Windows reaches a state where it doesn’t know how to recover, so it halts, shows a blue-screen of death, gathers information about the problem, and automatically restarts the computer for you . This restart fixes the blue screen of death. Windows has gotten better at dealing with errors — for example, if your graphics driver crashes, Windows XP would have frozen. In Windows Vista and newer versions of Windows, the Windows desktop will lose its fancy graphical effects for a few moments before regaining them. Behind the scenes, Windows is restarting the malfunctioning graphics driver. But why doesn’t Windows simply fix the problem rather than restarting the driver or the computer itself?  Well, because it can’t — the code has encountered a problem and stopped working completely, so there’s no way for it to continue. By restarting, the code can start from square one and hopefully it won’t encounter the same problem again. Examples of Restarting Fixing Problems While certain problems require a complete restart because the operating system or a hardware driver has stopped working, not every problem does. Some problems may be fixable without a restart, though a restart may be the easiest option. Windows is Slow: Let’s say Windows is running very slowly. It’s possible that a misbehaving program is using 99% CPU and draining the computer’s resources. A geek could head to the task manager and look around, hoping to locate the misbehaving process an end it. If an average user encountered this same problem, they could simply reboot their computer to fix it rather than dig through their running processes. Firefox or Another Program is Using Too Much Memory: In the past, Firefox has been the poster child for memory leaks on average PCs. Over time, Firefox would often consume more and more memory, getting larger and larger and slowing down. Closing Firefox will cause it to relinquish all of its memory. When it starts again, it will start from a clean state without any leaked memory. This doesn’t just apply to Firefox, but applies to any software with memory leaks. Internet or Wi-Fi Network Problems: If you have a problem with your Wi-Fi or Internet connection, the software on your router or modem may have encountered a problem. Resetting the router — just by unplugging it from its power socket and then plugging it back in — is a common solution for connection problems. In all cases, a restart wipes away the current state of the software . Any code that’s stuck in a misbehaving state will be swept away, too. When you restart, the computer or device will bring the system up from scratch, restarting all the software from square one so it will work just as well as it was working before. “Soft Resets” vs. “Hard Resets” In the mobile device world, there are two types of “resets” you can perform. A “soft reset” is simply restarting a device normally — turning it off and then on again. A “hard reset” is resetting its software state back to its factory default state. When you think about it, both types of resets fix problems for a similar reason. For example, let’s say your Windows computer refuses to boot or becomes completely infected with malware. Simply restarting the computer won’t fix the problem, as the problem is with the files on the computer’s hard drive — it has corrupted files or malware that loads at startup on its hard drive. However, reinstalling Windows (performing a “Refresh or Reset your PC” operation in Windows 8 terms) will wipe away everything on the computer’s hard drive, restoring it to its formerly clean state. This is simpler than looking through the computer’s hard drive, trying to identify the exact reason for the problems or trying to ensure you’ve obliterated every last trace of malware. It’s much faster to simply start over from a known-good, clean state instead of trying to locate every possible problem and fix it. Ultimately, the answer is that “resetting a computer wipes away the current state of the software, including any problems that have developed, and allows it to start over from square one.” It’s easier and faster to start from a clean state than identify and fix any problems that may be occurring — in fact, in some cases, it may be impossible to fix problems without beginning from that clean state. Image Credit: Arria Belli on Flickr, DeclanTM on Flickr     

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >