Search Results

Search found 37051 results on 1483 pages for 'string matching'.

Page 672/1483 | < Previous Page | 668 669 670 671 672 673 674 675 676 677 678 679  | Next Page >

  • Matchmaking algorithm with a set of filters

    - by Yuriy Pogrebnyak
    I'm looking for matchmaking algorithm for 1x1 online game. Players must be matched not by their skill or level, as usual, but by some specific filters. Each player sends request, where he specifies some set of parameters (generally, 2-4 parameters). If some parameter is specified, player can be matched only with those who has sent this parameter with exactly the same value, or those who hasn't specified this parameter. I need this algorithm to be thread-safe and preferably fast. It would be great if it'll work for 3-4 or even more parameters, but also I'm looking for algorithm that works with only one parameter (in my case it's game bet). Also I'd appreciate ideas on how to implement or improve this algorithm on my server platform - ASP.NET. One more problem I'm facing is that finding match can't be executed right after user sends request, because if other user sends request before matching for previous is finished, they won't be matched even is they possibly could. So it seems that match finding should be started on schedule, and I need help on how to optimize it and how to choose time interval for starting new match finding. P.S. I've also posted this question on stackoverflow

    Read the article

  • How can I use GPRename's regex feature to reinsert the matched-group into the 'replace'?

    - by David Thomas
    I've been using GPRename to batch-rename files; this is rather more efficient than individually correcting each file, but still seems to be less efficient than it might be, primarily because either I don't understand the regex syntax used, or because the regex implementation is incomplete1 Given a list of files of the following syntax: (01) - title of file1.avi (02) - title of file2.avi (03) - title of file3.avi I attempted to use the 'replace' (with the regex option selected, the case-sensitive option deselected): (\(\d{2}\)) The preview then shows (given that I've specified no 'replace with' option as yet): title of file1.avi title of file2.avi title of file3.avi Which is great, clearly the regex is identifying the correct group (the (01)). Now, what I was hoping to do (using the JavaScript syntax) in the 'replace with' option is use: $1 (I also tried using '$1', \1 and '\1') This was just to check that I could access the matched group, and it seems I can't, the matched group is, as I suppose might be expected, replaced with the literal replacement string. So, my question: is it possible to match a particular group of characters, in this case the numbers within the brackets, and then insert those into the replacement string? Therefore: (01) title of file1.avi (02) title of file2.avi (03) title of file3.avi Becomes: 01 title of file1.avi 02 title of file2.avi 03 title of file3.avi I absolutely suspect the former, personally.

    Read the article

  • Data Profiling without SSIS

    Strangely enough for a predominantly SSIS blog, this post is all about how to perform data profiling without using SSIS. Whilst the Data Profiling Task is a worthy addition, there are a couple of limitations I’ve encountered of late. The first is that it requires SQL Server 2008, and not everyone is there yet. The second is that it can only target SQL Server 2005 and above. What about older systems, which are the ones that we probably need to investigate the most, or other vendor databases such as Oracle? With these limitations in mind I did some searching to find a quick and easy alternative to help me perform some data profiling for a project I was working on recently. I only had SQL Server 2005 available, and anyway most of my target source systems were Oracle, and of course I had short timescales. I looked at several options. Some never got beyond the download stage, they failed to install or just did not run, and others provided less than I could have produced myself by spending 2 minutes writing some basic SQL queries. In the end I settled on an open source product called DataCleaner. To quote from their website: DataCleaner is an Open Source application for profiling, validating and comparing data. These activities help you administer and monitor your data quality in order to ensure that your data is useful and applicable to your business situation. DataCleaner is the free alternative to software for master data management (MDM) methodologies, data warehousing (DW) projects, statistical research, preparation for extract-transform-load (ETL) activities and more. DataCleaner is developed in Java and licensed under LGPL. As quoted above it claims to support profiling, validating and comparing data, but I didn’t really get past the profiling functions, so won’t comment on the other two. The profiling whilst not prefect certainly saved some time compared to the limited alternatives. The ability to profile heterogeneous data sources is a big advantage over the SSIS option, and I found it overall quite easy to use and performance was good. I could see it struggling at times, but actually for what it does I was impressed. It had some data type niggles with Oracle, and some metrics seem a little strange, although thankfully they were easy to augment with some SQL queries to ensure a consistent picture. The report export options didn’t do it for me, but copy and paste with a bit of Excel magic was sufficient. One initial point for me personally is that I have had limited exposure to things of the Java persuasion and whilst I normally get by fine, sometimes the simplest things can throw me. For example installing a JDBC driver, why do I have to copy files to make it all work, has nobody ever heard of an MSI? In case there are other people out there like me who have become totally indoctrinated with the Microsoft software paradigm, I’ve written a quick start guide that details every step required. Steps 1- 5 are the key ones, the rest is really an excuse for some screenshots to show you the tool. Quick Start Guide Step 1  - Download Data Cleaner. The Microsoft Windows zipped exe option, and I chose the latest stable build, currently DataCleaner 1.5.3 (final). Extract the files to a suitable location. Step 2 - Download Java. If you try and run datacleaner.exe without Java it will warn you, and then open your default browser and take you to the Java download site. Follow the installation instructions from there, normally just click Download Java a couple of times and you’re done. Step 3 - Download Microsoft SQL Server JDBC Driver. You may have SQL Server installed, but you won’t have a JDBC driver. Version 3.0 is the latest as of April 2010. There is no real installer, we are in the Java world here, but run the exe you downloaded to extract the files. The default Unzip to folder is not much help, so try a fully qualified path such as C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\ to ensure you can find the files afterwards. Step 4 - If you wish to use Windows Authentication to connect to your SQL Server then first we need to copy a file so that Data Cleaner can find it. Browse to the JDBC extract location from Step 3 and drill down to the file sqljdbc_auth.dll. You will have to choose the correct directory for your processor architecture. e.g. C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\sqljdbc_3.0\enu\auth\x86\sqljdbc_auth.dll. Now copy this file to the Data Cleaner extract folder you chose in Step 1. An alternative method is to edit datacleaner.cmd in the data cleaner extract folder as detailed in this data cleaner wiki topic, but I find copying the file simpler. Step 5 – Now lets run Data Cleaner, just run datacleaner.exe from the extract folder you chose in Step 1. Step 6 – Complete or skip the registration screen, and ignore the task window for now. In the main window click settings. Step 7 – In the Settings dialog, select the Database drivers tab, then click Register database driver and select the Local JAR file option. Step 8 – Browse to the JDBC driver extract location from Step 3 and drill down to select sqljdbc4.jar. e.g. C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\sqljdbc_3.0\enu\sqljdbc4.jar Step 9 – Select the Database driver class as com.microsoft.sqlserver.jdbc.SQLServerDriver, and then click the Test and Save database driver button. Step 10 - You should be back at the Settings dialog with a the list of drivers that includes SQL Server. Just click Save Settings to persist all your hard work. Step 11 – Now we can start to profile some data. In the main Data Cleaner window click New Task, and then Profile from the task window. Step 12 – In the Profile window click Open Database Step 13 – Now choose the SQL Server connection string option. Selecting a connection string gives us a template like jdbc:sqlserver://<hostname>:1433;databaseName=<database>, but obviously it requires some details to be entered for example  jdbc:sqlserver://localhost:1433;databaseName=SQLBits. This will connect to the database called SQLBits on my local machine. The port may also have to be changed if using such as when you have a multiple instances of SQL Server running. If using SQL Server Authentication enter a username and password as required and then click Connect to database. You can use Window Authentication, just add integratedSecurity=true to the end of your connection string. e.g jdbc:sqlserver://localhost:1433;databaseName=SQLBits;integratedSecurity=true.  If you didn’t complete Step 4 above you will need to do so now and restart Data Cleaner before it will work. Manually setting the connection string is fine, but creating a named connection makes more sense if you will be spending any length of time profiling a specific database. As highlighted in the left-hand screen-shot, at the bottom of the dialog it includes partial instructions on how to create named connections. In the folder shown C:\Users\<Username>\.datacleaner\1.5.3, open the datacleaner-config.xml file in your editor of choice add your own details. You’ll see a sample connection in the file already, just add yours following the same pattern. e.g. <!-- Darren's Named Connections --> <bean class="dk.eobjects.datacleaner.gui.model.NamedConnection"> <property name="name" value="SQLBits Local Connection" /> <property name="driverClass" value="com.microsoft.sqlserver.jdbc.SQLServerDriver" /> <property name="connectionString" value="jdbc:sqlserver://localhost:1433;databaseName=SQLBits;integratedSecurity=true" /> <property name="tableTypes"> <list> <value>TABLE</value> <value>VIEW</value> </list> </property> </bean> Step 14 – Once back at the Profile window, you should now see your schemas, tables and/or views listed down the left hand side. Browse this tree and double-click a table to select it for profiling. You can then click Add profile, and choose some profiling options, before finally clicking Run profiling. You can see below a sample output for three of the most common profiles, click the image for full size.   I hope this has given you a taster for DataCleaner, and should help you get up and running pretty quickly.

    Read the article

  • Zipcodes in CSV Generation

    - by BRADINO
    When exporting to CSV format, then opening in a spreadsheet program like Excel zipcodes that start with a zero or zeroes have the preceding zeros stripped off. Obviously it is because the spreadsheet sees that column as integers and preceding zeros in integers are useless. A quick and dirty trick to force Excel (hopefully you are using OpenOffice) to display the full zipcode, we wrap it in double quotes and put an equal sign in front of it, to force it to be a string like this: $zipcode = 00123; $data = '="' . $zipcode . '"' ; So if you are doing the straight query to CSV export, using the fputcsv function it would look something like this. Basically just overwrite the value in the row and then continue along. while ($row = mysql_fetch_assoc($query)){         $row['zipcode'] = '="'.$row['zipcode'].'"';     fputcsv($output, $row); } php csv zipcode csv number csv force string

    Read the article

  • How to Use USER_DEFINED Activity in OWB Process Flow

    - by Jinggen He
    Process Flow is a very important component of Oracle Warehouse Builder. With Process Flow, we can create and control the ETL process by setting all kinds of activities in a well-constructed flow. In Oracle Warehouse Builder 11gR2, there are 28 kinds of activities, which fall into three categories: Control activities, OWB specific activities and Utility activities. For more information about Process Flow activities, please refer to OWB online doc. Most of those activities are pre-defined for some specific use. For example, the Mapping activity allows execution an OWB mapping in Process Flow and the FTP activity allows an interaction between the local host and a remote FTP server. Besides those activities for specific purposes, the User Defined activity enables you to incorporate into a Process Flow an activity that is not defined within Warehouse Builder. So the User Defined activity brings flexibility and extensibility to Process Flow. In this article, we will take an amazing tour of using the User Defined activity. Let's start. Enable execution of User Defined activity Let's start this section from creating a very simple Process Flow, which contains a Start activity, a User Defined activity and an End Success activity. Leave all parameters of activity USER_DEFINED unchanged except that we enter /tmp/test.sh into the Value column of the COMMAND parameter. Then let's create the shell script test.sh in /tmp directory. Here is the content of /tmp/test.sh (this article is demonstrating a scenario in Linux system, and /tmp/test.sh is a Bash shell script): echo Hello World! > /tmp/test.txt Note: don't forget to grant the execution privilege on /tmp/test.sh to OS Oracle user. For simplicity, we just use the following command. chmod +x /tmp/test.sh OK, it's so simple that we’ve almost done it. Now deploy the Process Flow and run it. For a newly installed OWB, we will come across an error saying "RPE-02248: For security reasons, activity operator Shell has been disabled by the DBA". See below. That's because, by default, the User Defined activity is DISABLED. Configuration about this can be found in <ORACLE_HOME>/owb/bin/admin/Runtime.properties: property.RuntimePlatform.0.NativeExecution.Shell.security_constraint=DISABLED The property can be set to three different values: NATIVE_JAVA, SCHEDULER and DISBALED. Where NATIVE_JAVA uses the Java 'Runtime.exec' interface, SCHEDULER uses a DBMS Scheduler external job submitted by the Control Center repository owner which is executed by the default operating system user configured by the DBA. DISABLED prevents execution via these operators. We enable the execution of User Defined activity by setting: property.RuntimePlatform.0.NativeExecution.Shell.security_constraint= NATIVE_JAVA Restart the Control Center service for the change of setting to take effect. cd <ORACLE_HOME>/owb/rtp/sql sqlplus OWBSYS/<password of OWBSYS> @stop_service.sql sqlplus OWBSYS/<password of OWBSYS> @start_service.sql And then run the Process Flow again. We will see that the Process Flow completes successfully. The execution of /tmp/test.sh successfully generated a file /tmp/test.txt, containing the line Hello World!. Pass parameters to User Defined Activity The Process Flow created in the above section has a drawback: the User Defined activity doesn't accept any information from OWB nor does it give any meaningful results back to OWB. That's to say, it lacks interaction. Maybe, sometimes such a Process Flow can fulfill the business requirement. But for most of the time, we need to get the User Defined activity executed according to some information prior to that step. In this section, we will see how to pass parameters to the User Defined activity and pass them into the to-be-executed shell script. First, let's see how to pass parameters to the script. The User Defined activity has an input parameter named PARAMETER_LIST. This is a list of parameters that will be passed to the command. Parameters are separated from one another by a token. The token is taken as the first character on the PARAMETER_LIST string, and the string must also end in that token. Warehouse Builder recommends the '?' character, but any character can be used. For example, to pass 'abc,' 'def,' and 'ghi' you can use the following equivalent: ?abc?def?ghi? or !abc!def!ghi! or |abc|def|ghi| If the token character or '\' needs to be included as part of the parameter, then it must be preceded with '\'. For example '\\'. If '\' is the token character, then '/' becomes the escape character. Let's configure the PARAMETER_LIST parameter as below: And modify the shell script /tmp/test.sh as below: echo $1 is saying hello to $2! > /tmp/test.txt Re-deploy the Process Flow and run it. We will see that the generated /tmp/test.txt contains the following line: Bob is saying hello to Alice! In the example above, the parameters passed into the shell script are static. This case is not so useful because: instead of passing parameters, we can directly write the value of the parameters in the shell script. To make the case more meaningful, we can pass two dynamic parameters, that are obtained from the previous activity, to the shell script. Prepare the Process Flow as below: The Mapping activity MAPPING_1 has two output parameters: FROM_USER, TO_USER. The User Defined activity has two input parameters: FROM_USER, TO_USER. All the four parameters are of String type. Additionally, the Process Flow has two string variables: VARIABLE_FOR_FROM_USER, VARIABLE_FOR_TO_USER. Through VARIABLE_FOR_FROM_USER, the input parameter FROM_USER of USER_DEFINED gets value from output parameter FROM_USER of MAPPING_1. We achieve this by binding both parameters to VARIABLE_FOR_FROM_USER. See the two figures below. In the same way, through VARIABLE_FOR_TO_USER, the input parameter TO_USER of USER_DEFINED gets value from output parameter TO_USER of MAPPING_1. Also, we need to change the PARAMETER_LIST of the User Defined activity like below: Now, the shell script is getting input from the Mapping activity dynamically. Deploy the Process Flow and all of its necessary dependees then run the Process Flow. We see that the generated /tmp/test.txt contains the following line: USER B is saying hello to USER A! 'USER B' and 'USER A' are two outputs of the Mapping execution. Write the shell script within Oracle Warehouse Builder In the previous section, the shell script is located in the /tmp directory. But sometimes, when the shell script is small, or for the sake of maintaining consistency, you may want to keep the shell script inside Oracle Warehouse Builder. We can achieve this by configuring these three parameters of a User Defined activity properly: COMMAND: Set the path of interpreter, by which the shell script will be interpreted. PARAMETER_LIST: Set it blank. SCRIPT: Enter the shell script content. Note that in Linux the shell script content is passed into the interpreter as standard input at runtime. About how to actually pass parameters to the shell script, we can utilize variable substitutions. As in the following figure, ${FROM_USER} will be replaced by the value of the FROM_USER input parameter of the User Defined activity. So will the ${TO_USER} symbol. Besides the custom substitution variables, OWB also provide some system pre-defined substitution variables. You can refer to the online document for that. Deploy the Process Flow and run it. We see that the generated /tmp/test.txt contains the following line: USER B is saying hello to USER A! Leverage the return value of User Defined activity All of the previous sections are connecting the User Defined activity to END_SUCCESS with an unconditional transition. But what should we do if we want different subsequent activities for different shell script execution results? 1.  The simplest way is to add three simple-conditioned out-going transitions for the User Defined activity just like the figure below. In the figure, to simplify the scenario, we connect the User Defined activity to three End activities. Basically, if the shell script ends successfully, the whole Process Flow will end at END_SUCCESS, otherwise, the whole Process Flow will end at END_ERROR (in our case, ending at END_WARNING seldom happens). In the real world, we can add more complex and meaningful subsequent business logic. 2.  Or we can utilize complex conditions to work with different results of the User Defined activity. Previously, in our script, we only have this line: echo ${FROM_USER} is saying hello to ${TO_USER}! > /tmp/test.txt We can add more logic in it and return different values accordingly. echo ${FROM_USER} is saying hello to ${TO_USER}! > /tmp/test.txt if CONDITION_1 ; then ...... exit 0 fi if CONDITION_2 ; then ...... exit 2 fi if CONDITION_3 ; then ...... exit 3 fi After that we can leverage the result by checking RESULT_CODE in condition expression of those out-going transitions. Let's suppose that we have the Process Flow as the following graph (SUB_PROCESS_n stands for more different further processes): We can set complex condition for the transition from USER_DEFINED to SUB_PROCESS_1 like this: Other transitions can be set in the same way. Note that, in our shell script, we return 0, 2 and 3, but not 1. As in Linux system, if the shell script comes across a system error like IO error, the return value will be 1. We can explicitly handle such a return value. Summary Let's summarize what has been discussed in this article: How to create a Process Flow with a User Defined activity in it How to pass parameters from the prior activity to the User Defined activity and finally into the shell script How to write the shell script within Oracle Warehouse Builder How to do variable substitutions How to let the User Defined activity return different values and in what way can we leverage

    Read the article

  • How to call Office365 web service in a Console application using WCF

    - by ybbest
    In my previous post, I showed you how to call the SharePoint web service using a console application. In this post, I’d like to show you how to call the same web service in the cloud, aka Office365.In office365, it uses claims authentication as opposed to windows authentication for normal in-house SharePoint Deployment. For Details of the explanation you can see Wictor’s post on this here. The key to make it work is to understand when you authenticate from Office365, you get your authentication token. You then need to pass this token to your HTTP request as cookie to make the web service call. Here is the code sample to make it work.I have modified Wictor’s by removing the client object references. static void Main(string[] args) { MsOnlineClaimsHelper claimsHelper = new MsOnlineClaimsHelper( "[email protected]", "YourPassword","https://ybbest.sharepoint.com/"); HttpRequestMessageProperty p = new HttpRequestMessageProperty(); var cookie = claimsHelper.CookieContainer; string cookieHeader = cookie.GetCookieHeader(new Uri("https://ybbest.sharepoint.com/")); p.Headers.Add("Cookie", cookieHeader); using (ListsSoapClient proxy = new ListsSoapClient()) { proxy.Endpoint.Address = new EndpointAddress("https://ybbest.sharepoint.com/_vti_bin/Lists.asmx"); using (new OperationContextScope(proxy.InnerChannel)) { OperationContext.Current.OutgoingMessageProperties[HttpRequestMessageProperty.Name] = p; XElement spLists = proxy.GetListCollection(); foreach (var el in spLists.Descendants()) { //System.Console.WriteLine(el.Name); foreach (var attrib in el.Attributes()) { if (attrib.Name.LocalName.ToLower() == "title") { System.Console.WriteLine("> " + attrib.Name + " = " + attrib.Value); } } } } System.Console.ReadKey(); } } You can download the complete code from here. Reference: Managing shared cookies in WCF How to do active authentication to Office 365 and SharePoint Online

    Read the article

  • How to use SharePoint modal dialog box to display Custom Page Part2

    - by ybbest
    In the first part of the series, I showed you how to display and close a custom page in a SharePoint modal dialog using JavaScript. In this one, I’d like to show you how to display some information after the Modal dialog is closed.You can download the source code here. 1. Firstly, modify the element file as follow <Elements xmlns="http://schemas.microsoft.com/sharepoint/"> <CustomAction Id="ReportConcern" RegistrationType="ContentType" RegistrationId="0x010100866B1423D33DDA4CA1A4639B54DD4642" Location="EditControlBlock" Sequence="107" Title="Display Custom Page" Description="To Display Custom Page in a modal dialog box on this item"> <UrlAction Url="javascript: function emitStatus(messageToDisplay) { statusId = SP.UI.Status.addStatus(messageToDisplay.message + ' ' +messageToDisplay.location ); SP.UI.Status.setStatusPriColor(statusId, 'Green'); } function portalModalDialogClosedCallback(result, value) { if (value !== null) { emitStatus(value); } } var options = { url: '{SiteUrl}' + '/_layouts/YBBEST/TitleRename.aspx?List={ListId}&amp;ID={ItemId}', title: 'Rename title', allowMaximize: false, showClose: true, width: 500, height: 300, dialogReturnValueCallback: portalModalDialogClosedCallback }; SP.UI.ModalDialog.showModalDialog(options);" /> </CustomAction> </Elements> 2. In your code behind, you can implement a close dialog function as below. This will close your modal dialog box once the button is clicked and display a status bar. protected static string GetCloseDialogScript(string message) { var scriptBuilder = new StringBuilder(); scriptBuilder.Append("<script type='text/javascript'>" + "SP.UI.ModalDialog.commonModalDialogClose(1,").Append(message).Append("); </script>"); return scriptBuilder.ToString(); }

    Read the article

  • Time Warp

    - by Jesse
    It’s no secret that daylight savings time can wreak havoc on systems that rely heavily on dates. The system I work on is centered around recording dates and times, so naturally my co-workers and I have seen our fair share of date-related bugs. From time to time, however, we come across something that we haven’t seen before. A few weeks ago the following error message started showing up in our logs: “The supplied DateTime represents an invalid time. For example, when the clock is adjusted forward, any time in the period that is skipped is invalid.” This seemed very cryptic, especially since it was coming from areas of our application that are typically only concerned with capturing date-only (no explicit time component) from the user, like reports that take a “start date” and “end date” parameter. For these types of parameters we just leave off the time component when capturing the date values, so midnight is used as a “placeholder” time. How is midnight an “invalid time”? Globalization Is Hard Over the last couple of years our software has been rolled out to users in several countries outside of the United States, including Brazil. Brazil begins and ends daylight savings time at midnight on pre-determined days of the year. On October 16, 2011 at midnight many areas in Brazil began observing daylight savings time at which time their clocks were set forward one hour. This means that at the instant it became midnight on October 16, it actually became 1:00 AM, so any time between 12:00 AM and 12:59:59 AM never actually happened. Because we store all date values in the database in UTC, always adjust any “local” dates provided by a user to UTC before using them as filters in a query. The error we saw was thrown by .NET when trying to convert the Brazilian local time of 2011-10-16 12:00 AM to UTC since that local time never actually existed. We hadn’t experienced this same issue with any of our US customers because the daylight savings time changes in the US occur at 2:00 AM which doesn’t conflict with our “placeholder” time of midnight. Detecting Invalid Times In .NET you might use code similar to the following for converting a local time to UTC: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); The code above throws the “invalid time” exception referenced above. We could try to detect whether or not the local time is invalid with something like this: var localDate = new DateTime(2011, 10, 16); //2011-10-16 @ midnight const string timeZoneId = "E. South America Standard Time"; //Windows system timezone Id for "Brasilia" timezone. var localTimeZone = TimeZoneInfo.FindSystemTimeZoneById(timeZoneId); if (localTimeZone.IsInvalidTime(localDate)) localDate = localDate.AddHours(1); var convertedDate = TimeZoneInfo.ConvertTimeToUtc(localDate, localTimeZone); This code works in this particular scenario, but it hardly seems robust. It also does nothing to address the issue that can arise when dealing with the ambiguous times that fall around the end of daylight savings. When we roll the clocks back an hour they record the same hour on the same day twice in a row. To continue on with our Brazil example, on February 19, 2012 at 12:00 AM, it will immediately become February 18, 2012 at 11:00 PM all over again. In this scenario, how should we interpret February 18, 2011 11:30 PM? Enter Noda Time I heard about Noda Time, the .NET port of the Java library Joda Time, a little while back and filed it away in the back of my mind under the “sounds-like-it-might-be-useful-someday” category.  Let’s see how we might deal with the issue of invalid and ambiguous local times using Noda Time (note that as of this writing the samples below will only work using the latest code available from the Noda Time repo on Google Code. The NuGet package version 0.1.0 published 2011-08-19 will incorrectly report unambiguous times as being ambiguous) : var localDateTime = new LocalDateTime(2011, 10, 16, 0, 0); const string timeZoneId = "Brazil/East"; var timezone = DateTimeZone.ForId(timeZoneId); var localDateTimeMaping = timezone.MapLocalDateTime(localDateTime); ZonedDateTime unambiguousLocalDateTime; switch (localDateTimeMaping.Type) { case ZoneLocalMapping.ResultType.Unambiguous: unambiguousLocalDateTime = localDateTimeMaping.UnambiguousMapping; break; case ZoneLocalMapping.ResultType.Ambiguous: unambiguousLocalDateTime = localDateTimeMaping.EarlierMapping; break; case ZoneLocalMapping.ResultType.Skipped: unambiguousLocalDateTime = new ZonedDateTime( localDateTimeMaping.ZoneIntervalAfterTransition.Start, timezone); break; default: throw new InvalidOperationException(string.Format("Unexpected mapping result type: {0}", localDateTimeMaping.Type)); } var convertedDateTime = unambiguousLocalDateTime.ToInstant().ToDateTimeUtc(); Let’s break this sample down: I’m using the Noda Time ‘LocalDateTime’ object to represent the local date and time. I’ve provided the year, month, day, hour, and minute (zeros for the hour and minute here represent midnight). You can think of a ‘LocalDateTime’ as an “invalidated” date and time; there is no information available about the time zone that this date and time belong to, so Noda Time can’t make any guarantees about its ambiguity. The ‘timeZoneId’ in this sample is different than the ones above. In order to use the .NET TimeZoneInfo class we need to provide Windows time zone ids. Noda Time expects an Olson (tz / zoneinfo) time zone identifier and does not currently offer any means of mapping the Windows time zones to their Olson counterparts, though project owner Jon Skeet has said that some sort of mapping will be publicly accessible at some point in the future. I’m making use of the Noda Time ‘DateTimeZone.MapLocalDateTime’ method to disambiguate the original local date time value. This method returns an instance of the Noda Time object ‘ZoneLocalMapping’ containing information about the provided local date time maps to the provided time zone.  The disambiguated local date and time value will be stored in the ‘unambiguousLocalDateTime’ variable as an instance of the Noda Time ‘ZonedDateTime’ object. An instance of this object represents a completely unambiguous point in time and is comprised of a local date and time, a time zone, and an offset from UTC. Instances of ZonedDateTime can only be created from within the Noda Time assembly (the constructor is ‘internal’) to ensure to callers that each instance represents an unambiguous point in time. The value of the ‘unambiguousLocalDateTime’ might vary depending upon the ‘ResultType’ returned by the ‘MapLocalDateTime’ method. There are three possible outcomes: If the provided local date time is unambiguous in the provided time zone I can immediately set the ‘unambiguousLocalDateTime’ variable from the ‘Unambiguous Mapping’ property of the mapping returned by the ‘MapLocalDateTime’ method. If the provided local date time is ambiguous in the provided time zone (i.e. it falls in an hour that was repeated when moving clocks backward from Daylight Savings to Standard Time), I can use the ‘EarlierMapping’ property to get the earlier of the two possible local dates to define the unambiguous local date and time that I need. I could have also opted to use the ‘LaterMapping’ property in this case, or even returned an error and asked the user to specify the proper choice. The important thing to note here is that as the programmer I’ve been forced to deal with what appears to be an ambiguous date and time. If the provided local date time represents a skipped time (i.e. it falls in an hour that was skipped when moving clocks forward from Standard Time to Daylight Savings Time),  I have access to the time intervals that fell immediately before and immediately after the point in time that caused my date to be skipped. In this case I have opted to disambiguate my local date and time by moving it forward to the beginning of the interval immediately following the skipped period. Again, I could opt to use the end of the interval immediately preceding the skipped period, or raise an error depending on the needs of the application. The point of this code is to convert a local date and time to a UTC date and time for use in a SQL Server database, so the final ‘convertedDate’  variable (typed as a plain old .NET DateTime) has its value set from a Noda Time ‘Instant’. An 'Instant’ represents a number of ticks since 1970-01-01 at midnight (Unix epoch) and can easily be converted to a .NET DateTime in the UTC time zone using the ‘ToDateTimeUtc()’ method. This sample is admittedly contrived and could certainly use some refactoring, but I think it captures the general approach needed to take a local date and time and convert it to UTC with Noda Time. At first glance it might seem that Noda Time makes this “simple” code more complicated and verbose because it forces you to explicitly deal with the local date disambiguation, but I feel that the length and complexity of the Noda Time sample is proportionate to the complexity of the problem. Using TimeZoneInfo leaves you susceptible to overlooking ambiguous and skipped times that could result in run-time errors or (even worse) run-time data corruption in the form of a local date and time being adjusted to UTC incorrectly. I should point out that this research is my first look at Noda Time and I know that I’ve only scratched the surface of its full capabilities. I also think it’s safe to say that it’s still beta software for the time being so I’m not rushing out to use it production systems just yet, but I will definitely be tinkering with it more and keeping an eye on it as it progresses.

    Read the article

  • Python — Time complexity of built-in functions versus manually-built functions in finite fields

    - by stackuser
    Generally, I'm wondering about the advantages versus disadvantages of using the built-in arithmetic functions versus rolling your own in Python. Specifically, I'm taking in GF(2) finite field polynomials in string format, converting to base 2 values, performing arithmetic, then output back into polynomials as string format. So a small example of this is in multiplication: Rolling my own: def multiply(a,b): bitsa = reversed("{0:b}".format(a)) g = [(b<<i)*int(bit) for i,bit in enumerate(bitsa)] return reduce(lambda x,y: x+y,g) Versus the built-in: def multiply(a,b): # a,b are GF(2) polynomials in binary form .... return a*b #returns product of 2 polynomials in gf2 Currently, operations like multiplicative inverse (with for example 20 bit exponents) take a long time to run in my program as it's using all of Python's built-in mathematical operations like // floor division and % modulus, etc. as opposed to making my own division, remainder, etc. I'm wondering how much of a gain in efficiency and performance I can get by building these manually (as shown above). I realize the gains are dependent on how well the manual versions are built, that's not the question. I'd like to find out 'basically' how much advantage there is over the built-in's. So for instance, if multiplication (as in the example above) is well-suited for base 10 (decimal) arithmetic but has to jump through more hoops to change bases to binary and then even more hoops in operating (so it's lower efficiency), that's what I'm wondering. Like, I'm wondering if it's possible to bring the time down significantly by building them myself in ways that maybe some professionals here have already come across.

    Read the article

  • Building a Windows Phone 7 Twitter Application using Silverlight

    - by ScottGu
    On Monday I had the opportunity to present the MIX 2010 Day 1 Keynote in Las Vegas (you can watch a video of it here).  In the keynote I announced the release of the Silverlight 4 Release Candidate (we’ll ship the final release of it next month) and the VS 2010 RC tools for Silverlight 4.  I also had the chance to talk for the first time about how Silverlight and XNA can now be used to build Windows Phone 7 applications. During my talk I did two quick Windows Phone 7 coding demos using Silverlight – a quick “Hello World” application and a “Twitter” data-snacking application.  Both applications were easy to build and only took a few minutes to create on stage.  Below are the steps you can follow yourself to build them on your own machines as well. [Note: In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Building a “Hello World” Windows Phone 7 Application First make sure you’ve installed the Windows Phone Developer Tools CTP – this includes the Visual Studio 2010 Express for Windows Phone development tool (which will be free forever and is the only thing you need to develop and build Windows Phone 7 applications) as well as an add-on to the VS 2010 RC that enables phone development within the full VS 2010 as well. After you’ve downloaded and installed the Windows Phone Developer Tools CTP, launch the Visual Studio 2010 Express for Windows Phone that it installs or launch the VS 2010 RC (if you have it already installed), and then choose “File”->”New Project.”  Here, you’ll find the usual list of project template types along with a new category: “Silverlight for Windows Phone”. The first CTP offers two application project templates. The first is the “Windows Phone Application” template - this is what we’ll use for this example. The second is the “Windows Phone List Application” template - which provides the basic layout for a master-details phone application: After creating a new project, you’ll get a view of the design surface and markup. Notice that the design surface shows the phone UI, letting you easily see how your application will look while you develop. For those familiar with Visual Studio, you’ll also find the familiar ToolBox, Solution Explorer and Properties pane. For our HelloWorld application, we’ll start out by adding a TextBox and a Button from the Toolbox. Notice that you get the same design experience as you do for Silverlight on the web or desktop. You can easily resize, position and align your controls on the design surface. Changing properties is easy with the Properties pane. We’ll change the name of the TextBox that we added to username and change the page title text to “Hello world.” We’ll then write some code by double-clicking on the button and create an event handler in the code-behind file (MainPage.xaml.cs). We’ll start out by changing the title text of the application. The project template included this title as a TextBlock with the name textBlockListTitle (note that the current name incorrectly includes the word “list”; that will be fixed for the final release.)  As we write code against it we get intellisense showing the members available.  Below we’ll set the Text property of the title TextBlock to “Hello “ + the Text property of the TextBox username: We now have all the code necessary for a Hello World application.  We have two choices when it comes to deploying and running the application. We can either deploy to an actual device itself or use the built-in phone emulator: Because the phone emulator is actually the phone operating system running in a virtual machine, we’ll get the same experience developing in the emulator as on the device. For this sample, we’ll just press F5 to start the application with debugging using the emulator.  Once the phone operating system loads, the emulator will run the new “Hello world” application exactly as it would on the device: Notice that we can change several settings of the emulator experience with the emulator toolbar – which is a floating toolbar on the top right.  This includes the ability to re-size/zoom the emulator and two rotate buttons.  Zoom lets us zoom into even the smallest detail of the application: The orientation buttons allow us easily see what the application looks like in landscape mode (orientation change support is just built into the default template): Note that the emulator can be reused across F5 debug sessions - that means that we don’t have to start the emulator for every deployment. We’ve added a dialog that will help you from accidentally shutting down the emulator if you want to reuse it.  Launching an application on an already running emulator should only take ~3 seconds to deploy and run. Within our Hello World application we’ll click the “username” textbox to give it focus.  This will cause the software input panel (SIP) to open up automatically.  We can either type a message or – since we are using the emulator – just type in text.  Note that the emulator works with Windows 7 multi-touch so, if you have a touchscreen, you can see how interaction will feel on a device just by pressing the screen. We’ll enter “MIX 10” in the textbox and then click the button – this will cause the title to update to be “Hello MIX 10”: We provide the same Visual Studio experience when developing for the phone as other .NET applications. This means that we can set a breakpoint within the button event handler, press the button again and have it break within the debugger: Building a “Twitter” Windows Phone 7 Application using Silverlight Rather than just stop with “Hello World” let’s keep going and evolve it to be a basic Twitter client application. We’ll return to the design surface and add a ListBox, using the snaplines within the designer to fit it to the device screen and make the best use of phone screen real estate.  We’ll also rename the Button “Lookup”: We’ll then return to the Button event handler in Main.xaml.cs, and remove the original “Hello World” line of code and take advantage of the WebClient networking class to asynchronously download a Twitter feed. This takes three lines of code in total: (1) declaring and creating the WebClient, (2) attaching an event handler and then (3) calling the asynchronous DownloadStringAsync method. In the DownloadStringAsync call, we’ll pass a Twitter Uri plus a query string which pulls the text from the “username” TextBox. This feed will pull down the respective user’s most frequent posts in an XML format. When the call completes, the DownloadStringCompleted event is fired and our generated event handler twitter_DownloadStringCompleted will be called: The result returned from the Twitter call will come back in an XML based format.  To parse this we’ll use LINQ to XML. LINQ to XML lets us create simple queries for accessing data in an xml feed. To use this library, we’ll first need to add a reference to the assembly (right click on the References folder in the solution explorer and choose “Add Reference): We’ll then add a “using System.Xml.Linq” namespace reference at the top of the code-behind file at the top of Main.xaml.cs file: We’ll then add a simple helper class called TwitterItem to our project. TwitterItem has three string members – UserName, Message and ImageSource: We’ll then implement the twitter_DownloadStringCompleted event handler and use LINQ to XML to parse the returned XML string from Twitter.  What the query is doing is pulling out the three key pieces of information for each Twitter post from the username we passed as the query string. These are the ImageSource for their profile image, the Message of their tweet and their UserName. For each Tweet in the XML, we are creating a new TwitterItem in the IEnumerable<XElement> returned by the Linq query.  We then assign the generated TwitterItem sequence to the ListBox’s ItemsSource property: We’ll then do one more step to complete the application. In the Main.xaml file, we’ll add an ItemTemplate to the ListBox. For the demo, I used a simple template that uses databinding to show the user’s profile image, their tweet and their username. <ListBox Height="521" HorizonalAlignment="Left" Margin="0,131,0,0" Name="listBox1" VerticalAlignment="Top" Width="476"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Orientation="Horizontal" Height="132"> <Image Source="{Binding ImageSource}" Height="73" Width="73" VerticalAlignment="Top" Margin="0,10,8,0"/> <StackPanel Width="370"> <TextBlock Text="{Binding UserName}" Foreground="#FFC8AB14" FontSize="28" /> <TextBlock Text="{Binding Message}" TextWrapping="Wrap" FontSize="24" /> </StackPanel> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Now, pressing F5 again, we are able to reuse the emulator and re-run the application. Once the application has launched, we can type in a Twitter username and press the  Button to see the results. Try my Twitter user name (scottgu) and you’ll get back a result of TwitterItems in the Listbox: Try using the mouse (or if you have a touchscreen device your finger) to scroll the items in the Listbox – you should find that they move very fast within the emulator.  This is because the emulator is hardware accelerated – and so gives you the same fast performance that you get on the actual phone hardware. Summary Silverlight and the VS 2010 Tools for Windows Phone (and the corresponding Expression Blend Tools for Windows Phone) make building Windows Phone applications both really easy and fun.  At MIX this week a number of great partners (including Netflix, FourSquare, Seesmic, Shazaam, Major League Soccer, Graphic.ly, Associated Press, Jackson Fish and more) showed off some killer application prototypes they’ve built over the last few weeks.  You can watch my full day 1 keynote to see them in action. I think they start to show some of the promise and potential of using Silverlight with Windows Phone 7.  I’ll be doing more blog posts in the weeks and months ahead that cover that more. Hope this helps, Scott

    Read the article

  • Scanner that worked with Ubuntu 10.4 cannot be found by 13.4

    - by stevecoh1
    My computer previously ran Ubuntu 10.4. After upgrading to 13.4, my Epson scanner no longer can be found by the system. Following documentation, I find the following: $ sane-find-scanner # sane-find-scanner will now attempt to detect your scanner. If the # result is different from what you expected, first make sure your # scanner is powered up and properly connected to your computer. # No SCSI scanners found. If you expected something different, make sure that # you have loaded a kernel SCSI driver for your SCSI adapter. could not open USB device 0x046d/0x082b at 001:007: Access denied (insufficient permissions) ... # No USB scanners found. If you expected something different, make sure that # you have loaded a kernel driver for your USB host controller and have setup # the USB system correctly. See man sane-usb for details. ... If I instead run sudo sane-find-scanner, I get $ sudo sane-find-scanner # sane-find-scanner will now attempt to detect your scanner. If the # result is different from what you expected, first make sure your # scanner is powered up and properly connected to your computer. # No SCSI scanners found. If you expected something different, make sure that # you have loaded a kernel SCSI driver for your SCSI adapter. found USB scanner (vendor=0x04b8 [EPSON], product=0x0131 [EPSON Scanner]) at libusb:001:009 could not fetch string descriptor: Pipe error could not fetch string descriptor: Pipe error # Your USB scanner was (probably) detected. It may or may not be supported by # SANE. Try scanimage -L and read the backend's manpage. So what do I do? scanimage -L does nothing for me and I don't know what the "backend's manpage" might be. It's seems likely that this is a permissions issue since the scanner can be found as root, but I don't know how to solve it. Can someone help?

    Read the article

  • How to use SharePoint modal dialog box to display Custom Page Part2

    - by ybbest
    In the first part of the series, I showed you how to display and close a custom page in a SharePoint modal dialog using JavaScript. In this one, I’d like to show you how to display some information after the Modal dialog is closed.You can download the source code here. 1. Firstly, modify the element file as follow <Elements xmlns="http://schemas.microsoft.com/sharepoint/"> <CustomAction Id="ReportConcern" RegistrationType="ContentType" RegistrationId="0x010100866B1423D33DDA4CA1A4639B54DD4642" Location="EditControlBlock" Sequence="107" Title="Display Custom Page" Description="To Display Custom Page in a modal dialog box on this item"> <UrlAction Url="javascript: function emitStatus(messageToDisplay) { statusId = SP.UI.Status.addStatus(messageToDisplay.message + ' ' +messageToDisplay.location ); SP.UI.Status.setStatusPriColor(statusId, 'Green'); } function portalModalDialogClosedCallback(result, value) { if (value !== null) { emitStatus(value); } } var options = { url: '{SiteUrl}' + '/_layouts/YBBEST/TitleRename.aspx?List={ListId}&amp;ID={ItemId}', title: 'Rename title', allowMaximize: false, showClose: true, width: 500, height: 300, dialogReturnValueCallback: portalModalDialogClosedCallback }; SP.UI.ModalDialog.showModalDialog(options);" /> </CustomAction> </Elements> 2. In your code behind, you can implement a close dialog function as below. This will close your modal dialog box once the button is clicked and display a status bar. protected static string GetCloseDialogScript(string message) { var scriptBuilder = new StringBuilder(); scriptBuilder.Append("<script type='text/javascript'>" + "SP.UI.ModalDialog.commonModalDialogClose(1,").Append(message).Append("); </script>"); return scriptBuilder.ToString(); }

    Read the article

  • Using a "white list" for extracting terms for Text Mining, Part 2

    - by [email protected]
    In my last post, we set the groundwork for extracting specific tokens from a white list using a CTXRULE index. In this post, we will populate a table with the extracted tokens and produce a case table suitable for clustering with Oracle Data Mining. Our corpus of documents will be stored in a database table that is defined as create table documents(id NUMBER, text VARCHAR2(4000)); However, any suitable Oracle Text-accepted data type can be used for the text. We then create a table to contain the extracted tokens. The id column contains the unique identifier (or case id) of the document. The token column contains the extracted token. Note that a given document many have many tokens, so there will be one row per token for a given document. create table extracted_tokens (id NUMBER, token VARCHAR2(4000)); The next step is to iterate over the documents and extract the matching tokens using the index and insert them into our token table. We use the MATCHES function for matching the query_string from my_thesaurus_rules with the text. DECLARE     cursor c2 is       select id, text       from documents; BEGIN     for r_c2 in c2 loop        insert into extracted_tokens          select r_c2.id id, main_term token          from my_thesaurus_rules          where matches(query_string,                        r_c2.text)>0;     end loop; END; Now that we have the tokens, we can compute the term frequency - inverse document frequency (TF-IDF) for each token of each document. create table extracted_tokens_tfidf as   with num_docs as (select count(distinct id) doc_cnt                     from extracted_tokens),        tf       as (select a.id, a.token,                            a.token_cnt/b.num_tokens token_freq                     from                        (select id, token, count(*) token_cnt                        from extracted_tokens                        group by id, token) a,                       (select id, count(*) num_tokens                        from extracted_tokens                        group by id) b                     where a.id=b.id),        doc_freq as (select token, count(*) overall_token_cnt                     from extracted_tokens                     group by token)   select tf.id, tf.token,          token_freq * ln(doc_cnt/df.overall_token_cnt) tf_idf   from num_docs,        tf,        doc_freq df   where df.token=tf.token; From the WITH clause, the num_docs query simply counts the number of documents in the corpus. The tf query computes the term (token) frequency by computing the number of times each token appears in a document and divides that by the number of tokens found in the document. The doc_req query counts the number of times the token appears overall in the corpus. In the SELECT clause, we compute the tf_idf. Next, we create the nested table required to produce one record per case, where a case corresponds to an individual document. Here, we COLLECT all the tokens for a given document into the nested column extracted_tokens_tfidf_1. CREATE TABLE extracted_tokens_tfidf_nt              NESTED TABLE extracted_tokens_tfidf_1                  STORE AS extracted_tokens_tfidf_tab AS              select id,                     cast(collect(DM_NESTED_NUMERICAL(token,tf_idf)) as DM_NESTED_NUMERICALS) extracted_tokens_tfidf_1              from extracted_tokens_tfidf              group by id;   To build the clustering model, we create a settings table and then insert the various settings. Most notable are the number of clusters (20), using cosine distance which is better for text, turning off auto data preparation since the values are ready for mining, the number of iterations (20) to get a better model, and the split criterion of size for clusters that are roughly balanced in number of cases assigned. CREATE TABLE km_settings (setting_name  VARCHAR2(30), setting_value VARCHAR2(30)); BEGIN  INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.clus_num_clusters, 20);  INSERT INTO km_settings (setting_name, setting_value)     VALUES (dbms_data_mining.kmns_distance, dbms_data_mining.kmns_cosine);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_off);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_iterations,20);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_split_criterion,dbms_data_mining.kmns_size);   COMMIT; END; With this in place, we can now build the clustering model. BEGIN     DBMS_DATA_MINING.CREATE_MODEL(     model_name          => 'TEXT_CLUSTERING_MODEL',     mining_function     => dbms_data_mining.clustering,     data_table_name     => 'extracted_tokens_tfidf_nt',     case_id_column_name => 'id',     settings_table_name => 'km_settings'); END;To generate cluster names from this model, check out my earlier post on that topic.

    Read the article

  • Loading a Template From a User Control

    - by Ricardo Peres
    What if you wanted to load a template (ITemplate property) from an external user control (.ascx) file? Yes, it is possible; there are a number of ways to do this, the one I'll talk about here is through a type converter. You need to apply a TypeConverterAttribute to your ITemplate property where you specify a custom type converter that does the job. This type converter relies on InstanceDescriptor. Here is the code for it: public class TemplateTypeConverter: TypeConverter { public override Boolean CanConvertFrom(ITypeDescriptorContext context, Type sourceType) { return ((sourceType == typeof(String)) || (base.CanConvertFrom(context, sourceType) == true)); } public override Boolean CanConvertTo(ITypeDescriptorContext context, Type destinationType) { return ((destinationType == typeof(InstanceDescriptor)) || (base.CanConvertTo(context, destinationType) == true)); } public override Object ConvertTo(ITypeDescriptorContext context, CultureInfo culture, Object value, Type destinationType) { if (destinationType == typeof(InstanceDescriptor)) { Object objectFactory = value.GetType().GetField("_objectFactory", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(value); Object builtType = objectFactory.GetType().BaseType.GetField("_builtType", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(objectFactory); MethodInfo loadTemplate = typeof(TemplateTypeConverter).GetMethod("LoadTemplate"); return (new InstanceDescriptor(loadTemplate, new Object [] { "~/" + (builtType as Type).Name.Replace('_', '/').Replace("/ascx", ".ascx") })); } return base.ConvertTo(context, culture, value, destinationType); } public static ITemplate LoadTemplate(String virtualPath) { using (Page page = new Page()) { return (page.LoadTemplate(virtualPath)); } } } And, on your control: public class MyControl: Control { [Browsable(false)] [TypeConverter(typeof(TemplateTypeConverter))] public ITemplate Template { get; set; } } This allows the following declaration: Hope this helps! SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.brushes.Xml.aliases = ['xml']; SyntaxHighlighter.all();

    Read the article

  • Little PM side post...

    - by edgaralgernon
    When adding new team memebers... off set the ramp up time by 1) having pre built machines ready and and easy method of getting the lastest tools, code base etc. I'm fortunate enough to be at a client that has a machine ready built and loaded when the dev arrives, all they have to do is grab the code. 2) have tasks broken down so that dependencies are as minimal as possible. In other words, to over come the mythical man month issue (as recently mentioned on slashdot) make sure the tasks you hand out have few dependencies on each other. That way the new dev is able to be productive fairly quickly. Here's our historical lead time... the bump in Jan is due to added work, by 2/18 we had added 4 new people over the last two weeks. And amazing the time starts coming down: Here's our averag work time: again time ramps up as we are adding more tasks, but then starts inching back down through out Feb and March. It's not that we beat the Mythical Man Month, and in fact I still believe the book and idea are highly relevant. But if you can break the tasks down and reduce the dependencies between the task then you can mitigate the effect. The tool used in this case is from AgileZen.com and some of the wild swings are due to inexperience with the system initially... but our average times as measured by the tool are matching real life. Also the tool appearst to measure in 24 hour days and 7 day weeks. so it isn't as bad as it looks. :-)

    Read the article

  • Loose Coupling in Object Oriented Design

    - by m3th0dman
    I am trying to learn GRASP and I found this explained (here on page 3) about Low Coupling and I was very surprised when I found this: Consider the method addTrack for an Album class, two possible methods are: addTrack( Track t ) and addTrack( int no, String title, double duration ) Which method reduces coupling? The second one does, since the class using the Album class does not have to know a Track class. In general, parameters to methods should use base types (int, char ...) and classes from the java.* packages. I tend to diasgree with this; I believe addTrack(Track t) is better than addTrack(int no, String title, double duration) due to various reasons: It is always better for a method to as fewer parameters as possible (according to Uncle Bob's Clean Code none or one preferably, 2 in some cases and 3 in special cases; more than 3 needs refactoring - these are of course recommendations not holly rules). If addTrack is a method of an interface, and the requirements need that a Track should have more information (say year or genre) then the interface needs to be changed and so that the method should supports another parameter. Encapsulation is broke; if addTrack is in an interface, then it should not know the internals of the Track. It is actually more coupled in the second way, with many parameters. Suppose the no parameter needs to be changed from int to long because there are more than MAX_INT tracks (or for whatever reason); then both the Track and the method need to be changed while if the method would be addTrack(Track track) only the Track would be changed. All the 4 arguments are actually connected with each other, and some of them are consequences from others. Which approach is better?

    Read the article

  • Getting WCF Services in a Silverlight solution to play nice on deployment

    - by brendonpage
    I have come across 2 issues with deploying WCF services in a Silverlight solution, admittedly the one is more of a hiccup, and only occurs if you take the easy way out and reference your services through visual studio. The First Issue This occurs when you deploy your WFC services to an IIS server. When browse to the services using your web browser, you are greeted with “This collection already contains an address with scheme http.  There can be at most one address per scheme in this collection.”. When you make a call to this service from your Silverlight application, you get the extremely helpful “NotFound” error, this error message can be found in the error property of the event arguments on the complete event handler for that call. As it did with me this will leave most people scratching their head, because the very same services work just fine on the ASP.NET Development Web Server and on my local IIS server. Now I’m no server/hosting/IIS expert so I did a bit of searching when I first encountered this issue. I found out this happens because IIS supports multiple address bindings per protocol (http/https/ftp … etc) per web site, but WCF only supports binding to one address per protocol. This causes a problem when the WCF service is hosted on a site with multiple address bindings, because IIS provides all of the bindings to the host factory when running the service. While this problem occurs mainly on shared hosting solutions, it is not limited to shared hosting, it just seems like all shared hosting providers setup sites on their servers with multiple address bindings. For interests sake I added functionality to the example project attached to this post to dump the addresses given to the WCF service by IIS into a log file. This was the output on the shared hosting solution I use: http://mydomain.co.za/Services/TestService.svc http://www.mydomain.co.za/Services/TestService.svc http://mydomain-co-za.win13.wadns.net/Services/TestService.svc http://win13/Services/TestService.svc As you can see all these addresses are for the http protocol, which is where it all goes wrong for WCF. Fixes for the First Issue There are a few ways to get around this. The first being the easiest, target .NET 4! Yes that's right in .NET 4 WCF services support multiple addresses per protocol. This functionality is enabled by an option, which is on by default if you create a new project, you will need to turn on if you are upgrading to .NET 4. To do this set the multipleSiteBindingsEnabled property of the serviceHostingEnviroment tag in the web.config file to true, as shown below: <system.serviceModel>     <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> </system.serviceModel> Beware this ONLY works in .NET 4, so if you don’t have a server with .NET 4 installed on that you can deploy to, you will need to employ one of the other work a rounds. The second option will work for .NET 3.5 & 4. For this option all you need to do is modify the web.config file and add baseAddressPrefixFilters to the serviceHostingEnviroment tag as shown below: <system.serviceModel>     <serviceHostingEnvironment>         <baseAddressPrefixFilters>              <add prefix="http://www.mydomain.co.za"/>         </baseAddressPrefixFilters>     </serviceHostingEnvironment> </system.serviceModel> These will be used to filter the list of base addresses that IIS provides to the host factory. When specifying these prefix filters be sure to specify filters which will only allow 1 result through, otherwise the entire exercise will be pointless. There is however a problem with this work a round, you are only allowed to specify 1 prefix filter per protocol. Which means you can’t add filters for all your environments, this will therefore add to the list of things to do before deploying or switching dev machines. The third option is the one I currently employ, it will work for .NET 3, 3.5 & 4, although it is not needed for .NET 4. For this option you create a custom host factory which inherits from the ServiceHostFactory class. In the implementation of the ServiceHostFactory you employ logic to figure out which of the base addresses, that are give by IIS, to use when creating the service host. The logic you use to do this is completely up to you, I have seen quite a few solutions that simply statically reference an index from the list of base addresses, this works for most situations but falls short in others. For instance, if the order of the base addresses where to change, it might end up returning an address that only resolves on the servers local network, like the last one in the example I gave at the beginning. Another instance, if a request comes in on a different protocol, like https, you will be creating the service host using an address which is on the incorrect protocol, like http. To reliably find the correct address to use, I use the address that the service was requested on. To accomplish this I use the HttpContext, which requires the service to operate with AspNetCompatibilityRequirements set on. If for some reason running you services with AspNetCompatibilityRequirements on isn’t an option, you can still use this method, you will just have to come up with your own logic for selecting the correct address. First you will need to enable AspNetCompatibilityRequirements for your hosting environment, to do this you will need to set it to true in the web.config file as shown below: <system.serviceModel>     <serviceHostingEnvironment AspNetCompatibilityRequirements="true" /> </system.serviceModel> You will then need to mark any services that are going to use the custom host factory, to allow AspNetCompatibilityRequirements, as shown below: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class TestService { } Now for the custom host factory, this is where the logic lives that selects the correct address to create service host with. The one i use is shown below: public class CustomHostFactory : ServiceHostFactory { protected override ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) { // // Compose a prefix filter based on the requested uri // string prefixFilter = HttpContext.Current.Request.Url.Scheme + "://" + HttpContext.Current.Request.Url.DnsSafeHost; if (!HttpContext.Current.Request.Url.IsDefaultPort) { prefixFilter += ":" + HttpContext.Current.Request.Url.Port.ToString() + "/"; } // // Find a base address that matches the prefix filter // foreach (Uri baseAddress in baseAddresses) { if (baseAddress.OriginalString.StartsWith(prefixFilter)) { return new ServiceHost(serviceType, baseAddress); } } // // Throw exception if no matching base address was found // throw new Exception("Custom Host Factory: No base address matching '" + prefixFilter + "' was found."); } } The most important line in the custom host factory is the one that returns a new service host. This has to return a service host that specifies only one base address per protocol. Since I filter by the address the request came on in, I only need to create the service host with one address, since this address will always be of the correct protocol. Now you have a custom host factory you have to tell your services to use it. To do this you view the markup of the service by right clicking on it in the solution explorer and choosing “View Markup”. Then you add/set the value of the Factory property to the full namespace path of you custom host factory, as shown below. And that is it done, the service will now use the specified custom host factory. The Second Issue As I mentioned earlier this issue is more of a hiccup, but I thought worthy of a mention so I included it. This issue only occurs when you add a service reference to a Silverlight project. Visual Studio will generate a lot of code for you, part of that generated code is the ServiceReferences.ClientConfig file. This file stores the endpoint configuration that is used when accessing your services using the generated proxy classes. Here is what that file looks like: <configuration>     <system.serviceModel>         <bindings>             <customBinding>                 <binding name="CustomBinding_TestService">                     <binaryMessageEncoding />                     <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" />                 </binding>                 <binding name="CustomBinding_BrokenService">                     <binaryMessageEncoding />                     <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" />                 </binding>             </customBinding>         </bindings>         <client>             <endpoint address="http://localhost:49347/services/TestService.svc"                 binding="customBinding" bindingConfiguration="CustomBinding_TestService"                 contract="TestService.TestService" name="CustomBinding_TestService" />             <endpoint address="http://localhost:49347/Services/BrokenService.svc"                 binding="customBinding" bindingConfiguration="CustomBinding_BrokenService"                 contract="BrokenService.BrokenService" name="CustomBinding_BrokenService" />         </client>     </system.serviceModel> </configuration> As you will notice the addresses for the end points are set to the addresses of the services you added the service references from, so unless you are adding the service references from your live services, you will have to change these addresses before you deploy. This is little more than an annoyance really, but it adds to the list of things to do before you can deploy, and if left unchecked that list can get out of control. Fix for the Second Issue The way you would usually access a service added this way is to create an instance of the proxy class like so: BrokenServiceClient proxy = new BrokenServiceClient(); Closer inspection of these generated proxy classes reveals that there are a few overloaded constructors, one of which allows you to specify the end point address to use when creating the proxy. From here all you have to do is come up with some logic that will provide you with the relative path to your services. Since my WCF services are usually hosted in the same project as my Silverlight app I use the class shown below: public class ServiceProxyHelper { /// <summary> /// Create a broken service proxy /// </summary> /// <returns>A broken service proxy</returns> public static BrokenServiceClient CreateBrokenServiceProxy() { Uri address = new Uri(Application.Current.Host.Source, "../Services/BrokenService.svc"); return new BrokenServiceClient("CustomBinding_BrokenService", address.AbsoluteUri); } } Then I will create an instance of the proxy class using my service helper class like so: BrokenServiceClient proxy = ServiceProxyHelper.CreateBrokenServiceProxy(); The way this works is “Application.Current.Host.Source” will return the URL to the ClientBin folder the Silverlight app is hosted in, the “../Services/BrokenService.svc” is then used as the relative path to the service from the ClientBin folder, combined by the Uri object this gives me the URL to my service. The “CustomBinding_BrokenService” is a reference to the end point configuration in the ServiceReferences.ClientConfig file. Yes this means you still need the ServiceReferences.ClientConfig file. All this is doing is using a different end point address than the one specified in the ServiceReferences.ClientConfig file, all the other settings form the ServiceReferences.ClientConfig file are still used when creating the proxy. I have uploaded an example project which covers the custom host factory solution from the first issue and everything from the second issue. I included the code to write a list of base addresses to a log file in my implementation of the custom host factory, this is not need for the custom host factory to function and can safely be removed. Download (WCFServicesDeploymentExample.zip)

    Read the article

  • How to call Office365 web service in a Console application using WCF

    - by ybbest
    In my previous post, I showed you how to call the SharePoint web service using a console application. In this post, I’d like to show you how to call the same web service in the cloud, aka Office365.In office365, it uses claims authentication as opposed to windows authentication for normal in-house SharePoint Deployment. For Details of the explanation you can see Wictor’s post on this here. The key to make it work is to understand when you authenticate from Office365, you get your authentication token. You then need to pass this token to your HTTP request as cookie to make the web service call. Here is the code sample to make it work.I have modified Wictor’s by removing the client object references. static void Main(string[] args) { MsOnlineClaimsHelper claimsHelper = new MsOnlineClaimsHelper( "[email protected]", "YourPassword","https://ybbest.sharepoint.com/"); HttpRequestMessageProperty p = new HttpRequestMessageProperty(); var cookie = claimsHelper.CookieContainer; string cookieHeader = cookie.GetCookieHeader(new Uri("https://ybbest.sharepoint.com/")); p.Headers.Add("Cookie", cookieHeader); using (ListsSoapClient proxy = new ListsSoapClient()) { proxy.Endpoint.Address = new EndpointAddress("https://ybbest.sharepoint.com/_vti_bin/Lists.asmx"); using (new OperationContextScope(proxy.InnerChannel)) { OperationContext.Current.OutgoingMessageProperties[HttpRequestMessageProperty.Name] = p; XElement spLists = proxy.GetListCollection(); foreach (var el in spLists.Descendants()) { //System.Console.WriteLine(el.Name); foreach (var attrib in el.Attributes()) { if (attrib.Name.LocalName.ToLower() == "title") { System.Console.WriteLine("> " + attrib.Name + " = " + attrib.Value); } } } } System.Console.ReadKey(); } } You can download the complete code from here. Reference: Managing shared cookies in WCF How to do active authentication to Office 365 and SharePoint Online

    Read the article

  • Enabling 32-Bit Applications on IIS7 (also affects 32-bit oledb or odbc drivers) [Solved]

    - by Humprey Cogay, C|EH
    We just bought a new Web Server, after installing Windows 2008 R2(which is a 64bit OS and IIS7), SQL Server Standard 2008 R2 and IBM Client Access for V5R3 with its Dot Net Data Providers, I tried deploying our new project which is fully functional on an IIS6 Based Web Server, I encountered this Error The 'IBMDA400.DataSource.1' provider is not registered on the local machine. To remove the doubt that I still lack some Software Pre-Requesites or version conflicts  since I encountered some erros while installing my IBM Client Access, I created a Connection Tester which is Windows App that accepts a connection string as a parameter and verifies if that parameter is valid. After entering the Proper Conn String I tried hitting the button and the Test was Succesful. So now I trimmed my suspects to My Web App and IIS7. After Googling around I found this post by a Rakki Muthukumar(Microsoft Developer Support Engineer for ASP.NET and IIS7) http://blogs.msdn.com/b/rakkimk/archive/2007/11/03/iis7-running-32-bit-and-64-bit-asp-net-versions-at-the-same-time-on-different-worker-processes.aspx So I tried scouting on IIS7's management console and found this little tweak under the Application Pool where my App is a member of. After changing this parameter to TRUE Yahoo (although I'm a Google kind of person) the Web App Works .......

    Read the article

  • How to configure Unity/Compiz in 12.04 so that Update Manager opens maximized w/screen bigger than 1024×600?

    - by Jani Uusitalo
    In Precise, window auto-maximize is disabled on monitors with a resolution above 1024 × 600 [1]. I have a bigger resolution, but I prefer maximized windows anyway. I want Update Manager to start maximized. What I've tried so far: In Compiz Config Settings Manager, I have Place Windows activated and 'Windows with fixed placement mode' has windows matching the rule "(name=gnome-terminal) | (name=update-manager)" set to 'Maximize'. With this, Gnome Terminal starts maximized, Update Manager does not. In Compiz Config Settings Manager, I have set a Window Rules [2] rule to match "name=update-manager". Irregardless of any rules set or not, activating Window Rules results in not being able to bring out Unity Launcher anymore, Alt+Tab window switching becoming slow or nonfunctional entirely and the screen sporadically freezing completely. Not a viable option apparently. I've installed Maximus [3] and started it. Update Manager ignores it (or vice versa). I've not tried devilspie and would prefer not to. Having to configure something external for this would seem stupidly redundant with (the no-brainer) Maximus and all these Compiz options already available. I just can't seem to make them work. [1] https://bugs.launchpad.net/ayatana-design/+bug/797808 [2] http://askubuntu.com/a/53657/34756 [3] How to configure my system so that all windows start maximized?

    Read the article

  • Initially Unselected DropDownList

    - by Ricardo Peres
    One of the most (IMHO) things with DropDownList is its inability to show an unselected value at load time, which is something that HTML does permit. I decided to change the DropDownList to add this behavior. All was needed was some JavaScript and reflection. See the result for yourself: public class CustomDropDownList : DropDownList { public CustomDropDownList() { this.InitiallyUnselected = true; } [DefaultValue(true)] public Boolean InitiallyUnselected { get; set; } protected override void OnInit(EventArgs e) { this.Page.RegisterRequiresControlState(this); this.Page.PreRenderComplete += this.OnPreRenderComplete; base.OnInit(e); } protected virtual void OnPreRenderComplete(Object sender, EventArgs args) { FieldInfo cachedSelectedValue = typeof(ListControl).GetField("cachedSelectedValue", BindingFlags.NonPublic | BindingFlags.Instance); if (String.IsNullOrEmpty(cachedSelectedValue.GetValue(this) as String) == true) { if (this.InitiallyUnselected == true) { if ((ScriptManager.GetCurrent(this.Page) != null) && (ScriptManager.GetCurrent(this.Page).IsInAsyncPostBack == true)) { ScriptManager.RegisterStartupScript(this, this.GetType(), "unselect" + this.ClientID, "$get('" + this.ClientID + "').selectedIndex = -1;", true); } else { this.Page.ClientScript.RegisterStartupScript(this.GetType(), "unselect" + this.ClientID, "$get('" + this.ClientID + "').selectedIndex = -1;", true); } } } } } SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • C#: Adding Functionality to 3rd Party Libraries With Extension Methods

    - by James Michael Hare
    Ever have one of those third party libraries that you love but it's missing that one feature or one piece of syntactical candy that would make it so much more useful?  This, I truly think, is one of the best uses of extension methods.  I began discussing extension methods in my last post (which you find here) where I expounded upon what I thought were some rules of thumb for using extension methods correctly.  As long as you keep in line with those (or similar) rules, they can often be useful for adding that little extra functionality or syntactical simplification for a library that you have little or no control over. Oh sure, you could take an open source project, download the source and add the methods you want, but then every time the library is updated you have to re-add your changes, which can be cumbersome and error prone.  And yes, you could possibly extend a class in a third party library and override features, but that's only if the class is not sealed, static, or constructed via factories. This is the perfect place to use an extension method!  And the best part is, you and your development team don't need to change anything!  Simply add the using for the namespace the extensions are in! So let's consider this example.  I love log4net!  Of all the logging libraries I've played with, it, to me, is one of the most flexible and configurable logging libraries and it performs great.  But this isn't about log4net, well, not directly.  So why would I want to add functionality?  Well, it's missing one thing I really want in the ILog interface: ability to specify logging level at runtime. For example, let's say I declare my ILog instance like so:     using log4net;     public class LoggingTest     {         private static readonly ILog _log = LogManager.GetLogger(typeof(LoggingTest));         ...     }     If you don't know log4net, the details aren't important, just to show that the field _log is the logger I have gotten from log4net. So now that I have that, I can log to it like so:     _log.Debug("This is the lowest level of logging and just for debugging output.");     _log.Info("This is an informational message.  Usual normal operation events.");     _log.Warn("This is a warning, something suspect but not necessarily wrong.");     _log.Error("This is an error, some sort of processing problem has happened.");     _log.Fatal("Fatals usually indicate the program is dying hideously."); And there's many flavors of each of these to log using string formatting, to log exceptions, etc.  But one thing there isn't: the ability to easily choose the logging level at runtime.  Notice, the logging levels above are chosen at compile time.  Of course, you could do some fun stuff with lambdas and wrap it, but that would obscure the simplicity of the interface.  And yes there is a Logger property you can dive down into where you can specify a Level, but the Level properties don't really match the ILog interface exactly and then you have to manually build a LogEvent and... well, it gets messy.  I want something simple and sexy so I can say:     _log.Log(someLevel, "This will be logged at whatever level I choose at runtime!");     Now, some purists out there might say you should always know what level you want to log at, and for the most part I agree with them.  For the most party the ILog interface satisfies 99% of my needs.  In fact, for most application logging yes you do always know the level you will be logging at, but when writing a utility class, you may not always know what level your user wants. I'll tell you, one of my favorite things is to write reusable components.  If I had my druthers I'd write framework libraries and shared components all day!  And being able to easily log at a runtime-chosen level is a big need for me.  After all, if I want my code to really be re-usable, I shouldn't force a user to deal with the logging level I choose. One of my favorite uses for this is in Interceptors -- I'll describe Interceptors in my next post and some of my favorites -- for now just know that an Interceptor wraps a class and allows you to add functionality to an existing method without changing it's signature.  At the risk of over-simplifying, it's a very generic implementation of the Decorator design pattern. So, say for example that you were writing an Interceptor that would time method calls and emit a log message if the method call execution time took beyond a certain threshold of time.  For instance, maybe if your database calls take more than 5,000 ms, you want to log a warning.  Or if a web method call takes over 1,000 ms, you want to log an informational message.  This would be an excellent use of logging at a generic level. So here was my personal wish-list of requirements for my task: Be able to determine if a runtime-specified logging level is enabled. Be able to log generically at a runtime-specified logging level. Have the same look-and-feel of the existing Debug, Info, Warn, Error, and Fatal calls.    Having the ability to also determine if logging for a level is on at runtime is also important so you don't spend time building a potentially expensive logging message if that level is off.  Consider an Interceptor that may log parameters on entrance to the method.  If you choose to log those parameter at DEBUG level and if DEBUG is not on, you don't want to spend the time serializing those parameters. Now, mine may not be the most elegant solution, but it performs really well since the enum I provide all uses contiguous values -- while it's never guaranteed, contiguous switch values usually get compiled into a jump table in IL which is VERY performant - O(1) - but even if it doesn't, it's still so fast you'd never need to worry about it. So first, I need a way to let users pass in logging levels.  Sure, log4net has a Level class, but it's a class with static members and plus it provides way too many options compared to ILog interface itself -- and wouldn't perform as well in my level-check -- so I define an enum like below.     namespace Shared.Logging.Extensions     {         // enum to specify available logging levels.         public enum LoggingLevel         {             Debug,             Informational,             Warning,             Error,             Fatal         }     } Now, once I have this, writing the extension methods I need is trivial.  Once again, I would typically /// comment fully, but I'm eliminating for blogging brevity:     namespace Shared.Logging.Extensions     {         // the extension methods to add functionality to the ILog interface         public static class LogExtensions         {             // Determines if logging is enabled at a given level.             public static bool IsLogEnabled(this ILog logger, LoggingLevel level)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         return logger.IsDebugEnabled;                     case LoggingLevel.Informational:                         return logger.IsInfoEnabled;                     case LoggingLevel.Warning:                         return logger.IsWarnEnabled;                     case LoggingLevel.Error:                         return logger.IsErrorEnabled;                     case LoggingLevel.Fatal:                         return logger.IsFatalEnabled;                 }                                 return false;             }             // Logs a simple message - uses same signature except adds LoggingLevel             public static void Log(this ILog logger, LoggingLevel level, object message)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message);                         break;                     case LoggingLevel.Informational:                         logger.Info(message);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message);                         break;                     case LoggingLevel.Error:                         logger.Error(message);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message);                         break;                 }             }             // Logs a message and exception to the log at specified level.             public static void Log(this ILog logger, LoggingLevel level, object message, Exception exception)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message, exception);                         break;                     case LoggingLevel.Informational:                         logger.Info(message, exception);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message, exception);                         break;                     case LoggingLevel.Error:                         logger.Error(message, exception);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message, exception);                         break;                 }             }             // Logs a formatted message to the log at the specified level.              public static void LogFormat(this ILog logger, LoggingLevel level, string format,                                          params object[] args)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.DebugFormat(format, args);                         break;                     case LoggingLevel.Informational:                         logger.InfoFormat(format, args);                         break;                     case LoggingLevel.Warning:                         logger.WarnFormat(format, args);                         break;                     case LoggingLevel.Error:                         logger.ErrorFormat(format, args);                         break;                     case LoggingLevel.Fatal:                         logger.FatalFormat(format, args);                         break;                 }             }         }     } So there it is!  I didn't have to modify the log4net source code, so if a new version comes out, i can just add the new assembly with no changes.  I didn't have to subclass and worry about developers not calling my sub-class instead of the original.  I simply provide the extension methods and it's as if the long lost extension methods were always a part of the ILog interface! Consider a very contrived example using the original interface:     // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsWarnEnabled)             {                 _log.WarnFormat("Statement {0} took too long to execute.", statement);             }             ...         }     }     Now consider this alternate call where the logging level could be perhaps a property of the class          // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // allow logging level to be specified by user of class instead         public LoggingLevel ThresholdLogLevel { get; set; }                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsLogEnabled(ThresholdLogLevel))             {                 _log.LogFormat(ThresholdLogLevel, "Statement {0} took too long to execute.",                     statement);             }             ...         }     } Next time, I'll show one of my favorite uses for these extension methods in an Interceptor.

    Read the article

  • Configuration setting of HttpWebRequest.Timeout value

    - by Michael Freidgeim
    I wanted to set in configuration on client HttpWebRequest.Timeout.I was surprised, that MS doesn’t provide it as a part of .Net configuration.(Answer in http://forums.silverlight.net/post/77818.aspx thread: “Unfortunately specifying the timeout is not supported in current version. We may support it in the future release.”) I added it to appSettings section of app.config and read it in the method of My HttpWebRequestHelper class  //The Method property can be set to any of the HTTP 1.1 protocol verbs: GET, HEAD, POST, PUT, DELETE, TRACE, or OPTIONS.        public static HttpWebRequest PrepareWebRequest(string sUrl, string Method, CookieContainer cntnrCookies)        {            HttpWebRequest webRequest = WebRequest.Create(sUrl) as HttpWebRequest;            webRequest.Method = Method;            webRequest.ContentType = "application/x-www-form-urlencoded";            webRequest.CookieContainer = cntnrCookies; webRequest.Timeout = ConfigurationExtensions.GetAppSetting("HttpWebRequest.Timeout", 100000);//default 100sec-http://blogs.msdn.com/b/buckh/archive/2005/02/01/365127.aspx)            /*                //try to change - from http://www.codeproject.com/csharp/ClientTicket_MSNP9.asp                                  webRequest.AllowAutoRedirect = false;                       webRequest.Pipelined = false;                        webRequest.KeepAlive = false;                        webRequest.ProtocolVersion = new Version(1,0);//protocol 1.0 works better that 1.1 ??            */            //MNF 26/5/2005 Some web servers expect UserAgent to be specified            //so let's say it's IE6            webRequest.UserAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)";            DebugOutputHelper.PrintHttpWebRequest(webRequest, TraceOutputHelper.LineWithTrace(""));            return webRequest;        }Related link:http://stackoverflow.com/questions/387247/i-need-help-setting-net-httpwebrequest-timeoutv

    Read the article

  • Uget tray icon not showing

    - by ArK
    Since I upgraded to Saucy, Uget is not showing in the system tray, although the Always show tray icon option in Uget settings is checked. P.S. this happens only with Uget, all the other Softwares have working tray icons (vlc,qbittorrent..) Here is the snapshot which shows the settings of Uget: sudo dpkg -l | grep -e "^rc" -e "^iU": rc account-plugin-generic-oauth 0.10bzr13.03.26-0ubuntu1.1 i386 GNOME Control Center account plugin for single signon - generic OAuth rc appmenu-gtk:i386 12.10.3daily13.04.03-0ubuntu1 i386 Export GTK menus over DBus rc appmenu-gtk3:i386 12.10.3daily13.04.03-0ubuntu1 i386 Export GTK menus over DBus rc arora 0.11.0-0ubuntu1 i386 simple cross platform web browser rc buc 0.5.2-20 i386 BUC rc clementine 1.1.1+dfsg-2ubuntu1 i386 modern music player and library organizer rc epiphany-browser 3.6.1-2ubuntu1 i386 Intuitive GNOME web browser rc epiphany-browser-data 3.6.1-2ubuntu3 all Data files for the GNOME web browser rc fancontrol 1:3.3.3-1ubuntu1 all utilities to read temperature/voltage/fan sensors rc flaremonitor 1.0-5 i386 It is an advanced browser integration helper module of FlareGet rc google-chrome-stable 28.0.1500.95-r213514 i386 The web browser from Google rc hal 0.5.14-8ubuntu1 i386 Hardware Abstraction Layer rc hotot-gtk 1:0.9.8.5+git20120630.884797d-1 all lightweight microblogging client - GTK+ wrapper rc jockey-common 0.9.7-0ubuntu13 all user interface and desktop integration for driver management rc libanalitza4abi1 4:4.10.4-0ubuntu0.1 i386 library to work with mathematical expressions rc libanalitza5 4:4.11.2-0ubuntu1 i386 library to work with mathematical expressions rc libanalitzagui4abi2 4:4.10.4-0ubuntu0.1 i386 library to work with mathematical expressions - GUI routines rc libanalitzaplot4 4:4.10.4-0ubuntu0.1 i386 library to work with mathematical expressions - plot routines rc libavcodec53:i386 6:0.8.6-1ubuntu2 i386 Libav codec library rc libavutil51:i386 6:0.8.6-1ubuntu2 i386 Libav utility library rc libbamf3-1:i386 0.4.0daily13.06.19~13.04-0ubuntu1 i386 Window matching library - shared library rc libboost-iostreams1.49.0 1.49.0-4 i386 Boost.Iostreams Library rc libboost-program-options1.49.0 1.49.0-4 i386 program options library for C++ rc libboost-python1.49.0 1.49.0-4 i386 Boost.Python Library rc libboost-thread1.49.0 1.49.0-4 i386 portable C++ multi-threading rc libbrlapi0.5:i386 4.4-8ubuntu4 i386 braille display access via BRLTTY - shared library rc libcamel-1.2-40 3.6.4-0ubuntu1.1 i386 Evolution MIME message handling library rc libcolumbus0-0 0.4.0daily13.04.16~13.04-0ubuntu1 i386 error tolerant matching engine - shared library rc libdns95 1:9.9.2.dfsg.P1-2ubuntu2.1 i386 DNS Shared Library used by BIND rc libdvbpsi7 0.2.2-1 i386 library for MPEG TS and DVB PSI tables decoding and generating rc libebackend-1.2-5 3.6.4-0ubuntu1.1 i386 Utility library for evolution data servers rc libechonest2.0:i386 2.0.2-0ubuntu1 i386 Qt library for communicating with The Echo Nest platform rc libechonest2.1:i386 2.1.0-2 i386 Qt library for communicating with The Echo Nest platform rc libedata-book-1.2-15 3.6.4-0ubuntu1.1 i386 Backend library for evolution address books rc libedata-cal-1.2-18 3.6.4-0ubuntu1.1 i386 Backend library for evolution calendars rc libftgl2 2.1.3~rc5-4ubuntu1 i386 library to render text in OpenGL using FreeType rc libgc1c3:i386 1:7.2d-0ubuntu5 i386 conservative garbage collector for C and C++ rc libgnome-desktop-3-4 3.6.3-0ubuntu1 i386 Utility library for loading .desktop files - runtime files rc libgtksourceview-3.0-0:i386 3.6.3-0ubuntu1 i386 shared libraries for the GTK+ syntax highlighting widget rc libgweather-3-1 3.6.2-0ubuntu1 i386 GWeather shared library rc libhal-storage1 0.5.14-8ubuntu1 i386 Hardware Abstraction Layer - shared library for storage devices rc libhal1 0.5.14-8ubuntu1 i386 Hardware Abstraction Layer - shared library rc libharfbuzz0:i386 0.9.13-1 i386 OpenType text shaping engine rc libhd16 16.0-2.2 i386 Hardware identification system library rc libibus-1.0-0:i386 1.4.2-0ubuntu2 i386 Intelligent Input Bus - shared library rc libical0 0.48-2 i386 iCalendar library implementation in C (runtime) rc libimobiledevice3 1.1.4-1ubuntu6.2 i386 Library for communicating with the iPhone and iPod Touch rc libisc92 1:9.9.2.dfsg.P1-2ubuntu2.1 i386 ISC Shared Library used by BIND rc libkdegamesprivate1 4:4.10.2-0ubuntu1 i386 private shared library for KDE games rc libkeybinder0 0.3.0-1ubuntu1 i386 registers global key bindings for applications rc libkgapi0:i386 0.4.4-0ubuntu1 i386 Google API library for KDE rc liblastfm1:i386 1.0.7-2 i386 Last.fm web services library rc libnetfilter-queue1 1.0.2-1 i386 Netfilter netlink-queue library rc libnl1:i386 1.1-7ubuntu1 i386 library for dealing with netlink sockets rc libossp-uuid16 1.6.2-1.3 i386 OSSP uuid ISO-C and C++ - shared library rc libpackagekit-glib2-14:i386 0.7.6-3ubuntu1 i386 Library for accessing PackageKit using GLib rc libpoppler28:i386 0.20.5-1ubuntu3 i386 PDF rendering library rc libprojectm2 2.1.0+dfsg-1build1 i386 Advanced Milkdrop-compatible music visualization library rc libqxt-core0:i386 0.6.1-7 i386 extensions to Qt core classes (LibQxt) rc libqxt-gui0:i386 0.6.1-7 i386 extensions to Qt GUI classes (LibQxt) rc libraw5:i386 0.14.7-0ubuntu1.13.04.2 i386 raw image decoder library rc librhythmbox-core6 2.98-0ubuntu5 i386 support library for the rhythmbox music player rc librhythmbox-core7 3.0.1-0~13.10~ppa1 i386 support library for the rhythmbox music player rc libsnmp15 5.4.3~dfsg-2.7ubuntu1 i386 SNMP (Simple Network Management Protocol) library rc libsqlite0 2.8.17-8fakesync1 i386 SQLite shared library rc libsyncdaemon-1.0-1 4.2.0-0ubuntu1 i386 Ubuntu One synchronization daemon library rc libtiff4:i386 3.9.7-2ubuntu1 i386 Tag Image File Format (TIFF) library (old version) rc libunity-core-6.0-5 7.0.0daily13.06.19~13.04-0ubuntu1 i386 Core library for the Unity interface. rc libva-wayland1:i386 1.2.1-0ubuntu0~raring i386 Video Acceleration (VA) API for Linux -- Wayland runtime rc libwayland0:i386 1.0.5-0ubuntu1 i386 wayland compositor infrastructure - shared libraries rc libwebp2:i386 0.1.3-3 i386 Lossy compression of digital photographic images. rc linux-image-3.8.0-19-generic 3.8.0-19.30 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-21-generic 3.8.0-21.32 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-22-generic 3.8.0-22.33 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-26-generic 3.8.0-26.38 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.8.0-27-generic 3.8.0-27.40 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-3.9.0-030900-generic 3.9.0-030900.201304291257 i386 Linux kernel image for version 3.9.0 on 32 bit x86 SMP rc linux-image-3.9.0-030900rc8-generic 3.9.0-030900rc8.201304211835 i386 Linux kernel image for version 3.9.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-19-generic 3.8.0-19.30 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-21-generic 3.8.0-21.32 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-22-generic 3.8.0-22.33 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-26-generic 3.8.0-26.38 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc linux-image-extra-3.8.0-27-generic 3.8.0-27.40 i386 Linux kernel image for version 3.8.0 on 32 bit x86 SMP rc preload 0.6.4-2 i386 adaptive readahead daemon rc steam-launcher 1.0.0.39 all Launcher for the Steam software distribution service rc super-boot-manager 0.7.15 all Simple gui to configure Grub2, Burg and Plymouth. rc totem 3.6.3-0ubuntu6 i386 Simple media player for the GNOME desktop based on GStreamer rc transmission-gtk 2.77-0ubuntu1 i386 lightweight BitTorrent client (GTK interface) rc unity-common 7.0.0daily13.06.19~13.04-0ubuntu1 all Common files for the Unity interface. rc vino 3.6.2-0ubuntu4 i386 VNC server for GNOME rc wicd-daemon 1.7.2.4-4.1 all wired and wireless network manager - daemon rc wicd-gtk 1.7.2.4-4.1 all wired and wireless network manager - GTK+ client rc xscreensaver 5.15-2ubuntu1 i386 Automatic screensaver for X rc xscreensaver-data 5.15-3ubuntu1 i386 data files to be shared among screensaver frontends sudo dpkg -l | grep uget: ii uget 1.10.3-1 i386 easy-to-use download manager written in GTK+ sudo dpkg -l | grep indicator: ii gir1.2-appindicator3-0.1 12.10.1+13.10.20130920-0ubuntu2 i386 Typelib files for libappindicator3-1. ii gir1.2-syncmenu-0.1 12.10.5+13.10.20131011-0ubuntu1 i386 indicator for synchronisation processes status - bindings ii indicator-applet-complete 12.10.2+13.10.20130924.2-0ubuntu1 i386 Clone of the GNOME panel indicator applet ii indicator-application 12.10.1daily13.01.25-0ubuntu1 i386 Application Indicators ii indicator-appmenu 13.01.0+13.10.20130930-0ubuntu1 i386 Indicator for application menus. ii indicator-bluetooth 0.0.6+13.10.20131016-0ubuntu1 i386 System bluetooth indicator. ii indicator-datetime 13.10.0+13.10.20131023.2-0ubuntu1 i386 Simple clock ii indicator-keyboard 0.0.0+13.10.20131010.1-0ubuntu1 i386 Keyboard indicator ii indicator-messages 13.10.1+13.10.20131011-0ubuntu1 i386 indicator that collects messages that need a response ii indicator-multiload 0.3-0ubuntu1 i386 Graphical system load indicator for CPU, ram, etc. ii indicator-power 12.10.6+13.10.20131008-0ubuntu1 i386 Indicator showing power state. ii indicator-printers 0.1.7daily13.03.01-0ubuntu1 i386 indicator showing active print jobs ii indicator-session 12.10.5+13.10.20131023.1-0ubuntu1 i386 indicator showing session management, status and user switching ii indicator-sound 12.10.2+13.10.20131011-0ubuntu1 i386 System sound indicator. ii indicator-sync 12.10.5+13.10.20131011-0ubuntu1 i386 indicator for synchronisation processes status ii libappindicator1 12.10.1+13.10.20130920-0ubuntu2 i386 Application Indicators ii libappindicator3-1 12.10.1+13.10.20130920-0ubuntu2 i386 Application Indicators ii libindicator3-7 12.10.2+13.10.20130913-0ubuntu2 i386 panel indicator applet - shared library ii libindicator7 12.10.2+13.10.20130913-0ubuntu2 i386 panel indicator applet - shared library ii libsync-menu1:i386 12.10.5+13.10.20131011-0ubuntu1 i386 indicator for synchronisation processes status - libraries ii python-appindicator 12.10.1+13.10.20130920-0ubuntu2 i386 Python bindings for libappindicator ii sni-qt:i386 0.2.6-0ubuntu1 i386 indicator support for Qt ii telepathy-indicator 0.3.1daily13.06.19-0ubuntu1 i386 Desktop service to integrate Telepathy with the messaging menu.

    Read the article

  • How Do I Implement parameterMaps for ADF Regions and Dynamic Regions?

    - by david.giammona
    parameterMap objects defined by managed beans can help reduce the number of child <parameter> elements listed under an ADF region or dynamic region page definition task flow binding. But more importantly, the parameterMap approach also allows greater flexibility in determining what input parameters are passed to an ADF region or dynamic region. This can be especially helpful when using dynamic regions where each task flow utilized can provide an entirely different set of input parameters. The parameterMap is specified within an ADF region or dynamic region page definition task flow binding as shown below: <taskFlow id="checkoutflow1" taskFlowId="/WEB-INF/checkout-flow.xml#checkout-flow" activation="deferred" xmlns="http://xmlns.oracle.com/adf/controller/binding" parametersMap="#{pageFlowScope.userInfoBean.parameterMap}"/> The parameter map object must implement the java.util.Map interface. The keys it specifies match the names of input parameters defined by the task flows utilized within the task flow binding. An example parameterMap object class is shown below: import java.util.HashMap; import java.util.Map; public class UserInfoBean { private Map<String, Object> parameterMap = new HashMap<String, Object>(); public Map getParameterMap() { parameterMap.put("isLoggedIn", getSecurity().isAuthenticated()); parameterMap.put("principalName", getSecurity().getPrincipalName()); return parameterMap; }

    Read the article

< Previous Page | 668 669 670 671 672 673 674 675 676 677 678 679  | Next Page >