Search Results

Search found 17285 results on 692 pages for 'incremental build'.

Page 678/692 | < Previous Page | 674 675 676 677 678 679 680 681 682 683 684 685  | Next Page >

  • won't repaint a different Month after pressing button in my calendar

    - by DarkStar123
    I'm trying to build a Calendar in Java as a little project I thought of, But I can't seem to change the name of the Month every time I click the Next button. here's my code! package drawing; import javax.swing.*; import java.awt.*; import java.awt.event.*; public class Drawing_something extends JPanel{ int[] calender_squares = {1, 2, 3, 4, 5, 6, 7}; String[] Month = {"January", "February", "March", "April","May","June","July", "August","September","October","November","December"}; int i = 0; Graphics c; @Override public void paintComponent(Graphics c){ super.paintComponent(c); this.setBackground(Color.WHITE); int WIDTH = 55, HEIGHT = 65; for (int in: calender_squares) { for (int counter = 0; counter < 7; counter++){ c.drawRect(50, 50, 100, 100); c.drawRect(50, 50, 700, 500); c.copyArea(50, 50, 600, 500, 100, 0); c.copyArea(50, 50, 600, 400, 0, 100); } } for (int date = 1; date <= 30; date++) { String s = String.valueOf(date); c.drawString(s, WIDTH, HEIGHT); if (date <= 6){ WIDTH += 100; } else if (date == 7){ WIDTH = 55; HEIGHT = 165; }else if (date <= 13){ WIDTH += 100; }else if (date == 14){ WIDTH = 55; HEIGHT = 265; }else if (date <= 20){ WIDTH += 100; }else if (date == 21){ WIDTH = 55; HEIGHT = 365; }else if (date <= 27){ WIDTH += 100; }else if (date == 28){ WIDTH = 55; HEIGHT = 465; }else if (date <= 30){ WIDTH += 100; } } c.setFont(new Font("default", Font.BOLD, 40)); c.drawString(Month[i], 320, 45); } public Drawing_something(){ setLayout(new BorderLayout()); JButton N = new JButton("NEXT"); JButton B = new JButton("BACK"); JPanel P = new JPanel(); P.add(B); P.add(N); add(P, BorderLayout.SOUTH); B.addActionListener(new HandlerClass()); N.addActionListener(new NextClass()); } public class HandlerClass implements ActionListener{ public void actionPerformed(ActionEvent e){ } } public class NextClass implements ActionListener{ public void actionPerformed(ActionEvent e){ if (i == 11){ i = 0; } i = i + 1; c.drawString(Month[i], 320, 45); } } public static void main(String[] args){ JFrame mainFrame = new JFrame("Calender"); mainFrame.add(new Drawing_something()); mainFrame.setSize(850, 650); mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); mainFrame.setVisible(true); } } if anyone could help that would be much appreciated!! Thanks in advance!!

    Read the article

  • Need help in creating test application in Java and passing parameters into a new designed Java API.

    - by Christophe
    Need help, Please!!! By following the protocol, the Request should be built in 5 byte length, including 1 byte for changing Braud rate (Speed), and send request to a RS-232 port. Protocol: Request for the command processing, with optional extra byte for changing Baud Rate: LGT : length message ( LGT = 5 ) TYPE : 0x06 TO(time out): 0x0000 CMD : (1 byte) 0x02 application update Baud Rate : (1 byte) 0xNN (optional parameter to change baud rate of the Mnt App) where NN can be: 0x00 = No Baud Rate Change (similar to 4-byte command above) 0x09 = Change to 9600 Baud for Application Update speed 0x0A = Change to 19200 Baud for Application Update speed 0x0E = Change to 115200 Baud for Application Update speed All other bytes are not accepted and will result in a status of 0x01. I'm trying to test if my code works or not by creating another class (TestApplication.java) and pass the "3 differenr Baut rate" to this CPXAppliaction. the 3 Baud Rate is supposed to input by reading a file.txt. Question: How do you think these code (first half)? please don't warry about the details about the "sending part". I mean, do I need setter/getter for the "speed" parameter pass? I created the demo test class DemoApp.java (input speed by reading a txt file, and pass into CPXAppliaction). how do you think about that code? Many thanks to you guys!! public class CPXApplication extends CPXCommand { private int speed; . public CPXApplication() { speed = 9600; } public CPXApplication(int speedinit) { speed = speedinit; // TODO: where to get the speed? } protected void buildRequest() throws ElitePortException { String trans = ""; // build the full-qualified message following the protocol trans = addToRequest(trans, (char) 0); trans = addToRequest(trans, (char) 5); trans = addToRequest(trans, (char) 6); trans = addToRequest(trans, (char) 0); trans = addToRequest(trans, (char) 0); trans = addToRequest(trans, (char) 2); switch (speed) { case 9600: trans = addToRequest(trans, (char) 0x09); break; case 19200: trans = addToRequest(trans, (char) 0x0A); break; case 115200: trans = addToRequest(trans, (char) 0x0E); break; default: // TODO: unexpected baud rate. throw(); break; } trans = EncryptBinary(trans); trans = "F0." + trans; wrapRequest(trans); } protected String addToRequest(String req, char c) { return req + c; } protected String addToRequest(String req, String s) { return req + s; } protected String addToRequest(String req) { return req; } public void analyzeResponse() { //.............. } } Here is the demo test code: class Run { public static void run() { CPXAppliaction input = new CpXApplication(); int lineno = 0; try { FileReader fr = new FileReader("baudRateSpeed.txt"); BufferedReader reader = new BufferedReader(fr); String line = reader.readLine(); Scanner scan = null; while (line != null) { scan = new Scanner(line); String speed; speed = scan.next(); if (lineno == 0) { input.speed = speed; lineno++; } else { input = cpxapplication(speed, input); } line = reader.readLine(); } reader.close(); } catch (FileNotFoundException e) { System.out.println("Could not find the file"); } catch (IOException e) { System.out.println("Had a problem reading from file"); } } } public class DemoApp{ public void main(String args[]) { run(); }

    Read the article

  • Many to many self join through junction table

    - by Peter
    I have an EF model that can self-reference through an intermediary class to define a parent/child relationship. I know how to do a pure many-to-many relationship using the Map command, but for some reason going through this intermediary class is causing problems with my mappings. The intermediary class provides additional properties for the relationship. See the classes, modelBinder logic and error below: public class Equipment { [Key] public int EquipmentId { get; set; } public virtual List<ChildRecord> Parents { get; set; } public virtual List<ChildRecord> Children { get; set; } } public class ChildRecord { [Key] public int ChildId { get; set; } [Required] public int Quantity { get; set; } [Required] public Equipment Parent { get; set; } [Required] public Equipment Child { get; set; } } I've tried building the mappings in both directions, though I only keep one set in at a time: modelBuilder.Entity<ChildRecord>() .HasRequired(x => x.Parent) .WithMany(x => x.Children ) .WillCascadeOnDelete(false); modelBuilder.Entity<ChildRecord>() .HasRequired(x => x.Child) .WithMany(x => x.Parents) .WillCascadeOnDelete(false); OR modelBuilder.Entity<Equipment>() .HasMany(x => x.Parents) .WithRequired(x => x.Child) .WillCascadeOnDelete(false); modelBuilder.Entity<Equipment>() .HasMany(x => x.Children) .WithRequired(x => x.Parent) .WillCascadeOnDelete(false); Regardless of which set I use, I get the error: The foreign key component 'Child' is not a declared property on type 'ChildRecord'. Verify that it has not been explicitly excluded from the model and that it is a valid primitive property. when I try do deploy my ef model to the database. If I build it without the modelBinder logic in place then I get two ID columns for Child and two ID columns for Parent in my ChildRecord table. This makes sense since it tries to auto create the navigation properties from Equipment and doesn't know that there are already properties in ChildRecord to fulfill this need. I tried using Data Annotations on the class, and no modelBuilder code, this failed with the same error as above: [Required] [ForeignKey("EquipmentId")] public Equipment Parent { get; set; } [Required] [ForeignKey("EquipmentId")] public Equipment Child { get; set; } AND [InverseProperty("Child")] public virtual List<ChildRecord> Parents { get; set; } [InverseProperty("Parent")] public virtual List<ChildRecord> Children { get; set; } I've looked at various other answers around the internet/SO, and the common difference seems to be that I am self joining where as all the answers I can find are for two different types. Entity Framework Code First Many to Many Setup For Existing Tables Many to many relationship with junction table in Entity Framework? Creating many to many junction table in Entity Framework

    Read the article

  • Need help in creating test appliaction in Java and passing parameters into a new designed Java API.

    - by Christophe
    Need help, Please!!! By following the protocol, the Request should be built in 5 byte length, including 1 byte for changing Braud rate (Speed), and send request to a RS-232 port. Protocol: --------------- Request for the command processing, with optional extra byte for changing Baud Rate: LGT : length message ( LGT = 5 ) TYPE : 0x06 TO(time out): 0x0000 CMD : (1 byte) 0x02 application update Baud Rate : (1 byte) 0xNN (optional parameter to change baud rate of the Mnt App) where NN can be: 0x00 = No Baud Rate Change (similar to 4-byte command above) 0x09 = Change to 9600 Baud for Application Update speed 0x0A = Change to 19200 Baud for Application Update speed 0x0E = Change to 115200 Baud for Application Update speed All other bytes are not accepted and will result in a status of 0x01. ------------------ I'm trying to test if my code works or not by creating another class (TestApplication.java) and pass the "3 differenr Baut rate" to this CPXAppliaction. the 3 Baud Rate is supposed to input by reading a file.txt. Question: How do you think these code (first half)? please don't warry about the details about the "sending part". I mean, do I need setter/getter for the "speed" parameter pass? I created the demo test class DemoApp.java (input speed by reading a txt file, and pass into CPXAppliaction). how do you think about that code? Many thanks to you guys!! public class CPXApplication extends CPXCommand { private int speed; . public CPXApplication() { speed = 9600; } public CPXApplication(int speedinit) { speed = speedinit; // TODO: where to get the speed? } protected void buildRequest() throws ElitePortException { String trans = ""; // build the full-qualified message following the protocol trans = addToRequest(trans, (char) 0); trans = addToRequest(trans, (char) 5); trans = addToRequest(trans, (char) 6); trans = addToRequest(trans, (char) 0); trans = addToRequest(trans, (char) 0); trans = addToRequest(trans, (char) 2); switch (speed) { case 9600: trans = addToRequest(trans, (char) 0x09); break; case 19200: trans = addToRequest(trans, (char) 0x0A); break; case 115200: trans = addToRequest(trans, (char) 0x0E); break; default: // TODO: unexpected baud rate. throw(); break; } trans = EncryptBinary(trans); trans = "F0." + trans; wrapRequest(trans); } protected String addToRequest(String req, char c) { return req + c; } protected String addToRequest(String req, String s) { return req + s; } protected String addToRequest(String req) { return req; } public void analyzeResponse() { //.............. } } Here is the demo test code: package com.ingenico.testApp; import com.ingenico.EliteFd.; import java.util.Scanner; import java.io.; class Run { public static void run() { CPXAppliactionUpdate input = new CpXApplicationUpdate(); int lineno = 0; try { FileReader fr = new FileReader("baudRateSpeed.txt"); BufferedReader reader = new BufferedReader(fr); String line = reader.readLine(); Scanner scan = null; while (line != null) { scan = new Scanner(line); String speed; speed = scan.next(); if (lineno == 0) { input.speed = speed; lineno++; } else { input = cpxapplicationupdate(speed, input); } line = reader.readLine(); } reader.close(); } catch (FileNotFoundException e) { System.out.println("Could not find the file"); } catch (IOException e) { System.out.println("Had a problem reading from file"); } } public class DemoApp{ public void main(String args[]) { run(); } } }

    Read the article

  • Delete one row in html table marqued by a check box with javascript

    - by kawtousse
    Hi everyone, I build dynamically my HTML table from database like that: for(i=0;i< nomCols.length;i++) { retour.append(("<td bgcolor=#0066CC>")+ nomCols[i] + "</td>"); } retour.append("</tr>"); retour.append("<tr>"); try { s= HibernateUtil.currentSession(); tx=s.beginTransaction(); Query query = s.createQuery(HQL_QUERY); // inner join projecttasks.ProjectTypeCode as projects");// inner join projecttasks.taskCode as task inner join projects.projectCode as wa;"); for(Iterator it=query.iterate();it.hasNext();) { if(it.hasNext()){ Dailytimesheet object=(Dailytimesheet)it.next(); retour.append("<td><input type=checkbox name=cb id=cb /> </td>"); retour.append("<td>" +object.getTrackingDate() + "</td>"); retour.append("<td>" +object.getActivity() + "</td>"); retour.append("<td>" +object.getProjectCode() + "</td>"); retour.append("<td>" +object.getWAName() + "</td>"); retour.append("<td>" +object.getTaskCode() +"</td>"); retour.append("<td>" +object.getTimeSpent() + "</td>"); retour.append("<td>" +object.getPercentTaskComplete() + "</td>"); } retour.append("</tr>"); } //terminer la table. retour.append (""); tx.commit(); } catch (HibernateException e) { retour.append ("</table><H1>ERREUR:</H1>" +e.getMessage()); e.printStackTrace(); } return retour; } so I want that all check boxes having the same id. When trying to delete one row in my table witch have the check box checked i found a problem with that. Iam using simple javascript like this: function DeleteARow() { //var Rows = document.getElementById('sheet').getElementsByTagName('tr'); //var RowsCount = Rows.length; //alert('Your table has ' + RowsCount + ' rows.'); if (document.getElementById('cb').checked==true) { document.getElementById('cb').parentNode('td').parentNode('tr').remove(); }} It doesn't work approperly and only the first row have the id 'cb'. Many thanks for your help.

    Read the article

  • Jquery / PhP / Joomla Select one of two comboboxes does not get updated

    - by bluesbrother
    I am making a Joomla component wich has 3 comboboxes/selects on the page. One with languages and 2 with subjects. If you change the language the other two get filled with the same data (the subjects in the selected language) the name of the selectbox are different but otherwise the same. I get an error for one of the subject boxes (hence the url gets red), but there is no logic in wich one will give an error. In Firebug i get the HTML back for the one without the other and this one gets updated but the other one gives nothing back. If i right click in firebug on the one that gave the error, and do "send again" it will load fine. Is their a timing problem? The change event of the language selectbox: jQuery('#cmbldcoi_ldlink_language').bind('change', function() { var cmbLangID = jQuery('#cmbldcoi_ldlink_language').val(); if (cmbLangID !=0) { getSubjectCmb_lang(cmbLangID, 'cmbldcoi_ldlink_subjects', '#ldlinksubjects'); } }); Function that requests the php file to create the html for the select: function getSubjectCmb_lang(langID, cmbName, DivWhereIn) { var xdate = new Date().getTime(); var url = 'index.php?option=com_ldadmin&view=ldadmin&format=raw&task=getcmbsubj_lang&langid=' + langID + '&cmbname=' + cmbName + '&'+ xdate; jQuery(DivWhereIn).load(url, function(){ }); } And in the php file there is a connection made to the database to ge the information to build the selectbox. I use a function for this that is okay because it makes al my selectboxes. The only place where there are problems with select boxes is on the pages that has 2 selects that need to change when a third one changed. My guess it is somewhere in the Jquery where this goes wrong. And i think it has to do with timing. But i am open for all sugestions. Thanx. UPDATE: No the ID and Name fields are different. They are named : cmbldcoi_child cmbldcoi_parent Here is my code: The change event for the first combobox which makes the other two change: jQuery('#cmbldcoi_language_chain_subj').bind('change', function(){ var langID = jQuery('#cmbldcoi_language_chain_subj').val(); if (langID != 0){ getSubjectCmb_lang(langID, 'cmbldcoi_child', '#div_cmbldcoi_child'); getSubjectCmb_lang(langID, 'cmbldcoi_parent', '#div_cmbldcoi_parent'); } }); } The function wicht calls the php file to get the info from the database: function getSubjectCmb_lang(langID, cmbName, DivWhereIn){ var xdate = new Date().getTime(); var url = 'index.php?option=com_ldadmin&view=ldadmin&format=raw&task=getcmbsubj_lang&langid=' + langID + '&cmbname=' + cmbName + '&'+ xdate; jQuery(DivWhereIn).load(url, function(){ }); } The PHP code function getcmbsubj_lang(){ $langid = JRequest::getVar('langid'); if ($langid > 0 ){ $langid = JRequest::getVar('langid'); }else{ $langid = 1; } $cmbName = JRequest::getVar('cmbname'); //$lang_sufx = self::get_#__sufx($langid); print ld_html::ld_create_cmb_html($cmbName, '#__ldcoi_subjects','id', 'subject_name', " WHERE id_language={$langid} ORDER BY subject_name" ); } There is a class wich is called ld_html wich has an funnction in it that creates a combobox. ld_html::ld_create_cmb_html() It gets an table name, id field, namefield and optional an where clause. It all works fine if there is just one combobox thats needs updating. It give a problem when there are two. Thanks for the help !

    Read the article

  • Java saying XML Document Not Well Formed

    - by Pyroclastic
    Hey all. Java's XML parser seems to be thinking that my XML document is not well formed following the root element, but I've validated it with several tools and they all disagree. It's probably an error in my code rather than in the document itself, I'd really appreciate any help you all could offer me. Here is my Java method: private void loadFromXMLFile(File f) throws ParserConfigurationException, IOException, SAXException { File file = f; DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); DocumentBuilder db; Document doc = null; db = dbf.newDocumentBuilder(); doc = db.parse(file); doc.getDocumentElement().normalize(); String desc = ""; String due = ""; String comment = ""; NodeList tasksList = doc.getElementsByTagName("task"); for (int i = 0; i < tasksList.getLength(); i++) { NodeList attributes = tasksList.item(i).getChildNodes(); for (int j = 0; i < attributes.getLength(); j++) { Node attribute = attributes.item(i); if (attribute.getNodeName() == "description") { desc = attribute.getTextContent(); } if (attribute.getNodeName() == "due") { due = attribute.getTextContent(); } if (attribute.getNodeName() == "comment") { comment = attribute.getTextContent(); } tasks.add(new Task(desc, due, comment)); } desc = ""; due = ""; comment = ""; } } And here is the XML file I'm trying to load: <?xml version="1.0"?> <tasklist> <task> <description>Task 1</description> <due>Due date 1</due> <comment>Comment 1</comment> <completed>false</completed> </task> <task> <description>Task 2</description> <due>Due date 2</due> <comment>Comment 2</comment> <completed>false</completed> </task> <task> <description>Task 3</description> <due>Due date 3</due> <comment>Comment 3</comment> <completed>true</completed> </task> </tasklist> And here is the error message java is throwing for me: run: [Fatal Error] tasks.xml:28:3: The markup in the document following the root element must be well-formed. May 17, 2010 6:07:02 PM todolist.TodoListGUI SEVERE: null org.xml.sax.SAXParseException: The markup in the document following the root element must be well-formed. at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(DOMParser.java:239) at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(DocumentBuilderImpl.java:283) at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.java:208) at todolist.TodoListGUI.loadFromXMLFile(TodoListGUI.java:199) at todolist.TodoListGUI.(TodoListGUI.java:42) at todolist.Main.main(Main.java:25) BUILD SUCCESSFUL (total time: 19 seconds) For reference TodoListGUI.java:199 is doc = db.parse(file); If context is helpful to anyone here, I'm trying to write a simple GUI application to manage a todo list that can read and write to and from XML files defining the tasks. Any advice is appreciated!

    Read the article

  • PHP Form Automatic Submission

    - by sex stevens
    I need to create a PHP script that runs around the clock and re-submits a form without actually loading the form, just sending the same request over and over. I used a program called WireShark to record my packets and play them back using a packet player. This took two hours of troubleshooting and configuring. When everything finally worked, it turns out the end result was a dead end. The packets being sent did not affect anything. This code is what the script needs to resubmit: <a href="#" onclick="_('_tf11').value=15; return false;">(15)</a> <input type="image" id="btn_train" class="dynamic_img" value="ok" name="s1" src="assets/x.gif" alt="Training"> Okay, I know that here on stackoverflow you can't just ask people to do your work. The problem is that I don't even know where to start here. So please at least give me a direction, or a function name or a lead on how to be able to submit this form. Then I'll write a program and you guys can help me finish it if I will need help. here is what I made: The program: <?php //create array of data to be posted $post_data['tf[11]'] = '10000'; $post_data['s1'] = 'ok'; //traverse array and prepare data for posting (key1=value1) foreach ( $post_data as $key => $value) { $post_items[] = $key . '=' . $value; } //create the final string to be posted using implode() $post_string = implode ('&', $post_items); //create cURL connection $curl_connection = curl_init('http://crusadertrav.com/build.php?id=33'); //set options curl_setopt($curl_connection, CURLOPT_CONNECTTIMEOUT, 30); curl_setopt($curl_connection, CURLOPT_USERAGENT, "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"); curl_setopt($curl_connection, CURLOPT_RETURNTRANSFER, true); curl_setopt($curl_connection, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($curl_connection, CURLOPT_FOLLOWLOCATION, 1); //set data to be posted curl_setopt($curl_connection, CURLOPT_POSTFIELDS, $post_string); //perform our request $result = curl_exec($curl_connection); //show information regarding the request print_r(curl_getinfo($curl_connection)); echo curl_errno($curl_connection) . '-' . curl_error($curl_connection); //close the connection curl_close($curl_connection); ?> The forms: <input type="text" class="text" id="_tf11" name="tf[11]" value="0" maxlength="4"> <input type="image" id="btn_train" class="dynamic_img" value="ok" name="s1" src="assets/x.gif" alt="Training"> The result: Array ( [url] => http://crusadertrav.com/index.php [content_type] => text/html; charset=UTF-8 [http_code] => 200 [header_size] => 895 [request_size] => 350 [filetime] => -1 [ssl_verify_result] => 0 [redirect_count] => 1 [total_time] => 2.781 [namelookup_time] => 0 [connect_time] => 0.532 [pretransfer_time] => 0.532 [size_upload] => 0 [size_download] => 10655 [speed_download] => 3831 [speed_upload] => 0 [download_content_length] => 0 [upload_content_length] => 0 [starttransfer_time] => 0.954 [redirect_time] => 0.906 [certinfo] => Array ( ) [primary_ip] => 5.154.88.71 [primary_port] => 80 [local_ip] => 192.168.11.52 [local_port] => 3222 [redirect_url] => ) 0-

    Read the article

  • how to pass one variable value frm one class to the oder

    - by Arunabha
    i hav two packages one is com.firstBooks.series.db.parser which hav a java file XMLParser.java,i hav another package com.firstBooks.series79 which hav a class called AppMain.NW i want to send the value of a variable called _xmlFileName frm AppMain class to the xmlFile variable in XMLParser class,i am posting the codes for both the class,kindly help me. package com.firstBooks.series.db.parser; import java.io.IOException; import java.io.InputStream; import java.util.Vector; import net.rim.device.api.xml.parsers.DocumentBuilder; import net.rim.device.api.xml.parsers.DocumentBuilderFactory; import net.rim.device.api.xml.parsers.ParserConfigurationException; import org.w3c.dom.Document; import org.w3c.dom.Element; import org.w3c.dom.NodeList; import org.xml.sax.SAXException; import com.firstBooks.series.db.Question; public class XMLParser { private Document document; public static Vector questionList; public static String xmlFile; public XMLParser() { questionList = new Vector(); } public void parseXMl() throws SAXException, IOException, ParserConfigurationException { // Build a document based on the XML file. DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); DocumentBuilder builder = factory.newDocumentBuilder(); InputStream inputStream = getClass().getResourceAsStream(xmlFile); document = builder.parse(inputStream); } public void parseDocument() { Element element = document.getDocumentElement(); NodeList nl = element.getElementsByTagName("question"); if (nl != null && nl.getLength() > 0) { for (int i = 0; i < nl.getLength(); i++) { Element ele = (Element) nl.item(i); Question question = getQuestions(ele); questionList.addElement(question); } } } private Question getQuestions(Element element) { String title = getTextValue(element, "title"); String choice1 = getTextValue(element, "choice1"); String choice2 = getTextValue(element, "choice2"); String choice3 = getTextValue(element, "choice3"); String choice4 = getTextValue(element, "choice4"); String answer = getTextValue(element, "answer"); String rationale = getTextValue(element, "rationale"); Question Questions = new Question(title, choice1, choice2, choice3, choice4, answer, rationale); return Questions; } private String getTextValue(Element ele, String tagName) { String textVal = null; NodeList nl = ele.getElementsByTagName(tagName); if (nl != null && nl.getLength() > 0) { Element el = (Element) nl.item(0); textVal = el.getFirstChild().getNodeValue(); } return textVal; } } Nw the code for AppMain class //#preprocess package com.firstBooks.series79; import net.rim.device.api.ui.UiApplication; import com.firstBooks.series.ui.screens.HomeScreen; public class AppMain extends UiApplication { public static String _xmlFileName; public static boolean _Lite; public static int _totalNumofQuestions; public static void initialize(){ //#ifndef FULL /* //#endif _xmlFileName = "/res/Series79_FULL.xml"; _totalNumofQuestions = 50; _Lite = false; //#ifndef FULL */ //#endif //#ifndef LITE /* //#endif _xmlFileName = "/res/Series79_LITE.xml"; _totalNumofQuestions = 10; _Lite = true; //#ifndef LITE */ //#endif } private AppMain() { initialize(); pushScreen(new HomeScreen()); } public static void main(String args[]) { new AppMain().enterEventDispatcher(); } }

    Read the article

  • What is a good java data structure for storing nested items (like cities in states)?

    - by anotherAlan
    I'm just getting started in Java and am looking for advice on a good way to store nested sets of data. For example, I'm interested in storing city population data that can be accessed by looking up the city in a given state. (Note: eventually, other data will be stored with each city as well, this is just the first attempt at getting started.) The current approach I'm using is to have a StateList Object which contains a HashMap that stores State Objects via a string key (i.e. HashMap<String, State>). Each State Object contains its own HashMap of City Objects keyed off the city name (i.e. HashMap<String, City>). A cut down version of what I've come up with looks like this: // TestPopulation.java public class TestPopulation { public static void main(String [] args) { // build the stateList Object StateList sl = new StateList(); // get a test state State stateAl = sl.getState("AL"); // make sure it's there. if(stateAl != null) { // add a city stateAl.addCity("Abbeville"); // now grab the city City cityAbbevilleAl = stateAl.getCity("Abbeville"); cityAbbevilleAl.setPopulation(2987); System.out.print("The city has a pop of: "); System.out.println(Integer.toString(cityAbbevilleAl.getPopulation())); } // otherwise, print an error else { System.out.println("That was an invalid state"); } } } // StateList.java import java.util.*; public class StateList { // define hash map to hold the states private HashMap<String, State> theStates = new HashMap<String, State>(); // setup constructor that loads the states public StateList() { String[] stateCodes = {"AL","AK","AZ","AR","CA","CO"}; // etc... for (String s : stateCodes) { State newState = new State(s); theStates.put(s, newState); } } // define method for getting a state public State getState(String stateCode) { if(theStates.containsKey(stateCode)) { return theStates.get(stateCode); } else { return null; } } } // State.java import java.util.*; public class State { // Setup the state code String stateCode; // HashMap for cities HashMap<String, City> cities = new HashMap<String, City>(); // define the constructor public State(String newStateCode) { System.out.println("Creating State: " + newStateCode); stateCode = newStateCode; } // define the method for adding a city public void addCity(String newCityName) { City newCityObj = new City(newCityName); cities.put(newCityName, newCityObj); } // define the method for getting a city public City getCity(String cityName) { if(cities.containsKey(cityName)) { return cities.get(cityName); } else { return null; } } } // City.java public class City { // Define the instance vars String cityName; int cityPop; // setup the constructor public City(String newCityName) { cityName = newCityName; System.out.println("Created City: " + newCityName); } public void setPopulation(int newPop) { cityPop = newPop; } public int getPopulation() { return cityPop; } } This is working for me, but I'm wondering if there are gotchas that I haven't run into, or if there are alternate/better ways to do the same thing. (P.S. I know that I need to add some more error checking in, but right now, I'm focused on trying to figure out a good data structure.) (NOTE: Edited to change setPop() and getPop() to setPopulation() and getPopulation() respectively to avoid confucsion)

    Read the article

  • undefined method `new_record?' for nil:NilClass

    - by TopperH
    In rails 3.2 I created a post controller. Each post can have a different number of paperclip attachments. To achieve this I created a assets model where each asset has a paperclip attachment. One post has_many assets and assets belong_to post. Asset model class Asset < ActiveRecord::Base belongs_to :post has_attached_file :photo, :styles => { :thumb => "200x200>" } end Post model class Post < ActiveRecord::Base attr_accessible :content, :title has_many :assets, :dependent => :destroy validates_associated :assets after_update :save_assets def new_asset_attributes=(asset_attributes) asset_attributes.each do |attributes| assets.build(attributes) end end def existing_asset_attributes=(asset_attributes) assets.reject(&:new_record?).each do |asset| attributes = asset_attributes[asset.id.to_s] if attributes asset.attributes = attributes else asset.delete(asset) end end end def save_assets assets.each do |asset| asset.save(false) end end end Posts helper module PostsHelper def add_asset_link(name) link_to_function name do |post| post.insert_html :bottom, :assets, :partial => 'asset', :object => Asset.new end end end Form for post <%= form_for @post, :html => { :multipart => true } do |f| %> <% if @post.errors.any? %> <div id="error_explanation"> <h2><%= pluralize(@post.errors.count, "error") %> prohibited this post from being saved:</h2> <ul> <% @post.errors.full_messages.each do |msg| %> <li><%= msg %></li> <% end %> </ul> </div> <% end %> <div class="field"> <%= f.label :title %><br /> <%= f.text_field :title %> </div> <div class="field"> <%= f.label :content %><br /> <%= f.text_area :content %> </div> <div id="assets"> Attach a file or image<br /> <%= render 'asset', :collection => @post.assets %> </div> <div class="actions"> <%= f.submit %> </div> <% end %> Asset partial <div class="asset"> <% new_or_existing = asset.new_record? ? 'new' : 'existing' %> <% prefix = "post[#{new_or_existing}_asset_attributes][]" %> <% fields_for prefix, asset do |asset_form| -%> <p> Asset: <%= asset_form.file_field :photo %> <%= link_to_function "remove", "$(this).up('.asset').remove()" %> </p> <% end -%> </div> Most of the code is taken from here: https://gist.github.com/33011 and I understand this is a rails2 app, anyway I don't understand what this error means: undefined method `new_record?' for nil:NilClass Extracted source (around line #2): 1: <div class="asset"> 2: <% new_or_existing = asset.new_record? ? 'new' : 'existing' %> 3: <% prefix = "post[#{new_or_existing}_asset_attributes][]" %> 4: 5: <% fields_for prefix, asset do |asset_form| -%>

    Read the article

  • MCV PHP Am I doing the Model right? [closed]

    - by Kosmo
    I'm trying to create a basic website using MVC in PHP to learn MVC. Its eventually going to be some sort of social networking website but right now I am trying to create a object that can create, delete, update members. What I've done so far for the Model is in the code below, I figure my Controller will take user input and build the array of data that are then passed to this Model. Am I designing this correctly? Should the Controller be the one building the Arrays? <?php class Connection { private $server; private $database; private $user; private $password; private $conn; function __construct($server, $database, $user, $password) { $this->server = $server; $this->database = $database; $this->user = $user; $this->password = $password; } function connect() { $this->conn = mysql_connect($this->server, $this->user, $this->password) or die(mysql_error()); if (!(mysql_select_db($this->database))) { throw new Exception("Could not connect to database!"); } } function deleteMember($memberId) { $queryString = "DELETE FROM Members WHERE MemberId=" . $memberId . ';'; if (!mysql_query($queryString)) { throw new Exception("Failed Deleting Member!"); } } function insertMember($columns) { $queryString = 'INSERT INTO Members'; $keys = '('; $values = '('; $count = 0; foreach($columns as $key => $value) { $keys .= $key; $values .= $value; if (!(++$count == count($columns))) { $keys .= ','; $values .= ','; } } $queryString .= $keys . ')' . ' VALUES ' . $values . ');'; if (!mysql_query($queryString, $this->conn)) { throw new Exception('Failed Inserting Member!'); } else { return mysql_insert_id(); } } function updateMember($memberId, $columns) { $queryString = 'UPDATE Members SET '; $count = 0; foreach($columns as $key => $value) { $queryString .= $key . '=' . $value; if (!(++$count == count($columns))) { $queryString .= ', '; } } $queryString .= ' WHERE MemberId=' . $memberId . ';'; if (!mysql_query($queryString)) { throw new Exception('Failed Updating Member'); } } function getMembers() { $queryString = "SELECT * FROM Members;"; $result = mysql_query($queryString); $memberArray = array(); $count = 0; while ($row = mysql_fetch_array($result)) { $memberArray[$count++] = "Member ID: " . $row['MemberId'] . " Name: " . $row['MemberName'] . " Email: " . $row['MemberEmail']; } return $memberArray; } function disconnect() { mysql_close($this->conn); } }

    Read the article

  • How to display different value with ComboBoxTableCell?

    - by Philippe Jean
    I try to use ComboxBoxTableCell without success. The content of the cell display the right value for the attribute of an object. But when the combobox is displayed, all items are displayed with the toString object method and not the attribute. I tryed to override updateItem of ComboBoxTableCell or to provide a StringConverter but nothing works. Do you have some ideas to custom comboxbox list display in a table cell ? I put a short example below to see quickly the problem. Execute the app and click in the cell, you will see the combobox with toString value of the object. package javafx2; import javafx.application.Application; import javafx.beans.property.adapter.JavaBeanObjectPropertyBuilder; import javafx.beans.value.ObservableValue; import javafx.collections.FXCollections; import javafx.collections.ObservableList; import javafx.scene.Scene; import javafx.scene.control.TableCell; import javafx.scene.control.TableColumn; import javafx.scene.control.TableColumn.CellDataFeatures; import javafx.scene.control.TableView; import javafx.scene.control.cell.ComboBoxTableCell; import javafx.stage.Stage; import javafx.util.Callback; import javafx.util.StringConverter; public class ComboBoxTableCellTest extends Application { public class Product { private String name; public Product(String name) { this.name = name; } public String getName() { return name; } public void setName(String name) { this.name = name; } } public class Command { private Integer quantite; private Product product; public Command(Product product, Integer quantite) { this.product = product; this.quantite = quantite; } public Integer getQuantite() { return quantite; } public void setQuantite(Integer quantite) { this.quantite = quantite; } public Product getProduct() { return product; } public void setProduct(Product product) { this.product = product; } } public static void main(String[] args) { launch(args); } @Override public void start(Stage stage) throws Exception { Product p1 = new Product("Product 1"); Product p2 = new Product("Product 2"); final ObservableList<Product> products = FXCollections.observableArrayList(p1, p2); ObservableList<Command> commands = FXCollections.observableArrayList(new Command(p1, 20)); TableView<Command> tv = new TableView<Command>(); tv.setItems(commands); TableColumn<Command, Product> tc = new TableColumn<Command, Product>("Product"); tc.setMinWidth(140); tc.setCellValueFactory(new Callback<TableColumn.CellDataFeatures<Command,Product>, ObservableValue<Product>>() { @Override public ObservableValue<Product> call(CellDataFeatures<Command, Product> cdf) { try { JavaBeanObjectPropertyBuilder<Product> jbdpb = JavaBeanObjectPropertyBuilder.create(); jbdpb.bean(cdf.getValue()); jbdpb.name("product"); return (ObservableValue) jbdpb.build(); } catch (NoSuchMethodException e) { System.err.println(e.getMessage()); } return null; } }); final StringConverter<Product> converter = new StringConverter<ComboBoxTableCellTest.Product>() { @Override public String toString(Product p) { return p.getName(); } @Override public Product fromString(String s) { // TODO Auto-generated method stub return null; } }; tc.setCellFactory(new Callback<TableColumn<Command,Product>, TableCell<Command,Product>>() { @Override public TableCell<Command, Product> call(TableColumn<Command, Product> tc) { return new ComboBoxTableCell<Command, Product>(converter, products) { @Override public void updateItem(Product product, boolean empty) { super.updateItem(product, empty); if (product != null) { setText(product.getName()); } } }; } }); tv.getColumns().add(tc); tv.setEditable(true); Scene scene = new Scene(tv, 140, 200); stage.setScene(scene); stage.show(); } }

    Read the article

  • What is New in ASP.NET 4.0 Code Access Security

    - by Xiaohong
    ASP.NET Code Access Security (CAS) is a feature that helps protect server applications on hosting multiple Web sites, ASP.NET lets you assign a configurable trust level that corresponds to a predefined set of permissions. ASP.NET has predefined ASP.NET Trust Levels and Policy Files that you can assign to applications, you also can assign custom trust level and policy files. Most web hosting companies run ASP.NET applications in Medium Trust to prevent that one website affect or harm another site etc. As .NET Framework's Code Access Security model has evolved, ASP.NET 4.0 Code Access Security also has introduced several changes and improvements. The main change in ASP.NET 4.0 CAS In ASP.NET v4.0 partial trust applications, application domain can have a default partial trust permission set as opposed to being full-trust, the permission set name is defined in the <trust /> new attribute permissionSetName that is used to initialize the application domain . By default, the PermissionSetName attribute value is "ASP.Net" which is the name of the permission set you can find in all predefined partial trust configuration files. <trust level="Something" permissionSetName="ASP.Net" /> This is ASP.NET 4.0 new CAS model. For compatibility ASP.NET 4.0 also support legacy CAS model where application domain still has full trust permission set. You can specify new legacyCasModel attribute on the <trust /> element to indicate whether the legacy CAS model is enabled. By default legacyCasModel is false which means that new 4.0 CAS model is the default. <trust level="Something" legacyCasModel="true|false" /> In .Net FX 4.0 Config directory, there are two set of predefined partial trust config files for each new CAS model and legacy CAS model, trust config files with name legacy.XYZ.config are for legacy CAS model: New CAS model: Legacy CAS model: web_hightrust.config legacy.web_hightrust.config web_mediumtrust.config legacy.web_mediumtrust.config web_lowtrust.config legacy.web_lowtrust.config web_minimaltrust.config legacy.web_minimaltrust.config   The figure below shows in ASP.NET 4.0 new CAS model what permission set to grant to code for partial trust application using predefined partial trust levels and policy files:    There also some benefits that comes with the new CAS model: You can lock down a machine by making all managed code no-execute by default (e.g. setting the MyComputer zone to have no managed execution code permissions), it should still be possible to configure ASP.NET web applications to run as either full-trust or partial trust. UNC share doesn’t require full trust with CASPOL at machine-level CAS policy. Side effect that comes with the new CAS model: processRequestInApplicationTrust attribute is deprecated  in new CAS model since application domain always has partial trust permission set in new CAS model.   In ASP.NET 4.0 legacy CAS model or ASP.NET 2.0 CAS model, even though you assign partial trust level to a application but the application domain still has full trust permission set. The figure below shows in ASP.NET 4.0 legacy CAS model (or ASP.NET 2.0 CAS model) what permission set to grant to code for partial trust application using predefined partial trust levels and policy files:     What $AppDirUrl$, $CodeGen$, $Gac$ represents: $AppDirUrl$ The application's virtual root directory. This allows permissions to be applied to code that is located in the application's bin directory. For example, if a virtual directory is mapped to C:\YourWebApp, then $AppDirUrl$ would equate to C:\YourWebApp. $CodeGen$ The directory that contains dynamically generated assemblies (for example, the result of .aspx page compiles). This can be configured on a per application basis and defaults to %windir%\Microsoft.NET\Framework\{version}\Temporary ASP.NET Files. $CodeGen$ allows permissions to be applied to dynamically generated assemblies. $Gac$ Any assembly that is installed in the computer's global assembly cache (GAC). This allows permissions to be granted to strong named assemblies loaded from the GAC by the Web application.   The new customization of CAS Policy in ASP.NET 4.0 new CAS model 1. Define which named permission set in partial trust configuration files By default the permission set that will be assigned at application domain initialization time is the named "ASP.Net" permission set found in all predefined partial trust configuration files. However ASP.NET 4.0 allows you set PermissionSetName attribute to define which named permission set in a partial trust configuration file should be the one used to initialize an application domain. Example: add "ASP.Net_2" named permission set in partial trust configuration file: <PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net_2"> <IPermission class="FileIOPermission" version="1" Read="$AppDir$" PathDiscovery="$AppDir$" /> <IPermission class="ReflectionPermission" version="1" Flags ="RestrictedMemberAccess" /> <IPermission class="SecurityPermission " version="1" Flags ="Execution, ControlThread, ControlPrincipal, RemotingConfiguration" /></PermissionSet> Then you can use "ASP.Net_2" named permission set for the application domain permission set: <trust level="Something" legacyCasModel="false" permissionSetName="ASP.Net_2" /> 2. Define a custom set of Full Trust Assemblies for an application By using the new fullTrustAssemblies element to configure a set of Full Trust Assemblies for an application, you can modify set of partial trust assemblies to full trust at the machine, site or application level. The configuration definition is shown below: <fullTrustAssemblies> <add assemblyName="MyAssembly" version="1.1.2.3" publicKey="hex_char_representation_of_key_blob" /></fullTrustAssemblies> 3. Define <CodeGroup /> policy in partial trust configuration files ASP.NET 4.0 new CAS model will retain the ability for developers to optionally define <CodeGroup />with membership conditions and assigned permission sets. The specific restriction in ASP.NET 4.0 new CAS model though will be that the results of evaluating custom policies can only result in one of two outcomes: either an assembly is granted full trust, or an assembly is granted the partial trust permission set currently associated with the running application domain. It will not be possible to use custom policies to create additional custom partial trust permission sets. When parsing the partial trust configuration file: Any assemblies that match to code groups associated with "PermissionSet='FullTrust'" will run at full trust. Any assemblies that match to code groups associated with "PermissionSet='Nothing'" will result in a PolicyError being thrown from the CLR. This is acceptable since it provides administrators with a way to do a blanket-deny of managed code followed by selectively defining policy in a <CodeGroup /> that re-adds assemblies that would be allowed to run. Any assemblies that match to code groups associated with other permissions sets will be interpreted to mean the assembly should run at the permission set of the appdomain. This means that even though syntactically a developer could define additional "flavors" of partial trust in an ASP.NET partial trust configuration file, those "flavors" will always be ignored. Example: defines full trust in <CodeGroup /> for my strong named assemblies in partial trust config files: <CodeGroup class="FirstMatchCodeGroup" version="1" PermissionSetName="Nothing"> <IMembershipCondition    class="AllMembershipCondition"    version="1" /> <CodeGroup    class="UnionCodeGroup"    version="1"    PermissionSetName="FullTrust"    Name="My_Strong_Name"    Description="This code group grants code signed full trust. "> <IMembershipCondition      class="StrongNameMembershipCondition" version="1"       PublicKeyBlob="hex_char_representation_of_key_blob" /> </CodeGroup> <CodeGroup   class="UnionCodeGroup" version="1" PermissionSetName="ASP.Net">   <IMembershipCondition class="UrlMembershipCondition" version="1" Url="$AppDirUrl$/*" /> </CodeGroup> <CodeGroup class="UnionCodeGroup" version="1" PermissionSetName="ASP.Net">   <IMembershipCondition class="UrlMembershipCondition" version="1" Url="$CodeGen$/*"   /> </CodeGroup></CodeGroup>   4. Customize CAS policy at runtime in ASP.NET 4.0 new CAS model ASP.NET 4.0 new CAS model allows to customize CAS policy at runtime by using custom HostSecurityPolicyResolver that overrides the ASP.NET code access security policy. Example: use custom host security policy resolver to resolve partial trust web application bin folder MyTrustedAssembly.dll to full trust at runtime: You can create a custom host security policy resolver and compile it to assembly MyCustomResolver.dll with strong name enabled and deploy in GAC: public class MyCustomResolver : HostSecurityPolicyResolver{ public override HostSecurityPolicyResults ResolvePolicy(Evidence evidence) { IEnumerator hostEvidence = evidence.GetHostEnumerator(); while (hostEvidence.MoveNext()) { object hostEvidenceObject = hostEvidence.Current; if (hostEvidenceObject is System.Security.Policy.Url) { string assemblyName = hostEvidenceObject.ToString(); if (assemblyName.Contains(“MyTrustedAssembly.dll”) return HostSecurityPolicyResult.FullTrust; } } //default fall-through return HostSecurityPolicyResult.DefaultPolicy; }} Because ASP.NET accesses the custom HostSecurityPolicyResolver during application domain initialization, and a custom policy resolver requires full trust, you also can add a custom policy resolver in <fullTrustAssemblies /> , or deploy in the GAC. You also need configure a custom HostSecurityPolicyResolver instance by adding the HostSecurityPolicyResolverType attribute in the <trust /> element: <trust level="Something" legacyCasModel="false" hostSecurityPolicyResolverType="MyCustomResolver, MyCustomResolver" permissionSetName="ASP.Net" />   Note: If an assembly policy define in <CodeGroup/> and also in hostSecurityPolicyResolverType, hostSecurityPolicyResolverType will win. If an assembly added in <fullTrustAssemblies/> then the assembly has full trust no matter what policy in <CodeGroup/> or in hostSecurityPolicyResolverType.   Other changes in ASP.NET 4.0 CAS Use the new transparency model introduced in .Net Framework 4.0 Change in dynamically compiled code generated assemblies by ASP.NET: In new CAS model they will be marked as security transparent level2 to use Framework 4.0 security transparent rule that means partial trust code is treated as completely Transparent and it is more strict enforcement. In legacy CAS model they will be marked as security transparent level1 to use Framework 2.0 security transparent rule for compatibility. Most of ASP.NET products runtime assemblies are also changed to be marked as security transparent level2 to switch to SecurityTransparent code by default unless SecurityCritical or SecuritySafeCritical attribute specified. You also can look at Security Changes in the .NET Framework 4 for more information about these security attributes. Support conditional APTCA If an assembly is marked with the Conditional APTCA attribute to allow partially trusted callers, and if you want to make the assembly both visible and accessible to partial-trust code in your web application, you must add a reference to the assembly in the partialTrustVisibleAssemblies section: <partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" />/partialTrustVisibleAssemblies>   Most of ASP.NET products runtime assemblies are also changed to be marked as conditional APTCA to prevent use of ASP.NET APIs in partial trust environments such as Winforms or WPF UI controls hosted in Internet Explorer.   Differences between ASP.NET new CAS model and legacy CAS model: Here list some differences between ASP.NET new CAS model and legacy CAS model ASP.NET 4.0 legacy CAS model  : Asp.net partial trust appdomains have full trust permission Multiple different permission sets in a single appdomain are allowed in ASP.NET partial trust configuration files Code groups Machine CAS policy is honored processRequestInApplicationTrust attribute is still honored    New configuration setting for legacy model: <trust level="Something" legacyCASModel="true" ></trust><partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" /></partialTrustVisibleAssemblies>   ASP.NET 4.0 new CAS model: ASP.NET will now run in homogeneous application domains. Only full trust or the app-domain's partial trust grant set, are allowable permission sets. It is no longer possible to define arbitrary permission sets that get assigned to different assemblies. If an application currently depends on fine-tuning the partial trust permission set using the ASP.NET partial trust configuration file, this will no longer be possible. processRequestInApplicationTrust attribute is deprecated Dynamically compiled assemblies output by ASP.NET build providers will be updated to explicitly mark assemblies as transparent. ASP.NET partial trust grant sets will be independent from any enterprise, machine, or user CAS policy levels. A simplified model for locking down web servers that only allows trusted managed web applications to run. Machine policy used to always grant full-trust to managed code (based on membership conditions) can instead be configured using the new ASP.NET 4.0 full-trust assembly configuration section. The full-trust assembly configuration section requires explicitly listing each assembly as opposed to using membership conditions. Alternatively, the membership condition(s) used in machine policy can instead be re-defined in a <CodeGroup /> within ASP.NET's partial trust configuration file to grant full-trust.   New configuration setting for new model: <trust level="Something" legacyCASModel="false" permissionSetName="ASP.Net" hostSecurityPolicyResolverType=".NET type string" ></trust><fullTrustAssemblies> <add assemblyName=”MyAssembly” version=”1.0.0.0” publicKey="hex_char_representation_of_key_blob" /></fullTrustAssemblies><partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" /></partialTrustVisibleAssemblies>     Hope this post is helpful to better understand the ASP.Net 4.0 CAS. Xiaohong Tang ASP.NET QA Team

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • jQuery Globalization Plugin from Microsoft

    - by ScottGu
    Last month I blogged about how Microsoft is starting to make code contributions to jQuery, and about some of the first code contributions we were working on: jQuery Templates and Data Linking support. Today, we released a prototype of a new jQuery Globalization Plugin that enables you to add globalization support to your JavaScript applications. This plugin includes globalization information for over 350 cultures ranging from Scottish Gaelic, Frisian, Hungarian, Japanese, to Canadian English.  We will be releasing this plugin to the community as open-source. You can download our prototype for the jQuery Globalization plugin from our Github repository: http://github.com/nje/jquery-glob You can also download a set of samples that demonstrate some simple use-cases with it here. Understanding Globalization The jQuery Globalization plugin enables you to easily parse and format numbers, currencies, and dates for different cultures in JavaScript. For example, you can use the Globalization plugin to display the proper currency symbol for a culture: You also can use the Globalization plugin to format dates so that the day and month appear in the right order and the day and month names are correctly translated: Notice above how the Arabic year is displayed as 1431. This is because the year has been converted to use the Arabic calendar. Some cultural differences, such as different currency or different month names, are obvious. Other cultural differences are surprising and subtle. For example, in some cultures, the grouping of numbers is done unevenly. In the "te-IN" culture (Telugu in India), groups have 3 digits and then 2 digits. The number 1000000 (one million) is written as "10,00,000". Some cultures do not group numbers at all. All of these subtle cultural differences are handled by the jQuery Globalization plugin automatically. Getting dates right can be especially tricky. Different cultures have different calendars such as the Gregorian and UmAlQura calendars. A single culture can even have multiple calendars. For example, the Japanese culture uses both the Gregorian calendar and a Japanese calendar that has eras named after Japanese emperors. The Globalization Plugin includes methods for converting dates between all of these different calendars. Using Language Tags The jQuery Globalization plugin uses the language tags defined in the RFC 4646 and RFC 5646 standards to identity cultures (see http://tools.ietf.org/html/rfc5646). A language tag is composed out of one or more subtags separated by hyphens. For example: Language Tag Language Name (in English) en-AU English (Australia) en-BZ English (Belize) en-CA English (Canada) Id Indonesian zh-CHS Chinese (Simplified) Legacy Zu isiZulu Notice that a single language, such as English, can have several language tags. Speakers of English in Canada format numbers, currencies, and dates using different conventions than speakers of English in Australia or the United States. You can find the language tag for a particular culture by using the Language Subtag Lookup tool located here:  http://rishida.net/utils/subtags/ The jQuery Globalization plugin download includes a folder named globinfo that contains the information for each of the 350 cultures. Actually, this folder contains more than 700 files because the folder includes both minified and un-minified versions of each file. For example, the globinfo folder includes JavaScript files named jQuery.glob.en-AU.js for English Australia, jQuery.glob.id.js for Indonesia, and jQuery.glob.zh-CHS for Chinese (Simplified) Legacy. Example: Setting a Particular Culture Imagine that you have been asked to create a German website and want to format all of the dates, currencies, and numbers using German formatting conventions correctly in JavaScript on the client. The HTML for the page might look like this: Notice the span tags above. They mark the areas of the page that we want to format with the Globalization plugin. We want to format the product price, the date the product is available, and the units of the product in stock. To use the jQuery Globalization plugin, we’ll add three JavaScript files to the page: the jQuery library, the jQuery Globalization plugin, and the culture information for a particular language: In this case, I’ve statically added the jQuery.glob.de-DE.js JavaScript file that contains the culture information for German. The language tag “de-DE” is used for German as spoken in Germany. Now that I have all of the necessary scripts, I can use the Globalization plugin to format the product price, date available, and units in stock values using the following client-side JavaScript: The jQuery Globalization plugin extends the jQuery library with new methods - including new methods named preferCulture() and format(). The preferCulture() method enables you to set the default culture used by the jQuery Globalization plugin methods. Notice that the preferCulture() method accepts a language tag. The method will find the closest culture that matches the language tag. The $.format() method is used to actually format the currencies, dates, and numbers. The second parameter passed to the $.format() method is a format specifier. For example, passing “c” causes the value to be formatted as a currency. The ReadMe file at github details the meaning of all of the various format specifiers: http://github.com/nje/jquery-glob When we open the page in a browser, everything is formatted correctly according to German language conventions. A euro symbol is used for the currency symbol. The date is formatted using German day and month names. Finally, a period instead of a comma is used a number separator: You can see a running example of the above approach with the 3_GermanSite.htm file in this samples download. Example: Enabling a User to Dynamically Select a Culture In the previous example we explicitly said that we wanted to globalize in German (by referencing the jQuery.glob.de-DE.js file). Let’s now look at the first of a few examples that demonstrate how to dynamically set the globalization culture to use. Imagine that you want to display a dropdown list of all of the 350 cultures in a page. When someone selects a culture from the dropdown list, you want all of the dates in the page to be formatted using the selected culture. Here’s the HTML for the page: Notice that all of the dates are contained in a <span> tag with a data-date attribute (data-* attributes are a new feature of HTML 5 that conveniently also still work with older browsers). We’ll format the date represented by the data-date attribute when a user selects a culture from the dropdown list. In order to display dates for any possible culture, we’ll include the jQuery.glob.all.js file like this: The jQuery Globalization plugin includes a JavaScript file named jQuery.glob.all.js. This file contains globalization information for all of the more than 350 cultures supported by the Globalization plugin.  At 367KB minified, this file is not small. Because of the size of this file, unless you really need to use all of these cultures at the same time, we recommend that you add the individual JavaScript files for particular cultures that you intend to support instead of the combined jQuery.glob.all.js to a page. In the next sample I’ll show how to dynamically load just the language files you need. Next, we’ll populate the dropdown list with all of the available cultures. We can use the $.cultures property to get all of the loaded cultures: Finally, we’ll write jQuery code that grabs every span element with a data-date attribute and format the date: The jQuery Globalization plugin’s parseDate() method is used to convert a string representation of a date into a JavaScript date. The plugin’s format() method is used to format the date. The “D” format specifier causes the date to be formatted using the long date format. And now the content will be globalized correctly regardless of which of the 350 languages a user visiting the page selects.  You can see a running example of the above approach with the 4_SelectCulture.htm file in this samples download. Example: Loading Globalization Files Dynamically As mentioned in the previous section, you should avoid adding the jQuery.glob.all.js file to a page whenever possible because the file is so large. A better alternative is to load the globalization information that you need dynamically. For example, imagine that you have created a dropdown list that displays a list of languages: The following jQuery code executes whenever a user selects a new language from the dropdown list. The code checks whether the globalization file associated with the selected language has already been loaded. If the globalization file has not been loaded then the globalization file is loaded dynamically by taking advantage of the jQuery $.getScript() method. The globalizePage() method is called after the requested globalization file has been loaded, and contains the client-side code to perform the globalization. The advantage of this approach is that it enables you to avoid loading the entire jQuery.glob.all.js file. Instead you only need to load the files that you need and you don’t need to load the files more than once. The 5_Dynamic.htm file in this samples download demonstrates how to implement this approach. Example: Setting the User Preferred Language Automatically Many websites detect a user’s preferred language from their browser settings and automatically use it when globalizing content. A user can set a preferred language for their browser. Then, whenever the user requests a page, this language preference is included in the request in the Accept-Language header. When using Microsoft Internet Explorer, you can set your preferred language by following these steps: Select the menu option Tools, Internet Options. Select the General tab. Click the Languages button in the Appearance section. Click the Add button to add a new language to the list of languages. Move your preferred language to the top of the list. Notice that you can list multiple languages in the Language Preference dialog. All of these languages are sent in the order that you listed them in the Accept-Language header: Accept-Language: fr-FR,id-ID;q=0.7,en-US;q=0.3 Strangely, you cannot retrieve the value of the Accept-Language header from client JavaScript. Microsoft Internet Explorer and Mozilla Firefox support a bevy of language related properties exposed by the window.navigator object, such as windows.navigator.browserLanguage and window.navigator.language, but these properties represent either the language set for the operating system or the language edition of the browser. These properties don’t enable you to retrieve the language that the user set as his or her preferred language. The only reliable way to get a user’s preferred language (the value of the Accept-Language header) is to write server code. For example, the following ASP.NET page takes advantage of the server Request.UserLanguages property to assign the user’s preferred language to a client JavaScript variable named acceptLanguage (which then allows you to access the value using client-side JavaScript): In order for this code to work, the culture information associated with the value of acceptLanguage must be included in the page. For example, if someone’s preferred culture is fr-FR (French in France) then you need to include either the jQuery.glob.fr-FR.js or the jQuery.glob.all.js JavaScript file in the page or the culture information won’t be available.  The “6_AcceptLanguages.aspx” sample in this samples download demonstrates how to implement this approach. If the culture information for the user’s preferred language is not included in the page then the $.preferCulture() method will fall back to using the neutral culture (for example, using jQuery.glob.fr.js instead of jQuery.glob.fr-FR.js). If the neutral culture information is not available then the $.preferCulture() method falls back to the default culture (English). Example: Using the Globalization Plugin with the jQuery UI DatePicker One of the goals of the Globalization plugin is to make it easier to build jQuery widgets that can be used with different cultures. We wanted to make sure that the jQuery Globalization plugin could work with existing jQuery UI plugins such as the DatePicker plugin. To that end, we created a patched version of the DatePicker plugin that can take advantage of the Globalization plugin when rendering a calendar. For example, the following figure illustrates what happens when you add the jQuery Globalization and the patched jQuery UI DatePicker plugin to a page and select Indonesian as the preferred culture: Notice that the headers for the days of the week are displayed using Indonesian day name abbreviations. Furthermore, the month names are displayed in Indonesian. You can download the patched version of the jQuery UI DatePicker from our github website. Or you can use the version included in this samples download and used by the 7_DatePicker.htm sample file. Summary I’m excited about our continuing participation in the jQuery community. This Globalization plugin is the third jQuery plugin that we’ve released. We’ve really appreciated all of the great feedback and design suggestions on the jQuery templating and data-linking prototypes that we released earlier this year.  We also want to thank the jQuery and jQuery UI teams for working with us to create these plugins. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. You can follow me at: twitter.com/scottgu

    Read the article

  • Differences Between NHibernate and Entity Framework

    - by Ricardo Peres
    Introduction NHibernate and Entity Framework are two of the most popular O/RM frameworks on the .NET world. Although they share some functionality, there are some aspects on which they are quite different. This post will describe this differences and will hopefully help you get started with the one you know less. Mind you, this is a personal selection of features to compare, it is by no way an exhaustive list. History First, a bit of history. NHibernate is an open-source project that was first ported from Java’s venerable Hibernate framework, one of the first O/RM frameworks, but nowadays it is not tied to it, for example, it has .NET specific features, and has evolved in different ways from those of its Java counterpart. Current version is 3.3, with 3.4 on the horizon. It currently targets .NET 3.5, but can be used as well in .NET 4, it only makes no use of any of its specific functionality. You can find its home page at NHForge. Entity Framework 1 came out with .NET 3.5 and is now on its second major version, despite being version 4. Code First sits on top of it and but came separately and will also continue to be released out of line with major .NET distributions. It is currently on version 4.3.1 and version 5 will be released together with .NET Framework 4.5. All versions will target the current version of .NET, at the time of their release. Its home location is located at MSDN. Architecture In NHibernate, there is a separation between the Unit of Work and the configuration and model instances. You start off by creating a Configuration object, where you specify all global NHibernate settings such as the database and dialect to use, the batch sizes, the mappings, etc, then you build an ISessionFactory from it. The ISessionFactory holds model and metadata that is tied to a particular database and to the settings that came from the Configuration object, and, there will typically be only one instance of each in a process. Finally, you create instances of ISession from the ISessionFactory, which is the NHibernate representation of the Unit of Work and Identity Map. This is a lightweight object, it basically opens and closes a database connection as required and keeps track of the entities associated with it. ISession objects are cheap to create and dispose, because all of the model complexity is stored in the ISessionFactory and Configuration objects. As for Entity Framework, the ObjectContext/DbContext holds the configuration, model and acts as the Unit of Work, holding references to all of the known entity instances. This class is therefore not lightweight as its NHibernate counterpart and it is not uncommon to see examples where an instance is cached on a field. Mappings Both NHibernate and Entity Framework (Code First) support the use of POCOs to represent entities, no base classes are required (or even possible, in the case of NHibernate). As for mapping to and from the database, NHibernate supports three types of mappings: XML-based, which have the advantage of not tying the entity classes to a particular O/RM; the XML files can be deployed as files on the file system or as embedded resources in an assembly; Attribute-based, for keeping both the entities and database details on the same place at the expense of polluting the entity classes with NHibernate-specific attributes; Strongly-typed code-based, which allows dynamic creation of the model and strongly typing it, so that if, for example, a property name changes, the mapping will also be updated. Entity Framework can use: Attribute-based (although attributes cannot express all of the available possibilities – for example, cascading); Strongly-typed code mappings. Database Support With NHibernate you can use mostly any database you want, including: SQL Server; SQL Server Compact; SQL Server Azure; Oracle; DB2; PostgreSQL; MySQL; Sybase Adaptive Server/SQL Anywhere; Firebird; SQLLite; Informix; Any through OLE DB; Any through ODBC. Out of the box, Entity Framework only supports SQL Server, but a number of providers exist, both free and commercial, for some of the most used databases, such as Oracle and MySQL. See a list here. Inheritance Strategies Both NHibernate and Entity Framework support the three canonical inheritance strategies: Table Per Type Hierarchy (Single Table Inheritance), Table Per Type (Class Table Inheritance) and Table Per Concrete Type (Concrete Table Inheritance). Associations Regarding associations, both support one to one, one to many and many to many. However, NHibernate offers far more collection types: Bags of entities or values: unordered, possibly with duplicates; Lists of entities or values: ordered, indexed by a number column; Maps of entities or values: indexed by either an entity or any value; Sets of entities or values: unordered, no duplicates; Arrays of entities or values: indexed, immutable. Querying NHibernate exposes several querying APIs: LINQ is probably the most used nowadays, and really does not need to be introduced; Hibernate Query Language (HQL) is a database-agnostic, object-oriented SQL-alike language that exists since NHibernate’s creation and still offers the most advanced querying possibilities; well suited for dynamic queries, even if using string concatenation; Criteria API is an implementation of the Query Object pattern where you create a semi-abstract conceptual representation of the query you wish to execute by means of a class model; also a good choice for dynamic querying; Query Over offers a similar API to Criteria, but using strongly-typed LINQ expressions instead of strings; for this, although more refactor-friendlier that Criteria, it is also less suited for dynamic queries; SQL, including stored procedures, can also be used; Integration with Lucene.NET indexer is available. As for Entity Framework: LINQ to Entities is fully supported, and its implementation is considered very complete; it is the API of choice for most developers; Entity-SQL, HQL’s counterpart, is also an object-oriented, database-independent querying language that can be used for dynamic queries; SQL, of course, is also supported. Caching Both NHibernate and Entity Framework, of course, feature first-level cache. NHibernate also supports a second-level cache, that can be used among multiple ISessionFactorys, even in different processes/machines: Hashtable (in-memory); SysCache (uses ASP.NET as the cache provider); SysCache2 (same as above but with support for SQL Server SQL Dependencies); Prevalence; SharedCache; Memcached; Redis; NCache; Appfabric Caching. Out of the box, Entity Framework does not have any second-level cache mechanism, however, there are some public samples that show how we can add this. ID Generators NHibernate supports different ID generation strategies, coming from the database and otherwise: Identity (for SQL Server, MySQL, and databases who support identity columns); Sequence (for Oracle, PostgreSQL, and others who support sequences); Trigger-based; HiLo; Sequence HiLo (for databases that support sequences); Several GUID flavors, both in GUID as well as in string format; Increment (for single-user uses); Assigned (must know what you’re doing); Sequence-style (either uses an actual sequence or a single-column table); Table of ids; Pooled (similar to HiLo but stores high values in a table); Native (uses whatever mechanism the current database supports, identity or sequence). Entity Framework only supports: Identity generation; GUIDs; Assigned values. Properties NHibernate supports properties of entity types (one to one or many to one), collections (one to many or many to many) as well as scalars and enumerations. It offers a mechanism for having complex property types generated from the database, which even include support for querying. It also supports properties originated from SQL formulas. Entity Framework only supports scalars, entity types and collections. Enumerations support will come in the next version. Events and Interception NHibernate has a very rich event model, that exposes more than 20 events, either for synchronous pre-execution or asynchronous post-execution, including: Pre/Post-Load; Pre/Post-Delete; Pre/Post-Insert; Pre/Post-Update; Pre/Post-Flush. It also features interception of class instancing and SQL generation. As for Entity Framework, only two events exist: ObjectMaterialized (after loading an entity from the database); SavingChanges (before saving changes, which include deleting, inserting and updating). Tracking Changes For NHibernate as well as Entity Framework, all changes are tracked by their respective Unit of Work implementation. Entities can be attached and detached to it, Entity Framework does, however, also support self-tracking entities. Optimistic Concurrency Control NHibernate supports all of the imaginable scenarios: SQL Server’s ROWVERSION; Oracle’s ORA_ROWSCN; A column containing date and time; A column containing a version number; All/dirty columns comparison. Entity Framework is more focused on Entity Framework, so it only supports: SQL Server’s ROWVERSION; Comparing all/some columns. Batching NHibernate has full support for insertion batching, but only if the ID generator in use is not database-based (for example, it cannot be used with Identity), whereas Entity Framework has no batching at all. Cascading Both support cascading for collections and associations: when an entity is deleted, their conceptual children are also deleted. NHibernate also offers the possibility to set the foreign key column on children to NULL instead of removing them. Flushing Changes NHibernate’s ISession has a FlushMode property that can have the following values: Auto: changes are sent to the database when necessary, for example, if there are dirty instances of an entity type, and a query is performed against this entity type, or if the ISession is being disposed; Commit: changes are sent when committing the current transaction; Never: changes are only sent when explicitly calling Flush(). As for Entity Framework, changes have to be explicitly sent through a call to AcceptAllChanges()/SaveChanges(). Lazy Loading NHibernate supports lazy loading for Associated entities (one to one, many to one); Collections (one to many, many to many); Scalar properties (thing of BLOBs or CLOBs). Entity Framework only supports lazy loading for: Associated entities; Collections. Generating and Updating the Database Both NHibernate and Entity Framework Code First (with the Migrations API) allow creating the database model from the mapping and updating it if the mapping changes. Extensibility As you can guess, NHibernate is far more extensible than Entity Framework. Basically, everything can be extended, from ID generation, to LINQ to SQL transformation, HQL native SQL support, custom column types, custom association collections, SQL generation, supported databases, etc. With Entity Framework your options are more limited, at least, because practically no information exists as to what can be extended/changed. It features a provider model that can be extended to support any database. Integration With Other Microsoft APIs and Tools When it comes to integration with Microsoft technologies, it will come as no surprise that Entity Framework offers the best support. For example, the following technologies are fully supported: ASP.NET (through the EntityDataSource); ASP.NET Dynamic Data; WCF Data Services; WCF RIA Services; Visual Studio (through the integrated designer). Documentation This is another point where Entity Framework is superior: NHibernate lacks, for starters, an up to date API reference synchronized with its current version. It does have a community mailing list, blogs and wikis, although not much used. Entity Framework has a number of resources on MSDN and, of course, several forums and discussion groups exist. Conclusion Like I said, this is a personal list. I may come as a surprise to some that Entity Framework is so behind NHibernate in so many aspects, but it is true that NHibernate is much older and, due to its open-source nature, is not tied to product-specific timeframes and can thus evolve much more rapidly. I do like both, and I chose whichever is best for the job I have at hands. I am looking forward to the changes in EF5 which will add significant value to an already interesting product. So, what do you think? Did I forget anything important or is there anything else worth talking about? Looking forward for your comments!

    Read the article

  • Quick guide to Oracle IRM 11g: Server configuration

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g index Welcome to the second article in this quick quide to Oracle IRM 11g. Hopefully you've just finished the first article which takes you through deploying the software onto a Linux server. This article walks you through the configuration of this new service and contains a subset of information from the official documentation and is focused on installing the server on Oracle Enterprise Linux. If you are planning to deploy on a non-Linux platform, you will need to reference the documentation for platform specific information. Contents Introduction Create IRM WebLogic Domain Starting the Admin Server and initial configuration Introduction In the previous article the database was prepared, the WebLogic Application Server installed and the files required for an IRM server installed. But we don't actually have a configured system yet. We need to now create a WebLogic Domain in which the IRM server will run, then configure some of the settings and crypography so that we can create a context and be ready to seal some content and test it all works. This article doesn't cover the configuration of SSL communication from client to server. This is quite a big topic and a separate article has been dedicated for this area. In these articles I also use the hostname, irm.company.internal to reference the IRM server and later on use the hostname irm.company.com in reference to the public facing service. Create IRM WebLogic Domain First step is creating the WebLogic domain, in a console switch to the newly created IRM installation folder as shown below and we will run the domain configuration wizard. [oracle@irm /]$ cd /oracle/middleware/Oracle_IRM/common/bin [oracle@irm bin]$ ./config.sh First thing the wizard will ask is if you wish to create a new or extend an existing domain. This guide is creating a standalone system so you should select to create a new domain. Next step is to choose what technologies from the Oracle ECM Suite you wish this domain to host. You are only interested in selecting the option "Oracle Information Rights Management". When you select this check box you will notice that it also selects "Oracle Enterprise Manager" and "Oracle JRF" as these are dependencies of the IRM server. You then need to specify where you wish to place the domain files. I usually just change the domain name from base_domain or irm_domain and leave the others with their defaults. Now the domain will have a single user initially and by default this user is called "weblogic". I usually change this account name to "sysadmin" or "administrator", but in this guide lets just accept the default. With respects to the next dialog, again for eval or dev reasons, leave the server startup mode as development. The JDK should also be automatically detected. We now need to provide details of the database. This guide is using the Oracle 11gR2 database and the settings I used can be seen in the image to the right. There is a lot of configuration that can now be done for the admin server, any managed servers and where the deployments reside. In this guide I am leaving all of these to their defaults so do not check any of the boxes. However I will on this blog be detailing later how you can go back and setup things such as automated startup of an IRM server which require changes to these default settings. But for now, lets leave it all alone and just click next. Now we are ready to install. Note that from this dialog you can scroll the left window and see there are going to be two servers created from the defaults. The AdminServer which is where you modify settings for the WebLogic Server and also hosts the Oracle Enterprise Manager for IRM which allows to monitor the IRM service performance and also make service related settings (which we shortly do below) and the IRM_server1 which hosts the actual IRM services themselves. So go right ahead and hit create, the process is pretty quick and usually under 10 minutes. When the domain creation ends, it will give you the URL to the admin server. It's worth noting this down and the URL is usually; http://irm.company.internal:7001 Starting the Admin Server and initial configuration First thing to do is to start the WebLogic Admin server and review the initial IRM server settings. In this guide we are going to run the Admin server and IRM server in console windows, in another article I will discuss running these as background services. So for now, start a console and run the Admin server by doing the following. cd /oracle/middleware/user_projects/domains/irm_domain/ ./startWebLogic.sh Wait for the server to start, you are looking for the following line to be reported in the console window. <BEA-00360><Server started in RUNNING mode> First step is configuring the IRM service via Enterprise Manager. Now that the Admin server is running you can point a browser at http://irm.company.internal:7001/em. Login with the username and password you supplied when you created the domain. In Enterprise Manager the IRM service administrator is able to make server wide configuration. However finding where to access the pages with these settings can be a bit of a challenge. After logging in on the left you'll see a tree containing elements of the Enterprise Manager farm Farm_irm_domain. Open up Content Management, then Information Rights Management and finally select the IRM node. On the right then select the IRM menu item, navigate to the Administration section and now we have four options, for now, we are just going to look at General Settings. The image on the right proves that a picture is worth a thousand words (or 113 in this case). The General Settings page allows you to set the cryptographic algorithms used for protecting sealed content. Unless you have a burning need to increase the key lengths or you need to comply to a regulation or government mandate, AES192 is a good start. You can change this later on without worry. The most important setting here we need to make is the Server URL. In this blog article I go over why this URL is so important, basically every single piece of content you protect with Oracle IRM is going to have this URL embedded in it, so if it's wrong or unresolvable, then nobody can open the secured documents. Note that in our environment we have yet to do any SSL configuration of the service. If you intend to build a server without SSL, then use http as the protocol instead of https. But I would recommend using SSL and setting this up is described in the next article. I would also probably up the device count from 1 to 3. This means that any user can retrieve rights to access content onto 3 computers at any one time. The default of 1 doesn't really make sense in development, evaluation nor even production environments and my experience is that 3 is a better number. Next step is to create the keystore for the IRM server. When a classification (called a context) is created, Oracle IRM generates a unique set of symmetric keys which are used to secure the content itself. These keys are then encrypted with a set of "wrapper" asymmetric cryptography keys which are stored externally to the server either in a Java Key Store or a HSM. These keys need to be generated and the following shows my commands and the resulting output. I have greyed out the responses from the commands so you can see the input a little easier. [oracle@irmsrv ~]$ cd /oracle/middleware/wlserver_10.3/server/bin/ [oracle@irmsrv bin]$ ./setWLSEnv.sh CLASSPATH=/oracle/middleware/patch_wls1033/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/oracle/middleware/patch_ocp353/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/usr/java/jdk1.6.0_18/lib/tools.jar:/oracle/middleware/wlserver_10.3/server/lib/weblogic_sp.jar:/oracle/middleware/wlserver_10.3/server/lib/weblogic.jar:/oracle/middleware/modules/features/weblogic.server.modules_10.3.3.0.jar:/oracle/middleware/wlserver_10.3/server/lib/webservices.jar:/oracle/middleware/modules/org.apache.ant_1.7.1/lib/ant-all.jar:/oracle/middleware/modules/net.sf.antcontrib_1.1.0.0_1-0b2/lib/ant-contrib.jar: PATH=/oracle/middleware/wlserver_10.3/server/bin:/oracle/middleware/modules/org.apache.ant_1.7.1/bin:/usr/java/jdk1.6.0_18/jre/bin:/usr/java/jdk1.6.0_18/bin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/oracle/bin Your environment has been set. [oracle@irmsrv bin]$ cd /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig/ [oracle@irmsrv fmwconfig]$ keytool -genkeypair -alias oracle.irm.wrap -keyalg RSA -keysize 2048 -keystore irm.jks Enter keystore password: Re-enter new password: What is your first and last name? [Unknown]: Simon Thorpe What is the name of your organizational unit? [Unknown]: Oracle What is the name of your organization? [Unknown]: Oracle What is the name of your City or Locality? [Unknown]: San Francisco What is the name of your State or Province? [Unknown]: CA What is the two-letter country code for this unit? [Unknown]: US Is CN=Simon Thorpe, OU=Oracle, O=Oracle, L=San Francisco, ST=CA, C=US correct? [no]: yes Enter key password for (RETURN if same as keystore password): At this point we now have an irm.jks in the directory /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig. The reason we store it here is this folder would be backed up as part of a domain backup. As with any cryptographic technology, DO NOT LOSE THESE KEYS OR THIS KEY STORE. Once you've sealed content against a context, the keys will be wrapped with these keys, lose these keys, and you can't get access to any secured content, pretty important. Now we've got the keys created, we need to go back to the IRM Enterprise Manager and set the location of the key store. Going back to the General Settings page in Enterprise Manager scroll down to Keystore Settings. Leave the type as JKS but change the location to; /oracle/Middleware/user_projects/domains/irm_domain/config/fmwconfig/irm.jks and hit Apply. The final step with regards to the key store is we need to tell the server what the password is for the Java Key Store so that it can be opened and the keys accessed. Once more fire up a console window and run these commands (again i've greyed out the clutter to see the commands easier). You will see dummy passed into the commands, this is because the command asks for a username, but in this instance we don't use one, hence the value dummy is passed and it isn't used. [oracle@irmsrv fmwconfig]$ cd /oracle/middleware/Oracle_IRM/common/bin/ [oracle@irmsrv bin]$ ./wlst.sh ... lots of settings fly by... Welcome to WebLogic Server Administration Scripting Shell Type help() for help on available commands wls:/offline>connect('weblogic','password','t3://irmsrv.us.oracle.com:7001') Connecting to t3://irmsrv.us.oracle.com:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'irm_domain'. Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead. wls:/irm_domain/serverConfig>createCred("IRM","keystore:irm.jks","dummy","password") Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the root. For more help, use help(domainRuntime)wls:/irm_domain/serverConfig>createCred("IRM","key:irm.jks:oracle.irm.wrap","dummy","password") Already in Domain Runtime Tree wls:/irm_domain/serverConfig> At last we are now ready to fire up the IRM server itself. The domain creation created a managed server called IRM_server1 and we need to start this, use the following commands in a new console window. cd /oracle/middleware/user_projects/domains/irm_domain/bin/ ./startManagedWebLogic.sh IRM_server1 This will start up the server in the console, unlike the Admin server, you need to provide the username and password for the service to start. Enter in your weblogic username and password when prompted. You can change this behavior by putting the password into a boot.properties file, read more about this in the WebLogic Server documentation. Once running, wait until you see the line; <Notice><WebLogicServer><BEA-000360><Server started in RUNNING mode> At this point we can now login to the Oracle IRM Management Website at the URL. http://irm.company.internal:1600/irm_rights/ The server is just configured for HTTP at the moment, no SSL involved. Just want to ensure we can get a working system up and running. You should now see a login like the image on the right and you can now login using your weblogic username and password. The next article in this guide goes over adding SSL and now testing your server by actually adding a few users, sealing some content and opening this content as a user.

    Read the article

  • Use IIS Application Initialization for keeping ASP.NET Apps alive

    - by Rick Strahl
    I've been working quite a bit with Windows Services in the recent months, and well, it turns out that Windows Services are quite a bear to debug, deploy, update and maintain. The process of getting services set up,  debugged and updated is a major chore that has to be extensively documented and or automated specifically. On most projects when a service is built, people end up scrambling for the right 'process' to use for administration. Web app deployment and maintenance on the other hand are common and well understood today, as we are constantly dealing with Web apps. There's plenty of infrastructure and tooling built into Web Tools like Visual Studio to facilitate the process. By comparison Windows Services or anything self-hosted for that matter seems convoluted.In fact, in a recent blog post I mentioned that on a recent project I'd been using self-hosting for SignalR inside of a Windows service, because the application is in fact a 'service' that also needs to send out lots of messages via SignalR. But the reality is that it could just as well be an IIS application with a service component that runs in the background. Either way you look at it, it's either a Windows Service with a built in Web Server, or an IIS application running a Service application, neither of which follows the standard Service or Web App template.Personally I much prefer Web applications. Running inside of IIS I get all the benefits of the IIS platform including service lifetime management (crash and restart), controlled shutdowns, the whole security infrastructure including easy certificate support, hot-swapping of code and the the ability to publish directly to IIS from within Visual Studio with ease.Because of these benefits we set out to move from the self hosted service into an ASP.NET Web app instead.The Missing Link for ASP.NET as a Service: Auto-LoadingI've had moments in the past where I wanted to run a 'service like' application in ASP.NET because when you think about it, it's so much easier to control a Web application remotely. Services are locked into start/stop operations, but if you host inside of a Web app you can write your own ticket and control it from anywhere. In fact nearly 10 years ago I built a background scheduling application that ran inside of ASP.NET and it worked great and it's still running doing its job today.The tricky part for running an app as a service inside of IIS then and now, is how to get IIS and ASP.NET launched so your 'service' stays alive even after an Application Pool reset. 7 years ago I faked it by using a web monitor (my own West Wind Web Monitor app) I was running anyway to monitor my various web sites for uptime, and having the monitor ping my 'service' every 20 seconds to effectively keep ASP.NET alive or fire it back up after a reload. I used a simple scheduler class that also includes some logic for 'self-reloading'. Hacky for sure, but it worked reliably.Luckily today it's much easier and more integrated to get IIS to launch ASP.NET as soon as an Application Pool is started by using the Application Initialization Module. The Application Initialization Module basically allows you to turn on Preloading on the Application Pool and the Site/IIS App, which essentially fires a request through the IIS pipeline as soon as the Application Pool has been launched. This means that effectively your ASP.NET app becomes active immediately, Application_Start is fired making sure your app stays up and running at all times. All the other features like Application Pool recycling and auto-shutdown after idle time still work, but IIS will then always immediately re-launch the application.Getting started with Application InitializationAs of IIS 8 Application Initialization is part of the IIS feature set. For IIS 7 and 7.5 there's a separate download available via Web Platform Installer. Using IIS 8 Application Initialization is an optional install component in Windows or the Windows Server Role Manager: This is an optional component so make sure you explicitly select it.IIS Configuration for Application InitializationInitialization needs to be applied on the Application Pool as well as the IIS Application level. As of IIS 8 these settings can be made through the IIS Administration console.Start with the Application Pool:Here you need to set both the Start Automatically which is always set, and the StartMode which should be set to AlwaysRunning. Both have to be set - the Start Automatically flag is set true by default and controls the starting of the application pool itself while Always Running flag is required in order to launch the application. Without the latter flag set the site settings have no effect.Now on the Site/Application level you can specify whether the site should pre load: Set the Preload Enabled flag to true.At this point ASP.NET apps should auto-load. This is all that's needed to pre-load the site if all you want is to get your site launched automatically.If you want a little more control over the load process you can add a few more settings to your web.config file that allow you to show a static page while the App is starting up. This can be useful if startup is really slow, so rather than displaying blank screen while the user is fiddling their thumbs you can display a static HTML page instead: <system.webServer> <applicationInitialization remapManagedRequestsTo="Startup.htm" skipManagedModules="true"> <add initializationPage="ping.ashx" /> </applicationInitialization> </system.webServer>This allows you to specify a page to execute in a dry run. IIS basically fakes request and pushes it directly into the IIS pipeline without hitting the network. You specify a page and IIS will fake a request to that page in this case ping.ashx which just returns a simple OK string - ie. a fast pipeline request. This request is run immediately after Application Pool restart, and while this request is running and your app is warming up, IIS can display an alternate static page - Startup.htm above. So instead of showing users an empty loading page when clicking a link on your site you can optionally show some sort of static status page that says, "we'll be right back".  I'm not sure if that's such a brilliant idea since this can be pretty disruptive in some cases. Personally I think I prefer letting people wait, but at least get the response they were supposed to get back rather than a random page. But it's there if you need it.Note that the web.config stuff is optional. If you don't provide it IIS hits the default site link (/) and even if there's no matching request at the end of that request it'll still fire the request through the IIS pipeline. Ideally though you want to make sure that an ASP.NET endpoint is hit either with your default page, or by specify the initializationPage to ensure ASP.NET actually gets hit since it's possible for IIS fire unmanaged requests only for static pages (depending how your pipeline is configured).What about AppDomain Restarts?In addition to full Worker Process recycles at the IIS level, ASP.NET also has to deal with AppDomain shutdowns which can occur for a variety of reasons:Files are updated in the BIN folderWeb Deploy to your siteweb.config is changedHard application crashThese operations don't cause the worker process to restart, but they do cause ASP.NET to unload the current AppDomain and start up a new one. Because the features above only apply to Application Pool restarts, AppDomain restarts could also cause your 'ASP.NET service' to stop processing in the background.In order to keep the app running on AppDomain recycles, you can resort to a simple ping in the Application_End event:protected void Application_End() { var client = new WebClient(); var url = App.AdminConfiguration.MonitorHostUrl + "ping.aspx"; client.DownloadString(url); Trace.WriteLine("Application Shut Down Ping: " + url); }which fires any ASP.NET url to the current site at the very end of the pipeline shutdown which in turn ensures that the site immediately starts back up.Manual Configuration in ApplicationHost.configThe above UI corresponds to the following ApplicationHost.config settings. If you're using IIS 7, there's no UI for these flags so you'll have to manually edit them.When you install the Application Initialization component into IIS it should auto-configure the module into ApplicationHost.config. Unfortunately for me, with Mr. Murphy in his best form for me, the module registration did not occur and I had to manually add it.<globalModules> <add name="ApplicationInitializationModule" image="%windir%\System32\inetsrv\warmup.dll" /> </globalModules>Most likely you won't need ever need to add this, but if things are not working it's worth to check if the module is actually registered.Next you need to configure the ApplicationPool and the Web site. The following are the two relevant entries in ApplicationHost.config.<system.applicationHost> <applicationPools> <add name="West Wind West Wind Web Connection" autoStart="true" startMode="AlwaysRunning" managedRuntimeVersion="v4.0" managedPipelineMode="Integrated"> <processModel identityType="LocalSystem" setProfileEnvironment="true" /> </add> </applicationPools> <sites> <site name="Default Web Site" id="1"> <application path="/MPress.Workflow.WebQueueMessageManager" applicationPool="West Wind West Wind Web Connection" preloadEnabled="true"> <virtualDirectory path="/" physicalPath="C:\Clients\…" /> </application> </site> </sites> </system.applicationHost>On the Application Pool make sure to set the autoStart and startMode flags to true and AlwaysRunning respectively. On the site make sure to set the preloadEnabled flag to true.And that's all you should need. You can still set the web.config settings described above as well.ASP.NET as a Service?In the particular application I'm working on currently, we have a queue manager that runs as standalone service that polls a database queue and picks out jobs and processes them on several threads. The service can spin up any number of threads and keep these threads alive in the background while IIS is running doing its own thing. These threads are newly created threads, so they sit completely outside of the IIS thread pool. In order for this service to work all it needs is a long running reference that keeps it alive for the life time of the application.In this particular app there are two components that run in the background on their own threads: A scheduler that runs various scheduled tasks and handles things like picking up emails to send out outside of IIS's scope and the QueueManager. Here's what this looks like in global.asax:public class Global : System.Web.HttpApplication { private static ApplicationScheduler scheduler; private static ServiceLauncher launcher; protected void Application_Start(object sender, EventArgs e) { // Pings the service and ensures it stays alive scheduler = new ApplicationScheduler() { CheckFrequency = 600000 }; scheduler.Start(); launcher = new ServiceLauncher(); launcher.Start(); // register so shutdown is controlled HostingEnvironment.RegisterObject(launcher); }}By keeping these objects around as static instances that are set only once on startup, they survive the lifetime of the application. The code in these classes is essentially unchanged from the Windows Service code except that I could remove the various overrides required for the Windows Service interface (OnStart,OnStop,OnResume etc.). Otherwise the behavior and operation is very similar.In this application ASP.NET serves two purposes: It acts as the host for SignalR and provides the administration interface which allows remote management of the 'service'. I can start and stop the service remotely by shutting down the ApplicationScheduler very easily. I can also very easily feed stats from the queue out directly via a couple of Web requests or (as we do now) through the SignalR service.Registering a Background Object with ASP.NETNotice also the use of the HostingEnvironment.RegisterObject(). This function registers an object with ASP.NET to let it know that it's a background task that should be notified if the AppDomain shuts down. RegisterObject() requires an interface with a Stop() method that's fired and allows your code to respond to a shutdown request. Here's what the IRegisteredObject::Stop() method looks like on the launcher:public void Stop(bool immediate = false) { LogManager.Current.LogInfo("QueueManager Controller Stopped."); Controller.StopProcessing(); Controller.Dispose(); Thread.Sleep(1500); // give background threads some time HostingEnvironment.UnregisterObject(this); }Implementing IRegisterObject should help with reliability on AppDomain shutdowns. Thanks to Justin Van Patten for pointing this out to me on Twitter.RegisterObject() is not required but I would highly recommend implementing it on whatever object controls your background processing to all clean shutdowns when the AppDomain shuts down.Testing it outI'm still in the testing phase with this particular service to see if there are any side effects. But so far it doesn't look like it. With about 50 lines of code I was able to replace the Windows service startup to Web start up - everything else just worked as is. An honorable mention goes to SignalR 2.0's oWin hosting, because with the new oWin based hosting no code changes at all were required, merely a couple of configuration file settings and an assembly directive needed, to point at the SignalR startup class. Sweet!It also seems like SignalR is noticeably faster running inside of IIS compared to self-host. Startup feels faster because of the preload.Starting and Stopping the 'Service'Because the application is running as a Web Server, it's easy to have a Web interface for starting and stopping the services running inside of the service. For our queue manager the SignalR service and front monitoring app has a play and stop button for toggling the queue.If you want more administrative control and have it work more like a Windows Service you can also stop the application pool explicitly from the command line which would be equivalent to stopping and restarting a service.To start and stop from the command line you can use the IIS appCmd tool. To stop:> %windir%\system32\inetsrv\appcmd stop apppool /apppool.name:"Weblog"and to start> %windir%\system32\inetsrv\appcmd start apppool /apppool.name:"Weblog"Note that when you explicitly force the AppPool to stop running either in the UI (on the ApplicationPools page use Start/Stop) or via command line tools, the application pool will not auto-restart immediately. You have to manually start it back up.What's not to like?There are certainly a lot of benefits to running a background service in IIS, but… ASP.NET applications do have more overhead in terms of memory footprint and startup time is a little slower, but generally for server applications this is not a big deal. If the application is stable the service should fire up and stay running indefinitely. A lot of times this kind of service interface can simply be attached to an existing Web application, or if scalability requires be offloaded to its own Web server.Easier to work withBut the ultimate benefit here is that it's much easier to work with a Web app as opposed to a service. While developing I can simply turn off the auto-launch features and launch the service on demand through IIS simply by hitting a page on the site. If I want to shut down an IISRESET -stop will shut down the service easily enough. I can then attach a debugger anywhere I want and this works like any other ASP.NET application. Yes you end up on a background thread for debugging but Visual Studio handles that just fine and if you stay on a single thread this is no different than debugging any other code.SummaryUsing ASP.NET to run background service operations is probably not a super common scenario, but it probably should be something that is considered carefully when building services. Many applications have service like features and with the auto-start functionality of the Application Initialization module, it's easy to build this functionality into ASP.NET. Especially when combined with the notification features of SignalR it becomes very, very easy to create rich services that can also communicate their status easily to the outside world.Whether it's existing applications that need some background processing for scheduling related tasks, or whether you just create a separate site altogether just to host your service it's easy to do and you can leverage the same tool chain you're already using for other Web projects. If you have lots of service projects it's worth considering… give it some thought…© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  SignalR  IIS   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Help with Design for Vacation Tracking System (C#/.NET/Access/WebServices/SOA/Excel) [closed]

    - by Aaronaught
    I have been tasked with developing a system for tracking our company's paid time-off (vacation, sick days, etc.) At the moment we are using an Excel spreadsheet on a shared network drive, and it works pretty well, but we are concerned that we won't be able to "trust" employees forever and sometimes we run into locking issues when two people try to open the spreadsheet at once. So we are trying to build something a little more robust. I would like some input on this design in terms of maintainability, scalability, extensibility, etc. It's a pretty simple workflow we need to represent right now: I started with a basic MS Access schema like this: Employees (EmpID int, EmpName varchar(50), AllowedDays int) Vacations (VacationID int, EmpID int, BeginDate datetime, EndDate datetime) But we don't want to spend a lot of time building a schema and database like this and have to change it later, so I think I am going to go with something that will be easier to expand through configuration. Right now the vacation table has this schema: Vacations (VacationID int, PropName varchar(50), PropValue varchar(50)) And the table will be populated with data like this: VacationID | PropName | PropValue -----------+--------------+------------------ 1 | EmpID | 4 1 | EmpName | James Jones 1 | Reason | Vacation 1 | BeginDate | 2/24/2010 1 | EndDate | 2/30/2010 1 | Destination | Spectate Swamp 2 | ... | ... I think this is a pretty good, extensible design, we can easily add new properties to the vacation like the destination or maybe approval status, etc. I wasn't too sure how to go about managing the database of valid properties, I thought of putting them in a separate PropNames table but it gets complicated to manage all the different data types and people say that you shouldn't put CLR type names into a SQL database, so I decided to use XML instead, here is the schema: <VacationProperties> <PropertyNames>EmpID,EmpName,Reason,BeginDate,EndDate,Destination</PropertyNames> <PropertyTypes>System.Int32,System.String,System.String,System.DateTime,System.DateTime,System.String</PropertyTypes> <PropertiesRequired>true,true,false,true,true,false</PropertiesRequired> </VacationProperties> I might need more fields than that, I'm not completely sure. I'm parsing the XML like this (would like some feedback on the parsing code): string xml = File.ReadAllText("properties.xml"); Match m = Regex.Match(xml, "<(PropertyNames)>(.*?)</PropertyNames>"; string[] pn = m.Value.Split(','); // do the same for PropertyTypes, PropertiesRequired Then I use the following code to persist configuration changes to the database: string sql = "DROP TABLE VacationProperties"; sql = sql + " CREATE TABLE VacationProperties "; sql = sql + "(PropertyName varchar(100), PropertyType varchar(100) "; sql = sql + "IsRequired varchar(100))"; for (int i = 0; i < pn.Length; i++) { sql = sql + " INSERT VacationProperties VALUES (" + pn[i] + "," + pt[i] + "," + pv[i] + ")"; } // GlobalConnection is a singleton new SqlCommand(sql, GlobalConnection.Instance).ExecuteReader(); So far so good, but after a few days of this I then realized that a lot of this was just a more specific kind of a generic workflow which could be further abstracted, and instead of writing all of this boilerplate plumbing code I could just come up with a workflow and plug it into a workflow engine like Windows Workflow Foundation and have the users configure it: In order to support routing these configurations throw the workflow system, it seemed natural to implement generic XML Web Services for this instead of just using an XML file as above. I've used this code to implement the Web Services: public class VacationConfigurationService : WebService { [WebMethod] public void UpdateConfiguration(string xml) { // Above code goes here } } Which was pretty easy, although I'm still working on a way to validate that XML against some kind of schema as there's no error-checking yet. I also created a few different services for other operations like VacationSubmissionService, VacationReportService, VacationDataService, VacationAuthenticationService, etc. The whole Service Oriented Architecture looks like this: And because the workflow itself might change, I have been working on a way to integrate the WF workflow system with MS Visio, which everybody at the office already knows how to use so they could make changes pretty easily. We have a diagram that looks like the following (it's kind of hard to read but the main items are Activities, Authenticators, Validators, Transformers, Processors, and Data Connections, they're all analogous to the services in the SOA diagram above). The requirements for this system are: (Note - I don't control these, they were given to me by management) Main workflow must interface with Excel spreadsheet, probably through VBA macros (to ease the transition to the new system) Alerts should integrate with MS Outlook, Lotus Notes, and SMS (text messages). We also want to interface it with the company Voice Mail system but that is not a "hard" requirement. Performance requirements: Must handle 250,000 Transactions Per Second Should be able to handle up to 20,000 employees (right now we have 3) 99.99% uptime ("four nines") expected Must be secure against outside hacking, but users cannot be required to enter a username/password. Platforms: Must support Windows XP/Vista/7, Linux, iPhone, Blackberry, DOS 2.0, VAX, IRIX, PDP-11, Apple IIc. Time to complete: 6 to 8 weeks. My questions are: Is this a good design for the system so far? Am I using all of the recommended best practices for these technologies? How do I integrate the Visio diagram above with the Windows Workflow Foundation to call the ConfigurationService and persist workflow changes? Am I missing any important components? Will this be extensible enough to support any scenario via end-user configuration? Will the system scale to the above performance requirements? Will we need any expensive hardware to run it? Are there any "gotchas" I should know about with respect to cross-platform compatibility? For example would it be difficult to convert this to an iPhone app? How long would you expect this to take? (We've dedicated 1 week for testing so I'm thinking maybe 5 weeks?) Many thanks for your advices, Aaron

    Read the article

  • Setting up and using Bing Translate API Service for Machine Translation

    - by Rick Strahl
    Last week I spent quite a bit of time trying to set up the Bing Translate API service. I can honestly say this was one of the most screwed up developer experiences I've had in a long while - specifically related to the byzantine sign up process that Microsoft has in place. Not only is it nearly impossible to find decent documentation on the required signup process, some of the links in the docs are just plain wrong, and some of the account pages you need to access the actual account information once signed up are not linked anywhere from the administration UI. To make things even harder is the fact that the APIs changed a while back, with a completely new authentication scheme that's described and not directly linked documentation topic also made for a very frustrating search experience. It's a bummer that this is the case too, because the actual API itself is easy to use and works very well - fast and reasonably accurate (as accurate as you can expect machine translation to be). But the sign up process is a pain in the ass doubtlessly leaving many people giving up in frustration. In this post I'll try to hit all the points needed to set up to use the Bing Translate API in one place since such a document seems to be missing from Microsoft. Hopefully the API folks at Microsoft will get their shit together and actually provide this sort of info on their site… Signing Up The first step required is to create a Windows Azure MarketPlace account. Go to: https://datamarket.azure.com/ Sign in with your Windows Live Id If you don't have an account you will be taken to a registration page which you have to fill out. Follow the links and complete the registration. Once you're signed in you can start adding services. Click on the Data Link on the main page Select Microsoft Translator from the list This adds the Microsoft Bing Translator to your services. Pricing The page shows the pricing matrix and the free service which provides 2 megabytes for translations a month for free. Prices go up steeply from there. Pricing is determined by actual bytes of the result translations used. Max translations are 1000 characters so at minimum this means you get around 2000 translations a month for free. However most translations are probable much less so you can expect larger number of translations to go through. For testing or low volume translations this should be just fine. Once signed up there are no further instructions and you're left in limbo on the MS site. Register your Application Once you've created the Data association with Translator the next step is registering your application. To do this you need to access your developer account. Go to https://datamarket.azure.com/developer/applications/register Provide a ClientId, which is effectively the unique string identifier for your application (not your customer id!) Provide your name The client secret was auto-created and this becomes your 'password' For the redirect url provide any https url: https://microsoft.com works Give this application a description of your choice so you can identify it in the list of apps Now, once you've registered your application, keep track of the ClientId and ClientSecret - those are the two keys you need to authenticate before you can call the Translate API. Oddly the applications page is hidden from the Azure Portal UI. I couldn't find a direct link from anywhere on the site back to this page where I can examine my developer application keys. To find them you can go to: https://datamarket.azure.com/developer/applications You can come back here to look at your registered applications and pick up the ClientID and ClientSecret. Fun eh? But we're now ready to actually call the API and do some translating. Using the Bing Translate API The good news is that after this signup hell, using the API is pretty straightforward. To use the translation API you'll need to actually use two services: You need to call an authentication API service first, before you can call the actual translator API. These two APIs live on different domains, and the authentication API returns JSON data while the translator service returns XML. So much for consistency. Authentication The first step is authentication. The service uses oAuth authentication with a  bearer token that has to be passed to the translator API. The authentication call retrieves the oAuth token that you can then use with the translate API call. The bearer token has a short 10 minute life time, so while you can cache it for successive calls, the token can't be cached for long periods. This means for Web backend requests you typically will have to authenticate each time unless you build a more elaborate caching scheme that takes the timeout into account (perhaps using the ASP.NET Cache object). For low volume operations you can probably get away with simply calling the auth API for every translation you do. To call the Authentication API use code like this:/// /// Retrieves an oAuth authentication token to be used on the translate /// API request. The result string needs to be passed as a bearer token /// to the translate API. /// /// You can find client ID and Secret (or register a new one) at: /// https://datamarket.azure.com/developer/applications/ /// /// The client ID of your application /// The client secret or password /// public string GetBingAuthToken(string clientId = null, string clientSecret = null) { string authBaseUrl = https://datamarket.accesscontrol.windows.net/v2/OAuth2-13; if (string.IsNullOrEmpty(clientId) || string.IsNullOrEmpty(clientSecret)) { ErrorMessage = Resources.Resources.Client_Id_and_Client_Secret_must_be_provided; return null; } var postData = string.Format("grant_type=client_credentials&client_id={0}" + "&client_secret={1}" + "&scope=http://api.microsofttranslator.com", HttpUtility.UrlEncode(clientId), HttpUtility.UrlEncode(clientSecret)); // POST Auth data to the oauth API string res, token; try { var web = new WebClient(); web.Encoding = Encoding.UTF8; res = web.UploadString(authBaseUrl, postData); } catch (Exception ex) { ErrorMessage = ex.GetBaseException().Message; return null; } var ser = new JavaScriptSerializer(); var auth = ser.Deserialize<BingAuth>(res); if (auth == null) return null; token = auth.access_token; return token; } private class BingAuth { public string token_type { get; set; } public string access_token { get; set; } } This code basically takes the client id and secret and posts it at the oAuth endpoint which returns a JSON string. Here I use the JavaScript serializer to deserialize the JSON into a custom object I created just for deserialization. You can also use JSON.NET and dynamic deserialization if you are already using JSON.NET in your app in which case you don't need the extra type. In my library that houses this component I don't, so I just rely on the built in serializer. The auth method returns a long base64 encoded string which can be used as a bearer token in the translate API call. Translation Once you have the authentication token you can use it to pass to the translate API. The auth token is passed as an Authorization header and the value is prefixed with a 'Bearer ' prefix for the string. Here's what the simple Translate API call looks like:/// /// Uses the Bing API service to perform translation /// Bing can translate up to 1000 characters. /// /// Requires that you provide a CLientId and ClientSecret /// or set the configuration values for these two. /// /// More info on setup: /// http://www.west-wind.com/weblog/ /// /// Text to translate /// Two letter culture name /// Two letter culture name /// Pass an access token retrieved with GetBingAuthToken. /// If not passed the default keys from .config file are used if any /// public string TranslateBing(string text, string fromCulture, string toCulture, string accessToken = null) { string serviceUrl = "http://api.microsofttranslator.com/V2/Http.svc/Translate"; if (accessToken == null) { accessToken = GetBingAuthToken(); if (accessToken == null) return null; } string res; try { var web = new WebClient(); web.Headers.Add("Authorization", "Bearer " + accessToken); string ct = "text/plain"; string postData = string.Format("?text={0}&from={1}&to={2}&contentType={3}", HttpUtility.UrlEncode(text), fromCulture, toCulture, HttpUtility.UrlEncode(ct)); web.Encoding = Encoding.UTF8; res = web.DownloadString(serviceUrl + postData); } catch (Exception e) { ErrorMessage = e.GetBaseException().Message; return null; } // result is a single XML Element fragment var doc = new XmlDocument(); doc.LoadXml(res); return doc.DocumentElement.InnerText; } The first of this code deals with ensuring the auth token exists. You can either pass the token into the method manually or let the method automatically retrieve the auth code on its own. In my case I'm using this inside of a Web application and in that situation I simply need to re-authenticate every time as there's no convenient way to manage the lifetime of the auth cookie. The auth token is added as an Authorization HTTP header prefixed with 'Bearer ' and attached to the request. The text to translate, the from and to language codes and a result format are passed on the query string of this HTTP GET request against the Translate API. The translate API returns an XML string which contains a single element with the translated string. Using the Wrapper Methods It should be pretty obvious how to use these two methods but here are a couple of test methods that demonstrate the two usage scenarios:[TestMethod] public void TranslateBingWithAuthTest() { var translate = new TranslationServices(); string clientId = DbResourceConfiguration.Current.BingClientId; string clientSecret = DbResourceConfiguration.Current.BingClientSecret; string auth = translate.GetBingAuthToken(clientId, clientSecret); Assert.IsNotNull(auth); string text = translate.TranslateBing("Hello World we're back home!", "en", "de",auth); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } [TestMethod] public void TranslateBingIntegratedTest() { var translate = new TranslationServices(); string text = translate.TranslateBing("Hello World we're back home!","en","de"); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } Other API Methods The Translate API has a number of methods available and this one is the simplest one but probably also the most common one that translates a single string. You can find additional methods for this API here: http://msdn.microsoft.com/en-us/library/ff512419.aspx Soap and AJAX APIs are also available and documented on MSDN: http://msdn.microsoft.com/en-us/library/dd576287.aspx These links will be your starting points for calling other methods in this API. Dual Interface I've talked about my database driven localization provider here in the past, and it's for this tool that I added the Bing localization support. Basically I have a localization administration form that allows me to translate individual strings right out of the UI, using both Google and Bing APIs: As you can see in this example, the results from Google and Bing can vary quite a bit - in this case Google is stumped while Bing actually generated a valid translation. At other times it's the other way around - it's pretty useful to see multiple translations at the same time. Here I can choose from one of the values and driectly embed them into the translated text field. Lost in Translation There you have it. As I mentioned using the API once you have all the bureaucratic crap out of the way calling the APIs is fairly straight forward and reasonably fast, even if you have to call the Auth API for every call. Hopefully this post will help out a few of you trying to navigate the Microsoft bureaucracy, at least until next time Microsoft upends everything and introduces new ways to sign up again. Until then - happy translating… Related Posts Translation method Source on Github Translating with Google Translate without Google API Keys Creating a data-driven ASP.NET Resource Provider© Rick Strahl, West Wind Technologies, 2005-2013Posted in Localization  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • jQuery and Windows Azure

    - by Stephen Walther
    The goal of this blog entry is to describe how you can host a simple Ajax application created with jQuery in the Windows Azure cloud. In this blog entry, I make no assumptions. I assume that you have never used Windows Azure and I am going to walk through the steps required to host the application in the cloud in agonizing detail. Our application will consist of a single HTML page and a single service. The HTML page will contain jQuery code that invokes the service to retrieve and display set of records. There are five steps that you must complete to host the jQuery application: Sign up for Windows Azure Create a Hosted Service Install the Windows Azure Tools for Visual Studio Create a Windows Azure Cloud Service Deploy the Cloud Service Sign Up for Windows Azure Go to http://www.microsoft.com/windowsazure/ and click the Sign up Now button. Select one of the offers. I selected the Introductory Special offer because it is free and I just wanted to experiment with Windows Azure for the purposes of this blog entry.     To sign up, you will need a Windows Live ID and you will need to enter a credit card number. After you finish the sign up process, you will receive an email that explains how to activate your account. Accessing the Developer Portal After you create your account and your account is activated, you can access the Windows Azure developer portal by visiting the following URL: http://windows.azure.com/ When you first visit the developer portal, you will see the one project that you created when you set up your Windows Azure account (In a fit of creativity, I named my project StephenWalther).     Creating a New Windows Azure Hosted Service Before you can host an application in the cloud, you must first add a hosted service to your project. Click your project on the summary page and click the New Service link. You are presented with the option of creating either a new Storage Account or a new Hosted Services.     Because we have code that we want to run in the cloud – the WCF Service -- we want to select the Hosted Services option. After you select this option, you must provide a name and description for your service. This information is used on the developer portal so you can distinguish your services.     When you create a new hosted service, you must enter a unique name for your service (I selected jQueryApp) and you must select a region for this service (I selected Anywhere US). Click the Create button to create the new hosted service.   Install the Windows Azure Tools for Visual Studio We’ll use Visual Studio to create our jQuery project. Before you can use Visual Studio with Windows Azure, you must first install the Windows Azure Tools for Visual Studio. Go to http://www.microsoft.com/windowsazure/ and click the Get Tools and SDK button. The Windows Azure Tools for Visual Studio works with both Visual Studio 2008 and Visual Studio 2010.   Installation of the Windows Azure Tools for Visual Studio is painless. You just need to check some agreement checkboxes and click the Next button a few times and installation will begin:   Creating a Windows Azure Application After you install the Windows Azure Tools for Visual Studio, you can choose to create a Windows Azure Cloud Service by selecting the menu option File, New Project and selecting the Windows Azure Cloud Service project template. I named my new Cloud Service with the name jQueryApp.     Next, you need to select the type of Cloud Service project that you want to create from the New Cloud Service Project dialog.   I selected the C# ASP.NET Web Role option. Alternatively, I could have picked the ASP.NET MVC 2 Web Role option if I wanted to use jQuery with ASP.NET MVC or even the CGI Web Role option if I wanted to use jQuery with PHP. After you complete these steps, you end up with two projects in your Visual Studio solution. The project named WebRole1 represents your ASP.NET application and we will use this project to create our jQuery application. Creating the jQuery Application in the Cloud We are now ready to create the jQuery application. We’ll create a super simple application that displays a list of records retrieved from a WCF service (hosted in the cloud). Create a new page in the WebRole1 project named Default.htm and add the following code: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Products</title> <style type="text/css"> #productContainer div { border:solid 1px black; padding:5px; margin:5px; } </style> </head> <body> <h1>Product Catalog</h1> <div id="productContainer"></div> <script id="productTemplate" type="text/html"> <div> Name: {{= name }} <br /> Price: {{= price }} </div> </script> <script src="Scripts/jquery-1.4.2.js" type="text/javascript"></script> <script src="Scripts/jquery.tmpl.js" type="text/javascript"></script> <script type="text/javascript"> var products = [ {name:"Milk", price:4.55}, {name:"Yogurt", price:2.99}, {name:"Steak", price:23.44} ]; $("#productTemplate").render(products).appendTo("#productContainer"); </script> </body> </html> The jQuery code in this page simply displays a list of products by using a template. I am using a jQuery template to format each product. You can learn more about using jQuery templates by reading the following blog entry by Scott Guthrie: http://weblogs.asp.net/scottgu/archive/2010/05/07/jquery-templates-and-data-linking-and-microsoft-contributing-to-jquery.aspx You can test whether the Default.htm page is working correctly by running your application (hit the F5 key). The first time that you run your application, a database is set up on your local machine to simulate cloud storage. You will see the following dialog: If the Default.htm page works as expected, you should see the list of three products: Adding an Ajax-Enabled WCF Service In the previous section, we created a simple jQuery application that displays an array by using a template. The application is a little too simple because the data is static. In this section, we’ll modify the page so that the data is retrieved from a WCF service instead of an array. First, we need to add a new Ajax-enabled WCF Service to the WebRole1 project. Select the menu option Project, Add New Item and select the Ajax-enabled WCF Service project item. Name the new service ProductService.svc. Modify the service so that it returns a static collection of products. The final code for the ProductService.svc should look like this: using System.Collections.Generic; using System.ServiceModel; using System.ServiceModel.Activation; namespace WebRole1 { public class Product { public string name { get; set; } public decimal price { get; set; } } [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class ProductService { [OperationContract] public IList<Product> SelectProducts() { var products = new List<Product>(); products.Add(new Product {name="Milk", price=4.55m} ); products.Add(new Product { name = "Yogurt", price = 2.99m }); products.Add(new Product { name = "Steak", price = 23.44m }); return products; } } }   In real life, you would want to retrieve the list of products from storage instead of a static array. We are being lazy here. Next you need to modify the Default.htm page to use the ProductService.svc. The jQuery script in the following updated Default.htm page makes an Ajax call to the WCF service. The data retrieved from the ProductService.svc is displayed in the client template. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Products</title> <style type="text/css"> #productContainer div { border:solid 1px black; padding:5px; margin:5px; } </style> </head> <body> <h1>Product Catalog</h1> <div id="productContainer"></div> <script id="productTemplate" type="text/html"> <div> Name: {{= name }} <br /> Price: {{= price }} </div> </script> <script src="Scripts/jquery-1.4.2.js" type="text/javascript"></script> <script src="Scripts/jquery.tmpl.js" type="text/javascript"></script> <script type="text/javascript"> $.post("ProductService.svc/SelectProducts", function (results) { var products = results["d"]; $("#productTemplate").render(products).appendTo("#productContainer"); }); </script> </body> </html>   Deploying the jQuery Application to the Cloud Now that we have created our jQuery application, we are ready to deploy our application to the cloud so that the whole world can use it. Right-click your jQueryApp project in the Solution Explorer window and select the Publish menu option. When you select publish, your application and your application configuration information is packaged up into two files named jQueryApp.cspkg and ServiceConfiguration.cscfg. Visual Studio opens the directory that contains the two files. In order to deploy these files to the Windows Azure cloud, you must upload these files yourself. Return to the Windows Azure Developers Portal at the following address: http://windows.azure.com/ Select your project and select the jQueryApp service. You will see a mysterious cube. Click the Deploy button to upload your application.   Next, you need to browse to the location on your hard drive where the jQueryApp project was published and select both the packaged application and the packaged application configuration file. Supply the deployment with a name and click the Deploy button.     While your application is in the process of being deployed, you can view a progress bar.     Running the jQuery Application in the Cloud Finally, you can run your jQuery application in the cloud by clicking the Run button.   It might take several minutes for your application to initialize (go grab a coffee). After WebRole1 finishes initializing, you can navigate to the following URL to view your live jQuery application in the cloud: http://jqueryapp.cloudapp.net/default.htm The page is hosted on the Windows Azure cloud and the WCF service executes every time that you request the page to retrieve the list of products. Summary Because we started from scratch, we needed to complete several steps to create and deploy our jQuery application to the Windows Azure cloud. We needed to create a Windows Azure account, create a hosted service, install the Windows Azure Tools for Visual Studio, create the jQuery application, and deploy it to the cloud. Now that we have finished this process once, modifying our existing cloud application or creating a new cloud application is easy. jQuery and Windows Azure work nicely together. We can take advantage of jQuery to build applications that run in the browser and we can take advantage of Windows Azure to host the backend services required by our jQuery application. The big benefit of Windows Azure is that it enables us to scale. If, all of the sudden, our jQuery application explodes in popularity, Windows Azure enables us to easily scale up to meet the demand. We can handle anything that the Internet might throw at us.

    Read the article

  • OpenVPN not connecting

    - by LandArch
    There have been a number of post similar to this, but none seem to satisfy my need. Plus I am a Ubuntu newbie. I followed this tutorial to completely set up OpenVPN on Ubuntu 12.04 server. Here is my server.conf file ################################################# # Sample OpenVPN 2.0 config file for # # multi-client server. # # # # This file is for the server side # # of a many-clients <-> one-server # # OpenVPN configuration. # # # # OpenVPN also supports # # single-machine <-> single-machine # # configurations (See the Examples page # # on the web site for more info). # # # # This config should work on Windows # # or Linux/BSD systems. Remember on # # Windows to quote pathnames and use # # double backslashes, e.g.: # # "C:\\Program Files\\OpenVPN\\config\\foo.key" # # # # Comments are preceded with '#' or ';' # ################################################# # Which local IP address should OpenVPN # listen on? (optional) local 192.168.13.8 # Which TCP/UDP port should OpenVPN listen on? # If you want to run multiple OpenVPN instances # on the same machine, use a different port # number for each one. You will need to # open up this port on your firewall. port 1194 # TCP or UDP server? proto tcp ;proto udp # "dev tun" will create a routed IP tunnel, # "dev tap" will create an ethernet tunnel. # Use "dev tap0" if you are ethernet bridging # and have precreated a tap0 virtual interface # and bridged it with your ethernet interface. # If you want to control access policies # over the VPN, you must create firewall # rules for the the TUN/TAP interface. # On non-Windows systems, you can give # an explicit unit number, such as tun0. # On Windows, use "dev-node" for this. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. dev tap0 up "/etc/openvpn/up.sh br0" down "/etc/openvpn/down.sh br0" ;dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel if you # have more than one. On XP SP2 or higher, # you may need to selectively disable the # Windows firewall for the TAP adapter. # Non-Windows systems usually don't need this. ;dev-node MyTap # SSL/TLS root certificate (ca), certificate # (cert), and private key (key). Each client # and the server must have their own cert and # key file. The server and all clients will # use the same ca file. # # See the "easy-rsa" directory for a series # of scripts for generating RSA certificates # and private keys. Remember to use # a unique Common Name for the server # and each of the client certificates. # # Any X509 key management system can be used. # OpenVPN can also use a PKCS #12 formatted key file # (see "pkcs12" directive in man page). ca "/etc/openvpn/ca.crt" cert "/etc/openvpn/server.crt" key "/etc/openvpn/server.key" # This file should be kept secret # Diffie hellman parameters. # Generate your own with: # openssl dhparam -out dh1024.pem 1024 # Substitute 2048 for 1024 if you are using # 2048 bit keys. dh dh1024.pem # Configure server mode and supply a VPN subnet # for OpenVPN to draw client addresses from. # The server will take 10.8.0.1 for itself, # the rest will be made available to clients. # Each client will be able to reach the server # on 10.8.0.1. Comment this line out if you are # ethernet bridging. See the man page for more info. ;server 10.8.0.0 255.255.255.0 # Maintain a record of client <-> virtual IP address # associations in this file. If OpenVPN goes down or # is restarted, reconnecting clients can be assigned # the same virtual IP address from the pool that was # previously assigned. ifconfig-pool-persist ipp.txt # Configure server mode for ethernet bridging. # You must first use your OS's bridging capability # to bridge the TAP interface with the ethernet # NIC interface. Then you must manually set the # IP/netmask on the bridge interface, here we # assume 10.8.0.4/255.255.255.0. Finally we # must set aside an IP range in this subnet # (start=10.8.0.50 end=10.8.0.100) to allocate # to connecting clients. Leave this line commented # out unless you are ethernet bridging. server-bridge 192.168.13.101 255.255.255.0 192.168.13.105 192.168.13.200 # Configure server mode for ethernet bridging # using a DHCP-proxy, where clients talk # to the OpenVPN server-side DHCP server # to receive their IP address allocation # and DNS server addresses. You must first use # your OS's bridging capability to bridge the TAP # interface with the ethernet NIC interface. # Note: this mode only works on clients (such as # Windows), where the client-side TAP adapter is # bound to a DHCP client. ;server-bridge # Push routes to the client to allow it # to reach other private subnets behind # the server. Remember that these # private subnets will also need # to know to route the OpenVPN client # address pool (10.8.0.0/255.255.255.0) # back to the OpenVPN server. push "route 192.168.13.1 255.255.255.0" push "dhcp-option DNS 192.168.13.201" push "dhcp-option DOMAIN blahblah.dyndns-wiki.com" ;push "route 192.168.20.0 255.255.255.0" # To assign specific IP addresses to specific # clients or if a connecting client has a private # subnet behind it that should also have VPN access, # use the subdirectory "ccd" for client-specific # configuration files (see man page for more info). # EXAMPLE: Suppose the client # having the certificate common name "Thelonious" # also has a small subnet behind his connecting # machine, such as 192.168.40.128/255.255.255.248. # First, uncomment out these lines: ;client-config-dir ccd ;route 192.168.40.128 255.255.255.248 # Then create a file ccd/Thelonious with this line: # iroute 192.168.40.128 255.255.255.248 # This will allow Thelonious' private subnet to # access the VPN. This example will only work # if you are routing, not bridging, i.e. you are # using "dev tun" and "server" directives. # EXAMPLE: Suppose you want to give # Thelonious a fixed VPN IP address of 10.9.0.1. # First uncomment out these lines: ;client-config-dir ccd ;route 10.9.0.0 255.255.255.252 # Then add this line to ccd/Thelonious: # ifconfig-push 10.9.0.1 10.9.0.2 # Suppose that you want to enable different # firewall access policies for different groups # of clients. There are two methods: # (1) Run multiple OpenVPN daemons, one for each # group, and firewall the TUN/TAP interface # for each group/daemon appropriately. # (2) (Advanced) Create a script to dynamically # modify the firewall in response to access # from different clients. See man # page for more info on learn-address script. ;learn-address ./script # If enabled, this directive will configure # all clients to redirect their default # network gateway through the VPN, causing # all IP traffic such as web browsing and # and DNS lookups to go through the VPN # (The OpenVPN server machine may need to NAT # or bridge the TUN/TAP interface to the internet # in order for this to work properly). ;push "redirect-gateway def1 bypass-dhcp" # Certain Windows-specific network settings # can be pushed to clients, such as DNS # or WINS server addresses. CAVEAT: # http://openvpn.net/faq.html#dhcpcaveats # The addresses below refer to the public # DNS servers provided by opendns.com. ;push "dhcp-option DNS 208.67.222.222" ;push "dhcp-option DNS 208.67.220.220" # Uncomment this directive to allow different # clients to be able to "see" each other. # By default, clients will only see the server. # To force clients to only see the server, you # will also need to appropriately firewall the # server's TUN/TAP interface. ;client-to-client # Uncomment this directive if multiple clients # might connect with the same certificate/key # files or common names. This is recommended # only for testing purposes. For production use, # each client should have its own certificate/key # pair. # # IF YOU HAVE NOT GENERATED INDIVIDUAL # CERTIFICATE/KEY PAIRS FOR EACH CLIENT, # EACH HAVING ITS OWN UNIQUE "COMMON NAME", # UNCOMMENT THIS LINE OUT. ;duplicate-cn # The keepalive directive causes ping-like # messages to be sent back and forth over # the link so that each side knows when # the other side has gone down. # Ping every 10 seconds, assume that remote # peer is down if no ping received during # a 120 second time period. keepalive 10 120 # For extra security beyond that provided # by SSL/TLS, create an "HMAC firewall" # to help block DoS attacks and UDP port flooding. # # Generate with: # openvpn --genkey --secret ta.key # # The server and each client must have # a copy of this key. # The second parameter should be '0' # on the server and '1' on the clients. ;tls-auth ta.key 0 # This file is secret # Select a cryptographic cipher. # This config item must be copied to # the client config file as well. ;cipher BF-CBC # Blowfish (default) ;cipher AES-128-CBC # AES ;cipher DES-EDE3-CBC # Triple-DES # Enable compression on the VPN link. # If you enable it here, you must also # enable it in the client config file. comp-lzo # The maximum number of concurrently connected # clients we want to allow. ;max-clients 100 # It's a good idea to reduce the OpenVPN # daemon's privileges after initialization. # # You can uncomment this out on # non-Windows systems. user nobody group nogroup # The persist options will try to avoid # accessing certain resources on restart # that may no longer be accessible because # of the privilege downgrade. persist-key persist-tun # Output a short status file showing # current connections, truncated # and rewritten every minute. status openvpn-status.log # By default, log messages will go to the syslog (or # on Windows, if running as a service, they will go to # the "\Program Files\OpenVPN\log" directory). # Use log or log-append to override this default. # "log" will truncate the log file on OpenVPN startup, # while "log-append" will append to it. Use one # or the other (but not both). ;log openvpn.log ;log-append openvpn.log # Set the appropriate level of log # file verbosity. # # 0 is silent, except for fatal errors # 4 is reasonable for general usage # 5 and 6 can help to debug connection problems # 9 is extremely verbose verb 3 # Silence repeating messages. At most 20 # sequential messages of the same message # category will be output to the log. ;mute 20 I am using Windows 7 as the Client and set that up accordingly using the OpenVPN GUI. That conf file is as follows: ############################################## # Sample client-side OpenVPN 2.0 config file # # for connecting to multi-client server. # # # # This configuration can be used by multiple # # clients, however each client should have # # its own cert and key files. # # # # On Windows, you might want to rename this # # file so it has a .ovpn extension # ############################################## # Specify that we are a client and that we # will be pulling certain config file directives # from the server. client # Use the same setting as you are using on # the server. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. dev tap0 up "/etc/openvpn/up.sh br0" down "/etc/openvpn/down.sh br0" ;dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel # if you have more than one. On XP SP2, # you may need to disable the firewall # for the TAP adapter. ;dev-node MyTap # Are we connecting to a TCP or # UDP server? Use the same setting as # on the server. proto tcp ;proto udp # The hostname/IP and port of the server. # You can have multiple remote entries # to load balance between the servers. blahblah.dyndns-wiki.com 1194 ;remote my-server-2 1194 # Choose a random host from the remote # list for load-balancing. Otherwise # try hosts in the order specified. ;remote-random # Keep trying indefinitely to resolve the # host name of the OpenVPN server. Very useful # on machines which are not permanently connected # to the internet such as laptops. resolv-retry infinite # Most clients don't need to bind to # a specific local port number. nobind # Downgrade privileges after initialization (non-Windows only) user nobody group nobody # Try to preserve some state across restarts. persist-key persist-tun # If you are connecting through an # HTTP proxy to reach the actual OpenVPN # server, put the proxy server/IP and # port number here. See the man page # if your proxy server requires # authentication. ;http-proxy-retry # retry on connection failures ;http-proxy [proxy server] [proxy port #] # Wireless networks often produce a lot # of duplicate packets. Set this flag # to silence duplicate packet warnings. ;mute-replay-warnings # SSL/TLS parms. # See the server config file for more # description. It's best to use # a separate .crt/.key file pair # for each client. A single ca # file can be used for all clients. ca "C:\\Program Files\OpenVPN\config\\ca.crt" cert "C:\\Program Files\OpenVPN\config\\ChadMWade-THINK.crt" key "C:\\Program Files\OpenVPN\config\\ChadMWade-THINK.key" # Verify server certificate by checking # that the certicate has the nsCertType # field set to "server". This is an # important precaution to protect against # a potential attack discussed here: # http://openvpn.net/howto.html#mitm # # To use this feature, you will need to generate # your server certificates with the nsCertType # field set to "server". The build-key-server # script in the easy-rsa folder will do this. ns-cert-type server # If a tls-auth key is used on the server # then every client must also have the key. ;tls-auth ta.key 1 # Select a cryptographic cipher. # If the cipher option is used on the server # then you must also specify it here. ;cipher x # Enable compression on the VPN link. # Don't enable this unless it is also # enabled in the server config file. comp-lzo # Set log file verbosity. verb 3 # Silence repeating messages ;mute 20 Not sure whats left to do.

    Read the article

  • Adding Client Validation To DataAnnotations DataType Attribute

    - by srkirkland
    The System.ComponentModel.DataAnnotations namespace contains a validation attribute called DataTypeAttribute, which takes an enum specifying what data type the given property conforms to.  Here are a few quick examples: public class DataTypeEntity { [DataType(DataType.Date)] public DateTime DateTime { get; set; }   [DataType(DataType.EmailAddress)] public string EmailAddress { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This attribute comes in handy when using ASP.NET MVC, because the type you specify will determine what “template” MVC uses.  Thus, for the DateTime property if you create a partial in Views/[loc]/EditorTemplates/Date.ascx (or cshtml for razor), that view will be used to render the property when using any of the Html.EditorFor() methods. One thing that the DataType() validation attribute does not do is any actual validation.  To see this, let’s take a look at the EmailAddress property above.  It turns out that regardless of the value you provide, the entity will be considered valid: //valid new DataTypeEntity {EmailAddress = "Foo"}; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Hmmm.  Since DataType() doesn’t validate, that leaves us with two options: (1) Create our own attributes for each datatype to validate, like [Date], or (2) add validation into the DataType attribute directly.  In this post, I will show you how to hookup client-side validation to the existing DataType() attribute for a desired type.  From there adding server-side validation would be a breeze and even writing a custom validation attribute would be simple (more on that in future posts). Validation All The Way Down Our goal will be to leave our DataTypeEntity class (from above) untouched, requiring no reference to System.Web.Mvc.  Then we will make an ASP.NET MVC project that allows us to create a new DataTypeEntity and hookup automatic client-side date validation using the suggested “out-of-the-box” jquery.validate bits that are included with ASP.NET MVC 3.  For simplicity I’m going to focus on the only DateTime field, but the concept is generally the same for any other DataType. Building a DataTypeAttribute Adapter To start we will need to build a new validation adapter that we can register using ASP.NET MVC’s DataAnnotationsModelValidatorProvider.RegisterAdapter() method.  This method takes two Type parameters; The first is the attribute we are looking to validate with and the second is an adapter that should subclass System.Web.Mvc.ModelValidator. Since we are extending DataAnnotations we can use the subclass of ModelValidator called DataAnnotationsModelValidator<>.  This takes a generic argument of type DataAnnotations.ValidationAttribute, which lucky for us means the DataTypeAttribute will fit in nicely. So starting from there and implementing the required constructor, we get: public class DataTypeAttributeAdapter : DataAnnotationsModelValidator<DataTypeAttribute> { public DataTypeAttributeAdapter(ModelMetadata metadata, ControllerContext context, DataTypeAttribute attribute) : base(metadata, context, attribute) { } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now you have a full-fledged validation adapter, although it doesn’t do anything yet.  There are two methods you can override to add functionality, IEnumerable<ModelValidationResult> Validate(object container) and IEnumerable<ModelClientValidationRule> GetClientValidationRules().  Adding logic to the server-side Validate() method is pretty straightforward, and for this post I’m going to focus on GetClientValidationRules(). Adding a Client Validation Rule Adding client validation is now incredibly easy because jquery.validate is very powerful and already comes with a ton of validators (including date and regular expressions for our email example).  Teamed with the new unobtrusive validation javascript support we can make short work of our ModelClientValidationDateRule: public class ModelClientValidationDateRule : ModelClientValidationRule { public ModelClientValidationDateRule(string errorMessage) { ErrorMessage = errorMessage; ValidationType = "date"; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If your validation has additional parameters you can the ValidationParameters IDictionary<string,object> to include them.  There is a little bit of conventions magic going on here, but the distilled version is that we are defining a “date” validation type, which will be included as html5 data-* attributes (specifically data-val-date).  Then jquery.validate.unobtrusive takes this attribute and basically passes it along to jquery.validate, which knows how to handle date validation. Finishing our DataTypeAttribute Adapter Now that we have a model client validation rule, we can return it in the GetClientValidationRules() method of our DataTypeAttributeAdapter created above.  Basically I want to say if DataType.Date was provided, then return the date rule with a given error message (using ValidationAttribute.FormatErrorMessage()).  The entire adapter is below: public class DataTypeAttributeAdapter : DataAnnotationsModelValidator<DataTypeAttribute> { public DataTypeAttributeAdapter(ModelMetadata metadata, ControllerContext context, DataTypeAttribute attribute) : base(metadata, context, attribute) { }   public override System.Collections.Generic.IEnumerable<ModelClientValidationRule> GetClientValidationRules() { if (Attribute.DataType == DataType.Date) { return new[] { new ModelClientValidationDateRule(Attribute.FormatErrorMessage(Metadata.GetDisplayName())) }; }   return base.GetClientValidationRules(); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Putting it all together Now that we have an adapter for the DataTypeAttribute, we just need to tell ASP.NET MVC to use it.  The easiest way to do this is to use the built in DataAnnotationsModelValidatorProvider by calling RegisterAdapter() in your global.asax startup method. DataAnnotationsModelValidatorProvider.RegisterAdapter(typeof(DataTypeAttribute), typeof(DataTypeAttributeAdapter)); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Show and Tell Let’s see this in action using a clean ASP.NET MVC 3 project.  First make sure to reference the jquery, jquery.vaidate and jquery.validate.unobtrusive scripts that you will need for client validation. Next, let’s make a model class (note we are using the same built-in DataType() attribute that comes with System.ComponentModel.DataAnnotations). public class DataTypeEntity { [DataType(DataType.Date, ErrorMessage = "Please enter a valid date (ex: 2/14/2011)")] public DateTime DateTime { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Then we make a create page with a strongly-typed DataTypeEntity model, the form section is shown below (notice we are just using EditorForModel): @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>Fields</legend>   @Html.EditorForModel()   <p> <input type="submit" value="Create" /> </p> </fieldset> } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The final step is to register the adapter in our global.asax file: DataAnnotationsModelValidatorProvider.RegisterAdapter(typeof(DataTypeAttribute), typeof(DataTypeAttributeAdapter)); Now we are ready to run the page: Looking at the datetime field’s html, we see that our adapter added some data-* validation attributes: <input type="text" value="1/1/0001" name="DateTime" id="DateTime" data-val-required="The DateTime field is required." data-val-date="Please enter a valid date (ex: 2/14/2011)" data-val="true" class="text-box single-line valid"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here data-val-required was added automatically because DateTime is non-nullable, and data-val-date was added by our validation adapter.  Now if we try to add an invalid date: Our custom error message is displayed via client-side validation as soon as we tab out of the box.  If we didn’t include a custom validation message, the default DataTypeAttribute “The field {0} is invalid” would have been shown (of course we can change the default as well).  Note we did not specify server-side validation, but in this case we don’t have to because an invalid date will cause a server-side error during model binding. Conclusion I really like how easy it is to register new data annotations model validators, whether they are your own or, as in this post, supplements to existing validation attributes.  I’m still debating about whether adding the validation directly in the DataType attribute is the correct place to put it versus creating a dedicated “Date” validation attribute, but it’s nice to know either option is available and, as we’ve seen, simple to implement. I’m also working through the nascent stages of an open source project that will create validation attribute extensions to the existing data annotations providers using similar techniques as seen above (examples: Email, Url, EqualTo, Min, Max, CreditCard, etc).  Keep an eye on this blog and subscribe to my twitter feed (@srkirkland) if you are interested for announcements.

    Read the article

< Previous Page | 674 675 676 677 678 679 680 681 682 683 684 685  | Next Page >